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Abstract

In questa tesi abbiamo studiato le caratteristiche di singolarità in segno delle
strutture magnetiche generate in sistemi turbolenti, tramite l’analisi delle
cancellazioni delle fluttuazioni. Tale analisi è stata applicata a dati sin-
tetici ottenuti tramite diverse simulazioni numeriche (Hall MHD e Vlasov-
Maxwell), e ad osservazioni di campi magnetici solari in regioni attive, sia da
terra (THEMIS telescope) che dallo spazio (HMI-SDO). Oltre a caratteriz-
zare le singolarità in segno, e quindi la topologia delle strutture turbolente,
l’analisi delle cancellazioni ha permesso di ottenere importanti informazioni
sui processi fisici osservati.

L’analisi di simulazioni numeriche 3d delle equazioni della Reduced Hall-
MHD ha mostrato la presenza di due distinti ranges (MHD e Hall MHD),
corrispondente ai diversi meccanismi di cascata turbolenta nei due regimi.
Inoltre, nel range MHD le strutture di corrente sono poco sensibili all’effetto
Hall, mentre le strutture di vorticità mostrano una più evidente frammen-
tazione. Nel range Hall, invece, la corrente e la vorticità manifestano un
comportamento simile dovuto alla presenza di strutture più frammentate.

L’applicazione dell’analisi delle cancellazioni ad un set di simulazioni nu-
meriche di un sistema 2d-Vlasov-Maxwell ha sottolineato, di nuovo, la pre-
senza di due differenti regimi (fluido e cinetico). L’evoluzione temporale
dell’esponente di cancellazione ha permsso l’osservazione quantitativa della
transizione alla turbolenza.

Dopo aver mostrato l’efficacia dell’analisi delle cancellazioni tramite lo
studio di simulazioni numeriche, la tecnica è stata applicata a misure sper-
imentali di regioni attive solari. Il vettore campo magnetico misurato dal
telescopio terrestre THEMIS per la regione attiva NOAA 10019 ha mostrato
la presenza di filamenti frammentati di corrente. Inoltre, la variazione della
dimensione frattale delle strutture di corrente, ed in particolare il loro smus-
samento, è stato discusso in relazione alla presenza di flares.
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Infine, abbiamo applicato la tecnica di analisi a misure di campo mag-
netico solare dallo spazio (HMI-SDO), per la regione attiva NOAA 11158. La
variazione temporale dell’esponente di cancellazione ha mostrato correlazione
significativa con l’emissione EUV, legata alla produzione di flares. In par-
ticolare, abbiamo osservato che la complessità del campo magnetico subisce
variazioni significative con un anticipo di 1 ora rispetto alla produzione di
flares.



Introduction

Many of the astrophysical processes observed today are characterized by com-
plex dynamics. In such phenomena non-linearity, turbulence and intermit-
tency dominate the statistical behaviour of the observables. This behavior is
generally linked to the presence of coherent structures, which play a relevant
role in several astrophysical phenomena [1, 2, 3].

Structures in turbulent gases or plasmas are often present on a wide range
of scales, and may be the site of dissipative phenomena, generation of waves or
other instabilities. In astrophysical turbulent plasmas such as the solar wind,
structures as sheets, spirals and filaments have been observed [38, 39, 40].
Direct numerical simulations [32, 33, 34, 35, 36, 37, 61] have also provided ev-
idence of formation of a hierarchy of structures, whose characteristics depend
on the model and regime.

One notable example of evident generation of magnetic structures is the
complex dynamics of solar active regions. These are regions of emergence of
magnetic flux from the solar interiors to the solar surface. More in particular,
the solar dynamo magnetic fields interact with the plasma motions in the
convective zone. Here, the magnetic field is accumulated in particular regions
of space because of the turbulent convective motions, like passive scalars do
in turbulent flows. The field accumulation leads to floating instability, which
makes the strong magnetic field flux tubes emerge in the photosphere. The
emerging magnetic field is often visible as sunspot on the solar photosphere
[4]. These zones are characterized by magnetic field fluctuations on a wide
range of time and space scales, and formation of fine, filamentary structures.
Active regions hosts the majority of the solar flares.

Solar flares are explosive phenomena that occur suddenly and with a
release of huge amounts of energy [107]. Magnetic energy is dissipated at nu-
merous tangential discontinuities which arise spontaneously in the magnetic
field within solar active regions. This energy is released in various forms such
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as thermal and kinetic energy, as well as energetic particles. Solar flares mod-
els are mostly based on magnetic reconnection of the dynamic coronal loops
emerging in the solar active regions [106, 108]. The way reconnection is re-
lated to changes in the magnetic field configuration and fine structure within
ARs, is still an open question [105]. Figure 1 shows schematically one of the
many flare models, called Two ribbon flare model [6, 7, 8, 9]. In this model,
the emergence of a new magnetic region comes in contact with opposite po-
larity magnetic fields. Because of convective motions below the photosphere,
where the footpoints of the coronal loops are anchored, or frozen-in, to the
photosphere, the coronal loops slide over one another to reconnect [107]. In
the region of magnetic reconnection, explosive dissipative phenomena occurs
such as beams of accelerated particles. The particles moving along the mag-
netic field lines on the chromosphere precipitate, giving rise to an increase in
brightness which is observed in Hα as tow-ribbon flare.

Figure 1: Schematic representation of Two ribbon flare model. Adapted from
[10].

The detection of magnetic field variations as a signature of flaring activity
within solar active regions is one of the main goals in the solar physics studies.

A valid tool to characterize the scaling behavior of these sign-oscillating
stuctures is represented by the cancellations analysis. The introduction of the
concept of sign-singular measure allows the evaluation of the scale dependent
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cancellations between fluctuations of opposite sign, which is controled by the
presence and characteristics of structures [30, 46, 48, 49]. Application of
this technique to two-dimensional, high Reynolds number direct numerical
simulations of incompressible MHD equations [44] has shown that turbulent
plasmas field fluctuations own scale-dependent cancellations properties, and
can thus be studied with such tool.

Cancellation analysis application to the magnetic helicity in solar wind
have shown the presence of sign-singular behavior [5], while solar photo-
spheric velocity patterns have been chatacterized as well [11].

Cancellation analysis has also been used to study the complexity of so-
lar magnetic fields inside active regions. The variations of the cancellation
exponent (the scaling index used for the characterization) of current helicity
and current density, calculated using the photosperic magnetic field vector
as measured by ground based telescopes, have been shown to be related to
flaring activity of an active region. In several cases, it was observed that en-
hanced flaring is often accompanied by a drop and subsequential rise of the
magnetic complexity, as measured by the cancellation exponent [46, 48, 49].

In this thesis, we propose to study in depth the cancellation analysis in
several numerical and experimental systems.

In the first Chapter, after a basic introduction to plasmas dynamics we
introduce the main concepts of magnetohydrodynamics (MHD), kinetic de-
scription of plasmas, and plasma turbulence, focusing on the statistical prop-
erties of the magnetic fields.

In the second Chapter, we describe the cancellation analysis technique, by
introducing concepts such as signed measure, partition function and cancella-
tion exponent. Furthermore, we present a model which links the cancellation
exponent to the typical fractal dimension of the structures.

In the third Chapter, we present the cancellation analysis of compressible
Hall-magnetohydrodynamic turbulent numerical simulations, with an exter-
nal guide field, to characterize the scaling behavior of the sign-oscillating flow
structures and their geometrical properties.

In the fourth Chapter, we apply cancellation analysis to a numerical sim-
ulation of hybrid Vlasov-Maxwell system, where fully kinetic proton velocity
distribution functions and fluid electrons are included. It accounts for the
small scale dynamics up to characteristic lengths of the order of the electron
skin depth.

The results obtained through the study of numerical data by means of the
cancellation analysis, discussed in chapters 3 and 4, have a twofold relevance.
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On one hand, we have been able to describe the formation of structures in nu-
merical plasmas, including time evlolution and transition to turbulence, and
parametric dependence of the structures properties. On the other hand, they
reveal the capability of the cancellation analysis to capture subtle variations
in the dymanical properties of the fields. Numerical simulations allowing the
independent evaluation of such properties, this analysis also represents a test
for the data analysis technique capability to capture the main properties of
plasma turbulent fields.

In the fifth Chapter, the cancellation analysis is finally applied to exper-
imental measurements of solar active regions, using both ground-based and
space-based data. First, the magnetic vector as measured by the ground-
based THEMIS telescope for the active region NOAA 10019 has been studied,
and gave indication of presence of disrupted current filements. The variation
of the fractal dimension of the current structures, and in particular their
smoothing, is discussed in relationship with occurrence of large flares. Then,
in order to improve the quality of the analysis and avoid the typical prob-
lems of ground-based observations, (better spatial resolution thanks to the
absence of the atmosphere, total temporal coverage thanks to the absence
of night eclypse), we applied the cancellation technique to space-based mea-
suraments (HMI-SDO) of AR NOAA 11158. This gave us access to the fine
structure of the magnetic fields of the AR, with unprecedented temporal cov-
erage. We will discuss the time variation of the cancellation exponent, and
infer important information from its behaviour. The flaring activity for the
same AR has been correlated with the cancellation properties of the fields.
We will show that significant correlations are present, and that the magnetic
complexity unedrgoes significant changes in advance with respect to flaring
activity. The statistical significance of the results has finally been tested and
discussed.



Chapter 1

Turbulence and intermittency
in plasmas

1.1 Basic description of plasma dynamics

1.1.1 The different descriptions of plasmas

Plasmas are ionized gases, often indicated as the “fourth state” of matter.
Plasmas are very rare on Earth (for example, produced by electric shock, as
lightenings, auroras borealis) but represent about 99% of the known matter
in the universe.

The dynamics of a plasma is rather complex, due to the electromagnetic
nature of the interactions between the charged particles composing the gas.
Its dynamics can be described using sets of differential equations at different
approximation levels [12]. The state of plasma is characterized by some
quantity and simple assumptions. For the sake of simplicity, it is usually
reduced to two kinds of particles, namely electrons (e) and a single kind of
positive ions (i, mainly protons). Let ne,i be the density of the particles, me,i

their mass, and e the electron charge. Then:

• The typical particle velocity can be represented by their thermal veloc-
ity:

ve,i ≃
√

√

√

√

kBTe,i
me,i

,

where Te,i are the average temperatures of the particles, and kB is the
Boltzmann constant.

19
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• The electron plasma frequency is the typical oscillation frequency of a
plasma seen as an oscillator, and its reciprocal gives the typical sepa-
ration time between charges:

ωpe ≃
√

4πnee2

me

.

The ion plasma frequency can be similarly defined, using the ion mass,
density and charge.

• The Debye lenght is the ratio between the thermal speed of electrons
and their plasma frequency:

λD ≃ ve
ωpe

≃
√

kBT

4πnee2
,

and is the typical shielding lenght of the charges. In fact, it represents
the balance lenght between thermal and electrostatic effects, so that for
scales larger than λD, the plasma can be seen as electrically neutral.

• The ion skin depth inticates the depth in a plasma to which electro-
magnetic radiation can penetrate and is defined as

ρii =
c

ωpi

,

where c is the speed of light. This lenght is the typical scale at which
the inertia of the ions can not be neglected.

• The cyclotron frequency or Larmor frequency of electrons and ions is
defined if an external magnetic field B is present, which is often the
case in plasmas. In that case, the frequency at which electrons and
ions turn around the magnetic field lines is

Ωe,i =
eB

cme,i

.

• The parameter beta is defined as

β =
8πp

B2
,



1.1. BASIC DESCRIPTION OF PLASMA DYNAMICS 21

p being the kinetic pressure, is the ratio between the kinetic and mag-
netic pressures. It is useful to describe the state of magnetization of
the plasma, and to individuate if magnetic or kinetic effects are pre-
dominant in the dynamic.

All these quantities are used to describe the conditions of the plasma, and
to use approximations, in order to simplify the equations in the different
regimes.

Plasma dynamics can be studied using different descriptions: the full ki-
netic description, necessary when dealing with small scale processes involving
the particle interactions; and the fluid or magnetohydrodynamic approach, an
approximation that is useful when only large scales and slow perturbations
are involved.

1.1.2 The kinetic description

In kinetic theory the distribution function f(r,v, t) is defined to take into
account the probability of finding a particle in the position-velocity phase
space (r,v),

dpα = fα(r,v, t)d
3rd3v ,

where α = e, i indicates the type of particle. Using this information one can
be define the total number of particles as

N =
∫

fα(r,v, t)d
3rd3v .

The distribution function obeys Boltzmann’s equation :

∂fα
∂t

+ (v · ∇)fα +
F α

mα

·
∂fα
∂v

=
∑

β

Cαβ , (1.1)

where Cαβ is a collision operator that depends on the distribution functions
of the relevant species. The force term in this equation is given by external
fields, since this equation describes only ordinary gases.

In a collisional (fluid) description of plasmas, regions in between coherent
structures are expected to be sites of enhanced dissipation, where processes
such as magnetic reconnection and plasma heating may be at work [13]. In
many cases the collisional mean free path of particles is much longer than the
typical scale lengths involved in these phenomena. For very rarefied plasmas
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the collision can be neglected. The collision can be neglected also if one
is interested in the evolution for times smaller of the collision time, so the
equation (1.1) can be rewritten as

∂fα
∂t

+ (v · ∇)fα +
F α

mα

·
∂fα
∂v

= 0 . (1.2)

The force term in this equation is given by F α = F ext + F int. For plasmas
the F α is often simply the Lorentz forces

F α = qα

(

E +
v ×B
c

)

.

Equation (1.2) is called Vlasov equation and is usually coupled to the Maxwell
equations in order to provide closure of the system.

It is worth to emphasize that in the framework of collisionless plasmas,
the distribution function can be different from Maxwellian, and this is a
manifestations of these complex kinetic processes. The distribution function
is modified such as to show increased temperature in the direction parallel
to the global mean magnetic field [96]. This can be due to ion-cyclotron
resonant interactions [14, 15, 16, 17] or to the generation of field-aligned
beams [14].

In order to simplify the physical scenario, a simple model called hybrid
approximation [18] can be also used. In this context, one considers only large
spatial scales and low frequencies, that is to say that the detailed behavior of
the electrons is irrelevant because the dynamics of the systems is dominated
by ions. In this aproximation the ions are considered as kinetic particles
whereas the electrons are represented as massless fluid. In this thesis, we
will study the results of a numerical simulation of hybrid Vlasov-Maxwell
equations.

1.1.3 The magnetohydrodynamic description

When considering only perturbations occurring on typical time scale larger
comparated to the typical termalization time, the distribution function can
be assumed to be Maxwellian. This is possible by abandoning the assump-
tion of non-collisionality, by allowing exchanges of energy (termalization)
between the various particle species, making the distribution function relax
to a Maxwellian.
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In this approximation, the particle involved are electrons (of massme) and
ions (of mass mi). Since mp ∼ 2000me, it is clear that terms of the dynamics
equations containingme/mp can be neglected. This corresponds to ignore the
inertia of the electrons in the flow. Since we are only considering time scales
larger than the reciprocal of ωpe, the electrons can not be separated by the
ions in the MHD approximation, because the plasma adjust as to neutralize
possible charge separation within shorter times (≃ 1/ωpe). In fact, whenever
a charge separation is induced in the plasma, an electric field causes the
electrons to quickly follow the ions in a time ≃ 1/ωpe: the quasi-neutrality
of charge ni ∼ ne is always guaranteed. In this context, plasmas are similar
to a fluid whose particles have mass mi and whose density is then ρ ≃ mini.
In the reference system of the ions, one sees a current of electrons (with
negligeable mass) that flows obeying the Ohm’s.

