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Abstract

Astroparticle physics provide a fundamental tool to investigate the astrophysical structures

at different scales. In this thesis the results are presented of three years of research focused

on time variations on solar neutrino flux, galactic cosmic rays and fine-structure constant as

observed from quasar spectra. These topics are nowadays crucial to investigate structures

which otherwise result difficult to probe. In particular time variations in solar neutrinos

can give a real time description of the dynamics which take place in the inner regions of the

Sun, while the study of galactic cosmic rays through the observation of muons produced by

the interaction of the formers with the atmosphere, may give us precious informations on

the interaction between TeV particles and heliospheric magnetic fields. Finally the recent

observations of variations in the fine-structure constant value from the analysis of quasar

absorption spectra, offer new possibilities to probe physical laws at cosmological scales. The

thesis is structured as follows. In Chapter One are discussed quasi-biennial oscillations ob-

served on solar neutrino flux and a phenomenological model is proposed to interpret the

observed time variations. In the scenario described by the model, the interaction between

solar neutrinos and solar matter mediated by magnetogravity modes, is modulated by a

background magnetic field varying in time on quasi-biennial time scales. In Chapter Two

the 11-yr component recently observed in cosmic muon data from Gran Sasso experiments

of MACRO, LVD and Borexino has been reconstructed through the EMD analysis tech-

nique. In Chapter Three the data of fine-structure constant variations as observed in the

quasar absorption spectra have been analyzed to search for temporal coherent structures.

The thesis is completed by the description in appendix of a new algorithm based on Monte

Carlo methods to assign a confidence interval to the IMFs extracted with the EMD anal-

ysis, and the application of this method to study the proton and neutrino distributions

used in the OPERA experiment for the neutrino velocity measurement. Another appendix

is dedicated to detailed description of the effects induced on the magnetogravity spectrum

by a background magnetic field with a low-pass bandwidth, thus generalizing the theory

of magneto-gravity modes in presence of a time-dependent background magnetic field.



Sommario

La fisica delle astroparticelle fornisce un fondamentale strumento di indagine per lo studio

delle strutture astrofisiche a differenti scale. Nella presente tesi vengono presentati i risul-

tati di tre anni di ricerca rivolte soprattutto sulle variazioni temporali nel flusso dei neutrini

solari, nei raggi cosmici e nel valore della costante di struttura fine, quest’ultime osservate

negli spettri di assorbimento delle quasar. Questi argomenti rivestono oggi un ruolo cru-

ciale per indagare strutture altrimenti inaccessibili. In particolare le variazioni nel flusso

dei neutrini solari sono in grado di fornire una descrizione in tempo reale delle dinamiche

che hanno luogo nelle regioni interne del Sole, mentre lo studio dei raggi cosmici attraverso

la misura del flusso dei muoni prodotti nell’interazione dei primi con l’atmosfera terrestre,

permettono di ottenere informazioni sull’interazione tra le particelle con energie nell’ordine

dei TeV e i campi magnetici eliosferici. In fine le recenti osservazioni sulle variazioni nella

costante di struttura fine attraverso l’analisi degli spettri di assorbimento di quasar, aprono

a nuove possibilità per lo studio delle leggi fisiche su scale cosmologiche. La tesi si struttura

come segue. Nel Capitolo 1 sono discusse le oscillazioni quasi-biennali osservate nel flusso

dei neutrini solari e un modello fenomenologico viene proposto all’origine di tali oscillazioni.

Nello scenario descritto dal modello, l’interazione tra i neutrini solari e la materia degli

strati interni del Sole attraverso i modi magnetogravitazionali, sarebbe modulata da un

campo magnetico di background variabile nel tempo su tempi scala quasi-biennali. Nel

Capitolo 2 il segnale undecennale recentemente osservato nei dati dei muoni cosmici mis-

urati negli esperimenti del Gran Sasso di MACRO, LVD e Borexino è stato ricostruito

attraverso la tecnica di analisi EMD. Nel Capitolo 3 i dati sulle variazioni della costante di

struttura fine ottenuti dagli spettri di assorbimento delle quasar sono stati analizzati per

ricercare delle strutture temporali coerenti. La tesi è completata da una descrizione in ap-

pendice di un nuovo algoritmo basato su un metodo Monte Carlo per l’assegnazione di un

intervallo di fiducia alle IMF estratte con la tecnica EMD e l’applicazione di questo nuovo

metodo per lo studio delle distribuzioni dei protoni e dei neutrini, utilizzate nell’esperimento

di OPERA per la misura della velocità del neutrino. Un’altra appendice è dedicata alla

dettagliata descrizione degli effetti indotti nello spettro dei modi magnetogravitazionali

da un campo magnetico di background caratterizzato da una banda in frequenze di tipo

passa-basso, generalizzando così la teoria dei modi magnetogravitazionali in presenza di un

campo magnetico di background dipendente dal tempo.
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Chapter 1

Solar Neutrinos

1.1 Standard Solar Model

The Standard Solar Model describes the Sun as a gas sphere in mechanical equilibrium

with the gravitational field generated by itself [1, 2]. In the model the effects induced

by differential rotation and magnetic fields are neglected. Within this assumption, the

equilibrium between atmospheric pressure and gravity forces is expressed by the equation

of motion, which can be written in the form

d

dr
P (r) = −GM (r) ρ (r)

r2
(1.1)

where P (r) denotes the pressure at distance r from the center of the Sun, G is the gravi-

tational constant, M and ρ are the mass and density of matter respectively.

The mass included in a sphere of radius r is given by

M (r) = 4π

ˆ r

0
dr′r′2ρ

(
r′
)

(1.2)

In its differential form, Eq. (1.2) becomes

d

dr
M (r) = 4πr2ρ (r) (1.3)

By combining Eq. (1.3) with Eq. (1.1), we obtain an equation which relates pressure with

density, that is

ρ = − 1

4πG

1

r2

d

dr

(
r2

ρ

dP

dr

)
(1.4)

A particular class of solutions of the equation can be found assuming a functional dipen-

dence of P versus ρ of the form:

P = Aργ

1
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where A and γ are constants. The substitution of P in Eq. (1.4) with the above expression

gives the Lane-Emden equation, which solutions give an approximate dependence of the

variables from r. In order to have a more accurate model, the equation of state for the

solar plasma need to be considered, which in its general form can be written as

P = P ({Xi} , ρ, T ) (1.5)

where T is the temperature (as a function of radius) and {Xi} denotes a set which elements

are the mass fraction of the different elements which constitute the Sun. For simplicity

only mass fraction of hydrogen, helium and the mass fraction of all the remnants elements

are considered. The mass fraction of hydrogen and helium are indicated with X and Y ,

respectively, while the mass fraction of the other elements is indicated by Z and is related

to X and Y by the condition X + Y + Z = 1.

The equation of state introduces the new variables of temperature and concentration of the

different chemical species, to determine the evolution of which other equations are required.

The equation of temperature depends by which mechanism is responsible of the energy

transport.

In the inner regions of the Sun the energy propagates as radiation. The flux of energy here

is proportional to the gradient of temperature

f = −A∇T (1.6)

where A depends on the opacity of matter. We will explicit this dependence in the definitive

expression for gradient temperature without demonstration. If we define the luminosity as

the energy flux through a shell at radius r for unit time, that is

L (r) = 4πr2f (r)

we can write Eq. (1.6) in the form[
d

dr
T

]
rad

= − 3

64π

L

σr2

κRρ

T 3
(1.7)

where the coefficient of proportionality has been written as a function of Rosseland opacity

coefficient κR and σ is the Stefan-Boltzmann constant.

In the upper regions of the Sun convective motions of the matter become the main respon-

sible of the conduction of energy. In this region, temperature gradient can be expressed as

function of gas pressure [
d

dr
T

]
conv

=
dP

dr

T

P
∇S = −ρg T

P
∇S (1.8)
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where g is the gravitational field and ∇S ≡ (∂ lnT/∂ lnP )S , with the pedix S denoting

derivation evaluated at constant entropy.

If we introduce the pressure gradient into Eq. (1.7) by obtaining ρ from Eq. (1.1) and by

defining ∇rad as

∇rad =
3

64π

L

σ

κRP

GMT 4
(1.9)

then we can express the transition from radiative to convective region through the condition

∇rad = ∇conv.
The last equation needed to close the system is the equation for the luminosity. This is

obtained by the energy conservation law, which can be expressed in the form

∂u

∂t
+∇ · f = ρε (1.10)

where u is the energy density and ε is the energy produced (or lost) per unit mass and

time.

The energy is produced by the fusion of 4 protons and 2 electrons which gives a nucleus of
4He and energy through the reaction

4p+ 2e− →4 He+ 2ve +Q (1.11)

where Q = 26.73 MeV is the energy released from the difference between the total mass

given by the initial particles and the total mass of the final particles. The fusion of protons

and electrons is obtained through two cycles, namely pp-chains and CNO bi-cycles. The

former is responsible for 98.4% of energy release, the latter provides the remnant 1.6%

energy output. This difference is due to the temperature in the core of the Sun, which

value (∼ 15 ·107K) is smaller than that is required from CNO cycle to be more significant

(∼ 18·107K) [3, 4]. Carbon, nitrogen and oxygen involved in the cycle act more as catalysts

to lead the fusion. The steps of the different chains are summarized in Tab. 1.1 [2].

1.2 Solar Neutrinos

The energy produced in the nuclear reactions are transported through photons and neu-

trinos. The latter has a crucial role in the investigation of the interior of the Sun. This

importance is due to the fact that they interact weakly with matter, so that, while a photon

produced in the core of the Sun, because of its several interactions with matter, needs 104

yr to arrive at the surface1, a neutrino requires only 8 min to arrive at the Earth, i.e. the
1The time needed to a photon to arrive at the solar surface can be estimated assuming that the elastic

scattering processes between the photon and the electrons in the Sun (Compton scattering) result in a
random-walk pattern and the total time interval elapsed from the center to the photosphere is given by
T ∼ N2l/c, where N = Rsun/l and l is the mean free path for the photon in the Sun which is of ∼ 1 cm.
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Table 1.1: Nuclear reactions in the Sun (adapted from [2]). In the third and fourth
columns Q and 〈Qν〉 represent the energy (in MeV) released from the reaction and the
mean neutrino’s energy, respectively. In the fifth column, are indicated the name used to

label neutrinos produced in the specific reaction.
Chain Reaction Q(MeV) 〈Qν〉(MeV) Label

ppI

p+ p→ 2H + e+ + νe + γ 1.442 0.265 pp
p+ p+ e− → 2H + νe 1.442 1.442 pep

2H + p→ 3He+ γ 5.49 -
3He+3 He→ 4He+ 2p+ γ 12.86 -

ppII

3He+4 He→ 7Be+ γ 1.586 -
3Be+ e− → 7Li+ νe 0.862 (90%) 0.862 7Be

0.384 (10%) 0.384 7Be
7Li+ p→ 4He+ 4He+ γ 17.347 -

ppIII
7Be+ p→8 B + γ 0.137 -

8B → 4He+ 4He+ νe + γ 17.98 6.710 8B
3He+ p→ 4He+ e+ + νe + γ 19.795 9.625 hep

CN

12C + p→13 N + γ 1.943 -
13N → 13C + e+ + νe 2.221 0.7067 13N

13C + p→14 N + γ 7.551 -
14N + p→ 15O + γ 7.297 -

15O → 15N + e+ + νe 2.754 0.9965 15O
15N + p→ 12C + α 4.966 -

NO

15N + p→ 16O + γ 12.128 -
16O + p→ 17F + γ 0.600 -

17F → 17O + e+ + νe 2.762 0.9994 17F
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Figure 1.1: Solar neutrino flux versus radius for neutrinos produced in pp-chains (upper
panel) and CNO-cycle (lower panel) [5]. Dotted line in the upper panel represents the

production profile for the solar luminosity.

travel time needed to cover Sun-Earth distance at a velocity close to the speed of light,

allowing a real time investigation of the properties of the Sun.

As shown in Tab. 1.1, there are 8 sources of neutrinos. Their flux as a function of solar

radius is shown in Fig. 1.1, while their energy spectrum is shown in Fig. 1.2. Their

energies cover a range from few hundreds keV of proton-proton reaction in the ppI chain

up to ∼ 20 MeV of hep reaction. In the next sections the several experiments dedicated to

their detection will be described. All of them measure a flux of electron neutrinos smaller

than the flux expected from SSM calculations. This difference is known as “Solar Neutrino

Problem”, which actually has been solved in favour of the MSW mechanism.

1.2.1 The Michaelev-Smirnov-Wolfenstein Effect

The basic principles for the Micheyev-Smirnov-Wolfenstein effect (MSW or matter effect)

are that

• the neutrino flavour eigenstates are not the same of that of mass;
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Figure 1.2: Solar neutrino energy spectrum from SSM BS05(GS98) [6].

• neutrinos interact with the particles of medium through coherent forward elastic

scattering. The global effect of these interactions modifies the evolution of neutrinos

flavour states.

Under these assumptions, and considering for simplicity two possible eigenstates for flavour,

the transformation from one basis of eigenstates to the other can be written(
ψe

ψx

)
=

(
cos (θV ) sin (θV )

− sin (θV ) cos (θV )

)(
ψ1

ψ2

)
(1.12)

where θV is the mixing angle in vacuum.2 Here we will resume brefly the main results of

the model. For more details see [1] and [11]. The eigenstate of neutrino flavour can be

written in terms of mass eigenstates as

|ψe〉 = cos (θV ) |ψ1〉+ sin (θV ) |ψ2〉 (1.13)

The time evolution of electron neutrino eigenstate behaves3:
2The hypotesis of neutrino oscillation was formulated for the first time by B. Pontecorvo, in analogy

with K and K̄ oscillations [7, 8]. The theory of interaction between neutrinos and high density matter
was formulated by Wolfenstein [9], while the effect of varying density matter was studied by Mikheyev and
Smirnov [10].

3Here and throughout the dissertation, the quantummechanical calculations are performed using natural
units (~ = c = 1).
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|ψe〉 = cos (θV ) e−iE1t |ψ1〉+ sin (θV ) e−iE2t |ψ2〉 (1.14)

For ultrarelativistic neutrinos, taking into account the energy-momentum relation E2 =

p2 +m2 and using the approximation E ' p, the energy of the i-th neutrino can be written

at first order in m2
i in the form:

Ei = E +
m2
i

2E
(1.15)

The energy of the two mass eigenstate are thus related through the condition

E2 − E1 =
∆m2

2E
(1.16)

with ∆m2 ≡ m2
2 −m2

1 and where we have assumed, without lack of generality, that m2 >

m1. In terms of E1 and ∆ defined as ∆ ≡ E2−E1, the time evolution of flavour eigenstate

is described by Schrödinger equation

i
d

dt

(
ψe

ψx

)
=

[
∆

2

(
− cos (2θV ) sin (2θV )

sin (2θV ) cos (2θV )

)
+

(
E1 +

∆

2

)
I2

](
ψe

ψx

)
(1.17)

where I2 is the identity matrix of the second order. The second term in brakets can be

eliminated by a shift in energy. When a neutrino pass through a layer with an high matter

density, its path is influenced such as the particle is traveling in a region with refraction

index n. In the presence of matter, Eq. (1.17) becomes

i
d

dr

(
ψe

ψx

)
=

(
−∆

2 cos (2θV ) + Ve
∆
2 sin (2θV )

∆
2 sin (2θV ) ∆

2 cos (2θV ) + Vn

)(
ψe

ψx

)
(1.18)

where Ve = GF (2Ne −Nn) /
√

2 and Vx = −GFNn/
√

2. We consider for simplicity, Nn =

0. To evaluate the probability that a neutrino produced as electronic is detected at time

t at the same flavour state, we have to take into account the electron density profile.

Integrating Eq. (1.18) we obtain [12]

Pee ≡ |〈ψe (t) |ψe (0)〉|2 =
1

2
+

1

2
(1− Pjump) cos 2θ

(i)
M cos 2θV (1.19)

where θ(i)
M is the oscillation angle in the presence of matter and is given by the relation

tan 2θM =
tan 2θ

1− Ve
∆ cos 2θV

(1.20)

in this case the matter mixing angle is evaluated at the production point. Pjump represents

the probability of transitions from ν1 to ν2. This probability is negligible in the Sun, so

that the mass eigenstates evolves indipendently. The smooth profile with which the matter
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Figure 1.3: Histograms of the predicted versus observed integrated neutrino flux for
different experiments [13]. For more details see section “Viewgraphs” at web site and

reference therein.

density varies in the Sun allows the existence of a particular region where cos (2θV ) = Ve/∆.

This region, which depends on the energy of neutrinos, is called resonant position. At the

resonance the probability of flavour conversion is maximal.

1.3 Solar Neutrino Detectors

In this section we will describe the neutrino detectors. The analysis of their data in the

scenario of the MSW mechanism, toghether with KamLAND experiment results,4 allows

an estimation of neutrino parameters m12 and θ12 which value are measured [15]: ∆m12 =

7.50+0.18
−0.21 × 10−5eV 2 and tan θ12 = 0.457+0.038

−0.025, thus favouring the Large Mixing Angle

(LMA) solution.
4We do not describe here the KamLAND experiment, since it is properly dedicated to the detection

of antineutrino ν̄e coming from japanese nuclear reactors [14]. Their data can be combined with solar
neutrino data to study neutrino oscillations in the three neutrino system.
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1.3.1 Homestake

The Homestake Clorine Solar Neutrino Experiment was a 4400 mwe underground exper-

iment located in Homestake Gold Mine at Lead, South Dakota. The detector took data

from 1970 to 1994 [16, 17]. Here a tank of 6.1 m diameter and 14.6 m length was filled

with 615 tons of tetrachloroethylene (C2Cl4). Elecron neutrinos arriving from the Sun

were detected by means of their interaction with chlorine through the reaction

νe +37 Cl→37 Ar + e− (1.21)

The energy threshold for reaction is Eth = 0.814 MeV, allowing the detection of neutrinos

produced in all neutrino sources, except that produced in pp reaction of ppI chain, which

have energy less than 0.420 MeV. The argon produced were extracted by purging the

tank with helium and collected in a proportional counter of 3 cm in length and 0.5 cm in

diameter. 37Ar decays by electron capture producing Auger electrons with total energy of

2.823 keV. Background comes mainly from 37Ar produced from (p, n) reactions by protons

formed in cosmic-ray muon interactions (0.01 37Ar atoms/day) and by rocks radioactivity

(0.02 37Ar atoms/day). The average 37Ar production rate for 108 solar runs is 0.478 ±
0.03stat± 0.029syst atoms/day, which corrensponds to 2.56± 0.16stat± 0.16syst SNU (Solar

Neutrino Unit, or number of interactions per 1036 atoms) [17], which is about 1/3 of the

flux predicted by SSM.

1.3.2 SAGE and GALLEX/GNO

Both the experiments of SAGE [18] and GALLEX/GNO [19, 20, 21, 22, 23, 24] are radio-

chemical experiments, where the target are gallium atoms, which interact with neutrinos

through the reaction

νe +71 Ga→71 Ge+ e− (1.22)

71Ge produced in the reaction is collected in proportional counters where it deacays for

electron capture. From the Auger electrons and X-rays spectrum produced from its decay,

two peaks at 1.2 keV (L peak) and 10.4 keV (K peak) are measured. The energy threshold

for the reaction (Eth = 0.2332 MeV) allows the detection of all electron neutrinos produced

in the Sun. The main contribution to the flux comes from pp neutrinos.

The Soviet-American Gallium Experiment (SAGE) was located 4700 mwe underground

in Mt. Andyrchi, in the northern Caucasus mountains of Russia. For the experiment

50 tonnes of molten gallium were used. The result for 168 runs from January 1990 to

December 2007 is 65.4+3.1
−3.0(stat)

+2.6
−2.8(syst) SNU [18].
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GALLiumExperiment was installed at Laboratori Nazionali del Gran Sasso, in Italy, which

are located 3800 mwe undergound. The experiment was operative from May 1990 to Jan-

uary 1997 (65 runs). After the improvements on the extraction process it starts the second

phase of the experiment, called GNO (Gallium Neutrino Observatory), which collected 58

runs from May 1998 to September 2003. For both the phases of the experiment the target

are 30.3 t of gallium in the form of a concentrated GaCl3 − HCl solution. For Gallex

experiment the flux evaluated through a pulse-shape analysis gives a result of 73.4+6.1+3.7
−6.0−4.1

SNU [24], while the result for GNO the flux was 62.9+5.5+2.5
−5.3−2.5 SNU [23].

The combined results from both SAGE and GALLEX/GNO experiments gives 66.1± 3.1

SNU [18], which corrensponds to about 50% of the expected flux.

1.3.3 KamiokaNDE and SuperKamiokande

KamiokaNDE (Kamioka Neutrino Decay Experiment) [25] and its successor Super-Kamiokande

[26, 27, 28] are Cerenkov light detection experiments situated 2700 mwe under Kamioka

mine in Gifu Prefecture in Japan.

Both the experiments detect Cerenkov light emitted by electrons which have interacted

with neutrinos through the elastic scattering process

ν + e− → ν + e− (1.23)

Neutrinos involved in the process may be of any kind of flavour. Electron neutrinos can

interact also via charged current, so that the cross section for electron neutrinos is higher

(of a factor of ∼ 6 ) than that for muonic or tauonic neutrinos.

KamiokaNDE was previously dedicated to protons decay to test Grand Unification Theories

in 80s, then was upgraded to be able to detect solar neutrinos. In its definitive version

KamiokaNDE consisted of a tank of 15.6 m in diameter and 16.1 m in height, containing

3000 tons of pure water monitored by 848 20-inches PMTs. It measured 8B neutrino flux

of energy above an energy threshold of 7 MeV from 1987 to 1995. The total flux was of

2.80± 0.19stat ± 0.33syst × 106 cm−2s−1 [25].

SuperKamiokande consists of a tank of 39.3 m in diameter and 41.4 m in height, filled

with 50000 tons of water monitored by 11146 20-inches PMTs. Other 1885 8-inches PMTs

are installed in the outer detector, acting as veto detector for incoming muons and as a

water shield from neutrons and γ-rays coming from the surroundings rocks. The improved

statistics respect to KamiokaNDE allows to discriminate the neutrino energy spectrum

shape.

The experiment started in April 1996 and is currently operating. The 8B neutrino flux

of energy range 5÷20 MeV, for data until August 2008, is 2.32 ± 0.04stat ± 0.05syst × 106

cm−2s−1 [28].
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1.3.4 SNO

Sudbury Neutrino Observatory (SNO) [29, 30, 31, 32, 33] is another water Cerenkov de-

tector. It is located 6010 mwe underground at INCO, Ltd. Creighton Mine near Sudbury,

Ontario, Canada. It consists of a 12 m in diameter acrylic vessel, filled with 1000 t of

ultrapure heavy water. The structure is inside a 34 m high barrel-shaped cavity of 22 m

maximum in diameter, filled with 6500 t of ultrapure water. A stainless steel structure of

17.8 m supports 9456 20-cm PMTs.

The experiment detects solar neutrinos through 3 processes:

νe + d→ p+ p+ e− (CC)

νx + e− → νx + e− (ES)

νx + d→ p+ n+ νx (NC)

(1.24)

where in brackets is specified the kind of interaction, i.e. charged current (CC), elastic

scattering (ES) and neutral current (NC). Neutrons produced in NC channel (Eth = 2.2

MeV) are detected by means of their interaction with deuterium through the reaction

n + d → t + γ, where are produced a nucleus of tritium and a photon of 6.25 MeV.

Neutrino flux detected from NC reaction corresponds to the total flux of solar neutrinos

produced mainly in the 8B reaction.

The experiment started on November 2, 1999. In second phase, started on July 26, 2001,

2000 kg of NaCl were added, allowing an improvement in the neutron detection efficiency

and the ability to statistically separate the NC and CC signals. On November 27, 2004

started a third phase where 36 strings of 3He proportional counters where deployed in the

D2O. With this addition, the rate of NC events from 2H (n, γ)3H reaction was significantly

suppressed and the new measurements of the CC, ES and NC rates resulted in a reduced

correlation between the fluxes. The results of the three phase are summirized in Tab. 1.2.

The total rate of neutrinos, as measured through NC events, is in agreement with the

expected flux, thus confirming a flavour change in their travel to the Earth.

1.3.5 Borexino

The Borexino detector [34, 15] is a scintillator liquid based detector. It is located at Lab-

oratori Nazionali del Gran Sasso, in Italy. The target consists of 278 t of pseudocumene

(1,2,4-trimethylbenzene), doped with 1.5 g/l of the fluor PPO (2,5-diphenyloxazole), con-

tained in a spherical transparent 8.5 m in diameter nylon Inner Vessel (IV). It is shelded

by two buffers with PC (323 and 567 t) doped with 5.0 g/l DMP (dimethylphtalate) which

induce scintillaiton in PC. Both scintillator and buffers are contained in a stainless steel

sphere of 13.7 m in diameter, where 2212 8” PMTs are supported, which monitor scintil-

lation light coming from the central region. All the apparatus is situated in a tank of 18
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Table 1.2: 8B neutrino flux measured by SNO detector in the different phases of the
experiment.

Phase Measured Flux (106 cm−2 s−1)

D2O [30]

ΦSNO
CC = 1.76+0.06

−0.05 (stat)+0.09
−0.09 (syst)

ΦSNO
ES = 2.39+0.24

−0.23 (stat)+0.12
−0.12 (syst)

ΦSNO
NC = 5.09+0.44

−0.43 (stat)+0.46
−0.43 (syst)

Salt [31]

ΦSNO
CC = 1.59+0.08

−0.07 (stat)+0.06
−0.08 (syst)

ΦSNO
ES = 2.21+0.31

−0.26 (stat)± 0.10 (syst)

ΦSNO
NC = 5.21± 0.27 (stat)± 0.38 (syst)

3H [33]

ΦSNO
CC = 1.67+0.05

−0.04 (stat)+0.07
−0.08 (syst)

ΦSNO
ES = 1.77+0.24

−0.21 (stat)+0.09
−0.10 (syst)

ΦSNO
NC = 5.54+0.33

−0.31 (stat)+0.36
−0.34 (syst)

m in diameter and 16.9 m in height. The tank is instrumented with 208 PMTs that detect

the Cherenkov light emission from cosmic ray muons. The experiment started in May 16,

2007. After 740.7 days, the flux of 7Be neutrinos measured is 46.0 ± 1.5(stat)+1.5
−1.6(syst)

cpd/100t [15].

1.4 Solar Neutrino Red-Shift

Neutrinos produced in pp and CNO cycles have a continuum spectrum, except for 7Be

and pep neutrinos, which are produced for electron capture, so that the energy of neutrino

produced in these reactions is well defined. In particular 7Be pass through nuclear tran-

sition from 7Be ground state to 7Li ground state (with a corresponding neutrino energy

of q = 861.8 keV as measured in lab) or to 7Li excited state (q = 384.3 keV). The former

has an higher branching ratio (89.7%) than the latter (10.3%). The higher energy and

branching ratio of neutrinos produced in the transition to ground state makes this process

experimentally easier to study. According to Bahcall [35], we refer to g.s. neutrinos as

the neutrinos produced in the ground-state to ground-state nuclear transition and to e.s.

neutrinos as that produced in the ground-state to excited-state nuclear transition. The
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energy of neutrinos produced in the pep termination is q = 1442 keV. The rate for the

line-producing pep reaction is only two-tenths of a percent of the rate of pp reaction.

Neutrinos produced in 7Be and pep reactions experience a Doppler effect due to the relative

motion of the center of mass. This effect results in a broading of neutrino energy spectrum

shape which can be used to measure the central temperature of the Sun, as it will shown

in the next sections.

1.4.1 7Be Neutrino Energy Spectrum

In this subsection we will resume the results of Bahcall model for the 7Be neutrino energy

spectrum [35]. An analogous mathematical apparatus will be used to study the pep neutrino

energy spectrum in the next subsection. The energy of 7Be neutrinos depends whether the

electron capture from 7Be nuclei occurs in laboratory or in the Sun [35]. The difference lies

in the different conditions in which the mechanism takes place. In laboratory conditions,

atomic binding energies for 7Be and 7Li have to be taken into account in the evaluation

of neutrino energies, while in the Sun, because of the high temperatures in the core, 7Be

atoms are highly ionized, so that the electrons are captured essentially from continuum

orbits.

For both the environments in which electron capture occurs, energy conservation is ex-

pressed through the condition

Ef − Ei = ∆M +K
(

7Be
)

+K (e)− q −K
(

7Li
)

+ a
(

7Be
)
− a

(
7Li
)

= 0 (1.25)

where K (·) denotes kinetic energy and a (·) the atomic binding energy.

For laboratory decays, kinetic energies of electron and 7Be can be neglected, while the

difference in atomic binding energies is

alab
(

7Be
)
− alab

(
7Li
)

= −0.195 keV (1.26)

Neutrino energies for ground and bound states are

qlab (g.s.) ∼= 861.84 keV (1.27)

and

qlab (e.s.) ∼= 384.28 keV (1.28)

For decays which occur in the Sun from continuum orbits, we have to remove the contri-

bution from atomic binding energies, thus obtaining

qcont,star (g.s.) = qlab −
[
alab

(
7Be

)
− alab

(
7Li
)]

= 862.04 keV (1.29)
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The value for (e.s.) is qcont,star (e.s.) = 384.43 keV. For bounding orbit capture in the Sun,

one has to add the contribution from atomic binding energies averaged over the Sun

qbound,star = qcount,star +
〈
alab

(
7Be

)
− alab

(
7Li
)〉

= 862.04 keV (1.30)

The result for (g.s.) and (e.s) are qbound,star (g.s.) = 861.98 keV and qbound,star (e.s.) =

384.38 keV, respectively.