Finally, when nonrelativistic regime is considered, all the contributions
of order (v/c)2 can be neglected in the equations. The conservation laws can
then be written for the mass density ρ, flow velocity v and internal energy
for mass unit U of the protons [12]:

∂ρ

∂t
+∇ · (ρv) = 0 , (1.3)

ρ

[

∂

∂t
+ (v · ∇)

]

v = f −∇p+∇ · σ , (1.4)

ρ

[

∂

∂t
+ (v · ∇)

]

U = −p(∇ · v)−∇ · q +
∑

i,j

σij
∂vi
∂xj

+Q . (1.5)

f represents the sum of the external forces acting on the magneto-flow for
unit mass. The term σ is the stess tensor excluding the kinetic pressure p
contribution, which is treated separately. The term q is the heat flux, and Q
is the heat produced inside the system. In many cases, as for the plasmas
treated whithin the present work, the only force involved is the Lorentz
force, while other kinds of forces, as the gravitational one, are negligible with
respect to the electromagnetic interactions. In this case, the force term can
be written as:

f =
1

c
J ×B , (1.6)

where the quasi-neutrality has been used to drop the electric field contribu-
tion to the force, that is the Laplace force. The same argument hold for the
heat terms, so that the Joule effect is often the only internal source of heat.
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It is often possible to use a state equation, so that the number of unknowns
is reduced and the system is closed. For example, if the plasma behaves like
a perfect gas, the state equation p = kBρT/m can be used to eliminate the
kinetic pressure from the equations.

The moments equations must be coupled to the Maxwell equations to in-
clude the electromagnetic properties of the plasma. In case of quasi-neutrality
of charge, and in non-relativistic regime, the Maxwell equations become:

∇ · E = 0 , (1.7)

∇ ·B = 0 , (1.8)

∇ × E = −1

c

∂B

∂t
, (1.9)

∇ ×B =
1

c

∂E

∂t
+

4π

c
J , (1.10)

where E and B are the electric and magnetic fields respectively, ρc is the
charge density and J the current density. The Ohm’s law, in the MHD
framework, is rewritten in its generalized form as:

E +
1

c
v ×B = η∇2B . (1.11)

where η is the resistivity of the plasma.
The Laplace force (1.6), the last Maxwell equation (1.10) and the Ohm’s

law (1.11) can be now used to rewrite the conservation laws. The mass con-
servation law (1.3) remains invariate, and so does the energy conservation
law (1.5), as far as we do not use any state equation. The impulse conserva-
tion law, also called the Newton equation, becomes

ρ

[

∂

∂t
+ (v · ∇)

]

v =
1

4π
(∇ ×B) ×B −∇p+∇ · σ , (1.12)

The Maxwell equation (1.9) is used to describe the evolution of the magnetic
field. In the MHD framework, it can be rewritten as

∂B

∂t
= ∇ × (v ×B)+

c2η

4π
∇2B , (1.13)

and is called the induction equation.
Equations (1.3), (1.12), (1.13) and (1.5) are the full set of the MHD

equations, and together with the remaining Maxwell laws, the Ohm’s law,
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and a state equation for the closure, are used to describe the dynamics of
a plasma in the MHD approximation. The heat terms q and Q, as well as
the stress tensor σ, could introduce new variables in the equations, and thus
need to be modeled in order to solve the equations.

The MHD equations own a similar structure to the Navier-Stokes equa-
tions (NS), which describe the dynamic of a fluid. The main characteristic of
both sets of equations is the presence of nonlinear terms (v · ∇)v. However,
the MHD equations have extra terms describing the coupling between veloc-
ity and magnetic field. These nonlinearities lead to scaling of the equations,
which is prelude to turbulence.

1.1.4 The incompressible case, and the Elsässer varia-
bles

As for the Navier-Stokes equations in the fluid case, the MHD equations
are strongly simplified if the flow is incompressible, that is, ρ = constant.
The mass conservation law simply reduces to the incompressibility condition
∇ · v = 0. If the temperature variations are neglected, the energy conserva-
tion equation is not needed. Let us introduce the following new variable

b(r, t) =
B√
4πρ

,

where b is a rescalded magnetic field which has the dimensions of veloc-
ity. Using incompressibility, replacing the magnetic field with the rescalded
magnetic field and introducing the kinematic viscosity ν and the magnetic
diffusivity µ = c2η/4πρ, the incompressible MHD equations can be written
in the simpler form:

∂v

∂t
+ (v ·∇)v = (∇× b)× b−∇p+ ν∇2v , (1.14)

∂b

∂t
= (∇× v)× b+ µ∇2b , (1.15)

∇ · b = ∇ · v = 0 . (1.16)

In the ideal case (ν = 0 and µ = 0) these equations conserve the total energy
(kinetic plus magnetic)

E =
1

2

∫

(

v2 + b2
)

d3r .
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The previous equations can be compacted (although equivalent) introducing
the so called Elsässer variables [19]:

z± = v ± b .

Using these new variables, the MHD equations become

∂z±

∂t
+ (z∓ · ∇)z± = −1

ρ
∇P∗ +

ν + µ

2
∇2z+ +

ν − µ

2
∇2z− , (1.17)

∇ · z± = 0 , (1.18)

where P∗ = p+ B2

8π
. The conservation of the total energy is equivalent to the

conservation of the pseudo-energies

E± =
1

4

∫

(

z±
)2
d3r .

It is worth noting that (1.17) and (1.18) admit nonlinear solutions z∓ = 0
and z± 6= 0 with the condition that the total pressure is constant. These
solutions corrispond, in the linear case to Alfvén plane waves with arbitrary
amplitude v = ±b, where v and b are the transevers components to the
propagation direction. These waves propagate with velocity V A = B0/4πρ
called Alfvén velocity. B0 is the component of average magnetic field along
the propagation direction. In case of vanishing magnetic field, the two “+”
and “–” equations (1.17) become identical, as well as the two equations (1.18),
and the NS equations are recovered. The Elsässer formulation highlights
a relevant difference in the nonlinear term with respect to ordinary fluids.
In fact, the nonlinear interactions occur only between eddies characterized
by presence of both z± and z∓. It can be shown that different types of
fluctuations propagate in opposite direction along B0. Moreover, as we shall
see, the Alfvén effect can significatly modify the turbulence phenomenology.

1.2 Scaling laws and turbulence

1.2.1 The Reynolds number

The presence and importance of turbulence in a fluid or MHD flow are di-
rectly related to the strength of nonlinear effect with respect to dissipation,
whose contribution to the dynamics depends on the particular regime. A
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measure of this comparison is given by Reynolds number Re. Re is a dimen-
sionless number and provides an estimate of ratio between nonlinear term
(v · ∇)v and dissipative term ν∇2v both contained in the equation (1.14).
By dimensional analysis of nonlinear term (v · ∇)v∼ v20/ℓ0, and of dissipa-
tive term ν∇2v ∼ νv0/ℓ

2
0, the Re turns out to be

Re =
ℓ0v0
ν

,

where ℓ0 and v0 are the typical length scale and the typical velocity of sys-
tem. Using the magnetic diffusivity µ instead of kinematic viscosity, the
magnetic Reynolds number can also be defined as Rem = ℓ0v0/µ. For low
Reynolds numbers, the dissipative terms dominate the dynamics of the sys-
tem, and the fluid motion is quite regular (laminar regime). The nonlinear
interactions are small enough for the equations to be linearized, and thus
solved. When the Re is sufficiently large, the nonlinear effects become dom-
inant and the flow appears to be characterized by a vortical-like structures.
In this regime the motion equations cannot be analytically solved (and often
not even numerically), and it is useful to approach the problem phenomeno-
logically.

1.2.2 The turbulent cascade

In fluid dynamics, one of the main features of turbulence is the presence
of singular structures, as for examples vortices. As the nonlinear terms of
MHD equations begin to be relevant, large turbulent structures are formed at
some typical scale ℓ0. The largest eddies in the system are created by some
instability occurring in the mean flow, as for example due to an obstacle
immersed in the flow. These eddies dacay, giving rise to eddies of smaller
size, which in turn will decay into other vortices always smaller, because
of the nonlinear interactions (the energy contained in the large eddies is
transferred at the smaller eddies). Following this idea it can be argued that
turbulent flows at high Reynolds numbers are characterized by presence of
eddies that cover a wide range scale. When the Reynolds number is larger
than some critical value, the flow is said to be in fully developed turbulence
regime. In fully developed turbulence it is possible to identify three different
ranges of scales. The large scales, at which the energy is injected into the
system by some external forcing, are called integral scales. The scales at
which the dissipation is dominant belong to the dissipative range. Between



28CHAPTER 1. TURBULENCE AND INTERMITTENCY IN PLASMAS

[hbtp!]

Figure 1.1: A schematic picture of the Richardson cascade. The hierarchy of
structures represents the non-linear transfer of energy between different scales.
[31]

these two ranges, in which the dynamics is linear, the dominant term in the
equations is the non-linear term, so that energy transfers between different
wave-vectors are dominating the dynamics. Consequently, the space fills up
with fluctuations on a wide range of scales, which also present nontrivial
correlations. This range of scales is usually called “inertial range”. This
idea has been first visualized in the simple picture of an energy cascade by
Richardson (1922).
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1.3 Phenomenology of turbulence

1.3.1 The Kolmogorov spectrum

One of the simplest and most valuable tools to study the irregular and multi-
scale turbulence is by means of energy spectra associated with the field fluc-
tuations. Energy spectra allow, in fact, to capture the main characteristics
of the turbulent cascade. It is universally found that the energy spectrum of
a turbulent field has power-law behavior (Kolmogorov, 1941, in short K41;
see also [31])

E(k) ∼ k−α .

Kolmogorov developed a phenomenological interpretation of power-law spec-
tra, originally based on non-magnetized fluids. The main idea is that at large
Reynolds numbers, there is a large scale separation between the scale ℓ0 at
which the energy is injected into the system and the scale η at which the
energy is dissipated η. In the stationary case, the energy injected at large
scale in the system at rate ǫ, must be dissipated at small scale, where dissi-
pative terms of the equations become relevant. Similary, that same amount
of energy must be transfered through the intermediate range of scales ℓ, in
the inertial range, η ≪ ℓ ≪ ℓ0. Kolmogorov suggest that in this range the
statistical properties depend only on the energy transfer rate and on the
scale ℓ, while the dependence on kinematics viscosity only occurs near the
boundaries of this in range. The enrgy transfer rate can be dimensionaly
estimate as ǫ ∼ δv2ℓ/tℓ, where δvℓ represents the typical velocity fluctuations
at the scale ℓ and tℓ is the typical time associated to the nonlinear energy
transfer process. The latter is called eddy turnover time, and can be defined
as tℓ ∼ ℓ/δvℓ. In light of these considerations, the velocity fluctuations can
be dimensionally re-written as

δvℓ ∼ ǫ3ℓ1/3 .

Another typical time is t
(ν)
ℓ ∼ ℓ2/ν, that is the typical time associated with

linear dissipative effects. The Kolmogorov scale, or dissipative scale, can be
found imposing that t(ν) = tℓ, that is the time when dissipative effects match
the nonlinear effects in the dynamics. Then

η ∼
(

ν3

ǫ

)1/4

.
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The scale dependence of the power spectrum E(k) can now be dimensionally
evaluated in the inertial range. In fact, the tipical scale is related to the wave
vectors through ℓ ∼ 1/k, so that E(k) ∼ δv2ℓ/k, thus giving

E(k) ∼ ǫ2/3k−5/3 . (1.19)

The power law spectrum (1.19) is whidely observed in experimental data,
and is called the Kolmogorov spectrum.

1.3.2 The Kraichnan spectrum

Magnetized plasmas turbulent dynamics can be desribed by a similar phe-
nomenology to Kolmogorov, as in the neutral fluids case. Unlike the neutral
fluids case, magnetized plasmas are characterized by the presence of Alfvénic
fluctuations, namely plasma waves propagating along the magnetic field lines.
By sweeping the plasma apart, these can modify the interactions between
structures. Such type of phenomenology is well described by the Kraichnan
phenomenology. As for the case fluid, whithin the inertial range the statisti-
cal properties of turbulent motions depend only on the energy transfer rate
and on the scale ℓ. The energy flux accros the scale ℓ cab be written as

Π±
ℓ ∼ (δz±ℓ )

2

t±ℓ
, (1.20)

where t±ℓ is the typycal duration of the energy transfer at the scale ℓ. Now, as
can be seen looking at equations (1.17), the Alfvénic fluctuations propagate
in opposite direction along the magnetic field lines, so that the interacting
structures are set apart in a time tA ∼ ℓ/VA, so modifying the actual inter-
action time.

In evalutating the time tℓ one must take into account that there are two
different time scale of interaction. The first is t±i ∼ ℓ/δz∓ that corrisponds
to the typical time of nonlinear interaction. The second time scale tA ∼
ℓ/VA related at the opposit propagation of Alfvénic fluctuations δz±ℓ which
move with Alfvénic velocity VA. For fully developed turbulence Alfvénic
time is typically shorter than typical time of nonlinear interaction. The eddy
turnover time can then be written as

t±ℓ ∼ (t±i )
2

t±A
∼ N±tA ,
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where N± is the number of interactions needed to obtain, for a given vortex,
a modification of amplitude ∆z± ∼ δz±.

If one consider, for semplicity, the symmetric case δz± ∼ δz, then Eq.n
(1.20) can be rewritten as

Π±
ℓ ∼ (δz)4

VAℓ
.

Thereby, the MHD power spectrum can be obtained from E(k) ∼ (δz)2/k
such that

E(k) ∼ (ΠVA)
1/2 k−3/2 .

This power-law spectrum decays (i.e. trasports the energy) with a smaller
scaling exponent with respect to the Kolmogorov spectrum, suggesting a less
efficent cascade mechanism, as resulting from the Alfvénic sweeping.

1.3.3 Self-similarity

The presence of power-law spectra of the fields fluctuations suggests the
existence of self-similarity. This can be easily checked in the MHD equations,
in the ideal case. Let u(x) be a scaling variable, and consider a scaling
transformation x → λx. Then, the scaling variable is scaling-invariant if
there exists a parameter µ(λ) such that

u(x) = µ(λ)u(λx) .

This equation admits a power law solution u(x) ∼ xh, where h is the self-
similarity parameter defined as h = −logλµ, and is often called singularity
exponent. The ratio u(x)/u(λx) ∼ λ−h indicates that the phenomenon is
characterized by scaling invariance (absence of characteristic scale).

The cumulative PDF of u(x) is

P{u(x) ≤ ξ} = P{λ−hu(λx) ≤ ξ} = P{u(λx) ≤ λhξ} ,

that in integral form is

∫ ξ

−∞
Px(η) dη =

∫ λhξ

−∞
.Pλx(β) dβ

From this form the PDFs are easily obtained

Px(ξ) = λhPλx(λ
hξ) . (1.21)
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This form suggests the fact that when the scale change by a factor λ the am-
plitude of observable varying by a factor λh for the self-similarity. The PDFs
shape to different scales increments don’t change if the scaling exponent is
constant.