Let us focus on the electron capture from continuum orbits, which is the dominant process

in the Sun. The rate for continuum capture is proportional to the squared modulus of the

element matrix for β-decay hamiltonian

Hβ =
GF√

2

[
ψ̄νγα (1 + γ5)ψe

] [
ψ̄nγα (CV − CAγ)ψp

]
(1.31)

Then the partial transition probability to undergo electron capture can be written as

1

(2π)2

∑
i

∑̄
f

|〈f |Hβ |i〉|2 δ(4) (pf − pi) d3qd3p7 (1.32)

where q and p7 denotes neutrino and 7Li momenta, respectively. The initial state is taken

as the eigenstate of the hamiltonian with Coulomb potential, that is the solution of the

equation

1

r

d2

dr2
(r ψ) +

(
E − Z1Z2e

2

r

)
ψ = 0 (1.33)

It is useful to normalize the solutions of Eq. (1.33) respect to the Coulomb factor

C =
2πη

exp (2πη)− 1
(1.34)

where η = αZ1Z2/v, with v center-of-mass velocity. This normalization is usefull because

the main contribution of the reduced mass energy is included in this factor. Al the terms

included in the matrix element can be expressed as a product of C times a function of

center of mass energy, which we denote with S (E) and that coincides with the astrophysical

factor. In this work, S can be considered as varying slowly respect to E, so that it can be

considered constant, i.e. S (E) ' S (0). The differential production rate becomes

dΓ =
dV n

(
7Be

)
n (e)

(2π)2

ˆ
d3p7Bed

3ped
3qd3p7Liφ7BeφeS (0)Cδ(4) (pf − pi) (1.35)

where φi represents the Boltzmann distribution of the i-th particle. After the integrations

over 7Li and neutrino momenta (assuming for the latter a spherical simmetry in momenta

space), Eq. (1.35) semplifies as
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dΓ =
1

2π
dV n

(
7Be

)
n (e)

ˆ
d3p7Bed

3pedqφ7BeφeS (0)Cq2δ (Ef − Ei) (1.36)

The energy spectrum from continuum orbits capture can be expressed as

Spectrumcont (qobs, T ) =

dΓ
dqobs

(qobs, T )´
dqobs

dΓ
dqobs

(1.37)

By normalizing the spectrum respect to the neutrino energy, we can omit the constant terms

in the integrals. Energy conservation assumes a simpler form in the center-of-momentum

reference frame, where we have

∆M +K =
q2

2M7Li
+ q (1.38)

where ∆M = 862.10 keV is the difference of total mass of initial particles and mass of 7Li,

K = p2
µ/2µ is the energy of reduced mass µ of the system

(
e−, 7Be

)
and where we have

assumed p7Li = q, with q denoting neutrino momentum.

Using the properties of the delta function, we obtain

δ (Ef − Ei) = δ
[

q2

2M7Li
+ q − (∆M +K)

]

=
δ

[
q−M7Li(−1+

√
1+2 ∆M+K

M7Li
)

]
1+ q

2M7Li

' δ[q−(∆M+K)]

1+ ∆M+K
2M7Li

(1.39)

The neutrinos that are observed in the laboratory experience a Doppler shift, because of

the motion V of the center-of-momentum frame relative to the laboratory frame. Let the

z axis be oriented along the direction between the terrestrial detector and the core of the

Sun.

Then the energy of neutrino observed at laboratory is

qobs = qcm (p) (1− Vz,cm) (1.40)

Using the c.m. coordinate system, and taking into account that neutrino energy in the

expression for prodution rate is evaluated in c.m. reference frame, Eq. (1.36) can be

expressed in the following form

dΓ (qcm, T ) ∝
´
dKdPzdqcm exp

(
−K
T

)
exp

(
− P 2

z
2MT

)
·

· 1

1−exp

(
− 8παme√

2mµK

) q2
cm

1+ ∆M+K
M7Li

δ (qcm −∆M −K)
(1.41)
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with M = 6536.73947 MeV the total mass of
(
e−, 7Be

)
system. We are interested in

differential rate respect qobs. In order to change neutrino energy variable, we note that

dqcmδ (qcm −∆M −K) = (1 + Vz,cm) dqobsδ
[
qobs

(
1 + Pz

M

)
− (∆M +K)

]
=

= dqobsδ
[
qobs − (∆M +K)

(
1− Pz

M

)]
= dqobs

qcm
δ
[
Pz
M −

qobs−(∆M+K)
∆M+K

] (1.42)

Finally we obtain

dΓ
dqobs

(qobs, T ) ∝
´∞

0 dK exp
(
−K
T

)
exp

[
− M

2∆M2T

(
qobs−∆M−K

1+ K
∆M

)2
]
·

· 1

1−exp

(
− 8παme√

2mµK

) ∆M
1+ ∆M

M7Li
(1+ K

∆M )

(
1 + K

∆M

) (1.43)

The temperature in the core of the Sun is of ∼ 15 · 106 K, so that the particles have

thermal energies of ∼ few keV. To evaluate the integral numerically, we put a cut-off

Kmax = 25 keV. Expressing energies in keV and temperatures in units of 106 K, Eq. (9)

can be rewritten in the form

dΓ
dqobs

(qobs, T ) ∝
´Kmax=25

0 dK exp
(
−11.60KT6

)
exp

[
−51.026

T6

(
qobs−∆M−K

1+ K
∆M

)2
]
·

· 1

1−exp
(
− 2.93√

K

) ∆M
1+1.32·10−4(1+ K

∆M )

(
1 + K

∆M

) (1.44)

The energy spectrum of 7Be neutrino is given by the sum of electron capture from both

continuum and bound orbits

Spectrum (qobs, T ) =
Spectrumcont (qobs, T ) + fbound (T ) Spectrumbound (qobs, T )

1 + fbound (T )
(1.45)

where the normalized energy profile resulting from bound capture has the simple form

Spectrumbound (qobs, T ) = q−1
bound,star

(
M7Be

2πT

)1/2

exp

[
−M7Be

2T

(
qobs − qbound,star

qbound,star

)2
]

(1.46)

and the expression for fbound (T ) is given by the expression
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fbound (T ) =
5.07

T6
SR exp

(
2.515

σR
T6

)
(1.47)

where [36]

σR ∼= −0.431 + 2.091r − 1.481r2 + 0.401r3 (1.48)

with r = 0.298 [64T6/ρ (3 +X)]1/2 the Debye-Huckel screening length divided by the Bohr

radius, ρ and X being, respectively, the local density (gcm−3) and the hydrogen mass

fraction. The expression for SR is [37]

SR = C2
RD
−1 [1 + 0.435LR exp (−0.735σR/T6)] (1.49)

with

D =
[
1 + LR + 0.25L2

R exp (−0.735σR/T6)
]

(1.50)

LR = 0.246
(
ρµ−1

e T
−3/2
6

)
exp (2.515σR/T6) (1.51)

D =
[
1 + LR + 0.25L2

R exp (−0.735σR/T6)
]

(1.52)

in Eq. (1.49) [36]

C2
R
∼= −0.6064 + 4.859r − 5.283r2 + 1.907r3 (1.53)

and in Eq. (1.51) µe ≈ 2/ (1 +X) is the electron mean molecular weight.

The neutrino spectrum for the entire Sun is obtained as weighted average of Spectrum (T, qobs)

respect to the flux of 7Be neutrinos as a function of the temperature

Spectrumsun (qobs) =

´
dφ7Be (T ) Spectrum (qobs, T )´

dφ7Be (T )
(1.54)

The importance to detect experimentally the red-shift experienced by 7Be neutrinos besides

in the possibility to estimate the temperature in the core of the Sun (averaged through the
7Be neutrino flux), by means of the first order moment of neutrino energy spectrum. It is

easy to demonstrate, in fact, that the first order moment is proportional to the temperature

in the Sun, that is

〈qobs − qcont, sun〉 =

ˆ ∞
0

dqobs (qobs − qcont, sun) Spectrum (qobs, T ) ' T (1.55)
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In the next section it will be presented the results of the calculations that we have made on

the neutrino red-shift for pep neutrino and how to relate the first order moment of neutrino

energy with the temperature in the Sun.

1.4.2 pep Neutrino Energy Spectrum

The rate for the reaction p+e−+p→ D+νe is calculated considering the electron capture

from the pp system, so that it can be expressed in terms of the pp reaction as follows [36]

Rpep =
Kpp

f̄pp
Rpp (1.56)

where Rpp is the rate of the pp reaction, f̄pp = f (E0) is the pp phase-space integral as

function of the most probable center-of-mass energy (E0 ≈ 3.9T6 keV) for the collisions

that lead to pp reaction, and

Kpp ∝
ˆ ∞

0
dKe exp (−Ke/T )

[
1− exp

(
−1.4657K−1/2

e

)]−1

is the generalized phase-space factor appropriate for electron capture [38]. Here Ke denotes

the electron kinetic energy expressed in keV.

Taking into account this approximation, the spectrum of pep solar neutrino energy can be

expressed in the following form

Γ (qobs, T ) ∝
´
d3ped

3p1d
3p2d

3pDd
3pνφeφ1φ2

·C (−2, ve)C (1, v12) δ(4) (Pf − Pi)
(1.57)

where φa = exp
[
−p2

a/ (2MaT )
]
is the Boltzmann distribution for the particle a, C (Z1Z2, va)

is the Coulomb factor

C (Z1Z2, va) =
2παZ1Z2/va

1− exp (−2παZ1Z2/va)
(1.58)

with va the velocity of the particle and Z1Z2 the effective charge. In particular ve is the

velocity of the electron and v12 is the relative velocity of the two protons. Following the

same procedure used for 7Be neutrino energy spectrum, we obtain from Eq. (1.57)

Γ (qobs, T ) ∝
´
d3ped

3p1d
3p2d

3pνφeφ1φ2

·C (−2, ve)C (1, v12) δ (Ef − Ei)
(1.59)

and, by using the properties of delta function and changing pp momenta variables in that

of the c.m. reference frame, we obtain
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Γ (qcm, T ) ∝ −
´
dKedK12dPzdqcm exp

(
−K
T

)
exp

(
− P 2

z
4MpT

)
· 1

1−exp
(
−4πα

√
me
2Ke

) 1

exp

(
2πα

√
Mp

4K12

)
−1

q2
cm

1+ ∆M+K
MD

δ (qcm −∆M −K)
(1.60)

where Pz is the component of c.m. momentum respect z-axis choosen along the direction

between the terrestrial detector and the core of the Sun. Deriving Γ respect to qobs variable

and integrating over Pz, we obtain

dΓ
dqobs

(qobs, T ) ∝
´∞

0 dKe

´∞
0 dK12 exp

(
−K
T

)
exp

[
− Mp

∆M2T

(
qobs−∆M−K

1+ K
∆M

)2
]

· 1

1−exp
(
−4πα

√
me
2Ke

) 1

exp

(
2πα

√
Mp

4K12

)
−1

∆M
1+ ∆M

MD
(1+ K

∆M )

(
1 + K

∆M

) (1.61)

or, expliciting the numerical values of the constant in the integral

dΓ
dqobs

(qobs, T ) ∝
´Kmax=25

0

´Kmax=25
0 dKedK12 exp

(
−11.60KT6

)

exp

[
−5.234

T6

(
qobs−∆M−K

1+ K
∆M

)2
]

1

1−exp
(
−1.466K

−1/2
e

) 1

exp
(

22.2K
−1/2
12

)
−1

∆M(1+ K
∆M )

1+7.686·10−4(1+ K
∆M )

(1.62)

where kinetic energy are expressed in keV and temperature in units of 106 K. For the

numerical integration, we have assumed a cut-off in particles energy Kmax = 25 keV.

We give the results of evaluated spectrum as a function of qobs − q0, with q0 = 1442

keV. The values of solar parameters are taken from interpolation of BS05(AGS,OP) Solar

Standard Model [6] on a grid of 128 points from minimum to maximum value of solar radius

parameter of SSM. All the integrals are evaluated using trapezoidal rule. Each integral on

particle energy in Eq. (1.62) is integrated on a grid of 128 points, while qobs grid is made

of 128 points from qmin = −1.0 to qmax = 24.4. The profiles of pep neutrino spectrum at

different solar radius are shown in Fig. 1.4.

In Fig. 1.5 is shown the global spectrum weighted respect the fraction of pep solar neutrino

flux is compared with the energy spectrum of 7Be neutrino. The peak of the spectrum is

located at qobs − q0 = 6.6 keV. The properties of the spectrum are summarized in Tab.

1.3.

1.4.3 First Order Moment of pep Solar Neutrino

The 1st moment of the solar energy spectrum is defined by the relation
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Figure 1.4: The energy profile for the 1.442 MeV pep solar neutrino line for six values
of R/Rsun from 0.0 to 0.25. For each value of solar radius, the fraction of pep neutrino
flux and temperature of solar interior (in units of 106K) are reported as predicted by

BS05(AGS, OP) Solar Standard Model [6].

Figure 1.5: Solar neutrino spectrum for pep neutrino (black solid line) and for 7Be
neutrino (red dashed line).
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Table 1.3: Characteristics of 7Be and pep neutrino energy spectrum. For 7Be neutrino
spectrum are reported as a reference the results obtained by Bahcall [35]. The neutrino
energy spectra have been evaluated using input values from BS05(AGS,OP) SSM [6],
except for (Bahcall, 1994) 7Be neutrino spectrum. For each model are shown the num-
ber of points used for numerical integration (i.e. for solar radius variable R, x variable
defined as x = q − qobs and kinetic energy K), resolution in energy dx, energy value
as observed in laboratory qobs, difference between peak of the spectrum qpeak and qobs,
shift in average neutrino energy ∆, FWHM, half width on the low-energy side of the
peak W− and half width on the high-energy side W+. For pep spectrum the array of
integration points include both electron and reduced mass of pp sytem kinetic energies,
i.e.(NR, Nx, NKe

, NK12
). All the variables with energy dimension are expressed in keV.

7Be (Bahcall, 1994) 7Be pep

(NR, Nx, NK) - (256, 512, 512) (128, 128, 128, 128)

dx 0.1 0.02 0.2
qlab 861.84 861.84 1442

qpeak − qlab 0.43 0.46 6.6
∆ 1.29 1.30 7.59

FWHM 1.63 1.72 6.29
W− 0.56 0.59 2.71
W+ 1.07 1.13 3.58

∆ ≡ 〈(qobs − q0)〉 =

ˆ ∞
0

dqobs (qobs − q0)S (qobs) (1.63)

where q0 and qobs are the expected and the observed neutrino energy, respectively, and

S (qobs) is the neutrino energy spectrum which can be expressed in the form

S (qobs) =

ˆ
dφpep

dΓ
dqobs´∞

0 dqobs
dΓ
dqobs

(1.64)

where dΓ/dqobs is the differential rate of pep reaction and pep neutrino flux is normalized,

so that
´
dφpep = 1. By inverting the order of integration, Eq. (1.63) can be rewritten as

∆ =

ˆ
dφpep

´∞
0 dqobs (qobs − q0) dΓ

dqobs´∞
0 dqobs

dΓ
dqobs

(1.65)

The pep reaction can be described as an electron capture process from the proton-proton

system and the differential rate is due to the rate of pp reaction times the electron capture

probability [38, 36]. By changing proton-proton momenta variables in center-of-momentum

coordinates and taking into account the Doppler shift experienced by neutrinos, due to the

motion of center-of-momentum frame relative to the laboratory frame, the differential rate

(differentiated respect neutrino energy) can be finally expressed through the relation
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dΓ
dqobs

(qobs, T ) ∝
´∞

0 dKe

´∞
0 dK12 exp

(
−K
T

)
exp

[
− Mp

∆M2T

(
qobs−∆M−K

1+ K
∆M

)2
]
·

· 1

1−exp
(
−4πα

√
me
2Ke

) 1

exp

(
2πα

√
Mp

4K12

)
−1

∆M(1+ K
∆M )

1+ ∆M
MD

(1+ K
∆M )

(1.66)

where the first exponential represents the Boltzmann distribution of initial particles en-

ergy (K ≡ Ke +K12), the second exponential is the Boltzmann distribution for center-of-

momentum energy, where the momentum has been replaced using the Doppler shift ex-

pression qobs = qcm (1− Vz,cm). The last three terms represent, respectively, the Coulomb

factors for the initial state of proton-proton interaction and for the interaction of electron

with proton-proton system, and the correction factor due to the delta function expressing

the energy conservation. The matrix elements that are constant have been dropped since

they cancel out in Eq. (1.65). Terms of the order of K/∆M ≈ 10−3 can be omitted, and

the Eq. (1.66) becomes

dΓ
dqobs

(qobs, T ) ∼
´∞

0 dKedK12
exp(−KeT )