1.4 Intermittency

For more accurate analysis of a turbulent field, the fundamental tool is the
statistics of longitudinal field difference accros a separation ℓ, called field
increments. For a stochastic field ψ(r), the field increments can be defined
as

δψℓ(r) = [ψ(r + ℓ)−ψ(r)] · e(ℓ) ,

where e(ℓ) is the unit vector parallel to the space increment. The increments
provide informations on the presence of characteristic structure at the given
scale ℓ. In order to capture finer details of the scaling properties of the
turbulent processes, it is customary to study the statistical properties of the
field increments through their Probability Distribution as Functions PDFs
and the corresponding high order moments, the Structure Functions, and
their dependence on the scale.

If the PDF P (x) of a stochastic variable x is known, then it is possible
to compute the n-th moments defined as:

〈xn〉 =
∫

xn P (x) dx .

The first order (n = 1) represents the mean of distribution, while the second
order (n = 2) is the variance σ2 = 〈(x− 〈x〉)2〉. In principle, the knowledge
of n-th moment allows to recover the whole P (x).

Gaussian distrubutions are a peculiar case, because they describe the
statistical properties for many physical phenomena. Gaussian PDF needs
only the first two moments to be completely determined. However, if the
PDF is not Gaussian, one needed to analyze also moments higher than the
second-order to fully characterize the statistical properties of process.

Another tool to investigate the statistical properties of turbulent flow is
represented by structure functions defined as:

Sp(ℓ) = 〈δψp
ℓ 〉 ,
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where δψℓ are the longitudinal increments. Structure functions exhibit most
often scaling law in the inertial range

Sp(ℓ) ∼ ℓζp .

In the Kolmogorov theory this scaling exponent satisfy the linear relation
ζp = p/m, where m = 3 for the fluid case and m = 4 for MHD case.

In system where turbulence is fully developed the PDFs shapes change
with the scale ℓ (see for example [31]). At large scales the PDFs are more
or less Gaussian, while as the scale decreases the tails become thicker and
sharper peaks appear. This evolution indicates that large increments become
more and more probable as scale get smaller, indicanding that the flow is
characterized by coherent structures localized in space.

Many works have shown that the scaling exponents deviate from Kol-
mogorov predictions, displaying a nonlinear dependence on p where neither
the Kolmogorov nor the Kraichnan have been found. This deviation from
Kolmogorov theory are due to the presence of the same strong fluctuation
that breakdown self-similarity. The breakdown self-similarity produces the
scale variation of the PDFs called intermittency, and is the signature of the
presence of small scale structures in the flow.





Chapter 2

Cancellation analysis and
structures

2.1 Introduction

As we have mentioned in previous Chapter, self-similarity is one frequent sig-
nature of complex flows characterized by strong nonlinearities. Huge amount
of efforts have been deployed in determining scaling laws both in geophys-
ical and astrophysical flows, in the laboratory and using numerical simula-
tions. The nonlinearity of the scaling exponents of the structure functions,
typical of intermittent turbulent systems, is due to the presence of strong
localized turbulent structures both in space and time. In turbulent flows,
sheets, spirals filaments of vorticity have been observed both in incompress-
ible [20, 21, 22, 23] and in the compressible cases [24]. These structures
are locally complex and present rapid fluctuations, which can result in field
cancellations. In plasmas, current and vorticity filaments have extensively
been oberved in two-dimensional MHD [25, 26] corresponding to current and
vorticity sheets in the three-dimensional case [27, 28, 29]. Such structures
are locally complex in three dimension [29] as well as in two dimension. In
turbulent fields, the geometrical properties of such structures can be studied
using the cancellation analysis introduced by Ott et al. [30].

35
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2.2 The signed measure and the cancellation

exponent

As discussed in the introduction, turbulent plasmas are often characterized
by scale dependent formation of energetic and localized structures. These
represents regions where dissipation of energy is enhanced, and are believed
to be responsible for the anomalous scaling of the structure functions. Inter-
mittency and multifractality are strictly related to their presence [31]. Struc-
tures such as current sheets and vorticity filaments are continuously observed
in numerical simulations [32, 33, 34, 35, 36, 37]. Solare wind measurements
have also revealed the presence of structures of different type (current sheets,
rotational discontinuities, vortices) [38, 39, 40, 41]. Since structures can be
seen as smooth regions embedded in a highly fluctuating field, they can be
associated to scale dependent changes of the sign of the fields gradients. The
introduction of a sign-singulare measure (as opposed to a positive defined
probability measure) allows the characterization of the scaling properties of
sign oscillations of the fields [30]. The signed measure of a scalare field f(r)
with zero mean, defined on a d-dimensional set Q(L) of size L, can be in-
troduced as follow. Let {Qi(l) ⊂ Q(L)} be a partition of Q(L) in disjoint
subsets of size l. Then, for each scale l and for each set of boxes Qi(l), the
signed measure is defined as

µi(l) =

∫

Qi(l)
dr f(r)

∫

Q(L) dr |f(r)| . (2.1)

As the scale of the subset Qi(l) increases, cancellations between small size
structures of opposite sign become more probable within each box. The way
this happens can be statistically characterized through the partition function

χ(l) =
∑

Qi(l)

|µi(l)| (2.2)

where the sum is extended to all disjoint subset Qi(l). Let A be a subset
such that A ⊂ Q(L) for which the measure µ(A) 6= 0. If for any scale l
there exists an additional subset B ⊂ A such that µ(B) = −µ(A), then
the measure is called sign singular. When the measure is sign singulare the
partition function is empirically found to obey a power low scaling χ(l) ∼ l−κ.
The power κ is called cancellation exponent, and represents a quantitative
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measure of the cancellation efficiency. The cancellation exponent is more
formally defined through

κ = lim
r→0

lnχ(r)

ln(1/r)
. (2.3)

For example, a smooth (continuous) field has constant partition function
(κ = 0), whereas for a fully stochastic process κ = d/2 ([42]), d being
the topological dimension. Values κ < d/2, indicate the presence of sign-
persistent (i. e. smooth) structures, which result in less efficient cancel-
lations than for a random field, while κ > d/2 indicates the presence of
sign-antipersistent fluctuations, as for example due to positive and negative
contiguous structures, which result in more efficient cancellations than for
random fields. More generally, if a field g(r) is homogeneous with a Hölder
scaling exponent h, that is if 〈‖∆g(l)‖〉 = 〈‖g(r+ l)− g(r)‖〉 ∼ lh then the
cancellation exponent of its derivative f ≡ dg/dr is κ = 1−h [42, 43]. Thus,
cancellation exponents characterize the field fluctuations properties, and in
particulare the topology of structures.

2.3 Cancellation exponents and fractal dimen-

sions of structures

A simple geometrical argument, based on the separation of the field in corre-
lated (the structures) and uncorrelated (the background field) subsets, allows
to establish a phenomenological relationship between the cancellation expo-
nent and the fractal dimension D of the typical dissipative structures of the
flow.

For turbulent flow, the Taylor micro-scale λ = (〈v2〉/〈ω2〉)1/2 [31], where
ω is the vorticity and v the velocity field, gives a mean scale over which a field
is correlated. In this case, the decomposition of a scalare field can be made
using correlated (of fractal dimension D with cutoff scale λ) and uncorrelated
points (of fractal dimension d-D, i.e. the structures codimension). If the field
is homogeneous, one can estimate the partition function (2.2) as the number
boxes of size l, namely (L/l)d, times the integral over a single generic box
Qi(l)

χ(l) =
∑

Qi(l)

∣

∣

∣

∣

∣

∫

Qi(l)
dr f(r)

∫

Q(L) dr|f(r)|

∣

∣

∣

∣

∣

∼ 1

Ldfr.m.s.

(

L

l

)d
∣

∣

∣

∣

∣

∫

Q(l)
dr f(r)

∣

∣

∣

∣

∣
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The scaling of the partition function can be estimated by integrating the
signed measure over smaller sub-boxes of size λd, Q(λ) ⊂ Q(l). Integration
of the field over eachQ(λ) returns the r.m.s value of the field, fr.m.s. = 〈f 2〉1/2.
Brackets indicate the average over the whole domain Q(L). One can then
estimate the number of contributing boxes, by considering separately the cor-
related dimensions (l/λ)D (which will contribute proportionally to the volume
occupied by correlated structures, i.e. the number of sub-boxes covering the
structures) and uncorrelated dimension (l/λ)(d−D)/2 (which will contribute,
for statistical reasons, proportionally to the square rooth of the volume oc-
cupied by uncorrelated fluctuations, i.e. to the square root of the number
of sub-boxes covering the uncorrelated fluctuations), in the sub-box Q(λ).
Therefore, assuming homogeneity, the partition function can be rewritten as

χ(l) ∼ λdfrms

Ldfrms

(

L

l

)d
(

l

λ

)D (
l

λ

)
d−D

2

∼
(

l

λ

)− d−D
2

∼
(

l

λ

)−κ

.

The relationship between the cancellation exponent and the fractal dimension
is then simply

κ = (d−D)/2 . (2.4)

It should be kept in mind that, because multifractality is ubiquitous in MHD
turbulence, the use of one single fractal dimension cannot capture all the
features of the scaling. Nonetheless, D still represents a useful indicator for
the topological characteristics of the “mean” intermittent structures of the
flow.



Chapter 3

Topological properties in
Hall-magnetohydrodynamics
with a strong guide field

3.1 Three-dimensional Hall-MHD

3.1.1 Introduction

Magnetohydrodynamics (MHD) is a reasonable theoretical framework to de-
scribe the large scale dynamics of a plasma. However, when a more detailed
description is needed (for instance, when the physical context favors the de-
velopment of small scales) it is most appropriate to consider a two fluids
models. Two fluids effects can be considered through a generalized Ohm’s
law which include the Hall current, required for phenomena with character-
istic length scales comparable or smaller than the ion skin depth c/ωpi (c is
the speed of light, and ωpi is the ion plasma frequency). Among its manifes-
tations, the Hall current causes the magnetic field to freeze in the electron
flow instead of being carried along with the bulk velocity field (in an ideal
plasma). Another important feature of the ideal Hall-MHD description is
the self-consistent presence of electric fields parallel to the mean magnetic
field. Hall-MHD has recently been invoked in advancing our understanding
of phenomena ranging from dynamo mechanisms [50], magnetic reconnec-
tion [51, 52, 53], and accretion disks [54, 55], and to the physics of turbulent
regimes [56, 57, 58, 59].

In many cases of interest, such as in fusion devices or geophysical and as-

39
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trophysical plasmas, a strong externally supported magnetic field is present.
In such cases, a new reduced model has been proposed, reduced Hall Magne-
tohydrodynamics (RHMHD) model [60, 61, 62]. In this approximation, the
fast compressive Alfvén mode is eliminated, while the shear Alfvén and the
slow magnetosonic modes are retained [63]. This model is an extension of
the previously known reduced MHD (RMHD) to include the Hall effect. The
RMHD equations have been used to investigate a variety of problems such
as current sheet formation [64, 65], non-stationary reconnection [66, 67], the
dynamics of coronal loops [68, 69, 70, 71], and the development of turbulence
[72]. The self-consistency of the RMHD approximation has been analyzed
in ref. [73]. Moreover, numerical simulations have been used to assess the
validity of the RMHD equations by directly comparing its predictions with
compressible MHD equations in a turbulent regime [74]. The validity of the
RHMHD model has also been studied in the same way [61].

The properties of small scale structures in magnetohydrodynamic and
Hall-magnetohydrodynamic turbulence have been recently extensively stud-
ied. In particular, attention has been paid to the geometrical properties of
current sheets in HMHD, as these structures are associated with magnetic
flux reconnection and magnetic energy dissipation, processes of uttermost
importance in astrophysics and space physics [76, 78, 77, 75].

However, studies have provided conflicting results so far, so that the de-
bate on the effect of the Hall term on the generation of turbulent structures
is still open. For example, some recent numerical simulations have indicated
that current sheets in presence of Hall effect become wider than in MHD (see,
e.g., [79]), while, on the contrary, other studies have shown the presence of
thinner structures [37].

Previous studies of turbulent HMHD have shown that a knee in the spec-
trum of the spectrum of the current density is located at wavenumber corre-
sponding to the inverse of the ion skin depth [80, 81, 82, 83]. Since this knee
can be associated with the average thickness of the current sheets, its shift
was interpreted as a thickening of the current sheets with increasing Hall
effect [84]. This result is in good agreement with experimental observations,
which confirm that the current sheets thickness in presence of the Hall effect
is indeed given by the ion skin depth [85].

On the other hand, other studies have observed formation of thinner struc-
tures when Hall effect increases, suggesting that HMHD is more intermittent
than MHD [37]. This was also observed in solar wind turbulence, e.g. using
the Cluster spacecraft magnetic data [86, 87]. Incidentally, other instances
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of solar wind observations of high-frequency magnetic field fluctuations from
the same spacecraft indicated that while large scales are compatible with
multifractal intermittent turbulence, small scales show non-Gaussian self-
similarity [88].

Using the set of simulations that will be studied here, in a previous work
the effect of the Hall term has been analyzed in terms of global magnitudes
(e.g., the mean square current density 〈j2〉 and vorticity 〈ω2〉), characteristic
times of the flow, energy cascade and qualitative features of the flow struc-
tures [79]. The Hall term turned out to affect mostly the scales between the
Hall scale and the dissipation scale. This produces an enhancement of the
energy transfer in such scale range, and therefore the accumulation of energy
decreases. This corresponds to an effective shift of the dissipation scale to-
ward smaller scales. This was estimated by observing an increasingly sharp
steepening of the energy spectrum in the Hall range, when the separation
between the Hall scale and the dissipation scale is larger. This suggests the
possible generation of smaller scales when the Hall effect increases. Qualita-
tive observation of current sheets showed that such smaller scale structures
become wider as the Hall effect increases.

In another work [89], a detailed and rigorous study of intermittency has
been performed. In presence of Hall effect, field fluctuations at scales smaller
than the ion skin depth become substantially less intermittent, with scaling
properties close to self similarity.

The quantitative measure of the intermittency is crucial to understand
the topological distribution of dissipation in magneto-fluids and plasmas, and
it can also provide constraints for theoretical study of phenomena such as
magnetic energy dissipation and reconnection. Following recent results as
briefly summarized above, it is thus not clear whether HMHD small scale
structures are thinner than in MHD, making HMHD more intermittent than
MHD, or, on the contrary, they are more space filling, causing intermittency
to decrease because of the Hall effect. The main purpose of this Chapter
is to quantitatively evaluate the characteristics of the small scale structures
and their features with respect to the magnitude of the Hall effect.

In order to gain more insight on the actual effect of the Hall term on
flow structures, here we study the geometrical properties of the vorticity
and current field, using an explicit and quantitative approach. Our study
focuses on the estimation of the cancellation exponents, as introduced by
Ott et al. [30]. Such exponents provide a simple characterization of the
flows, and are phenomenologically related with the fractal dimension of the
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typical structure [44]. Finally, corroborated by the aforementioned studies,
we show that the Hall effect affects current sheets mainly in two ways. On
one hand, the current (and vorticity) sheets widen, while on the other hand
they unravel, reaching a more complex topology. This fragmentation, which
could be seen as formation of “micro-sheets”, turns out to be more and more
evident as the Hall effect increases.

3.1.2 Reduced MHD and HMHD models

For a compressible flow, the HMHD equations can be written (in dimension-
less form) as

∂u

∂t
− u× ω = −∇

(

u2

2
+

ργ−1

M2
S(γ − 1)

)

+

+
1

M2
A

J × b
ρ

+ ν
∇2u

ρ
+
(

δ +
1

3
ν
)

∇(∇ · u)
ρ

, (3.1)

∂A

∂t
− u× b = −ǫJ × b

ρ
−∇φ+ η∇2A, (3.2)

∂ρ

∂t
+∇ · (ρu) = 0, (3.3)

∇ ·A = 0. (3.4)

In these equations, u is the velocity field, ω is the vorticity field, J is the
current, b is the magnetic field, ρ is the density of the plasma, and A and
φ are respectively the magnetic and electric potentials. A barotropic law is
assumed for the plasma, with the pressure given by p = Cργ, where C is a
constant and γ = 5/3. Equation (3.4) is the Coulomb gauge, which acts as a
constraint that fixes the electric potential in Eq. (3.2). Control parameters
of the system are the sonic Mach number MS, the Alfvén Mach number MA,
the viscosities ν and δ (here we consider ν = δ), and the resistivity η. In our
study, the most important control parameter is the Hall coefficient ǫ = ρii/L,
where ρii is the ion skin depth and L is the characteristic scale of turbulence.
When ǫ = 0, the equations above result in the well known compressible MHD
equations.

In presence of a strong guide field, the equations above can be written
using the reduced approximation often used in magnetohydrodynamics (see,
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e.g., [91, 92]). The approximation assumes that the magnetic field can be
written as

b = B0ẑ + b′, (3.5)

where B0 is the intensity of the guide magnetic field aligned with the ẑ
direction, and b′ is such that |b′|/B0 ≪ 1.

For convenience, when writing the dimensionless equations we assume,
without loss of generality, that B0 = 1. We then decompose the velocity and
magnetic field fluctuations in terms of scalar potentials as

u = ∇× (ϕẑ+ f x̂) +∇ψ, (3.6)

and
b′ = ∇× (aẑ+ gx̂) . (3.7)

Equation (3.7) ensures that the magnetic fields remains divergence free, while
Eq. (3.6) gives us a compressible flow. The potentials f and g allow for
dynamical components of the fields parallel to the guide field, and ψ describes
an irrotational component of the velocity field. Then, Eqs. (3.1-3.4) can be
written as (for the details see [93] and [62, 94, 79])

∂u

∂t
=
∂b

∂z
+ [ϕ, u]− [a, b] + ν∇2u, (3.8)

∂ω

∂t
=
∂j

∂z
+ [j, a]− [ω, ϕ] + ν∇2ω, (3.9)

∂a

∂t
=
∂(ϕ− ǫb)

∂z
+ [ϕ, a]− ǫ[b, a] + η∇2a, (3.10)

∂b

∂t
= βp

∂(u− ǫj)

∂z
+ [ϕ, b] + βp[u, a]− ǫβp[j, a] + ηβp∇2b, (3.11)

where

u = −∂yf, (3.12)

ω = −∇2
⊥ϕ, (3.13)

b = −∂yg, (3.14)

j = −∇2
⊥a, (3.15)

and the notation [A,B] = ∂xA∂yB − ∂xB∂yA is employed for the Poisson
brackets. The potential ψ was eliminated using the equation for the pressure.
Finally, βp = βγ/(1 + βγ) is a function of the plasma β. As in the previous
set of equations, these equations become the compressible RMHD equations
when ǫ = 0.
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3.1.3 Numerical simulations

Simulations analyzed in this have been extensively described in Ref. [79]. We
use a standard parallel pseudo-spectral code to evaluate the nonlinear terms
and solve numerically the equations [95]. A second-order Runge-Kutta time
integration scheme is used. The magnetic field fluctuations in all simulations
are less than 10% of the external magnetic field value, so we are in the range
of validity of the RHMHD model. Periodic boundary conditions are assumed
in all directions of a cube of side 2πL (where L ∼ 1 is the initial correlation
length of the fluctuations, defined as the length unit). The Runs performed
throughout this Chapter do not contain any magnetic or velocity external
stirring terms, so the RHMHD system is let to evolve freely. To generate
the initial conditions, we excite initially Fourier modes (for both magnetic
and velocity field fluctuations) in a shell in k-space with wave numbers 1 ≤
k ≤ 2, with the same amplitude for all modes and with random phases.
Only plane-polarized fluctuations (transverse to the mean magnetic field)
are excited, so the initial conditions are Alfvén mode fluctuations with no
magnetosonic modes. In the set of simulations, spatial resolution is 5122 grid
points in the plane perpendicular to the external magnetic field and 32 grid
points in the parallel direction. In fact, higher resolution is required in the
planes perpendicular to B0, with respect to the parallel direction. This is
due to the fact that the dynamics of the system generates structures mostly
along the direction perpendicular to B0. The kinetic and magnetic Reynolds
numbers are defined respectively as R = 1/ν, Rm = 1/η, based on unit
initial r.m.s. velocity fluctuation, unit length, and dimensionless values for
the viscosity and diffusivity. For all the Runs, we used R = Rm = 1600 (i.e.,
ν = 1/1600, η = 1/1600). We also considered a Mach number MS = 1/4,
and an Alfvén Mach number MA = 1.

Four values of the Hall parameter were considered, namely ε = 0 (MHD
case), 1/32, 1/16, and 1/8. Data from simulations with such values of ε
will be labeled as Run 1, 2, 3 and 4, respectively. As the numerical domain
used has size 2π (see above), these values correspond respectively to ion skin
depths with associated wave numbers kε = ∞, 32, 16, and 8, and to scales
of ρii =0, 0.03, 0.06 and 0.125.

Figures 3.1, 3.2, 3.3 and 3.4 show some example of current components.
Left hand panels show, for each Run, two dimensional cuts in the per-

pendicular plane of one perpendicular component jx (Figures 3.1 and 3.2)
and of the parallel component jz (Figures 3.3 and 3.3), for one snapshot
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Figure 3.1: Left panels: slices of the perpendicular current component jx (in
adimensional units) in the perpendicular plane, for the ε = 0 and ε = 1/32
and used in this work (ε increasing from top to bottom). Right panels:
the same fields, seen at an arbitrary tilt angle, highlighting the presence of
alternate sign structures at all scales. In these panels, the scale of grays is
arbitrary.
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Figure 3.2: Left panels: slices of the perpendicular current component jx (in
adimensional units) in the perpendicular plane, for the ε = 1/16 and ε = 1/8
and used in this work (ε increasing from top to bottom). Right panels:
the same fields, seen at an arbitrary tilt angle, highlighting the presence of
alternate sign structures at all scales. In these panels, the scale of grays is
arbitrary.
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Figure 3.3: Left panels: slices of the perpendicular current component jz (in
adimensional units) in the perpendicular plane, for the ε = 0 and ε = 1/32
and used in this work (ε increasing from top to bottom). Right panels:
the same fields, seen at an arbitrary tilt angle, highlighting the presence of
alternate sign structures at all scales. In these panels, the scale of grays is
arbitrary.



48 CHAPTER 3. HALL-MAGNETOHYDRODYNAMIC

-60

-40

-20

 0

 20

 40

 60

 80

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

Figure 3.4: Left panels: slices of the perpendicular current component jz (in
adimensional units) in the perpendicular plane, for the ε = 1/16 and ε = 1/8
and used in this work (ε increasing from top to bottom). Right panels:
the same fields, seen at an arbitrary tilt angle, highlighting the presence of
alternate sign structures at all scales. In these panels, the scale of grays is
arbitrary.
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of the simulation in the statistically steady state (when t = 4.5). On the
right panels, the same field is plotted with an arbitrary tilt angle, in order
to highlight the chaotic alternation of positive and negative fluctuations of
the fields. From visual inspection, it appears evident that structures become
more fragmented as ε increases.

Figure 3.5 shows the total energy spectra E(k), integrated on spheres
of radius k, for the four Runs. The ion skin depth scale is also indicated.
Despite the limited wave vectors range does not allow the observation of
power law scaling, the large scale part of the spectra is compatible with the
typical Kolmogorov scaling α = 5/3. For the largest ε (Run 4), a secondary
scaling region emerges at scales smaller than the ion skin depth, compatible
with the typical power law spectrum for reduced Hall MHD, α = 7/3.
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ε = 1/32
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Figure 3.5: The total energy spectra for the four Runs (see legend). The
vertical lines represents the values of the inverse ion skin depth for the three
Runs with nonvanishing Hall term. Phenomenological predictions for the
MHD range and for the Hall range are also indicated.

It was recently stressed that well resolved numerical simulations are nec-
essary in order to accurately quantify high order statistics and intermittency
in MHD [90]. In particular, it has been claimed that if the flow is not properly
resolved, a partial thermalization of the small scales may result in artificial
Gaussian statistics and an artificial decrease of the intermittency. Wan et al.
[90] also argued that an MHD simulation can be considered well resolved, if
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the kurtosis of the current is independent on the spatial resolution. In order
to evaluate the sensitivity to the grid resolution of our system, two different
realizations have been performed with higher spatial resolution of 7682 × 32
and 5122 × 64 grid points, respectively. Using the same set of parameters,
diagnostics such as structure functions, scaling exponents, and PDFs of field
fluctuations have been used to show that scaling and intermittency proper-
ties are not affected by resolution. In the MHD and HMHD Runs analysed
here, the requirement of kurtosis convergence is fulfilled, at least up to the
level of expected statistical fluctuations. It is thus possible to conclude that
the simulations are well resolved, and satisfies the stringent criteria of Wan
et al. [90]. The resolution analysis is shown in detail in the Ref. [89].

3.1.4 Results

For our analysis, we have considered four snapshots of RHMHD simulations,
performed using four different values of the Hall parameter ε, as indicated
in Section 3.1.3. All the snapshots are taken in a statistically steady state
of the system, at t = 4.5. The fields anlyzed here are the three components
of the current j and of the vorticity ω, already shown in Figures 3.1, 3.2,
3.3 and 3.4. In order to estimate the partition functions, we divided the
simulation domain of size L3 = (2π)3 in subsets of variable size lx × ly × lz,
with lx = ly = l⊥ and lz = l‖. Note that, in order to maximize the number
of possible integer partitions, about 1% of the L3 = (2π)3 domain has been
trimmed. This procedure does not affect the results.

Figure 3.6 shows one examples of two dimensional cuts of the signed
measure computed for the parallel component of the current jz in the plane
x-y for ε = 1/16, and for four different partition box sizes. As expected, the
coarse graining of the partition leads to cancellations at larger scales, so that
small scale structures (the current filaments clearly evident at small scales)
gradually disappear. Similar behavior is seen for all fields components, and
for any value of the Hall parameter larger than zero. In absence of Hall effect,
structures are smoother and well resolved, and the effect of cancellations is
less evident.

From the signed measures, partition functions (2.2) have been computed
for all components of the current j and of the vorticity ω as a function of
the two scale parameters l⊥ and l‖. Figure 3.7 shows two examples, for two
different components, jx (left panel) and jz (right panel), at ε = 1/16. The
different curves of each panel refer to three different values of the parallel
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scale l‖. While scaling properties are present in the perpendicular direction
l⊥, the partition functions decrease with the parallel scale l‖ is somewhat
smoother and less defined, as will be discussed later. This is due to the fact
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Figure 3.6: The signed measure µ as estimated for jx in the plane y-z, shown
for Run 3 (ε = 1/16), for four different partition box sizes (top-left: l⊥ = 0.12;
top-right:l⊥ = 0.04; bottom-left: l⊥ = 0.016; bottom-rigth: l⊥ = 0.002.

that in RHMHD the turbulent cascade is mainly developed in the planes
perpendicular to the mean magnetic field. For this reason, we will mainly
concentrate on the scaling properties in the perpendicular planes, by selecting
one particular parallel scale (l‖ = 0.03), and we will leave the discussion of the
parallel scale decay to the last Section of this Chapter. However, we have
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Figure 3.7: The partition function χ(l⊥) versus the scale parameter l⊥. The
examples given here refer to the current perpendicular component jx (left
panel) and parallel component jz (right panel), for ε = 1/16.

tested the results for different parallel scales, and no significant difference
was observed. Figure 3.8 shows two examples of the variation with ε of
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Figure 3.8: The partition function χ(l⊥) for the current perpendicular com-
ponent jx (left panel) and parallel component jz (right panel), for the four
values of the Hall parameter ε (see legend), at l‖/2π = 0.03. The curves have
been arbitrarily shifted for clarity.

the partition functions of the current, for a fixed value of l‖ = 0.03. For
the perpendicular component of the current jx (left panel), the change of the
scaling properties with the Hall parameter is evident. On the other hand, the
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changes are more subtle for the parallel current jz. When appropriate, power
law fits of the partition functions χ(l⊥) = Al−κ

⊥ have been performed through
a least square method. Two examples of fit are displayed in Figure 3.9. For a
visual test, the partition functions have been compensated by dividing them
by the fitted power law l−κ

⊥ , as plotted in the bottom panels of the Figure.
In this representation, power law scaling ranges are seen as flat regions of
the compensated plots. Compensated plots and fitting power laws have been
represented as full lines for the Hall range, and with double-dahsed lines for
the MHD range.
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Figure 3.9: Examples of fit of the partition function, shown here at ε = 0
for jz (left panel) and at ε = 1/8 for jx (right panel). The power law fits
χ(l⊥) = A(l⊥/2π)

−κ are superimposed (one in the left panel, two in the right
panel). The ion skin depth is indicated as dashed line in the right panel. The
bottom part of both right plot shows the compensated partition functions
χ(l⊥)/A(l⊥/2π)

−κ.

As mentioned in previous Section, values of the cancellation exponents
provide information on the spatial structure of the fields. In order to discuss
more easily the analysis results, cancellation exponents have been converted
into the typical fractal dimension of the structures, as D = 3 − 2κ. Values
of D are then displayed in Figure 3.10 as a function of ε, for the three
components of the current (panels a and c) and of the vorticity (panels b
and d), so that the influence of increasing Hall effect on the scaling can
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be evaluated. In the following, we will use the notation D
(f)
⊥ for fractal

dimension estimated for the perpendicular partition function χ(l⊥), and D
(f)
‖

for the parallel partition function χ(l‖), where f = j, ω indicates the field
under study. When the superscript (f) is omitted, we are indicating both
fields. It is also possible to introduce a parameter for estimating the “global”
fractal dimension of the fields, by averaging the three values D

(f)
i of the

fractal dimension obtained for the i-th component of each field f , D
⋆(f)
⊥ =

(D(f)
x + D(f)

y + D(f)
z )/3 (we have temporarily suppressed the subscript ⊥ in

this formula, to semplify the notation). We remind the reader that, in the
RHMHD configuration, most of the nonlinear structures are generated in the
plane perpendicular to B0. Therefore, the parallel component of the current
jz and vorticity ωz, which depend on the perpendicular components of the
magnetic and velocity fields, are of particular interest. The perpendicular
components jx, jy, ωx, ωy, on the contrary, include both the perpendicular
and parallel components of magnetic and velocity fields. This results in
mixing the turbulent perpendicular dynamics with the quasi-linear parallel
dynamics, so that results are not easily interpreted.