1−exp
(
−4πα

√
me
2Ke

) ·

· exp
(
−K12

T

)
exp

(
−2πα

√
Mp

4K12

)
exp

[
−Mp

q2
0T

(qobs − q0 −K)2
] (1.67)

From Eq. (1.65), by changing the order of integration, we have the integrals respect the

neutrino energy

ˆ ∞
0

dqobs exp

[
−Mp

Tq2
0

(qobs − q0 −K)2

]
=

z≡ qobs−q0−K
q0

√
T

2Mp

q0

√
πT

Mp
(1.68)

and ´∞
0 dqobs (qobs − q0) exp

[
−Mp

Tq2
0

(qobs − q0 −K)2
]

=

= q0

√
T

2Mp

´ +∞
−∞ dz

(
q0

√
T

2Mp
z +K

)
exp

(
− z2

2

)
= q0

√
πT
Mp
K

(1.69)

The normalization factor in Eq. (1.65) becomes

´∞
0 dqobs

dΓ
dqobs

= q0

√
πT
Mp

´∞
0 dKedK12

exp(−KeT )
1−exp

(
−4πα

√
me
2Ke

) ·

· exp
(
−K12

T

)
exp

(
−2πα

√
Mp

4K12

) (1.70)

while for the integral at numerator of Eq. (1.65) we obtain the following expression
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´∞
0 dqobs (qobs − q0) dΓ

dqobs
= q0

√
πT
Mp

´∞
0 dKedK12

exp(−KeT )
1−exp

(
−4πα

√
me
2Ke

) ·

· exp
(
−K12

T

)
exp

(
−2πα

√
Mp

4K12

)
K

(1.71)

Defining the new variables (x, y) as x ≡
Ke
T

y ≡ K12
T

(1.72)

We obtain

(1.70)→ q0

√
πT

Mp
T 2

ˆ ∞
0

dxdy
e−x

1− e−4πα
√

me
2T

1√
x

e−ye
− ε√

y

(1.71)→ q0

√
πT

Mp
T 3

ˆ ∞
0

dxdy
e−x

1− e−4πα
√

me
2T

1√
x

e−ye
− ε√

y (x+ y)

where

ε ≡ 2πα

√
Mp

4T
' 75.63√

T6
� 1 (1.73)

Finally, defining the moments of the particle energies through the expressions


Ieµ ≡

´∞
0 dxxµ e−x

1−e
−4πα
√

me
2T

1√
x

=
´∞

0 dxxµ e−x

1−e
− 5√

T6

1√
x

Ipν ≡
´∞

0 dyyνe−ye
− ε√

y

(1.74)

we obtain for ∆ the equation

∆ =
´
dφpep

´∞
0 dqobs(qobs−q0) dΓ

dqobs´∞
0 dqobs

dΓ
dqobs

=
´
dφpep

(
T
Ie1I

p
0 +Ie0I

p
1

Ie0I
p
0

)
=

= 〈reT 〉pep + 〈rpT 〉pep

(1.75)

where ra ≡ Ia1/Ia0 .

1.4.4 Discussion on Electron Moments Approximation

In Tab. 1.4 are reported the values of the 0th and 1st electron moments and their ratio re
for 6 values of T6 from 10 to 16.
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Table 1.4: Numerical values of 0th and 1st electron moments and re for different values
of T6.

T6 Ie0 (T6) Ie1 (T6) re (T6)

10 1.23388 1.451 1.17596
11 1.25529 1.48737 1.18489
12 1.2761 1.52247 1.19307
13 1.29636 1.55641 1.2006
14 1.31612 1.5893 1.20757
15 1.3354 1.62124 1.21405
16 1.35424 1.6523 1.2201

Even if the ratio growths as the temperature increases, we can assume that in the range

of temperatures of interest re increases slowly, so that as a first approximation re can be

considered constant. For the inner regions of the Sun, T6 has values of the order of 10. In

Tab. 1.5 we report the relative variation of re respect its value at T6 = 10.

Table 1.5: Relative variation of re (T6) respect to re (10).

T6 δe (10) ≡
∣∣∣ re(T6)−re(10)

re(T6)

∣∣∣%
11 0.753174
12 1.43344
13 2.05191
14 2.61743
15 3.13718
16 3.61704

We observe that the variation lies in the range of ∼ few%. We can obtain a better

approximation taking the value of T6 for which re is equal to the mean value evaluated in

the range of temperatures from 10 to 16. In particular we have5

re = 1.19946→ T ∗6 = 12.8439

In Tab. 1.6 are shown the relative variation of re respect re in the range of temperature of

interest. We can observe that now the variations are of the order of 1%.
5In the next subsection we will find a value for the temperature of the Sun averaged over the pep

neutrino flux which value is close to that find here. In any case one has to be carefull to not consider
T ?6 as the effective averaged temperature, since T ?6 is only used as a reference temperature to evaluate
numerically r̄e, which value can be, on the other hand evaluated also from an arithmetical average over a
set of re values obtained for different temperatures. Furthermore we will see that the averaged temperature
is model dependent, i.e. its value depends on the SSM considered, while the value of r̄eis model indipenent.
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Table 1.6: Relative variation of re (T6) respect to re.

T6 δe
(
T6

)
≡
∣∣∣ re(T6)−re

re(T6)

∣∣∣%
10 1.9982
11 1.22998
12 0.536116
13 0.0947076
14 0.671529
15 1.20167
16 1.69111

Using re as an estimation of electron moment ratio, Eq. (1.75) can be rewritten as

〈(qobs − q0)〉 = re 〈T 〉pep + 〈rpT 〉pep (1.76)

1.4.5 Analytical Estimation of Proton Moments

The integration of the 0th and 1st proton moments can be performed using the method of

“steepest descents”, according to which, an integral of the form

I (z) =

ˆ b

a
e−Mf(x)dz

can be approximated thorugh the expression

I (z) =

ˆ b

a
e−Mf(x)dz ≈

M→∞

√
2π

|Mf ′′ (z0)|
eMf(z0) (1.77)

assuming that f (z) has a global maximum at z0.

For the 0th proton moment we obtain

Ip0 '
√

4π

3

( ε
2

) 1
3
e−3( ε2)

2
3 (1.78)

For the higher order proton moments we have to solve the following equation

Ipν =

ˆ ∞
0

dyyνe−ye
− ε√

y =

ˆ ∞
0

dye−g(y) '

√
2π

|g′′ (y∗)|
e−g(y∗) (1.79)

where


g (y) = y + 2 ε2y

− 1
2 − ν ln y

g′ (y) = 1− ε
2y
− 3

2 − νy−1

g′′ (y) = 3
2
ε
2y
− 5

2 + νy−2

In order to apply the method we have to find the roots of g′ (y∗) = 0, i.e.
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1− ε

2
y
− 3

2
∗ − νy−1

∗ = 0 (1.80)

or, equivalently

y − ε
2y
− 1

2 − ν
y

= 0→
(y
ν

) 1
2
(y
ν
− 1
)

=
ε

2
ν−

3
2

By defining θ through the expression

(y
ν

) 1
2

=
2√
3

cosh (θ) (1.81)

the root of eq. (1.80) can be written as

y∗ = 4
3ν cosh2 (θ∗) θ∗ = 1

3 arccos h
(√

27
2

ε
2ν
− 3

2

)
(1.82)

we can expand the arccosh
(√

27
2

ε
2ν
− 3

2

)
function respect the variable (ε/2)−1 obtaining

arccos h
(√

27
2

ε
2ν
− 3

2

)
= ln

[√
27
2

ε
2ν
− 3

2

(
1 +

√
1− 4

27ν
3
(
ε
2

)−2
)]
'

' ln
(√

27 ε2ν
− 3

2

)
− 1

27ν
3
(
ε
2

)−2

and y∗ can be approximated through the expression

y∗ = 4
3ν cosh2

[
ln
(√

3
ν

(
ε
2

) 1
3

)
− 1

81ν
3
(
ε
2

)−2
]

=

=
(
ε
2

) 2
3

[
1− 2

81ν
3
(
ε
2

)−2
] [

1 + ν
3

(
ε
2

)− 2
3

]2

+O
[(

ε
2

)−2
] (1.83)

Using this approximation to estimate g (y∗) and g′ (y∗) we obtain

g (y∗) = y∗ + 2 ε2y
− 1

2
∗ − ν ln y∗ = 3

(
ε
2

) 2
3 − 1

3ν
2
(
ε
2

)− 2
3 + 1

27ν
3
(
ε
2

)− 4
3 − ν ln

(
ε
2

) 2
3 +O

[(
ε
2

)−2
]

g′′ (y∗) = 3
2
ε
2y
− 5

2 + νy−2 = 3
2

(
ε
2

)− 2
3

[
1− ν

(
ε
2

)− 2
3

]
+O

[(
ε
2

)−2
]

and the approximated expression for the proton moment assumes the form

Ipν '
√

4π
3

(
ε
2

) 1
3

[
1− ν

(
ε
2

)− 2
3

]− 1
2 ( ε

2

) 2
3
ν
e−3( ε2)

2
3
e+ 1

3
ν2( ε2)

− 2
3− 1

27
ν3( ε2)

− 4
3

=

= Ip0
(
ε
2

) 2
3
ν
[
1− ν

(
ε
2

)− 2
3

]− 1
2
e+ 1

3
ν2( ε2)

− 2
3− 1

27
ν3( ε2)

− 4
3

(1.84)

Finally we obtain for rp
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rp ≡
Ip1
Ip0

=
(
ε
2

) 2
3

[
1−

(
ε
2

)− 2
3

]− 1
2
e+ 1

3( ε2)
− 2

3− 1
27( ε2)

− 4
3 '

'
(
ε
2

) 2
3 + 5

6 + 121
216

(
ε
2

)− 2
3 + 571

1296

(
ε
2

)− 4
3 +O

[(
ε
2

)−2
] (1.85)

The term of the order (ε/2)−4/3 can be neglected, in fact

ε

2
= πα

√
Mp

4T
' 37.82√

10
= 11.96→ 571

1296

( ε
2

)− 4
3 ' 0.016 (1.86)

The expression for the 1st moment of neutrino energy becomes

〈(qobs − q0)〉 = re 〈T 〉pep + 5
6 〈T 〉pep +

+

(
πα
√

Mp

4

) 2
3 〈
T

2
3

〉
pep

+ 121
216

(
πα
√

Mp

4

)− 2
3 〈
T

4
3

〉
pep

(1.87)

or equivalently

〈(qobs − q0)keV 〉 = 0.175 〈T6〉pep + 0.971

〈
T

2
3

6

〉
pep

+ 4.29 · 10−3

〈
T

4
3

6

〉
pep

(1.88)

From eq. (1.88) we observe that the contribution of the last term to the evaluation of ∆,

assuming T6 ∼ 10 and 〈Tµ6 〉 ∼ 〈T6〉µ, is of ∼ 1% so that we can neglect the last factor and

eq. (1.88) can be finally written as

〈(qobs − q0)keV 〉 = 0.175 〈T6〉pep + 0.971

〈
T

2
3

6

〉
pep

(1.89)

1.4.6 Discussions

In order to explicit the dependence of the internal temperature of the Sun from ∆ we

assume that 〈
T

2
3

6

〉
pep

≈ 〈T6〉
2
3
pep (1.90)

We have tested this assumption for two Standard Solar Model, i.e. BS2005(AGS,OP) and

BP2000 [39].

For the first model we find
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〈
T

2
3

6

〉
BS2005(AGS,OP )

= 5.481

〈T6〉
2
3

BS2005(AGS,OP ) = 5.491

δBS2005(AGS,OP ) ≡

〈
T

2
3

6

〉
BS2005(AGS,OP )

−〈T6〉
2
3
BS2005(AGS,OP )〈

T
2
3

6

〉
BS2005(AGS,OP )

= 0.186%

while for BP2000 model we obtain



〈
T

2
3

6

〉
BP2000

= 5.374

〈T6〉
2
3
BP2000 = 5.388

δBP2000 ≡

∣∣∣∣∣∣
〈
T

2
3

6

〉
BP2000

−〈T6〉
2
3
BP2000〈

T
2
3

6

〉
BP2000

∣∣∣∣∣∣ = 0.264%

From the SSMs used we observe that the approximation is good within an accuracy of

∼ few · 10−1 %. Using the approximation expressed in (1.90) we obtain an algebraic

equation of the form

a 〈T6〉pep + b 〈T6〉
2
3
pep = ∆ (1.91)

where a = 0.175, b = 0.971 and ∆ = 〈(qobs − q0)keV 〉. By introducing the variable z ≡
〈T6〉1/3, Eq. (1.91) can be written

az3 + bz2 = ∆

The solution of this equation can be expressed in the form

z = b
3a

[
2 cosh

(
1
3 arccos h (α)

)
− 1
]

α ≡ 27a3

b3
∆
2a − 1 (1.92)

And for 〈T6〉pep we obtain

〈T6〉pep =
b3

27a3

[
2 cosh

(
1

3
arccos h

(
27a3

b3
∆

2a
− 1

))
− 1

]3

(1.93)

We can make an estimation of the error for 〈T6〉pep knowing the accuracy at which can be

measured ∆. In particular we have

d 〈T6〉pep
〈T6〉pep

=
2

3

b

a

sinh
[

1
3 arccos h

(
27a3

b3
∆
2a − 1

)]
√

1− b3

27a3
4a
∆

〈T6〉
− 1

3
pep

d∆

∆
(1.94)

Using the value of ∆ evaluated solving numerically Eqs. (1.65) and (1.66) for BS2005(AGS,

OP) SSM we obtain
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∆BS2005(AGS,OP ) = 7.59→ 〈T6〉pep = 12.88

(
1± 1.31

d∆

∆

)
(1.95)

The value obtained for 〈T6〉pep using Eq. (1.93) is in good agreement with that obtained av-

eraging the internal temperature of the Sun over pep neutrino flux, i.e. 〈T6〉pep, BS05(AGS,OP ) =

12.87.

Finally we have tested the results using BP2000 SSM, obtaining

∆BP2000 = 7.42→ 〈T6〉pep = 12.51 (1.96)

which is in agreement with the mean value obtained averaging the temperature over the

pep neutrino flux estimated from the SSM 〈T6〉pep, BP2000 = 12.51.

1.5 Quasi-biennial Oscillations

Time variability of solar neutrino flux has been studied since the appearance of the first

results of Homestake experiment [16]. In an early attempt to interpret the discrepancy

between theoretical and observed flux, Sheldon [40] suggested a dependence of neutrino

flux with solar activity, due to a time variable production rate of the neutrinos in the core

of the Sun. The most famous evidence of the solar cycle is the time variation of sunspots

number, with a characteristic period of about 11 years, extensively investigated in the past

(see e.g., Ref. [41]). The occurrence of the solar cycle is related to the dynamo effect

that generates the magnetic field of the Sun through the α− ω process (the usual α-effect

coupled with the differential rotation) [42]. The spatial behaviour of the solar cycle is

related to the latitudinal migration of magnetic structures toward the solar equator as

the 11-year cycle goes on, thus generating the characteristic “butterfly diagram” in both

space and time domain. Superimposed on these large-scale effects, the presence of small-

scale apparently stochastic fluctuations is observed [43]. However, through the analysis

of Homestake data Sakurai [44] showed the existence of a quasi-biennial periodicity both

in the solar neutrino flux and in the sunspot number. In order to make a connection

between the periodicity observed both in solar neutrino and sunspot data, Sakurai claimed

that fluctuations of the core temperature which is responsible of the pp chain efficiency,

should be at the origin of this quasi-biennial modulation [44]. However the analysis by

Lanzerotti [45] carried on a set of data which cover a longer time period, exclude any

connection between events in the core with the ones which occur in the photosphere.