In the MHD inertial range, marked as “MHD” in the Figures, the esti-
mated fractal dimension for the parallel component of the current is almost
constant, showing a weak decrease from D

(j)
⊥ = 1.5 in the MHD regime to

D
(j)
⊥ = 1.4 in the Hall regime (red plot in Figure 3.10, panel a). Similar val-

ues, but with opposite weak trend, are observed for the vorticity ωz (panel b).
Such values of D are representative of severely disrupted, almost filamented
current sheets. The relative independence of D

(j)
⊥ on the Hall parameter for

the parallel components of vorticity and current is consistent with the fact
that, in the MHD inertial range, the Hall term is not expected to play a
relevant role, since it should only be effective at smaller scales.

For the current perpendicular components (green and blue plots in Fig-

ure 3.10, panel a), D
(j)
⊥ starts around 2 (indicating current sheets) with no

Hall effect. As the Hall term is turned on, the dimension first weakly in-
creases to about D

(j)
⊥ ≃ 2.2, and then steadily decreases back to D

(j)
⊥ ≃ 2,

showing that structures are restoring their complexity. This suggests that
inertial range fields are reacting to the onset of the Hall effect, probably in
response to the inertial range modification. For the vorticity components
perpendicular to B0 (green and blue plots in Figure 3.10, panel b), the effect
of the Hall term is even more evident, causing a decrease of the dimesion
from D

(ω)
⊥ ≃ 2.3 to D

(ω)
⊥ ≃ 1.5, indicating fragmentation of the vorticity
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Figure 3.10: The fractal dimension D⊥ estimated through equation 2.4, for
the three components of current (a for the MHD range, c for the Hall range)
and vorticity (b for the MHD range, d for the Hall range), labeled with
different colors and line style (see inset). The indicators D⋆

⊥ (see text) are
also plotted for the two fields (panels e and f , black lines).



56 CHAPTER 3. HALL-MAGNETOHYDRODYNAMIC

sheets. The “global” fractal dimensions D⋆
⊥ are shown in Figure 3.10, panel

e (for the current) and panel f (for the vorticity), for both the MHD and Hall
ranges. For the current in the MHD range, the structures fractal dimension
is roughly constant for all values of the Hall effect. Vorticity, on the con-
trary, shows a more evident decrease of the “global” fractal dimension with
ε, from D

⋆(ω)
⊥ ≃ 2.3 to D

⋆(ω)
⊥ ≃ 1.5. This result shows that magnetic field

and velocity are decoupled in the MHD range, so that the their structures
have different fractal properties.

We now turn our attention to the range of scales smaller than the ion
skin depth, where the Hall term becomes relevant when ε becomes larger.
Results here are very similar for both current and vorticity, suggesting that
velocity and magnetic fields decouple only in the MHD range. If no Hall
cascade is present (ε = 0), the small scale range is characterized by smooth
fluctuations (for which we assume D⊥ = 3) for all components of the fields,
as expected when dissipation is active and numerically well resolved. This
is reflected in the absence of power law, or sign singularity, in the transition
from the MHD range toward the constant partition function value for smooth
fields (χ = 1 → κ = 0 → D = 3) at small scales. As the Hall effect
comes into play, the perpendicular components of current and vorticity start
to develop a (although poorly defined) power law range, with cancellation
exponents κ increasing with ε. The scaling of the partition function indicates
the presence of strongly persistent structures, in the range of scales larger
than the typical dissipative scales. In terms of fractal dimension (green and
blue plots in Figure 3.10, panels c and d), a decrease is observed from D⊥ = 3
to D⊥ ≃ 2.4, indicating that the smooth fields in the MHD regime (Run 1)
are developing toward more complex, broken structures (Runs 2, 3 and 4).
On the other hand, for the parallel component of current and vorticity the
sign singularity in the Hall range is only observed at ε = 1/8. At this value
of the Hall parameter, the field is no longer smooth (as instead happens for
dissipative range), but rather shows presence of quasi two-dimensional sign
persistent structures (red plots in Figure 3.10, panels c and d). At these
small scales, the “global” fractal dimension calculated for the current and
the vorticity steadily decreases from D⋆

⊥ = 3 to D⋆
⊥ ≃ 2.3 as the Hall term

coefficient increases, confirming once more that the turbulent stuctures are
being fragmented by the nonlinear Hall cascade.

Finally, we quickly review the results obtained for the scaling in the par-
allel direction. Figure 3.11 shows one example of partition functions of the
current jx as a function of the parallel scale, χ(l‖), and for l⊥/2π = 0.002.
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As evident, the power law range is severely reduced because of the lower
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Figure 3.11: The partition function χ(l‖), for jx at ε = 1/16, and for l⊥/2π =
0.002. A power law fit is superimposed. The bottom part of the plot shows
the compensated partition function χ(l‖)/A(l‖/2π)

−κ.

resolution of the numerical simulations in that direction. However, we have
fitted the partition functions with the usual power law, obtaining the cancel-
lation exponents κ and, therefore, the fractal dimensions D. These are shown
in Figure 3.12 as a function of the Hall parameter. As expected from the
RHMHD model, for both fields the component parallel to the magnetic field
has almost constant D‖ ≃ 2.2 (see the red plots in panels a and b of Figure
3.12). On the contrary, for the two components on the perpendicular plane,
D‖ increases with ε from very small values (D‖ ≃ 0.8) to about D‖ ≃ 1.9
(green and blue plots in panels a and b of Figure 3.12), similarly to what
is observed for the perpendicular partition functions. The “global” fractal
dimension increases from D⋆

‖ = 1.3 to D⋆
‖ = 2.
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Figure 3.12: The fractal dimension D of the parallel partition function, for
the three components of current (left panels) and vorticity (right panels).
The overall indicators D⋆

‖ are also plotted for the two fields (bottom panels).
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3.2 Conclusions

In this Chapter, a set of simulations of a RHMHD flow realized with different
values of the Hall parameter ǫ, was analyzed by using the sing-singular mea-
sure. Scaling of the partition function was observed in two distinct ranges of
scales, corresponding to the MHD and Hall MHD ranges. This is interpreted
as the presence of an active nonlinear turbulent cascade generating structures
(i.e. parts of the fields with persistent sign) on all scales. The cancellation
exponents, mesaured by fitting the partition functions with power laws, in-
dicate the degree of cancellation occurring between structures of opposite
sign, and are related to the gross fractal dimension of the typical turbulent
structures in the flow. In the MHD range, current structures are only weakly
sensitive to the Hall effect, showing slightly decreasing fractal dimension in
particular in the perpendicular current components. The vorticity structures
have a more evident fragmentation, suggesting that velocity and magnetic
field may have decoupled dynamics in this range. In the Hall range, cur-
rent and vorticity have similar behaviour, showing increasingly unraveled
structures. The nonlinear Hall term is thus responsible for disruption and
unraveling of the MHD current sheets, and for the generation of smaller scale
structures.

The results obtained here, together with previous analysis [79, 89], pro-
vide a comprehensive approach that help answering the basic question: do
the current sheets get wider or narrower with the Hall effect? We can con-
clude that the Hall term has dual effects on the current sheets at different
scales. On one hand, it increases the “macroscale” of the sheets by pro-
portionally increasing their characteristic size. On the other hand, it causes
these structures to unravel, which corresponds to generating microstructures
on smaller scales. The decrease of the fractal dimension is a manifestation of
the emerging microscales, while the widening of the macroscale of the sheet
produces an increase of the filling factor of these microstructures, and the
subsequent reduction of the observed intermittency [89].

These results may settle both the numerical and observational debate
about the widening vs narrowing of the current sheets, which was proba-
bly due the extremely complex nature of the structures. Therefore, more
comprehensive analysis, based on multiple approach to the same set of data
(global magnitudes, characteristic times, energy cascade, intermittency, geo-
metrical and fractal properties) is desirable in order to fully understand the
effect of the Hall term on the flow dynamics, and in particular on the fractal
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characteristics of the current sheets. This work, along with Refs. [79, 89],
may be an example of such comprehensive approach.



Chapter 4

Topological properties in
hybrid Vlasov-Maxwell system

4.1 Two-dimensional hybrid Vlasov-Maxwell

system

4.1.1 Equations and numerical simulation

The MHD and Hall-MHD approximations allow the study of plasma dy-
namics, and in particular of turbulence, only when phenomena occurring
at low frequency and large scale (with respect to the appropriate plasma
proper scales) are concerned. However, many interesting phenomena, in-
cluding dissipative and dispersive processes, involve particles interaction and
particle-wave resonances. For those processes, it is necessary to use a more
detailed approach, able to capture the fast, small scale dynamics of plasmas.
The Vlasov-Maxwell system is able to describe collisionless plasma dynam-
ics, capturing most of the kinetic processes characterizing the small scale
dynamics.

In this work we will make use of the results of a numerical simulation [96]
that solves the dimensionless hybrid Vlasov-Maxwell equations:

∂f

∂t
+∇ · (vf) +∇v · [(E + v ×B)f ] = 0 ,

∂B

∂t
= −∇ × E ,

61
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E = −u×B +
j ×B

n
− ∇Pe

n
+ ηj .

The ion distribution function is f(x, v) ≡ f(x, y, vx, vy, vz), E is the elec-
tric field, B = b + B0êz is the total magnetic field and j = ∇ × b is the
total current density. The ion bulk velocity v and density n are obtained
as the moments of the velocity distribution function of f . The pressure is
assumed to be isothermal. To ensure high Reynolds numbers the resistivity
is fixed to η ∼ 10−2 for all Runs of the simulation. In the initial condi-
tion, the Maxwellian plasma is perturbed by a spectrum of Fourier modes.
Energy is injected, with random phases, in the range 2 ≤ m ≤ 6 where
m = (L/2π)k and L = 20 × 2π × ρii. Periodic boundary conditions are
imposed and the spatial resolution is 5122 grid points. The ion plasma β
is β = v2ti/V

2
A . Six values of the ion plasma β parameter were considered,

β = 0.25, 0.5, 1.0, 1.5, 2.0, 5.0. Data from simulations with such values of
β will be labeled Run 1, 2, 3, 4, 5 and 6, respectively.

Figures 4.2, 4.3 and 4.4 show some examples of the total current density
components. The left panels show the components jx while the right panels
the components jz for all six Runs taken at the time at which the turbulent
activity is maximum, t = 50Ω−1

ci [98]. In these Figures one can see that the
turbulence arises through the appearance of coherent structures, resulting in
a sea of vortices, islands and current sheets. In between islands, jz becomes
very intense, this being the typical signature of the intermittent nature of
the magnetic field [96, 99]. From a qualitative analysis, the size of these
current sheets is of the order of a few ρii. Figure 4.1 shows the total energy
spectrum E(k), integrated on of radius k. The ion skin depth wave number is
indicated. The large scale part of the spectrum is compatible with the typical
Kolmogorov scaling k−5/3. The Alfvénic correlation between the magnetic
and the velocity field, typical of magnetohydrodynamic turbulence, is broken
at kρii ∼ 1 [100, 101]. Same result is obtained for all Runs (not shown).

4.1.2 Cancellation analysis

The simulations described in previous Section revealed the presence of co-
herent structures in the flow. This suggests that cancellation analysis can
be used in order to quantitatively characterize the structures and their tem-
poral evolution. Moreover, the parametric dependence on the plasma β can
be described quantiativeley, providing insights on the dynamical processes
occurring in Vlasov plasmas.
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Figure 4.1: The total energy spectrum of the Vlasov-Maxwell numerical sim-
ulation for one snapshot at t = 50Ω−1

ci . The Kolmogorov expectation k−5/3

(gray dot-dashed) is reported as a reference, while the vertical dashed line
represents the ion skin depth wave number.

For our analysis we have considered, for each of the six different β values
Runs, 50 time snapshots of dimensionless hybrid Vlasov-Maxwell equations.
The fields analyzed here are the three components of the total current den-
sity j already shown in Figures 4.2, 4.3 and 4.4. To estimate the partition
functions, we divided the simulation domain of size L2 = (20× 2π × ρii)

2 in
boxes of variable size lx × ly, with lx = ly = l.

Figures 4.5, 4.6, 4.7 and 4.8 shows the signed measure maps for two values
of β, and for four different partition box sizes. It is evident that the coarse
graining of the set partition leads to cancellations at larger scales, so that
small scale structures (the current filaments clearly evident at small scale)
gradually disappear. Similar behavior is seen for all fields components, and
for any value of the plasma β parameter (not shown). Note, that at t = 50Ω−1

ci

the turbulence is manifested by the presence of filaments of current (Figure
4.5-4.7, right panels), while at shorter times (t = 10Ω−1

ci ) the turbulence
is not yet active (current filaments are absent, see left panels). From the
signed measures, partition functions (eq. 2.2) have been computed for all
components of the current j as a function of the scale parameter l.

Figures 4.9 and 4.10 show examples of the partition functions of the per-
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Figure 4.2: Left panels: perpendicular current component jx in the per-
pendicular plane x-y, for the snapshots and for β = 0.25 (top), β = 0.50
(bottom). Right panels: parallel current component jz in the perpendicular
plane x-y.
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Figure 4.3: Left panels: perpendicular current component jx in the per-
pendicular plane x-y, for the snapshots and for β = 1.00 (top), β = 1.50
(bottom). Right panels: parallel current component jz in the perpendicular
plane x-y.
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Figure 4.4: Left panels: perpendicular current component jx in the per-
pendicular plane x-y, for the snapshots and for β = 2.00 (top), β = 5.00
(bottom). Right panels: parallel current component jz in the perpendicular
plane x-y.
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Figure 4.5: The signed measure µ as estimated for jz in the plane x-y, for
Run 1 (β = 0.25 at t = 10Ω−1

ci ), for four different partition box sizes (from
top to bottom, l/ρii = 0.039, 0.312, 0.820 and 2.461). The color scale is
arbitrary.
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Figure 4.6: The signed measure µ as estimated for jz in the plane x-y, for
Run 1 (β = 0.25 at t = 50Ω−1

ci ), for four different partition box sizes (from
top to bottom, l/ρii = 0.039, 0.312, 0.820 and 2.461). The color scale is
arbitrary.
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Figure 4.7: The signed measure µ as estimated for jz in the plane x-y, for
Run 6 (β = 5.00 at t = 10Ω−1

ci ), for four different partition box sizes (from
top to bottom, l/ρii = 0.039, 0.312, 0.820 and 2.461). The color scale is
arbitrary.
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Figure 4.8: The signed measure µ as estimated for jz in the plane x-y, for
Run 6 (β = 5.00 at t = 50Ω−1

ci ), for four different partition box sizes (from
top to bottom, l/ρii = 0.039, 0.312, 0.820 and 2.461). The color scale is
arbitrary.
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pendicular compentent jx and parallel jz of the current density respectively,
for two different values of β and for three different times (see each Figure).
When appropriate, power law fits χ(l) ∼ l−κ have been performed through a
least square method. The fitting curves are displayed in the Figures. For a
visual test, the partition functions have been compensated by dividing them
by the fitted power law l−κ, and represented in the bottom panels of each
Figure. Scaling ranges are seen as flat regions in the compensated plots.
Compensated plots and fitting power laws have been represented as full lines
for the fluid range, and with dahsed lines for the kinetic range.