The results of analysis of Kamiokande data over the Cycle 22 of the 11-yr solar cycle

[25] showed that there is no correlation of the solar neutrino flux with sunspot numbers

on 11-yr time scale. Apart from the 11-year cycle, intra-cycle periodicities have been

discovered in many solar activity proxies. The most prominently recognized periods are in
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the so called quasi-biennial oscillations (QBOs) range on time scales from 1.5 to 3.5 years

[46, 47, 48, 49]. This periodicity is better detected in correspondence of main cycle maxima

and it suffers, as the 11-year cycle, of period length modulation [50]. Quite interestingly,

corresponding QBOs have been found also in other contexts related to solar variability,

as in solar wind fluctuations, interplanetary magnetic field intensity, galactic cosmic ray

(CR) flux [51, 52, 53, 54] energetic proton fluxes recorded in the interplanetary space [55]

and in the solar rotation rate [56]. In they early work, Sakurai [44] invoked the presence

of the quasi-biennial modulation for solar neutrino flux, in an attempt to solve the puzzle

of missing neutrinos [57]. To date the puzzle has been solved in favour of neutrino flavour

transformation [58], also implying a rest mass for neutrinos. Nevertheless, the origin of the

biennial modulation of the solar neutrino flux and its interaction with the solar magnetic

field are still debated [59, 60, 61, 62, 63, 64, 49]. These modulations should be induced

by direct coupling of neutrino flux with solar magnetic field through neutrino magnetic

moment. However, based on KamLAND data analysis constraint [65], assuming an upper

bound for neutrino magnetic moment

µν ≤ 10−12µB (1.97)

a neutrino oscillation length λosc ≈ 100− 200 km and magnetic field fluctuation with am-

plitude δB ≈ 50− 100 kG, the deviation from the mean rate for SFP mechanism results to

be of the order of 2.8 · 10−2 % [65]. This means that the coupling of neutrino’s magnetic

moment and magnetic field gives negligible effects. On these basis, the most reliable mech-

anism seems to be the modulation of the production rate of the nuclear reactions or the

variation of physical parameters, mainly the density, at the solar core. In order to affect

appreciably the neutrino flux, the density fluctuations have to satisfy both the following

requests at the position of the MSW oscillation [66, 67]:

(i) The correlation length of these fluctuations have to be of the same order of neutrino

oscillation length;

(ii) The fluctuations amplitude have to be at least of ∼ 1%.

The most plausible mechanism, which in principle could originate fluctuations in matter

density with the required properties, is the Alfvén/g-modes resonance [67]. The presence

of density gradients along g-modes, can excite Alfvén waves resonantly, the resulting wave-

forms show sharp spikes in the density profile at radii comparable with the neutrino’s

resonant oscillation length. Hence, the study of short-term periodicities of the solar cycle

should lead to improve knowledge of the global properties of the Sun, with particular re-

gard to solar neutrinos and energetic particle emission. In particular, the possible coupling

neutrino-solar activity can help to understand the physical processes occurring in the solar
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deeper layers not accessible to helioseismic probing. In the present work we resume the

study of the quasi-biennial solar cycle (see [49, 68, 69]) by investigating the time evolution of

two different datasets, through the empirical mode decomposition (EMD), with particular

attention to the statistical significance of the analysis. We claim that the modulation can

be the manifestation of the interaction of solar neutrino flux with Alfvén/g-mode resonance

modulated by an oscillating magnetic field deep within the solar radiative region.

1.5.1 The Neutrino Datasets

In order to investigate the relationship between solar neutrinos and magnetic activity, we

report the results of EMD analysis carried out solar neutrino flux data recorded from

the Homestake experiment (dataset νH) (a total of 108 records from 1970 to 1994 [70])

and from the SAGE experiment (dataset νS) (a total of 168 records from 1990 to 2008

[18]). The data from these two experiments cover a time window of ∼ 20 yr, passing

through the maxima of two solar cycles (Cycles 21 and 22 for Homestake data and Cycles

22 and 23 for SAGE data). The EMD results for the two solar neutrino datasets have

been compared with that obtained from the data of several solar cycle indicators: sunspot

number (SN) and area (SA), flux of interplanetary protons in the energy range 0.50÷0.96

MeV/nucleon measured by the charged particles measurements experiment (channel P2)

aboard the IMP8 spacecraft (P2) and cosmic ray intensity measured by the Rome neutron

monitor with cutoff rigidity of 6 GV (NM).6

1.5.2 Results and Discussion

The EMD represents a powerful tool to study the solar QBOs and highly nonstationary

signal. For more details on this technique, see Appendix A. Since these oscillations are high

during the activity maxima [46, 48, 50] and their frequency is not constant from a cycle

to another [50] the EMD is more suitable than the classical Fourier and wavelet analysis,

to properly identify the QBOs. In fact it is well known that, in presence of nonstationary

signals, the Fourier power spectrum, as well as the time integrated Wavelet spectrum,

detect broader and lowered peaks. Since the Fourier transform looks for a global frequency

and does not take into account possible period modulations, an underestimation of the

contribution of the QBOs could occur. For each dataset, the QBO contribution to the

original signal has been isolated through partial sum of IMFs oscillating with time scales

in the range 1.4 yr ≤ τi ≤ 4 yr, where τi denotes a typical average period for the i-th

IMF. The QBO contribution from the Homestake is shown in Fig. 1.6 toghether with the

quasi-biennial signals of P2 and NM, while in Fig. 1.7 the QBO signal extracted from
6SN and SA data at: http://solarscience.msfc.nasa.gov/SunspotCycle. shtml; P2 data at:

http://sdwww.jhuapl.edu/IMP/imp_cpme_data.html; CR data at: http://www.fis.uniroma3.it/svirco/.
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SAGE data is shown toghether with the QBOs of sunspot data. As a reference, the time

history of the sunspot area for the period of reference is reported in the lower panel.

After properly identifying the QBO components through the EMD from the different indica-

tors, we compare them by evaluating Pearson’s correlation coefficient. For each correlation

coefficient, a confidence level of 95% is derived both through Fisher’s transformation (∆rF )

and bootstrap methods (∆rboot). Finally an estimation of the p-value (i.e. the probabil-

ity to obtain by chance a correlation coefficient greater then that observed) is given by

random phases method (PRP ) [71]. Results demonstrate that the correlation is stronger

around the solar cycle maxima where the QBO amplitudes are higher. In particular, the

QBOs isolated from Homestake data are in phase with particles data around the maxima

of cycle 21 and 22, while QBOs isolated from SAGE data seem to be correlated with those

of sunspot data near the maxima of cycle 22 and 23. This correlation is significant even

extending the time window to 11 yr starting from mid-1991. In Tables 1.7, 1.8 and 1.9 are

shown the results of the correlative analysis.
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Figure 1.6: Upper panel: QBO isolated from Homestake data (blue line), P2 proton
flux (red line) and galactic CRs (green line). Lower panel: Time history of the sunspot
areas for the period of reference (in unit of millionths of a solar hemisphere). Dashed

vertical lines correspond to maxima of solar cycles.

Figure 1.7: Upper panel: QBO isolated from SAGE data (blue line), sunspot area (red
line) and sunspot number (green line). Lower panel: Time history of the sunspot areas
for the period of reference (in unit of millionths of a solar hemisphere). Dashed vertical

lines correspond to maxima of solar cycles.
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Table 1.7: Results of correlative analysis for Homestake, energic proton and cosmic ray
QBOs for 3 yr around maxima of cycle 21 (1980.25).

X − Y r ∆rF ∆rboot PRP

νH − P2 0.96 [0.90, 0.98] [0.91, 0.98] 0.01
νH −NM −0.90 [−0.96, −0.75] [−0.95, −0.78] 0.06
P2−NM −0.98 [−0.99, −0.95] [−0.99, −0.97] 0.01

Table 1.8: Results of correlative analysis for Homestake, energic proton and cosmic ray
QBOs for 3 yr around maxima of cycle 22 (1990.75).

X − Y r ∆rF ∆rboot PRP

νH − P2 0.93 [0.82, 0.97] [0.82, 0.97] 0.03
νH −NM −0.99 [−0.99, −0.97] [−0.99, −0.98] 0.01
P2−NM −0.92 [−0.97, −0.80] [−0.96, −0.85] 0.03

Table 1.9: Results of correlative analysis for SAGE, sunspot number and area QBOs
for 11 yr starting from mid-1990.

X − Y r ∆rF ∆rboot PRP

νS − SA 0.58 [0.46, 0.69] [0.45, 0.69] < 0.01
νS − SN 0.67 [0.56, 0.75] [0.53, 0.78] < 0.01
SA− SN 0.89 [0.85, 0.92] [0.86, 0.92] < 0.01

1.5.3 The Magneto-Gravity Modes

The observed correlation between solar quasi-biennial cycle and solar neutrino flux fluc-

tuations on quasi-biennial time scales could represent a direct observation of instabilities

induced by quasi-biennial dynamo effects in the deeper regions of solar radiative zone.

The theory of coupling between large scale magnetic fields and solar matter has been in-

vestigated by Burgess et al. [67]. In particular, in the presence of backgroud magnetic

fields of reasonable intensity, density gradients allows g-modes to excite Alfvén waves reso-

nantly, causing mode energy to be funnelled along magnetic field lines away from the solar

equatorial plane. Magneto-gravity waves are described by the usual compressible, ideal

magnetohydrodynamic equations, namely the continuity equation for mass density

∂ρ

∂t
+∇ · (ρv) = 0 (1.98)

the momentum equation with the gravity term

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P + ρg +

1

4π
[(∇×B)×B] (1.99)

and the magnetic field induction equation
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∂B

∂t
= ∇× (v ×B) (1.100)

The system of equations can be closed by relating the pressure P to the mass density

through an energy equation

dP

dt
− γP

ρ

(
dρ

dt

)
= − (γ − 1)Q (1.101)

where d/dt is the total time derivative, γ is the ratio of heat capacities, and Q is the

sum of all energy density sources and losses, such as heat conductivity, viscosity and ohmic

dissipation. Assuming an equilibrium situation where the velocity field and current density

are both zero, equations 1.98-1.101 are linearized by using low-frequency approximation,

in order to filter out the pressure p-modes, and an exponential density profile. A plane

geometry with a local gravity directed along the z-axis and the background magnetic field

along the x-axis is used. Background quantities depend on z, and a standard mass-density

profile coming from solar models ρ0 = ρc exp (−z/H) is assumed (here the density at the

solar centre ρc and the density height-scale H are constant) [66]. All fluctuating quantities

depends on space and time through

A (x, y, z, t) = A (z) exp [i (kxx+ kyy − ωt)] (1.102)

If we consider a slowly varying background magnetic field, we expect that the system, which

varies on times of the order of the helioseismic characteristic periods, has enough time to

adapt the configuration corresponding to the instantaneous amplitude of the background

magnetic field (adiabatic hypothesis). Under this assumption, by using a background mag-

netic field which varies in time according to B0 = B0f (ω0t) ex, where ω0 � ω, we obtain

two equations for the Fourier coefficients of magnetic field fluctuations b = B/ [B0f (ω0t)]

and the velocity fluctuations v−iωb = ikxv − (∇ · v) ex

−iωv = −∇P ′ρ0
+ ρ′g

ρ0
+ v2

A (t)
[
−
(
∂bx
∂z − ikxbz

)]
ex

(1.103)

(“primed” quantities are fluctuations). The above set of equations is formally identical to

that founded by Burgess et al. [67], apart for the fact that in our case

v2
A (t) =

B2
0

4πρ
f2 (ω0t) (1.104)

is a time-dependent Alfvén speed. After some algebraic calculations we finally obtain an

equation for the fluctuating magnetic field, whose solution determines all other fluctuating

quantities
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[
1−

k2
xv

2
A (t)

ω2

]
dbz
dz2
− N2 (z)

g

dbz
dz

+ k2
⊥

[
k2
xv

2
A (t)

ω2
1 +

N2 (z)

ω2

]
bz = 0 (1.105)

where the perpendicular wave-vector is

k2
⊥ = k2

x + k2
y (1.106)

and we defined the Brunt-Väsälä frequency

N2 (z) = g (z)

[
1

γP0

dP0

dz
− 1

ρ0

dρ0

dz

]
(1.107)

which represents the characteristic frequency of the system. Equation (1.105) describes

magneto-gravity waves. In the limit B0 → 0 it leads to the standard helioseismic g-

modes. In absence of gravity and B0 = const . Equation (1.105) describes Alfvén waves

with frequency ω = ΩA = kxvA. By retaining both gravitation and magnetic field a

new singular point occurs when the coefficient of the second derivative term in Equation

(1.105) vanishes. Since this happens at ω = ΩA, it can be viewed as being due to resonance

between g-modes and Alfvén waves [67]. Let us come back to the Sun. Since ΩA varies

with the distance from the centre of the Sun, while, according to usual helioseismology

the g-modes frequency is independent on position, the resonance occurs at a particular

radius inside the Sun, namely when ΩA crosses the frequency of one of the g-modes. The

occurrence of the resonance depends on the value of B0. This means that, in our case, the

existence of the resonance is modulated in time by the term f (ω0t), that is the resonance

is time-dependent. Solutions of Equations (1.103) gives the eigenvalue spectrum as roots

of the trascendental equation [67]

χ = A (n, t) cosh (χ) (1.108)

where

ω = kxC0 (t) cosh (χ) (1.109)

where C0 (t) represents the time-dependent Alfvén velocity at the solar centre, and

A (n, t) =
kxC0 (t)

4Nk⊥H

[
2πn− i ln

∣∣∣∣tan
π

γ

∣∣∣∣± π(1− γ
γ

)]
(1.110)

Accordingly, the instantaneous resonant position is given by

zr (n, t) = 2H ln {< [coshχ (n, t)]} (1.111)
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The time dependence of solution of Equation (1.108) results in a modulation of the distance

between neighboring resonant layers with the same period of the background magnetic field.

This is shown in Figure 1.8, where we report the time evolution of the distance as a function

of the position of the resonance

dzr (n, t) = zr (n+ 1, t)− zr (n, t) (1.112)

The background magnetic field is assumed to have a sinusoidal variation, with a profile

defined by

f (ω0t) = cos2

(
ω0t

2

)
+ ε sin2

(
ω0t

2

)
(1.113)

where ω0 = π yr−1 and the function f is defined in the interval [ε, 1] (we used ε = 10−3).

As noted by Burgess et al. [67], for reasonably values of the background magnetic field

intensity, the distance between resonant layers, at the neutrino’s resonant region, are of the

order of the neutrino’s oscillation length. In particular the spikes which occur in density

profiles, as a consequence of the resonance, could increase the probability of interactions

between neutrino flux and solar matter [66].

In Figure 1.9 we report the time evolution of the lagrangian density perturbation

δρ

ρ
≈ C − {exp [− (z − zr (n, t)) /H] (1 + i2d (n, t))− 1}

1−γ
γ (1.114)

where d (n, t) denotes the growing factor of the eigenfrequency ω = ω1 (1 + id), and C is

defined as follows

C =
Γ
(
γ−1

)
Γ (−γ−1)

[
γvφ (n, t)

csi
√
γ − 1

]2/γ (γ − 1

4γ
+
γ2k2
⊥H

2

γ − 1

)
(1.115)

where vφ (n, t) = ω1 (n, t) /kx. As it is evident, the resonance oscillates in time with a

frequency ω0.

1.5.4 Quasi-biennial Dynamo as Source for Magnetic Fluctuations

Recent analysis carried on BiSON and GOLF data [72] show that quasi-biennial signal

has the same amplitude for p-modes at all frequencies. On the other hand the 11-yr

modulation affects predominantly high frequency p-modes occuring on shallow regions

close to the solar surface. This suggests that the dynamo mechanism responsible of the

mean cycle has its origin at shallow regions of the solar interior (resonably located near

the bottom of the shear layer extending 5% below the surface), while another separated

quasi-biennial dynamo mechanism could be originated in deeper layers. In this scenario,

the quasi-biennial dynamo located in the inner layers of the Sun, are more likely to induce a
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Figure 1.8: Time evolution of the distance between resonant Alfvén layers. In the y− z
plane are reproduced respectively the position of the resonances (in solar radius units)
and the distance between the resonant layers (in km). The x axis represents the time (in

yr).

Figure 1.9: Time evolution of neighbouring density profiles in the region zr ∼ 0.3Rsun.



Chapter 1 Solar Neutrinos 39

fluctuating background magnetic field. The latter is the key ingredient of the model since

allows that correlation length between density spikes variates in time. This mechanism

could thus produce the observed variations, at the quasi-biennial scale, of the solar neutrino

flux. The modulation of solar neutrinos and the coupling with magneto-gravity modes is of

great interest for solar physics. This coupling could represent a new way to investigate the

physical properties in the very inner layers of the Sun thus playing the role of a "telescope"

for the solar interior.





Chapter 2

Galactic Cosmic Rays

2.1 Cosmic Rays

With the expression “Cosmic Ray” are intended stable particles and nuclei which have

galactic or extragalactic origin. They are grouped in two main categories, namely “pri-

mary” and “secondary” cosmic rays. Primary cosmic rays are electrons, protons and nuclei

syntetized in stars, while secondary cosmic rays are the nuclei which are not abundant in

stellar nucleosynthesis, so that they are more likely produced in the interaction of primaries

with interstellar medium [73].

Cosmic Ray particles have energies from few · 100 MeV up to 3 EeV (1 EeV = 1020 eV).

Their spectrum is reported in Fig. 2.1 [73]. It is characterized by two principal features: a

steepening between 1015 and 1016 eV, called knee and an ankle around 1018.5 eV.

It is not clear how they are originated and how they propagate in the interstellar medium,

such as the mechanisms which allow the particles to enhance their energies. The modeliza-

tion of their propagation is in fact not trivial. Cosmic rays propagate essentially through

diffusion and convection (advection). The former can be carried through collisions (diffu-

sion in real space) or reacceleration (diffusion in momentum space).

From the interaction of primary cosmic rays with athmospheric nuclei mesons are produced:

charged mesons decay in muons and neutrinos, while by neutral meson decays electrons

and photons are produced.

The measurements of cosmic rays are made at atmospheric, surface and underground level.

At the surface level muons are mainly observed as well as electrons, positrons and photons

from cascades initiated by the meson decay. At the underground level are detected muons

and neutrinos.

41
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Figure 2.1: CRs differential intensity as a function of the energy from Fig. 26.8 of [73].
For more details see [73] and references therein.

2.2 Galactic Cosmic Rays

Particles with energies of order of TeV, basically of galactic origin, are a useful tool to

investigate galactic structures. Since Galactic Cosmic Rays (GCRs) travel in a magnetized

medium, the main parameter which characterize their motion is the gyro-radius that can

be expressed in the form

ρ = 223
E (TeV )

B (10−10T )
AU =

E (TeV )

B (10−10T )
10−3 pc (2.1)

thus assuming galactic magnetic field intensity of order O
(
10−10T

)
, the values of gyro-

radius is smaller than the size of the Milky Way (which is 30 kpc in diameter and 300 pc

in thickness).

2.2.1 Cosmic Ray Anisotropy

The distribution of GCRs depends on time reference frame respect to which are binned

the event counts. In particular counting the event rate in the solar year time frame,
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where the duration of a year is measured in a reference frame where the Sun is at center

(365 days/yr), gives information on solar system scales, while event rate measured in the

sidereal year time frame, where the duration of a year is measured respect to the fixed stars

reference frame (366 days/yr), gives information on the interaction of CRs with structures

on galactic scales.

In the solar time frame, an anisotropy is observed in the daily flux of Cosmic Rays. This

is due to the revolution of the Earth around the Sun respect to the reference frame of CRs

which can be considered at rest on solar system scales. Thi effect is known as Compton-

Getting effect [74], in particular the intensity of the flux varies according to the expression:

∆I

Ī
= (γ + 2)

v

c
cos θ (2.2)

where γ is the spectral index, which in the energy range of interest is equal to 2.7. Assuming

for the Earth a velocity of 30 km/s, the amplitude of the anisotropy is of ∼ 0.05%, with

the maximum at 6:00 h Local Solar Time.

When event counts are histogrammed in sidereal hourly bins, solar daily effects cancel out

on several years of data taking and, a part from atmospheric effects which may induce

spourius sidereal signals, a CG effect is expected due to the motion of Solar System around

galactic center, assuming that CRs are at rest. The analysis of data collected from Air

Shower arrays and underground cosmic muon detectors over several years show the evidence

of a sidereal anisotropy with an excess in the so called “tail in” region, at ∼ 80° RA, and

a deficit in the “loss-cone” region, at ∼ 200°RA (e.g. [75, 76, 77]). The CG scenario used

to interpret this anisotropy seems not to adequately describe the observed profile, thus

indicating that CR flux corotates with Galactic Magnetic Field (GMF) [76]. A possible

source for this anisotropy can be the diffusion due to shock of supernova remnants (SNR)

and stellar wind. However since CRs travel for millions of years, their interaction with

irregular GMF components is expected to randomize particle orbits. The characteristic of

Cosmic Ray Sidereal Anisotropy are summarized in Tab 2.2 at the end of Sec. 2.3. Recent

results of data analysis from IceCube and IceTop experiments show that the profile of CRs

anisotropy depends on their energy [78, 79].

2.2.2 Interaction of Galactic Cosmic Rays and Interplanetary Magnetic
Field

It is known that solar magnetic field influence the flux of Cosmic Rays with rigidity up

to ∼ 10 GV since the expanding magnetized plasma partially screening the incoming

particles. At the energy range of Galactic Cosmic Rays no effects are expected from solar

cycle. Neverthless the analysis of diurnal anisotropy in Tibet ASγ experiment show a

disagreement with CG effect at energies < 6 TeV [82], while data taken from Matsushiro
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Figure 2.2: Cosmic Ray anisotropy as function of celestial coordinates reconstructed
with the results of Tibet ASγ (upper region [76]) and IceCube (lower region [80]). [81]

experiment from 1987 to 2008 show the presence of an extra anisotropy overlapped to

the CG [83]. This anisotropy of O
(
10−2%

)
is correlated with 11-yr solar cyle, with the

maximum of the correlation coefficient at a lag of 26 months (see Fig. 2.3).

2.3 Galactic Cosmic Ray Detectors

In this section we resume the principal properties of some Cosmic Ray Detectors. Four

of them are Cosmic Muons Detectors (MACRO, LVD and Borexino, MINOS and Mat-

sushiro experiments), while the other two are Air Shower Arrays (Tibet ASγ and Milagro

experiments).1 The characteristics of the detectors referred to the study of cosmic rays are

summarized in table 2.1.

2.3.1 MACRO

MACRO (Monopole Astrophysics and Cosmic Ray Observatory) was an underground de-

tector designed to detect supermassive magnetic monopoles predicted by Grand Unified

Theories of electroweak and strong interactions [84, 85, 86]. It was able to operate also as

Neutrino and Cosmic Ray Detector. In particular several works were dedicated to both

high and low energy atmospheric neutrino physics, high energy neutrino astronomy, search

for WIMPs and cosmic ray astrophysics through the monitoring of high energy under-

ground muons. It was organized in a modular structure, with two supermodules, each of

dimensions 12.6 m×12 m×4.8 m. Each supermodule was divided in two modules, each

of them consisting of 10 horizontal planes of streamer tubes, 12 m×6 m. The lowest and

highest planes are separated by a 25 cm of liquid scintillator, while the innermost planes

are separated by a 60 g/cm2 absorber of low activity Gran Sasso Rock. The lateral walls
1For the details on Borexino and SuperKamiokande detectors see Sec. 1.3.5 and 1.3.3, respectively.
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Figure 2.3: Long-term variation of the diurnal anisotropy observed by Matsushiro in
1985-2008 [83].

consist of stacked tanks of liquid scintillator, 25 cm thick, sandwiched between six verical

streamer tubes planes. The structure of the detector allows a stereoscopic reconstruction.

For more details of muon track reconstruction and event cuts, see Ref. [84].

2.3.2 LVD

The Large Volume Detector (LVD) is a 1 kt liquid scintillator detector designed to study

neutrino bursts from gravitational stellar collapses [87]. The detector is structured in three

towers, each of them divided in 35 “portatanks” (5 columns ×7 levels). Each portatank is

made of 8 scintillation counters (1.5 m2). Totally the detector is made by 840 counters,

with an active volume of 13 m×23 m×10 m active volume.

2.3.3 MINOS

The MINOS experiment is dedicated to the study of neutrino oscillations [88]. It consists of

a neutrino source and a near detector at Fermi National Accelerator Laboratory in Batavia

IL, and a far detector at the Soudan Underground Mine State Park in northern Minnesota.

This last is a scintillator and steel tracking calorimeter located at 2100 mwe and can be

used also for the monitoring of cosmic muons of energy of energy Eth > 0.73 TeV.
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2.3.4 Matsushiro

The Matshushiro underground muon detector [83](sometimes reffered to as Zohzan, ac-

cording to the name of the hill under which it is located), consists of two horizontal layers

vertically separated by 1.5 m. Each layer is divided in a 5× 5 square array. Each elements

is made of a 1 m×1 m×0.1 m plastic scintillator viewed by two PMTs of 12.7 cm diameter.

An event is registered when for each detector, two PMTs simultaneously detect pulses each

shaped with a width of 300 ns. For the analysis carried in [83], hourly muon rates have

been considered detected in a pad of 17 detectors allowing a measure both of eastern and

western rates (East-Western method).

2.3.5 Tibet ASγ

The Tibet ASγ is an air shower detector located at Yangbajing, in Tibet, China [76].

In its definitive phase (Tibet III) is composed of 497 fast timing (FT) and 36 density

(D) detectors, covering a surface area of 22050 m2. Each FT detector contains a plastic

scintillator plate and a 2 inch PMT. A 0.5 cm thick lead plate is placed on top of each

counter in order to increase the sensitivity by converting a γ ray into an electron-positron

pairs. A CR event is considered when any fourfold coincidence occurs in the FT counters.

2.3.6 Milagro

The Milagro observatory is a water Cherenkov located in New Mexico, at 2630 m above sea

level [77]. The detector is composed of 80 m×60 m×8 m pond filled with ∼ 23 million liters

of purified water and protected by a light-tight cover. The central pond is instrumented

with two layers of PMTs: the upper layer (450 PMTs under 1.4 m of water) detects air

shower electrons and gamma rays, while the lower layer (273 PMTs 6 m under the surface)

detects gamma-hadron separation. The direction of an air shower is reconstructed using

the relative timing of the PMTs hit in the top layer of the pond. The pond is surrounded by

a 200 m×200 m array of cylindrical, polyethilene “outrigger” tanks of 2.4 m diameter and

1 m height. Each tank is filled with ∼ 4000 l of water and is monitored by a single PMT

located at the top. Cosmic ray anisotropy is studied by comparing the rates measured

from couple of “telescopes” located in the same forward and backward angle respect to the

0° hour angle (Forward-Backward method).

2.3.7 IceCube and IceTop

IceCube is a neutrino observatory located at the geographic South Pole [78]. Ice Top is

an air shower array located above Ice Cube at 2835 m altitude respect the ice sheet [79].

IceCube was completed in December 2010. It consists of 84 strings, each equipped with 60

optical sensors between 1450 and 2450 m below the surface. IceTop consists of 81 stations
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organized in a triangular grid at 125 m of distance each other, and covering an hexagonal

area of 1 km2. Each station consists of two tanks of frozen clean water separated by about

10 m. Each tank contains two optical sensors which detect Cherenkov light emitted by

leptons present in cosmic ray air shower. IceCube is able to detect cosmic muons with

energies corresponding to primary cosmic ray median energy from 20 TeV up to 400 TeV,

while IceTop is dedicated to the observation of cosmic ray of PeV energies.
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2.4 Interaction with Solar Cycle as Observed in Gran Sasso

Cosmic Muon Data

Combined toghether, cosmic muon flux data recorded in the experiments of MACRO,

LVD and Borexino span a period of 21 yr complessively. This represents a usefull probe

to investigate long-term variations in cosmic muon flux. In fact, a part from the seasonal

variation due to atmospheric variations (see next section), the likelihood and Lomb-Scargle

analysis of the Gran Sasso dataset show a strong evidence of an 11yr component of an

amplitude of 0.4% and the first maximum in March 1996 [91] . This is an interesting

result, since no solar cycle influence is expected for Cosmic Rays with rigidity >10 GV.

Neverthless the analysis carried out in Ref. [91] cannot permit to recostruct the muon

11-yr mode, since for the likelihood analysis it is necessary to choose a priori a function.

If the muon 11-yr oscillations depend on solar cycle, then it is a no-trivial task decide

which function can adequately describe oscillations which are expected to be in this case

non-stationary.

For this reason we have reanalized Gran Sasso muon flux data through the EMD method,

which allows to obtain in adaptive way the principal oscillations embedded in the data.

The same method applied to sunspot number and atmospheric temperature allows a direct

comparison of the cosmic muon 11-yr mode with the long term variations in the atmospheric

temperature, such as with the main solar cycle, thus providing a powerful tool to investigate

more accurately the nature of the signal.

2.4.1 Cosmic Muons Flux and Correlation with Atmospheric Tempera-
ture

Cosmic muons detected in the underground experiments are originated by the decay of

charged mesons, which are produced in the interaction of primary cosmic rays with atmo-

spheric molecules (see Sec 2.1). The production rate of muons is strictly dependent on the

variation of the stratospheric temperatures. In fact, when the temperature increases, the

density of the air decreases, thus resulting in an enhancement of the probability that a

meson decay before interacting.

The correlation between cosmic muon rate and atmospheric temperature is usually ex-

pressed through the relation

∆Rµ
R̄µ

= αT
∆Teff
T̄eff

(2.3)

where R̄µ is the mean cosmic muon rate, ∆Rµ = Rµ − R̄µ, T̄eff is the average effective

temperature, ∆Teff = Teff − T̄eff and αT is the atmospheric depth-weighted temperature

coefficient.
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The effective temperature is evaluated as an averaged temperature weighted with atmo-

spheric depth, that is

Teff =

∑
i [T (Xi) /Xi] [exp (−Xi/Λπ)− exp (−Xi/ΛN )]∑

i (1/Xi) [exp (−Xi/Λπ)− exp (−Xi/ΛN )]
(2.4)

whereXi is the atmospheric depth at the i-th pressure level, Λπ = 160 g/cm2 and ΛN = 120

g/cm2 are the atmospheric attenuation length for pions and nucleons, respectively. The

relation between pressure and atmospheric depth considered is X = P/g, with g the

acceleration of gravity.