As can be seen in all panels of Figures 4.9 and 4.10, the partition functions
suggest the presence of power law scaling, and therefore sign singularity, in
a range corresponding to the inertial range of the energy spectra (cf. Figure
4.1). The same results are obtained for all the Runs (not shown). This holds
for all fields and β parameters, and is the signature of the MHD turbulent
cascade among structures of different size [44]. A second power law range
emerges at small scales. This suggests that a secondary sign singularity is
present, with fragmentation of dissipative structures along the scales pre-
sumably due to the nonlinear kinetic processes. The small scale power law
is observed for all the current components and in all Runs. Figures 4.11
and 4.12 show the cancellation exponents vs time, obtained from the small
scale power law fit (red circles) and for the large scale fit (blue diamond).
In green the level of turbulent activity is represented by the average out-of-
plane squared current density 〈j2z 〉 [98]. The left panels show κ for the jx
component, while right panels the jz component of the current density for
different values of the plasma β (Run 1, 2, 3, 4, 5 and 6 from top to bottom re-
spectively). The first feature to be noticed for the jx component is the widely
oscillating behaviour of the cancellation exponent at the early stage of the
simulation Runs, namely for t < 17Ω−1

ci , especially evident for small values
of β. This oscillation is due to the unstable and sporadic character of the
structures, which are not well formed yet, presumably because the dynamics
is still dominated by the linear (Alfvénic) perpendicular evolution. Indeed,
as pointed out in Ref. [97] by observation of the average out-of-plane squared
current density 〈j2z 〉, turbulent cascade is not yet developed for t < 35Ω−1

ci .
This means that nolinear interaction are still slowly building up structures on
smaller and smaller scales. The cancellation exponents become more stable
after t = 17ω−1

ci , after a sharp transition visible in the plots. This suggests
that the first structures hierarchies are formed well in advance with respect to
the peak of squared current density. Wether the turbulence can be considered
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Figure 4.9: The partition function χ(l) vs. l/ρii for component jx of the
current density for Run 1 (left panel) Run 5 (right panel), for 3 different
time (see each Figure). Power law fits are superimposed. The ion skin
depth is indicated (dashed line). The bottom part of each plot shows the
compensated partition function χ(l)/A(l/ρii)

−κ.
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Figure 4.10: The partition function χ(l) vs. l/ρii for component jz of the
current density for Run 1 (left panel) Run 5 (right panel), for 3 different time
(see each Figure). Power law fits are superimposed. The ion skin depth is
indicated (dashed line). The bottom part of each plot shows the compensated
partition function χ(l)/A(l/ρii)

−κ.
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fully developed at t = 17ω−1
ci or at t = 35ω−1

ci is still not clear. However, the
topology of the current field seems to reach a relative stability at early times.
This process is less evident at high β, where the transition to turbulence is
smoother. After turbulence is fully developed, the cancellation exponent of
the jx component increases more or less steadily for all β, the trend being
less evident for larger values of the plasma parameter. This behaviour is
a clear indication of the fact that the nonlinear interactions are active and
create smaller and smaller structures during the whole Run, making the field
complexity increase with time. In the large scale range, the cancellation ex-
ponents for the components perpendicular to the external field jx and jy are
generally found to be κ > d/2 (we remind that in this simulation d = 2).
This indicates the presence of sign-antipersistent structures, or alternation of
positive-negative structures, as can be seen in the left panels of Fig.s 4.2-4.4
where pairs of positive and negative structures are prevalent. Cancellation
exponent is therefore sensitive to the presence of pairs of structures. On the
contrary, in the small scale range we found mostly κ < d/2, which indicates
the presence of structures with strong sign-persistence. This occurs because
the structure size is large with respect to the scale, so that structures are
seen as smooth, and the structure pairs are well resolved.

For the parallel component jz, a different behavior is observed. The
snapshots prior to transition to turbulence are not characterized by unstable
structures as for the perpendicular components, but instead show a steady,
fast increase of κ, which indicates a regular set-up of the structures. After
the onset of fully developed turbulence at t ≃ 17Ω−1

ci , the cancellation ex-
ponent saturates and then weaklydecreases for the fluid range of scale for
t > 40Ω−1

ci , indicating that the structures have reached their typical shape,
and their complexity does not increase with time (unlike for the perpen-
dicular components). The values of the cancellation exponents are κ ≃ 1,
indicating very irregular, nearly decorrelated fluctuations. However, small
scale structures have opposite behaviour: their complexity increases with
time after the transition to turbulence, as for the parallel components of the
current. A saturation value κ ≃ 0.4 is reached at large times t > 40Ω−1

ci

for small values of plasma β, while the saturation value is κ ≃ 0.3 for large
β. This corresponds to “fat” current filaments, characterized by a fractal
dimension D ≃ 1.2 or D ≃ 1.4 at small and large β, respectively.

Figures 4.13 show the cancellation exponents, obtained for the component
jx (left panels) and jz (right panels), vs plasma β for five times (different
lines in the plots), and for small (top panels) and large (bottom panels) scale
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Figure 4.11: Cancellation exponent of component jx (left panels) and com-
ponents jz (right panels) of current density vs time for Run 1, 2 and 3 (from
top to bottom). The red circles are the cancellation exponents compute for
small scales while blue diamonds compute for large scale. In green the level of
turbulent activity is represented by the average out-of-plane squared current
density 〈j2z 〉.
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Figure 4.12: Cancellation exponent of component jx (left panels) and com-
ponents jz (right panels) of current density vs time for Run 4, 5 and 6 (from
top to bottom). The red circles are the cancellation exponents compute for
small scales while blue diamonds compute for large scale. In green the level of
turbulent activity is represented by the average out-of-plane squared current
density 〈j2z 〉.
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Figure 4.13: Cancellation exponent of component jx (left panels) and com-
ponents jz (right panels) of current density vs beta of plasma for five time.

shows a tendency to increase for β < 2, for both large and small scale ranges.
For β > 2 a saturation is observed, especially at long times. This suggests
that differences in the structure complexity only occurs for β across unity,
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and no further complexity is introduced by incerasing the plasma β. For the
z component, cancellation exponents show a weak decrease with β for all
times and for both small and large scale ranges (except for the large scale
case at early times, where the exponents are roughly constant). As already
observed, snapshots at larger times have larger κ.

4.1.3 Conclusions

In this Chapter, a set of simulations of dimensionless hybrid Vlasov-Maxwell
equations, realized for a set of different values of plasma β parameter, was
analyzed by using the the sing-singular measure. The presence of power
law scaling of the partition function was observed in two distinct ranges of
scales, corresponding to the fluid and kinetic ranges of the plasma dynamics.
This can be interpreted as the presence of an active nonlinear turbulent
cascade generating structures (i.e. parts of the fields with persistent or anti-
persistent sign) on all scales. The cancellation exponents, obtained from the
slope of the partition functions, indicate the degree of cancellation occurring
between structures of opposite sign, giving information on the complexity
of the structures. This is generally related to the gross fractal dimension
of the typical turbulent structures in the flow. The topological properties
of the structures is different for parallel and perpendicular components of
the current. For the perpendicular components, structures are strongly sign-
persistent in the small scale range, and anti-persistent (alternation of positive
and negative structures, occurring in closeby pairs) at larger scales.

The time evolution of the numerical simulation is well captured by the
cancellation analysis. In particular, the transition to turbulence produces
several effects on the different components. A sharp transition of the struc-
ture complexity is always visible in advance with respect to the time when
fully developed turbulence was previously observed to set in [97]. For some
current components, the cancellation exponent shows wide oscillations be-
fore turbulence sets in, describing the unstable presence of fluctuations. For
other components, the structure complexity steadily builds up in this phase,
as shown by the regular increase of the cancellation exponent. After the
transition to turbulence, the perpendicular components continue to develop
small scale complexity through nonlinear interactions, while the parallel com-
ponent rapidly reaches a saturation, and often a slow decrease, of the can-
cellation exponent, indicating that parallel currents do not develop smaller
scale structures as the time increases.
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Finally, the β dependence of the field complexity was also analyzed from
the different Runs. The cancellation exponent κ, for the perpendicular com-
ponents, increases with β, then saturates or slowly deacreases (at small
scales) or increases (at large scales), for all times (except very short times).
For the parallel component, structures are strongly sign-persistent at small
scales, and weakly persistent (in fact, nearly decorrelated fluctuations are
observed) at large scales. Moreover, it increases with time at small scales,
and decreases with time at large scales.

The application of cancellation analysis has thus provided the quantita-
tive evaluation of the field complexity, and has shown excellent sensitivity to
time evolution features and to parametric variations. Moreover, it has been
able to capture the subtle difference between single-layerd and double-layered
structures observed for the different current components.





Chapter 5

Cancellation analysis of
magnetic activity in solar
active regions

5.1 Introduction: photospheric active regions

Most solar phenomena are direct consequence of the dynamic magnetic fields,
continuously emerging in the solar photosphere (the lower layer of the solar
atmosphere, with depth of about 100 km) from the solar interior, and of their
interaction with convectively-driven plasma flows. At photospheric level, the
most evident aspect of the magnetic activity is the presence of active regions
(ARs) (Figures 5.1), which are more or less extended and concentrated mag-
netic field areas. An active region often appears at photospheric level like a
structure with regions of opposite polarities, including pores and sunspots if
the emerging magnetic field is sufficient [104]. Sunspots are the most striking
phenomenon of solar magnetism. In most cases, they have a shape circular
or nearly circular shape, with typical diameters of the order of 30000 Km,
temperature of about 4000 K, and size dependent lifetime of the order of
weeks.

Many interesting phenomena that characterize the active regions are ex-
plosive, such as coronal mass ejections CMEs, accelerated particles and flares.
The latter are spectacular phenomena in which a large amount of energy is
released in a short time. These events are clearly visible in soft and hard X-
ray emission, and the conversion of magnetic energy into heat effects is also

81
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visible as extreme ultra-violet (EUV) radiation. It is now evident that these
phenomena have impact on Earth, in the form of geomagnetic disturbances,
communication perturbations and satellite damages [103, 102].

One of the main goals in solar physics is the observations of magnetic
field variations in ARs as a signature of flares. Cancellation analysis has
shown promising ability in identifying subtle structural changes in active
regions magnetic fields, which have been interpreted as flare precursors. In
this thesis we analyze two active regions in order to better understand the
relationship between magnetic structure variations and flares.

5.2 Ground based solar observations: NOAA

10019

5.2.1 Observation

In this section we want to study graund-based observation of photospheric
magnetic field to characterize the topological proprerties of the current, and
their relationship with flaring activity. Observations were performed between
3 July and 6 July 2002 by exploiting the spectro-polarimetric mode of the
THEMIS telescope (http : //www.themis.iac.es), using the photospheric Fe
I 630.2 nm spectral line (cf. [109] for details about measurements). The
observed Active Region was located around W39 − S17 on the first day of
observation, and reached E08 − S17 on the last day. The region was scanned
with step of 0.5′′ (the size of the spectrograph entrance slits width). Seeing
conditions limited the spatial resolution to about 1′′. The spatial sampling
along the slit is 0.5′′/pixel and the spectral sampling 22 mÅ/pixel. The size
of the field covered by the magnetogram was not constant, and varied from
80′′×50′′ to 100′′×70′′. The four Stokes parameters I, V,Q, U were measured
using an exposure time of 300 msec for all wavelengths. The so-called 2 ×
1 THEMIS spectro-polarimetric configuration was used: the two beams
with orthogonal polarization exiting the analyzer are directed into one single
camera. The field of view covered by the entrance slits of the spectrograph
was 1′. Beam inversion was performed for the linear polarization Q: the top
part of the camera received sequentially I + Q, I − Q, I + U and I − V ,
while the bottom part recorded I −Q, I +Q, I − U , I + V . This observing
strategy allows to reduce the impact of the seeing due to the time delay
between to successive polarimetric measurements (1 s) [110]. The final error
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of the measurements is S/Ic = 10−3, where S stands for one of the Q,U or V
Stokes parameters, and Ic stands for the intensity of the continuum in quiet
Sun regions. To derive the magnetic field strength, inclination and azimuth,
the SIR (Stokes Inversion based on Response function) was used. A one
component atmosphere was chosen with a magnetic filling factor equal to 1.

To get a quantitative measure of the scaling properties of the current den-
sity inside the active region in relation to the flaring activity, we used a time
series of fifteen measurements of the vector magnetic field in NOAA 10019.
The time series starts on 3 July at 08:06 (in Universal Time, UT), and ends
on 6 July at 11:39 UT. Dataset for each of the four days include six, three,
two and four snapshots of the active region, respectively. In Figure 5.1, we

Figure 5.1: Maps of vertical magnetic field Bz for the AR 10019 as measured on
3 July (a) 4 July (b), 5 July (c), and 6 July (d) 2002. Time of each snapshot is
indicated in the legend. Dot-dashed boxes indicate the box Qmax(Lmax) of size
Lmax and the thin-line the box Q(L) of size L (see text for explaination).

display four examples of maps of vertical magnetic field Bz for the AR 10019,
one for each of the four days of observation. For each magnetogram, the day,
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hour (in Universal Time) and the dimension L of the box Q(L) used for the
estimation of the cancellation exponents (see below) are indicated.

Finally, using the two-dimensional measuraments of the photospheric vec-
tor magnetic field B(x, y) on the solar surface, it was possible to estimate
the vertical component z of the current density Jz(x, y) = (∇×B)z, where
(x, y) are the cartesian coordinates on the surface of the sun. This can be
done by computing, for each pixel of area s, the line integral of the transverse
(i.e. perpendicular to the line of sight) magnetic field B⊥(x, y) over a closed
contour G [46], 4πjz/c = (∇×B)z = s−1

∮

G B⊥ · dr. Integration along each
side of G was performed using Simpson’s rule. Figure 5.2 shows the line of

Figure 5.2: Maps of vertical component of the current density Jz for the AR
10019 as measured on 3 July (a) 4 July (b), 5 July (c), and 6 July (d) 2002. Time
of each snapshot is indicated in the legend. Dot-dashed boxes indicate the box
Qmax(Lmax) of size Lmax and the thin-line the box Q(L) of size L (see text for
explaination).

sight current density for the same snapshots as in Figure 5.1.
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5.2.2 Time evolution and flaring activity

X-ray observation of the active region NOAA 10019 analyzed here shows peri-
ods of low and enhanced flaring activity. During the observations, the active
region produced eight C-class flares whose list, as extracted from GOES X-
ray flux database is given in Table 5.2.2. Figure 5.3 shows the X-ray flux for

t(h) 7.95 8.80 11.72 28.58 40.35 41.68 63.83 81.45
class C3.4 C1.1 C7.3 C4.5 C3.4 C2.4 C6.3 C6.0

Table 5.1: Row 1: the start time of flares occurring since = 0.00 = 00:00 UT
on 3 July 2002 and for the whole observation period. Row 2: the class of
flare (full disk emission from GOES X-ray database).

the flares listed in the Table (vertical bars, right vertical axis), measured in
active region NOAA 10019 during the time of observation. The time axis is
set so that t = 0 at 00:00 UT on 3 July 2002, the first day of observation. In
the same plot, we display the time evolution of the fractal dimension of cur-
rent structures D (symbols and dashed line, left vertical axis), as calculated
from the fitting parameter κ through relation (2.4). During the first part of
the observation, the fractal dimension remained roughly steady, with D ≃ 1,
which indicates presence of current filaments. However, a sudden increase to
about D = 1.24 is clearly present near the end of the observation, between
t1 = 08:20 UT and t2 = 09:19 UT, both on 6 July. This increase occurs
in correspondence with a large flare (C-class, with flux above 10−6 W/m2)
recorded at tF = 09:27 UT on the same day. This observation, similar to
previous results [46, 48, 49], suggests that the magnetic field structures could
be smoothed by dissipative effects which anticipate the flare explosion.