For this work we have computed the effective temperature from atmospheric parameters

measured at Pratica di Mare station and available on the Integrated Global Radiosonde

Archive (IGRA) web site.

The Integrated Global Radiosonde Archive (IGRA) is a dataset from the National Climatic

Data Center (NCDC), collecting radiosonde and pilot balloon observations at more than

1500 globally distributed stations. Radiosondes are launched at different periods of day and

transmit their measurements to ground receiving stations, where they are processed into:

pressure, temperature, dewpoint depression, geopotential height, wind speed and direction.

At the present, NCDC database provides data recorded from each station during its period

of activity and monthly data from all stations at two periods of day, i.e. at 00 and at 12

UTC. Monthly data are given at several pressure levels and mean values are given only if

at least 10 values for a particular station, month, nominal time and level are available. For

more details see Ref. [92].

2.4.2 Results of EMD Analysis of Cosmic Muon Flux Recorded at Gran
Sasso

The dataset obtained by combining data from MACRO, LVD and Borexino detectors,

consists of 223 monthly differential rate, from January 1991 to May 2011 [91]. The energy

threshold of the muons detected at Gran Sasso is 1.3 TeV.

In Fig. 2.4 are superposed the Gran Sasso muon flux data and the relative variation of

effective temperature calculated from atmospheric data.

The Lomb-Scargle periodogram of monthly muon data indicate a long-term component

with a period of ∼ 10 yr. As we can see in Fig. 2.5, where the periodogram of the

whole dataset is compared with that obtained from the individual experiments, the main

contribution to the significance comes from LVD dataset.

Cosmic muon flux, effective temperature and sunspot number data have been decomposed

into IMFs using an SD parameter value of 0.01. In Fig 2.6 is shown the significance of the

IMFs extracted through the sifting method, according to the Wu-Huang test . From the

figure we can see the presence of an 11-yr component for muons with a significance higher
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Figure 2.4: Superposition of relative variation of Cosmic Muon flux as recorded from
Gran Sasso experiments (black dotted points) and effective temperature calculated from

atmospheric parameters recorded at Pratica di Mare station (red rhombic points).

than 99%. The results of EMD analysis of muon, temperature and sunspot number are

summarized in Figs. 2.7÷2.9 . We can see the anticorrelation between cosmic muon and

sunspot number 11-yr modes, represented for both by the 5th IMF. An IMF oscillating

with characteristic period of ∼ 10 yr is also present for the effective temperature (5th IMF)

which, on the other hand , seems no correlated with 11-yr mode detected in cosmic muon

dataset.
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Figure 2.5: Lomb-Scargle periodograms of monthly averaged muon data from the whole
dataset and from the individual experiments.

Figure 2.6: Wu-Huang singnificance test for cosmic muon (upper panel), effective tem-
perature (middle panel) and sunspot number (lower panel) IMFs. The dashed lines rep-
resent the 1th and 99th percentile of the expected distribution expected for white noise
signal. For each dataset, the energy content of each IMF is normalized to the 0th IMF

energy, since the 0th order IMF is supposed to be predominantly noise fluctuations.
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Figure 2.7: IMFs obtained from cosmic muon data. The original dataset is shown in
the upper panel.

Figure 2.8: IMFs obtained from effective temperature data. The original dataset is
shown in the upper panel.
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Figure 2.9: IMFs obtained from sunspot number data. The original dataset is shown in
the upper panel.

The 11-yr signal both for cosmic muons and for sunspot number has been reconstructed

with the correnspondent 68% CL through Monte Carlo method, where 250 realizations of

the original dataset have been produced using random number normally distributed with

mean value the center of the individual data point and with standard deviation equal to the

data error. Each realization is then decomposed into IMFs. Finally the resulting signal with

the corresponding 68% CL are computed by the mean signal and the standard deviation

of the IMFs with characteristic period in the range 8÷16 yr. In Fig. 2.10 are reported the

11-yr mode extracted from muon and sunspot data with the corresponding 68% CL, while

in Fig. 2.11 is shown the histogram of correlation coefficient obtained by comparing 10000

realizations of couples of muon and SSN 11-yr signals, where each new dataset has been

obtained from the original by the generation of a random number normally distributed

with mean value and standard deviation respectively equals to the center value and error

of the individual data point.
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Figure 2.10: In the upper panel is shown the 11 yr mode reconstructed for cosmic muon
data with the corresponding 68% CL, while in the lower panel the 11-yr mode and the

corresponding 68% CL are shown for sunspot number.

Figure 2.11: Histogram for correlation coefficient obtained by 10000 realizations of muon
and sunspot 11-yr signals. The filled dot represents the mean value of the correlation
coefficient, while the red bar show the 95% CL. The mean value of r is -0.59, and the 95%

CL is [−0.73, −0.46].
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2.4.3 Discussions

The EMD analysis carried on cosmic muon flux recorded at MACRO, LVD and Borex-

ino detectors have confirmed the presence of an 11-yr mode in the cosmic muon signal

as claimed in [91], with the principal contribution to the significance coming from LVD

dataset. Furthermore the anticorrelation found with the sunspot 11-yr cycle can represent

a confirmation of the 11-yr modulation in cosmic muon anisotropy observed from [83]. As

suggested in the paper of Matshushiro collaboration, at the origin of this anticorrelation

for TeV cosmic rays there be an energy exchange of cosmic rays with current sheet in the

far regions of heliosphere. If confirmed, further analysis on modulation in solar time frame

of galactic cosmic ray flux can provide important informations on the structure of magnetic

field at heliospheric scales and on the mechanisms of interaction of cosmic rays with their

magnetic fields.





Chapter 3

Time Variability of the

Fine-Structure Constant

3.1 Fundamental Constants

In physics fundamental constants describe properties of Nature which are the same in

any point and in every instant of time. They are different from mathemathical constants

since those are pure numbers which can be evaluated with arbitrary precision (for example

through a series), while physical constants require a measurement in order to determine

their value. Furthermore their numerical value depends on the unit system adopted. In

certain cases it is possible to derive dimensionless constants. Even if this possibility avoids

the ambiguity on their numerical value, their origin, as well as that of the other dimensional

constants, still represents a theoretical challenge.

Although the experiences based on experimental observations indicates that this constants

have the same value despite of the point in space and in time the experiment is performed,

we can ask ourself if their value has been the same even on cosmological scales, that is if their

value have been the same throughout the evolution of the Universe. The hypotesis of a time

evolution of constant values on cosmological time was suggested from Dirac [93, 94] who,

by observing the extremely low ratio between gravitational and electromagnetic interaction

for elementary charged particles (which for a system composed of a proton and an electron

is of the order O
(
10−39

)
), as well as the ratio between live time of the Universe and atomic

time unit, argued that fundamental constants such as G may vary in time as the inverse

of the time evolution of the Universe (G ∼ t−1). This hypotesis, known as Large Number

Hypotesis, has been recently reformulated in modern unification theories of fundamental

interactions in the so called “Hierarchy Problem” [95], which is focused instead on the

extremely low ratio between the mass of elementary particles and the Planck mass unit

defined as

59
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MP =

√
~c
G

= 1.22 · 1019 GeV (3.1)

Even if it seems unlikely that the value of G may scale as t−1 as suggested from Dirac, time

evolution of fundamental constants are in principle not forbidden, but particular attention

has to be paid when functional forms for constants such as G = G (t) are introduced in

the equations where they appear, as pointed out by Barrow [96], who noted that, while in

newtonian mechanics it is possible to replace G with G (t), the same substitution applied

to the Einstein field equations lead to a contraddition when we impose the conservation

of momentum-energy tensor. The Brans-Dike [97] theory offers an example of a varying

coupling constant, since in the equations which describe the gravitational field G is replaced

by the inverse of a scalar field Φ−1. At the same time Einstein equations of gravity

are modified in order to take in account of the vanishing covariant divergence of energy-

momentum tensor. Other theories have been developed taking into account of varying speed

of light or electron charge, the description of which is out of the aim of our work. Here

we remark one of the fundamental consequences of such time (and possibly also spatial)

dependence of fundamental constants, that is the violation of the Einstein’s Equivalence

Principle. This principle consists of three main statements [98]:

• The Weak Equivalence Principle (WEP) which states that the trajectory of a

freely falling neutral body is independent of its structure and composition;

• The Local Lorentz Invariance (LLI) states that the result of a non-gravitational

experiment in a freely falling laboratory is independent of the velocity of the frame;

• The Local Position Invariance (LPI) states that the result of a measure in a

non-gravitational experiment is independent of where and when it is performed.

The Strong Equivalence Principle (SEP) extend the above principles also to gravita-

tional experiments [99].

3.2 Spatio-Temporal Pattern for the Fine-Structure Constant

from QSO Absorption Spectra

The most stringent evidence of a variation in space and time of a fundamental constant

comes from the analysis of Quasi-Stellar Objects (QSO) absorption spectra recorded at

Keck and VLT telescopes [100, 101], which shows evidence of spatio-temporal variations

for the fine-structure constant defined as

α =
e2

~c
= 7.2973525698 (24)× 10−3 (3.2)
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where e is the electron charge, ~ is the reduced Planck constant and c the speed of light.

3.2.1 The W. M. Keck Observatory and HIRES Spectrometer

The W. M. Keck Observatory [102] consists of two astronomical telescopes with 10 m

diameter primary mirror located at Mauna Kea, Hawaii (USA), at an elevation of 4.145

meters and at ∼ 20° N latitude.

The light of quasars used for the QSO analysis are collected from HIRES (High Resolution

Echelle Spectrometer) facility. It consists of a grating cross-dispersed, echelle spectrograph

which operates from 300 up to 1000 nm [103].

The Keck data used in the QSO analysis were acquired whilst HIRES had only one CCD

chip, so that several exposure are needed to yeld full wavelength coverage [101].

3.2.2 The Very Large Telescope and the UVES Spectrometer

The Very Large Telescope [104] is located in the Atacama Desert (Chile) at 2635 m altitude

and ∼ 25° S latitude. It consists of four telescopes of 8.2 m diameter primary mirror. The

structure is complemented by four Auxiliary Telescopes of 1.8 m aperture.

The QSO spectra are recorded from the UVES (Ultraviolet and Visual Echelle Spectro-

graph) facility, which spectral range cover from 300 up to 1100 nm. Respect Keck/HIRES

spectra, for that recorded from UVES one observation is needed to cover almost the entire

spectral range [101].

3.2.3 Absorption Lines in Astronomical Spectroscopy

The stellar electromagnetic spectrum is characterized by absorption and emission lines due

to the interaction of electromagnetic radiation and the matter through which it travels.

An absorption profile reflects the different processes involved. The intensity reduction

is essentially due to a continuum absorption through the scattering between photons and

unbounded electrons, which is known as Thomson scattering and which cross section is pro-

portional to α2 r2
e , with re = h/mec the classical radius of electron , and to the transitions

of electron states as consequence of the absorption of photon. In this case the probability

of absorbing photon has a lorentzian distribution which is broadened by the effect of the

relative motion of the atoms to the center of mass reference frame (Doppler effect) and

other effects which take place at smaller scales respect to the photon mean free path and

generally denoted in literature as “turbulent” (or “microturbulent”) broadening. The con-

volution of the lorentzian distribution and the Doppler effect gives a Voigt distribution for

the cross section, which functional form will be discussed later.

The intensity as a function of the frequency can be expressed through the expression
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Figure 3.1: Quasar Spectrum as observed at Earth. Image from[106].

Iν = ICν exp (−τν) (3.3)

where τν is the optical depth of the absorbing medium and that is proportional to the

column density (that is the number of particles per unit area along a given sightline) and

the absorbing coefficient. For the absorption due to a transition of frequency ν0 in the rest

frame of the cloud, the absorbing coefficient is proportional to

κν ∝
H (v, a)

∆νb
(3.4)

where ∆νb is the broadening due to Doppler effect and turbulent term and H (v, a) is the

Voigt profile

H (v, a) =
a

π

ˆ +∞

−∞
dy

e−y
2

(v − y)2 + a2

where v = (ν − ν0) /∆νb while a = Γ/ (4π∆νb) is the transition damping constant normal-

ized with respect to the broadening width. At the spectrograph the spectrum results in

a convolution of the intensity profile with the instrumental response or IP (Instrumental

Profile) [105].

Typical QSO spectum is characterized by a series of absorption lines in the ultraviolet

region. These absorption lines are due to electron transitions in the intervening hydrogen

atoms (see [105] and references therein). The absorptions from lower H I column densities

come essentially from interstellar medium in which galaxies are embedded, while larger H

I column densities are originated from dark halo of galaxies disks. In the visible region of
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the spectrum, there are several absorption lines due to ionized metals1 probably associated

to galactic halos or disks.

3.2.4 Spatio-Temporal Variations of Fine-Structure Constant from the
Many Multiplet Method for Analysis of QSO Absorption Spectra

The absorption lines of heavy elements (far from Ly-α forest region of the spectrum) can

give informations on fine-structure constant at the redshift where the absorption clouds

are located. In particular the analysis of multiplet transitions instead of the alkali doublet

systems results in an increased sensitivity and statistics for the determination of difference

of fine-structure constant value at the redshift of the absorption system respect to that

measured at laboratory [105] This is possible if the relativistic corrections to the energy

interval for transition to multiplet states are taken into account [107, 108]. The new

expression for the frequency after the introduction of correction factors, can be written in

the form

ωz = ω0 + q1x+ q2y (3.5)

where x = (αz/α0)2 − 1 and y = (αz/α0)4 − 1, with αz and α0 denoting the fine-structure

constant value at redshift z and in the laboratory, respectively. By retaining only the terms

of order O (∆α/α0), where ∆α/α = (αz − α0) /α0, Eq. 3.5 can be rearranged in the form

ωz = ω0 + qx (3.6)

with q = q1 +2q2. The value of ∆α/α is obtained by minimization of χ2of a multiple Voigt

profile fit with ∆α/α as an additional free parameter [109].

The results of analysis carried on 128 absorber systems from QSO spectra recorded at

Keck/HIRES give ∆α/α = (−0.574± 0.102) × 10−5, resulting in a smaller value of the

fine-structure constant in the past [100].

The recent analysis of Keck/HIRES QSO absorption spectra integrated with that from

VLT/UVES (141 and 154 absorber systems respectively) indicate how a weighted mean

model seems not adequately to capture all the informations in the data [101]. Infact the

weighted mean of ∆α/α from the VLT/UVES data is ∆α/α = (0.208± 0.124) × 10−5,

which seem in contraddiction with the previous results obtained by Murphy et al. . The

different locations of the two observatory suggests a spatial pattern for the values of ∆α/α

as the solution of this apparent paradox. The dipole model applied to the combined data is

preferred at 4.1σ respect the monopole-only model, with an angular distribution pointing in

the direction RA=(17.3± 1.0) hr and dec=(−61± 10) deg and amplitude 0.97+0.22
−0.20×10−5

[101]. Aside from the dipolar structure, a significant monopole at low-z has been detected,
1Here intended as elements heavier than helium.
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Figure 3.2: Distribution along redshift coordinate of the ∆α/α for Keck/HIRES (upper
panel), VLT/UVES (middle panel) and data obtained from combinig both samples (lower

panel).

at which significance the Mg isotopic abundances at the low redshift respect to terrestrial

values may contribute, since the isotopic spacing scales as ∆ωi ∝ ω0/m
2
i , where mi is the

mass of the i-th specie [100, 101].