The sharp jump observed in the fractal dimension was ∆D12 = |D(t2)−
D(t1)| = 0.19. This value represents a significant 18% variation relative
to the mean dimension 〈D〉 = 1.08, and a nontrivial 9.5 factor in units of
standard deviation σD = 0.02. Both the average and the standard deviation
were computed over the whole observation time.

In order to test for reliability of the observed change of fractal dimen-
sion, we compare the relative change in D with the possible influence of
seeing on the data, which could be responsible for the smoothing of the field.
To evaluate the effect of image distortion on the slope of the sign-singularity
spectrum, a simple technique to reproduce synthetic seeing variation has been
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Figure 5.3: Fractal dimension of the photosperic current density structures
D versus time. (symbols connected by solid line, left vertical axis). The
vertical lines show the X-ray class of flares (right vertical axis).
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used [46]. All components of each magnetic field vector within each magne-
togram have been smoothed over n× n pixels areas, with n = {3, 5}, before
computing the current density and performing the cancellation analysis. In
the left panel of Figure 5.4 we show one example of the scaling behavior of
the partition function χ(l) for the three samples, namely unsmoothed (1× 1,
circles), smoothed on 3 × 3 pixels area (diamonds) and smoothed on 5 × 5
pixels area (triangles). The example shown here refers to the snapshot taken
at 17:20 UT on 3 July 2002. For the smoothed fields, the partition functions

10-1

100

10-2 10-1 100

χ(
l)

l/L

Jz , 03-07-2002 - 17:20 UT 
0.3

0.4

0.5

0.6

1×1 3×3 5×5

κ

smoothing (pixels)

Jz , 03-07-2002 - 17:20 UT 

Figure 5.4: Left panel: the partition functions log χ(l) vs log (l/L) for the current
density jz calculated for unsmoothed (1×1, circles) and smoothed (3×3, diamonds,
and 5× 5, triangles). This example refers to the snapshot taken on 3 July 2002 at
17:20 UT. Right panel: cancellation exponents κ for the three cases shown in left
panel.

saturate at small scales at increasingly large scale, indicating that at these
scales the measure becomes smooth, so that no sign singularity is present.
This is the main effect of the smoothing [46]. Note that the partition func-
tion of the unsmoothed field does not saturate, probably because elementary
flux tube are smaller than the instrumental resolution [44]. In the intermedi-
atate region of scales, the cancellation exponent is found to slightly decrease
with the smoothing. The right panel of Figure 5.4 resumes the dependence
of cancellation exponent on image quality for the case presented in the left
panel of the same figure. The relative variation of the scaling exponent in
this case is less than 10%. Figure 5.5 shows the time dependence of dimen-
sions D for the three series. While the general effect of the smoothing is the
evident increase in fractal dimension, the main features of the time depen-
dence, and in particular the sharp jump observed on the last day, are not
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using the unsmoothed data (1 × 1) and the two synthetic datasets with
smoothing (see legend). The vertical lines show the X-ray class of flares
(right vertical axis).

lost, resulting in a 25% increase of D in both smoothed cases. Finally, the
mean dimension increase ∆DSn due to the n × n smoothing was evaluated
by averaging the differences |Dn×n −D1×1| over the whole time window, ob-
taining ∆DS3 = 0.04 and ∆DS5 = 0.09. Therefore, the observed jump is
significatively larger than the smoothing effect, ∆D12 > ∆DSn, confirming
the goodness of the observation. Therefore, we can conclude that the ob-
served change of fractal dimension observed in correspondence with the flare
on 6 July 2002 is nontrivial, being sufficiently larger than the typical seeing
smoothing.

Incidentally, it is worth noticing that a few similar flares have occurred
during the time span of our observation. However, no clear observation
of changes in the cancellation exponent was possible, as such flares were
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unfortunately not synchronized with regularly sampled magnetograms in the
time series.

5.3 Space based solar observations: NOAA

11158

5.3.1 Observation

In contrast to the observations made from ground based telescopes, which
are only possible during the daytime, and under favourable weather condi-
tions, today modern space missions allow to conduct observations of the Sun
with unprecedented spatial resolution, high temporal cadence and full time
coverage. In this section, we will study the temporal evolution of the cancel-
lation exponent obtained from high-resolution photospheric magnetograms
of active region NOAA 11158. The evolution of AR 11158 is mainly char-
acterized by two large bipoles emerging in close proximity, and by strong
shearing motion between the central sunspot clusters [113] [114]. This very
active AR produced one X-class, five M -class and fifty-six C-class flares in
the time span from 2011 February 9 to 21.

The observations used here were performed by the Helioseismic and Mag-
netic Imager (HMI) instrument, that is part of the NASA space mission So-
lar Dynamics Observatory (SDO) (http : //sdo.gsfc.nasa.gov), which was
launched on 11 February 2010 and is still actively colleting data. The instru-
ment is designed to measure the Doppler shift, intensity and vector magnetic
field at the solar photosphere using the 6173 Å Fe I absorption line of full so-
lar disk, with the spatial resolution of 0.5′′/pixel, and with temporal cadence
of 12 minutes. The instrument consists of a front-window filter, a telescope,
a set of waveplates for polarimetry, an image-stabilization system, a block-
ing filter, a five-stage Lyot filter with one tunable element, two wide-field
tunable Michelson interferometers, a pair of 40962 pixel cameras with inde-
pendent shutters, and associated electronics. Each camera takes a full-disk
image roughly every 3.75 seconds giving an overall cadence of 45 seconds for
the Doppler, intensity, and line-of-sight magnetic field measurements, and
a slower cadence for the full vector magnetic field. Details on the data re-
duction, and on the corrections performed on the database (180◦ ambiguity;
absolute scale Doppler shift; disk center re-projection; Mercator Cartesian
de-projection; flux distortion re-projection) can be found in Ref. [115].
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The data analyzed here refer to the period of about seven day spanning
from 2011 February 10 at 14:24 UT, to February 16 at 23:36 UT. This time
interval covers the active region from its emergence through its flaring phase.
Over the seven day period observed, the AR hosted six major flares as it
passed the central meridian: an X2.2 flare, with a peak GOES soft X − ray
flux on February 15 at 01:56 UT, leading to a pronounced halo CME, 3 M -
class larger than of 1.2, M6.6 (13 Feb at 17:38 UT), M2.2 (14 Feb 17:26
UT), M1.6 (16 Feb 14:25 UT), 2 M -class smaller than of 1.2, M1.0 (16 Feb
01:32 UT), M1.1 (16 Feb 07:35 UT) and over 20 C-class flares.

Figure 5.6 shows a two-dimensional reconstructed image of one snapshot
of the the currente helicity hcz, calculated for the active region at the starting
time of the X2.2 flare. The presence of positive and negative structures on
all scales is cleary visible, indicating the pertinency of cancellation analysis
for this dataset.

Figure 5.6: The current helicity hcz determined for the active region NOAA
11158 on 2011-February-15 01:36 UT. The presence of positive and negative
structures on all scales is cleary visible.
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5.3.2 Data processing and cancellation analysis

The panels in Figure 5.7 show some examples of the maps of vertical magnetic
fields Bz for three different times, in three different conditions. Panel a
presents the active region NOAA 11158 in its emerging phase (2011 February
10 10:24 UT ). In panel b the magnetic field is shown in the central phase of
the AR lifetime, and in particular at the starting time of the largest X2.2
flare. In panel c the active region is shown at some time after the largest
X2.2 flare: in this phase, the magetic structure have developed to a finer and
more complex state. As done before for the THEMIS data, from the vector
magnetic field, the vertical component of the current and the reduced current
helicity were estimated as described in previous section.

In order to capture the main features of the magnetic field structures,
for each magnetogram we select a reduced area Qmax(Lmax) = 150 × 120,
corresponding to 75 arcsec in solar photosphere, centered in the position
where the flare X2.2 and most of the flaring activity was located (Fig. 5.7
panel b small dotted-dashed box). In fact, the evident separatrix between the
positive and negative polarity regions of the central part of the AR was so-
licited by most of the large flares occurred in NOAA 11158. This is therefore
the region where most of the magnetic changes can be expected. Limiting
the analysis to the subset Qmax(Lmax) allows to reduce the effects of low
magnetic field background on the partition function [46, 48, 49]. As already
done for the ground based magnetograms described in previous section, the
partition functions have been estimated for N = 10 positions of a slightly
smaller box Q(L) = 120 × 120 pixels, in order to fully span the entire area
Qmax(Lmax). From the average partition functions, the cancellation expo-
nents κ were finally calculated through a power law fit [111, 112]. Panels of
Figure 5.7 indicate, along with the area Qmax(Lmax) (as dashed boxes), also
the reduced boxes Q(L) (as thin line boxes), corresponding to 60 arcsec in
solar photosphere.

In left panels of Figures 5.8 and 5.9 we show the maps of vertical current
density jz(x, y) = (∇ × B⊥) · êz and reduced current helicity hcz(x, y) =
Bz(x, y)jz(x, y), that, as we have already discussed, represents a measure of
the non-potential magnetic energy available in the Active Region. In the
right panels we show the corresponding averaged partition function for three
different times, as in previous figure, namely corresponding to the emerg-
ing phase (panels a-b), to the maximum of flare activity (panels c-d), and
to the later phase with enhanced complexity (panels e-f). When appropri-
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Figure 5.7: Maps of vertical magnetic fields Bz for 3 times (see the panels).
Dashed-line boxes indicate the area Qmax(Lmax) = 150 × 120 pixels (cor-
responding a 75 × 60 arcsec on the solar photosphere) where, for N = 10
position of box Q(L) = 120 × 120 (thin-line), the calculations were done.
The choice of the area Qmax(Lmax) was made according on the location of
the flare X-class (small dotted-dashed boxes b). In the panel a the AR is in
the phase of birth, while in panels b− c the AR is more structured: panel b
is taken at the start time of the flare X2.2, and c was taken while the AR
was approaching the solar limb.
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Figure 5.8: Left panels show the maps of vertical current density jz for the
AR 11158 for 3 times (see the panels). Right top panels show the averaged
partition function and the power law fits χ(l) = A(l/L)−κ are superimposed.
Finally, the bottom part of each right plot shows the compensated partition
function χ(l)/A(l/L)−κ.



94 CHAPTER 5. SOLAR OBSERVATIONS

hcz, NOAA 11158, 2011-Feb-11 10:24 UT

 

 

1
0
−
3
G

2
c
m

−
1

−8

−6

−4

−2

0

2

4

6

8

a)

10
−1

10
0

χ
(l
)

hcz, NOAA 11158, 2011-Feb-11 10:24 UT

10
−2

10
−1

10
0

10
0

l/L

χ
(l
)/
A
l−

κ

b)

hcz, NOAA 11158, 2011-Feb-15 01:36 UT

 

 

1
0
−
3
G

2
c
m

−
1

−8

−6

−4

−2

0

2

4

6

8

c)

10
−1

10
0

χ
(l
)

hcz, NOAA 11158, 2011-Feb-15 01:36 UT

10
−2

10
−1

10
0

10
0

l/L

χ
(l
)/
A
l−

κ

d)

hcz, NOAA 11158, 2011-Feb-16 10:24 UT

 

 

1
0
−
3
G

2
c
m

−
1

−8

−6

−4

−2

0

2

4

6

8

e)

10
−1

10
0

χ
(l
)

hcz, NOAA 11158, 2011-Feb-16 10:24 UT

10
−2

10
−1

10
0

10
0

l/L

χ
(l
)/
A
l−

κ

f )

Figure 5.9: Left panels show the maps of vertical current density hcz for the
AR 11158 for 3 times (see the panels). Right top panels show the averaged
partition function and the power law fits χ(l) = A(l/L)−κ are superimposed.
Finally, the bottom part of each plot right shows the compensated partition
function χ(l)/A(l/L)−κ.
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ate, power law fits χ(l) ∼ l−κ have been performed through a least square
method. The fitting curves are superposed to the partition functions, show-
ing the extremely good quality of the scaling, which extends to almost two
decades. This power law range extension is outstandingly better than all
other datasets studied in this thesis, which confirms the good quality of SDO
data. For a more convincing visual test, the partition functions have been
compensated by dividing them by the fitted power law l−κ, and represented
in the bottom panels of each Figure. Scaling ranges are seen as flat regions
in the compensated plots. It is important to emphasize that all the partition
functions tend to a constant value (χ = 1) at small scales, which means that
the instrument provides good resolution of the small scales. This is similar
to what is observed in the 2D MHD numerical simulations [44]. Thanks to
the good spatial resolution and low noise level, partition functions show ex-
cellent scaling also for the current (which was not the case for the previous
analysis of solar data). We can anticpate here that for the current density
we found a stationary state typical cancellation exponent κ ≃ 0.5, indicating
the presence of current filaments D ≃ 1; for the current helicity κ ≃ 0.2,
indicating smoother structures than for the current density.

The good quality of cancellation analysis allows a detailed comparison
of the magnetic complexity of the AR with its flaring activity. To this aim,
we have chosen a viable indicator for the flaring activity. The best indicator
for this purpose would be the X-ray flux, which accounts for emission from
the hot plasma, heated by the dissipative processes occurring during flares.
However, measurements of X-ray flux are mostly available for the whole solar
disk, the available measurements lacking of spatial information. Since during
the period considered here another active region was producing large flares,
we decided to use instead the Extreme-UV emission, as recored by the fast
SDO-AIA instrument, which measures emission in the 131Å channel with
high cadency of 12 minutes. This instrument provides also spatial resolution,
so that it was possible to compute the total EUV emission from the relevant
solar region, that is the area around AR 11158. Figure 5.10 shows the area
where the EUV was computed. We therefore have built a time series of the
EUV emission of AR 11158, that we have downsampled to the same resolution
as the magnetograms, 12 minutes. Figure 5.11 shows, as blue dashed-line,
the time evolution of the EUV emission during the study period. The first
phase is characterized by low emission, and the EUV signal can be considered
as the background signal for the AR. Then, between September 13 and 14,
the AR starts flaring, and the flaring activity is present till the end of the
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Figure 5.10: The Extreme-UV emission (SDO-AIA 131Å channel) integrated
over AR 11158.

observation. Flares are clearly visible as peaks of the EUV signal. The
main flares are labeled in the figure. It should be noticed that the AIA-SDO
instrument is subject to saturation during the most intense events. This sets
a limitation on the reliability of the actual values observed in the integration.
For example, the flare of class X2.2 has a smaller peak than the previous
M class flares. However, this problem only affects larger flares. Here we
are mostly interested in the very occurrence of large flares, and their exact
timing, their actual full intensity being irrelevant for our analysis.

Figure 5.11 also shows the temporal evolution of cancellation exponent
(red line) for both the current (top panel) and the current helicity (bottom
panel), as comparated to the EUV emission. In the initial phase, for t<

∼
13,

the cancellation exponent of the current density jz shows large oscillations
around κ = 0.8 (D = 0.4). For the current helicity hcz, similar oscillations
around to κ = 0.5 (D = 1.0) are observed, the structures being similar to
filaments. This corresponds to the fact that the AR is still emerging, and the
turbulent structures are in their forming phase. Incidentally, the oscillating,
unstable behaviour of κ(t) is analogous to the oscillations observed in Vlasov-
Maxwell system, where oscillations where found to occur prior to the onset
of fully developed turbulence (see Figures 4.11 and 4.12). Therefore, wide
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Figure 5.11: Top and bottom panels show the cancellation exponent for the
current densisty and helicity respectively as a function of time exspressed
in days (red line). The Extreme-UV emission (blue dashed-line) is superim-
posed.
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oscillations of the cancellation exponents can reasonably be associated with
emerging turbulence in the AR. This is also evident by looking at the time
evolution of the magnetograms.

A confirmation is further provided by the observation of the magnetic
flux emergence, depicted in Figure 5.12, and occurring at the same time
(see the raising phase of the magnetic flux). Magnetic flux is estimated as

Figure 5.12: Magnetic fluxes computed for the whole active region. The red
line is the positive magnetic flux and the black dashed line is the module of
negative magnetic flux.

integral of the magnetic field, over the whole AR, and separately for positive
and negative polarity. In the second phase of the AR lifetime, when the
field is settled and the AR is well stable (13<

∼
time<

∼
16), the cancellation

exponent decreases abruptly. This is observed in correspondence with the
main injection of magnetic flux, namely the full emersion of the AR, see
Figure 5.12 [115]. The current cancellation exponent in this range is around
κ = 0.45, indicating presence of current filaments, while for the current
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helicity κ = 0.15, in agreement with previous measurements of space based
magnetograms [47].

During this period, there is the suggestion of some correspondence be-
tween the peaks of the EUV emission and those of the cancellation exponent,
both for current density and helicity. In particular, for the X2.2 flare, this
is clearly visibles for both fields, although a more defined peak is visible for
the current helicity (compare Figure 5.11 top and bottom panels).

In this period of enhanced flaring state we found that the cancellation
exponent starts increasing steadily about 4 to 12 hours before the solar flare
peak, and reaches the maximum about 48 minuntes before the flare, before
it decreases back to the starting value. This observation holds for both
fields. Finally, in the last part of the observation, after late February 15, the
average cancellation exponent increases again, showing the enhancement of
the complexity of the AR. This behaviour seems to reflect the apperarence of
thin filaments on the active region, whose origin is still unclear. We will not
discuss last time span in this thesis, for which further studies will be needed.

In order to quantitatively evaluate the possible existence of correlation
between the cancellation exponents κ and EUV emission, we have thus com-
puted the Spearman and Pearson correlation coefficients, representing the
measure of similarity between the two signals as a function of a shift or time
shift applied to on of them. The main difference between the two coeffi-
cients is that Pearson correlation seeks only linear correlations, contrary to
the Spearman correlation which also looks for non-linear correlations (which
are likely to be present in this case, characterized by nonlinear dynamics),
and is less sensitive to the presence of outliers. For this calculation, we have
extracted the time series in the more stable, flaring period, from 13 February
at 22:00 UT to 15 February at 12:00 UT, in order to exclude the uncorrelated
emerging phase (no flares and large fluctuations of the cancellation exponent
observed) and the increase of the cancellation exponent in the last part of
the observation.

For each time lag, we have then evaluated the Pearson and Spearman
correlation coefficients ρP and ρS, which are shown in Figure 5.13 versus
the time lag (left panels). On right panels of the same figure, we show the
scatter-plots of the cancellation exponents the current helicity, versus the
Extreme-UV emission shifted by time-lags at which ρ has its maximum. For
each scatter-plot, the maximum of the correlation coefficient ρ is indicated.
The Pearson and Spearman correlations show a peaks of correlation for time-
lags of 96 minutes and 84 minutes respectively, with coefficients ρP = 0.49,
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Figure 5.13: Left paneles: Correlation coefficients ρP and ρS vs time lags
using Pearson (top) and Spearman (bottom) definitions. The right panels
show the scatter-plot of cancellation exponents for hcz shifted by the max-
imum correlation time-lags vs Extreme-UV emission. In each scatter plot,
the correlation coefficient is indicated.
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ρS = 0.58 indicating the presence of moderate, but significant correlation
between the cancellation exponent and Extreme-UV emission. Similar result
are obtained for the current density (not shown). Besides indicating the
presence of nontrivial correlations, the scatter-plots suggest the presence of
a threshold: only background EUV emission is observed for small κ<

∼
0.12

(reduced field complexity), showing that higher complexity is needed for the
AR to produce flares.

This analysis confirms the evidence of a modification of the structure of
magnetic field, and in particular of the current density jz and helicity hcz,
related with flare activity, and in particular that changes of the cancellation
exponent κ are seen before the flares. The complexity of the magnetic field
thus “anticipate” the eruption of a flare. This was not only confirmed by
visual inspection of the time series, but its robusteness was also confirmed
by statistical analysis of the correlation between the two fields.

5.3.3 Test on the quality of the analysis

In order to test the reliability of the results shown in previous subsection,
we studied their stability with respect to different spatial and temporal data
selection.

First, the whole analysis was repeated using different portions of the
magnetograms, with the aim of checking the robustness of the results with
respect to the choice of the spatial domain. Figure 5.14 top panel shows
three different choices of the areas Qmax(Lmax) where the signed measure
was computed. Each area is centered on the location of the flare X2.2, is
bounded by a box and labeled with letters. The area delimited by thin
line, labeled A, encloses the entire active region (quadrupolar magnetic field)
and a wide portion of background field. The area delimited by dashed line
and labeled B includes only the quadrupolar structure. Finally, the area
delimited by dot-dashed line, labeled C, is the area restricted to the flaring
region, which we have already described in Section 5.3.2.

The bottom panel of figure 5.14 shows the three cancellation exponents
κA (green dot-dashed line), κB (blue dashed line) and κC (red thin line)
computed for the boxes labeled in top panel for the current helicity. The
EUV radiation is also superimposed (grey line), and the 3 larger flares are
indicated. It can be observed that the cancellation exponent becomes less
sensitive to variations when increasing the box size where the signed measure
is computed. κA(t) and κB(t) turn out to be more damped than the more
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with A, B and C delimit the area where the signed measure is computed.
The bottom panel shows the cancellation exponentd κ computed for the three
boxes vs time. The extreme ultra-violet (EUV) radiation is superposed (grey
line). The three larger flares are also indicated



5.3. SPACE BASED SOLAR OBSERVATIONS: NOAA 11158 103

detailed κC(t). This is possibly due to the addition of the background mag-
netic field, and to the presence of the sign-definite polar regions at the right
and left sides of the AR, which clearly contribute to reduce cancellations.

As already done for κC(t) in section 5.3.2, we evaluate the possible of
correlation of κA(t) and κB(t) with the EUV radiation, using the Spearman
correlation, which we found more sensitive for the present case. Figures
5.15 shows the Spearman correlation computed for κA(t) (left panel) and
κB(t)(right panel). For κA(t) we found a correlation coefficient ρS = 0.51 for
time lag of 144 minutes, while for κB(t) correlation coefficient is ρS = 0.34
for time lag of 192 minutes. The coefficient for κA(t) is slightly smaller than
the one obtained for the restricted area, but is still indicating significant
correlations. κB(t) correlation is weaker, probably because of the enhanced
role of the two sign-defined structures at the sides of the AR. This test
confirms that the results obtained in previous section are robust, and that
despite the inclusion of portions of data with small magnetic field produces
a modification of the cancellation properties, the main features related to
flaring are stable.
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Figure 5.15: Correlation exponent (labeled ρS) vs time-lags using Spearman
for the signal κA(t) left panel and κB(t) right panel and extreme ultra-violet
(EUV) radiation. The cancelaltion exponents refer to for the current helicity.

Second, in order to test for the results robustness with respect to the time
segment chosen for the analysis, we evaluate the correlations between κC(t)
and the EUV emission for a longer time interval, by including the final part
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of the observation. In figure 5.16 we show the Spearman correlation for the
interval between 13 ≤ time ≤ 17 (right panels), clearly indicating lower cor-
relation (ρS < 0.3). This shows that the choice of temporal interval used for
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Figure 5.16: Spearman correlation between cancellation exponent κC(t) and
EUV emission (see Fig. 5.14) calculated for the whole temporal series shown
in the left panel, and for interval between 13 ≤ time ≤ 17, shown in the right
panel.

the analysis can be critical in order to evaluate correlations. In particular,
the non-stationary, steady increase of the cancellation exponent in the last
part of the time series is not associated with any similar increase in EUV
emission. This evidences that cancellation exponent responds to flare emis-
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sion through fluctuations rather to steady than absolute value modifications.
For these reasons, we believe that our choice of time interval for performing
for the analysis shown here was appropriate.

Finally, in order to compare the cancellation exponent with other mag-
netic signatures, we have calculated the Spearman correlation between the
EUV emission and the positive and negative magnetic fluxes, as estimated for
the vertical component of magnetic field Bz, as well as between the magnetic
fluxes and cancellation exponent. Figure 5.17 shows the correlation function
for both fluxes and the EUV emission. The smaller correlation coefficient
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Figure 5.17: Spearman correlation of positive and negative magnetic flux and
extreme ultra-violet, left and right panel respectively.

obtained in this case (ρS < 0.4) confirms that the cancellation exponent of
the current helicity is a better observable to highlight correaltions with flar-
ing activity. Similar results were obtained for the correlation between both
magnetic fluxes and cancellation exponent (ρS < 0.3 for both fluxes, not
shown). This observation confirms that the spatial features of the magnetic
field, as described through the current and current helicity, are necessary
ingredient for the correct evaluation of the magnetic complexity of ARs, and
their relationship with flares.
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5.4 Conclusions

Cancellations analysis has been used to describe the topological properties of
the typical current structures in solar photospheric active regions, and their
temporal evolution in response to photospheric magnetic field dynamics, in
two active regions, NOAA 10019 and NOAA 11158. The time evolution has
been evaluated as the variation of the scaling index describing the cancella-
tions of positive and negative current density, computed for the active region
NOAA 10019, and for current density and current helicity for the NOAA
11158. Cancellation exponents provide the typical fractal dimension of the
structures. The values found in this analysis can be associated with filaments
D ≃ 1 for the current density, while smoother structures were found for the
current helicity.

For NOAA 10019, comparison with flare related X-ray emission has re-
vealed that in one instance the current structures changed their topological
dimension abruptly in proximity of a C-class flare (see fig. 5.3). The di-
mension of the current structures increased by roughly 25% about one hour
before the flare, showing that magnetic structures modifications anticipate
the explosive events. This result is in agreement with previous observations.

The use of ground-based data shows that the cancellation analysis is a
good technique, because sensitive to variations of the structures. However,
the low temporal resolution of the magnetograms does not allow a more
detailed understanding of the process. In order to get a better insight on
topological changes of magnetic structures and their relationship with flare
eruption, better quality data (high-resolution, possibly continuous, longer
term observation of the magnetic vector prior to and after a flare) are neces-
sary.

To this aim, the dynamical evolution of the photospheric magnetic fields
complexity has been studied using high spatial and temporal resolution data
for the AR 11158. We have shown that current density and current helic-
ity own sign-singular scaling properties, indicating the presence of coherent
structures (such as current filaments). The fractal dimension of the typical
structures has been estimated. Furthermore, our observations confirms that
magnetic fields change their topology one or two hours before large flares,
and this can be revealed by the changes in the cancellation exponent, which
thus represent a precursor. Finally, our analysis supports the presence of
correlations between the cancellation exponent and the EUV emission of the
AR. Also, it suggests that low complexity fields do not produce significant
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flares, which need high complexity.
It is worth noting that ground and space based data have different (oppo-

site) behaviour, possibly due to the low space and time resolution of ground
based measurements. This discrepancy deserves further attention and will
be studied in future works.
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[93] D. O. Gómez, S. M. Mahajan, and P. Dmitruk, Phys. Plasmas, 15,
102303 (2008).

[94] L. N. Martin, P. Dmitruk, and D. O. Gomez, Phys. Plasma 17, 112304
(2010).

[95] S. Ghosh, M. Hossain, and W. H. Matthaeus, Phys. Commun. 74, 18
(1993).



BIBLIOGRAPHY 115

[96] S. Servidio, F. Valentini, F. Callifano, and P. Veltri, Phys. Rev. Lett
108, 045001 (2012).

[97] D. Perrone0, F. Valentini, S. Servidio, S. Dalena , and P. Veltri, Astro-
phys. J. 62:99 (9pp), (2013).

[98] P. D. Mininni and A. Pouquet, Phys. Rev. E. 80, 025401 (2009).

[99] R. Bruno and V. Carbone Living Rev. Solar Phys. 2, 4 (2005).

[100] F. Valentini, P. Trávńıček, F. Califano, P. Hellinger, A. Mangeney, J.
Comput. Phys. 225, 753 (2007); F. Valentini, F. Califano, and P. Veltri,
Phys. Rev. Lett. 104, 205002 (2010).

[101] S. D. Bale, P. J. Kellogg, F. S. Mozer, T. S. Horbury, and H. Reme,
Phys. Rev. Lett. 94, 215002 (2005); S. Servidio, V. Carbone, L. Primav-
era, P. Veltri, K. Stasiewicz, Planet. Space Sci. 55, 2239 (2007).

[102] Manoharam, P., et al., ApJ 1180, 559 (2001)

[103] Dryer, M., et al., Solar Physics, 265, 204 (2001)

[104] C. Zwaan, Solar Physics, vol. 100, Oct. 1985, p. 397-414

[105] A. O. Benz, Living Rev. Solar Phys., 5, 1 (2008)

[106] E. N. Parker. Stimulated dissipation of magnetic discontinuities and the
origin of solar flares, Solar Phys. 111, 297 (1987).

[107] E. Priest Solar Magnetohydrodynamic. D. Reidel Publishing Company,
Dordrecht, (1982).

[108] M. J. Hagyard, B. A. Stark, P. Venkatakrishnan A Search for vecto
magnetic field variations associated with M-class flares of 10 June 1991
in Ar 6659. Sol. Phys. 184, 133 (1999).

[109] C. Briand and A. Vecchi, Astronomy & Astrophysics L33L36 (2003).

[110] A. Skumanich, B. W. Lites, V. Marti nez Pillet, & P. Seagraves, ApJS,
110, 357 (1997)

[111] J. K., Lawrence, A. A. Ruzmaikin and A. C. Cadavid. Astrophys. J.
472, 805 (1993)



116 BIBLIOGRAPHY

[112] V. I. Abramenko, V. B. Yurchyshyn, and V. Carbone, Astrophys. J.
538, 968, (2000).

[113] C.J. Schrijver, G. Aulanier, A. M., Title, E. Pariat, & C. Delannée,
ApJ, 736, 102, (2011)

[114] X. Sun, J. Hoeksema, Y. Liu, et al., ApJ, 748, 77, 2012

[115] Kazachenko, M.; Fisher G.H.; Welsch B.T.; Electric Fields, Poynting
Fluxes and Helicity Fluxes in AR 11158, in prep.