3.3 EMD Analysis of ∆α/α from Keck and VLT Data

In this section we show the results of the EMD analysis applied to Keck/HIRES and

VLT/UVES QSO absorption spectra[110] in order to investigate the possible existence of

temporal structures in the ∆α/α values. The distribution respect to the redshift coor-

dinate of the dataset from each observatory and the sample obtained by combining the

two datasets are shown inf Fig. 3.2. We will refer to the latter sample as the “combined

sample”. For the analysis we have considered 293 of the global sample of 295 absorber

systems, since we have excluded the two outliers individuated through the Least Square

Trimmed analysis, that is the two samples for which the absolute value of the standard-

ized residual respect the weighted mean ∆α/α value exceeds 3. All the data have been

considered combining statistical errors with random errors as indicated in Ref. [101].

The EMD analysis have been carried over Keck and VLT datasets and that obtained

combining both datasets. In particular the three datasets have been rearranged in a regular

grid of 100 bins in redshift coordinate, from the minimum and the maximum of z of each
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Figure 3.3: IMFs obtained from Keck/HIRES dataset.

sample. Each empty bin has been removed and the new datasets consist of 65 ∆α/α values

(obtained as weighted mean of the values which lie in the same bin) for Keck telescope, 59

for VLT and 74 for the combined sample. The results of EMD analysis (with SD parameter

equal to 0.01) are shown in Figs. 3.3÷3.5 where are reported the IMFs extracted from Keck,

VLT and combined samples respectively. We note that the Keck IMFs C5÷C7 are similar to

the same order VLT IMFs. These modes looks distorted in the combined sample. Probably

this distortion may be a reflection of the spatial anisotropy of the ∆α/α values.
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Figure 3.4: IMFs obtained from VLT/UVES dataset.

Figure 3.5: IMFs obtained from sample of combined Keck and VLT data.

The significance of the IMFs has been evaluated through the Wu-Huang test [111] (see Fig.

3.6). The result of the test give for the two Keck IMFs C5 and C6 a significance at 90%

CL, while the significance for the C5 and C6 VLT modes is higher resulting in a 99% CL
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Figure 3.6: Wu-Huang significance test for IMFs extracted from ∆α/α datasets.

of significance. This results suggest a more complicated spatio-temporal pattern for the

∆α/α respect to the dipolar distribution observed by King et al..

From the MonteCarlo EMD analysis carried on each sample and producing for each of them

a set of 1000 realizations, we have obtained from VLT that 1432 IMFs have a characteristic

period between 1.5 and 3.5 (in units of redshift). Of these 1432 IMFs, 473 have a period

in the range [1.5, 1.8] in units of redshifts, while 959 IMFs have a period in the range [1.8,

3.5]. This significance is reduced in the analysis of Keck and combined samples, although

for the combined sample a structure in the above mentioned range is still visible. The IMFs

with periods included in the above mentioned range have been used, toghether with the

trends, to reconstruct the time variations of alpha and its 68% Confidence Interval, and to

compare the signals obtained from the different datasets. In fig. 3.8 the signals are shown

as a function of fractional lookback time. The ΛCDM parameters used are: H0 = 70.5 km

s−1, ΩM = 0.2736 and ΩΛ = 0.726 [112, 101] . The new signals obtained for both Keck and

VLT show significant structures, in particular at higher redshifts. For the combined sample

the oscillations are reduced in amplitude and the global signal show a general trend.
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Figure 3.7: Histogram of VLT (blue solid line) Keck (red dashed line) and VLT+Keck
IMF characteristic periods.

Figure 3.8: Time evolution of ∆α/α as seen from Keck, VLT and combining both
datasets.
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Figure 3.9: Time evolution of dilaton scalar field from [114].

3.3.1 Time Variations of ∆α/α as a Signature of a Dynamical Scalar
Field?

The remarkable property of the oscillations as seen from the temporal variations recon-

structed for Keck and VLT, is that the oscillations, particularly clear at higher z, seem

to change their frequency in time. The feature may support the idea proposed by Fu-

jii to describe the time variations of the fine-structure constant through the variations

of the dilaton scalar field σ [113]. He noted that the Friedman solution with k = 0 of

the cosmological equations in the two-scalar fields scenario for the dilaton field σ (which

toghether with another scalar field χ describes the dark energy content in a scenario of

the simplest scalar-tensor theory) shows regions of plateau, where the values of σ and χ

are constant, with subsequent small transitions, acting as “mini-inflations”, during which

σ exhibits damped oscillations in the regions close to the actual age of the universe (the

evolution described in time coordinate choosen as log (t/τP ), with τP the Planck time

unit). We note that these oscilations results in a time-varying frequency in the redshift.

Subsequentely he proposed to fit the Keck data by means of a phenomenological model of

a damped oscillator, thus obtaining that, even if the resulting χ2 variable was comparable

with the weighted mean fit, his model has the characteristic to take into account of the

zero value for ∆α/α in the present epoch.

Our results seem to mark a further step in this direction, since the signals we have obtained

are obtained from the data, thus without supposing any a priori model. In Fig. 3.10 we

report the signals shown in Fig 3.8 with the time scale converted to thelog (t/τP ) coordinate.
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Figure 3.10: Same as in Fig. 3.8 but as function of age of universe normalized to Plack
time unit.

In this new coordinate the oscillations of VLT and Keck look more “regular”, thus confirming

in a certain sense that the model fit proposed by Fujii may represent a usefull way to

investigate the temporal evolution (and possibly also the spatially distribution) of the

fine-structure constant.



Appendix A

Error Propagation Study in the

EMD Analysis and its application to

OPERA Data Analysis

In Sec. 2.4 we have shown the results of EMD analysis carried on cosmic muon data. By

means of a Monte Carlo simulation, a 68% confidence interval has been obtained both for

cosmic muon flux and sunspot number 11-yr signals. The regions of confidence for the sig-

nals were used then to estimate the Pearson’s correlation coefficient and the corresponding

95% CL. In this section we will describe in details the improvements on the EMD method

which allow the study of error propagation in the IMFs extracted from a time series. In

the next section we will apply the new analysis tool to the study of proton and neutrino

waveforms used in the recent analysis for the neutrino velocity measurement in the OPERA

experiment [115].

A.1 The Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) method is a technique developed to process

nonstationary data [116] and successfully applied in different contexts, e.g. [117, 118]. It

is able to isolate from a given signal the periodicities and their relative amplitudes in an

adaptive way, i.e. no basis of functions, respect to which the signal has to be decomposed,

have to been established a priori. In the EMD framework, a time seriesX (t) is decomposed

into a finite number of oscillating Intrinsic Mode Functions (IMF) as

X (t) =

m−1∑
j=0

Cj (t) + rm (t) (A.1)
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The IMFs Cj (t) represent a set of basis functions obtained from the dataset under analysis

by following the “sifting” procedure described by Huang et al. [116]. This procedure starts

by identifying local minima and local maxima of the raw signal X(t). The envelopes of

maxima and minima are then obtained through cubic splines and the mean between them,

namely m1 (t), is calculated. The differences between the raw time series and the mean

series h1 (t) = X (t) − m1 (t), represents an IMF only if it satisfies two criteria: 1) the

number of extremes and zero crossings does not differ by more than one; 2) at any point,

the mean value of the envelopes defined by the local maxima and the local minima is zero.

Although h1 seems to satisfie the required properties, in the sifting properties some new

extrema can be generated as well as old ones can be exaggerated. In order to obtain a

more symmetric signal, the sifting process has to be repeated. The two commonly used

parameters used to stop the sifting algorithm are the Cauchy type criterion, according to

which the sifting process is stopped when the parameter

SD =

T∑
t=0

[∣∣h1(k−1) (t)− h1k (t)
∣∣

h2
1(k−1) (t)

]
is smaller than a fixed value (typically between 0.2 and 0.3) [116], and the s number defined

as the number of consecutive times the two criteria for an IMF have to been satisfied.

Typical values for the SD parameters are 0.2− 0.3 , while for s number are racommanded

values between 4 and 8 [119].1

The significance of the IMFs extracted can be tested by means of the Wu-Huang test

[111], where the energy content of the mode Ej ∝
∑

iC
2
j (ti) with characteristic period T̄j

is compared with that expected in the case of IMF extracted from a white noise signal.

In this case, for the j-th IMF, the energy is a variable which follows a χ-squared like

distribution, with mean Ēj ∝ 1/T̄j and degrees of freedom (dof) NĒj , where N is the

total number of data points.

A.2 Monte Carlo Simulation in the EMD Analysis

In this section we will describe a Monte Carlo based alghoritm developed during our doc-

toral work, through which the IMFs and their corresponding 1σ confidence interval are

built, starting from an ensemble of simulated different realizations of the original signal.

The different steps of the alghoritm can be summirized as follows:

1. Starting from a given time series, an ensemble of N realizations of the signal is

produced by taking, for each data point, N random numbers normally distributed,

with mean value and standard deviation equals to the central value and the error
1Throughout our work we have adopted SD parameter as sifting stopping criterion. The SDmax value

used is 0.2, unless otherwise specified.
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associated to the data point, respectively. In principle the error associated to the

point can be asymmetric.

2. Each realization is decomposed into its IMFs and only the IMFs which have a signif-

icance according to the Wu-Huang test higher than an a priori fixed value, e.g. 99%

CL, are retained. The trends extracted from the N realizations are used instead to

build the averaged trend of the signal and the corresponding standard deviation.

3. For each significant IMF the mean period, defined as T̄ = 2π/ω̄, with ω̄ the average

of instantaneous frequency taken over the whole time window, is calculated and an

histogram of the mean periods is derived.

4. All the IMFs with mean period included in a range [Tmin, Tmax] are used to build the

averaged IMF on the time scale of interest, toghether with its corresponding standard

deviation.

We have tested for the first time the new algorithm for the study of proton and neutrino

distribution used at OPERA experiment for the measurement of neutrino velocity [120].

After a brief summary of the experiment, in the next section will be presented the results

of the EMD analysis that we have carried on proton and neutrino distributions.

A.3 EMD Analysis of Proton and Neutrino Distributions from

the OPERA Experiment for the Neutrino Velocity Mea-

surement

The OPERA neutrino detector is located at the underground Gran Sasso Laboratory

(LNGS). It is dedicated to observation of νµ → ντ oscillations through the detection of τ−

lepton produced for charged current (CC) (see [120] and references therein). Furthermore

through the detector it is possible to determine the neutrino velocity by measuring the

time of flight (TOFν) of neutrinos produced in dedicated beams at CERN (CNGS beams)

with a precision at level of ns. Here we breafly resume the characteristic of the experiment

to measure neutrino velocity as described in [120].

The first measurement of neutrino velocity was performed using data taken during 2009,

2010 and 2011. In the first phase of the experiment a beam of protons accelerated at

400 GeV/c with the CERN Super Proton Synchrotron (SPS) is focused on a graphite

target. The exposition to the proton beam lasts 10.5 µs. For each year are considered

two proton extractions separated by an interval of 50 ms. Charged mesons produced in

the collision are directed to a 1 km long tunnel where they decay in muons and neutrinos.

Neutrinos produced in the decay have mean energy of 17 GeV. After travelling for 730 km

(i.e. the distance between CERN and LNGS) the neutrinos are revealed in the OPERA
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detector. The distribution of CERN to Gran Sasso (CNGS) neutrino beam is reconstructed

at OPERA detector and is compared with the proton beam waveform. The distance

between the proton beam extraction point and the origin of the OPERA reference frame

is dCERN−OPERA = (731278.0± 0.2) m.

In order to measure the TOFν it is important to create a permanent time link between

CERN and OPERA. This is obtained with two identical systems installed at CERN and

at LNGS and composed by a Septentrio PolaRx2e GPS receiver operating in “common

view” with the receiver installed in the other facility and a Cs4000 clock which provide the

reference frequency for the PolaRx2e.

Three delays for the CERN timing chain have to be taken in account:

1. The delay from the PolaRx2e 1 Pulse Per Second (1 PPS) to the Control Timing

Receiver (CTRI) module used to tag the time-stamp the kicker magnet trigger-signal

∆tUTC = (10085± 2) ns;

2. The delay to produce the replica of the signal from the CTRI to the digitisation of

the Wave Form Digitizer ∆ttrigger = (30± 1) ns;

3. The delay for the signal tagging the proton arrive to the BCT, to the WFD ∆tBCT =

(580± 5) ns.

TOFν is measured with respect to the BCT waveform which is tagged w.r.t. the UTC.

At OPERA detector the UTC time source is provided by a GPS system ESAT 2000 which

1PPS output is logged with a CTRI with respect to the PolaRx2e installed at LNGS

providing the time link with CERN.

The delay of the transmission of the ESAT 1 PPS signal to the OPERA Master Clock is

measured through a 8.3 km optical fibre through the two way method, which consist to

compare the delay for a signal to travel along a path A with the time required for a signal

to travel along another fibre B. The same signal is then sent from the origin and come back

travelling along both the fibres. By the comparison of the difference between the delays

(tB−tA) and the total interval used to travel along both the fibres (tA+tB) is then derived

tA. The delay measured in 2006 gives the value (40996± 1)ns.

Other two delays have to been considered due to the sum of the delays from the moment

the photons produced in the detector reach the photocatode to the time-stamp of the

signal and the internal delay of the Field Programmable Gate array which send the Master

Clock signal to the frontend cards (FPGA latency) which are equals to 59.6 ns and 24.5

ns respectively.

Finally a maximum likelihood procedure is carried to measure the time lag between the

proton waveform and the neutrino distribution.

The previous results of 2011 given a difference of TOFc-TOFν∼61 ns which induced to the

conclusion of superluminal neutrinos [115]. Further checks allowed to relate this difference
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to a not properly connected cable for the measure of the GPS 1 PPS output transmission

to the Master Clock, which induced a slower response of the optical/electrical converter of

the Master Clock [120]. This delay was equals to 73.2 ns.

A second method to measure neutrino velocity consisted to use short bunches wide-spaced

proton beams [121, 122]. This method results in a less statistics accumulated in the neutrino

distribution reconstruction but, at the same time, it allows to associate unambiguously

neutrino event to the corresponding proton bunch. The results obtained by using CNGS

bunched beams lasted from October 22 to November 6, 2011 with four bunches of about 3

ns long (FWHM) separated by 524 ns where consistent with the hypotesis of subluminal

neutrinos.

The measure repeated using runs between the 10th and 24th of May in 2012 with extrac-

tions composed of 4 batches of 16 proton bunches (100 ns distance between two consecutive

bunches and 300 ns distance between 2 consecutive batches) and after some improvements

in the timing system, the final 90% CI for neutrino velocity has been estimated:

−1.8 · 10−6 <
vν − c
c

< 2.3 · 10−6

An estimation for antineutrino velocity has been estimated too with the 90% CI corre-

sponding to

−1.6 · 10−6 <
vν̄ − c
c

< 3.0 · 10−6

again consistent with subluminal neutrino hypotesis and according to other measurements

carried in other detectors on LNGS beam [123, 124, 125].

In the next section we will analyse proton and neutrino distribution for both extraction

used in the 2009÷2011 data analysis, in order to study how the proton waveform time

variations are observed in the final neutrino distribution.

A.3.1 EMD Analysis of Proton and Neutrino Waveforms

The data corresponding to the proton and neutrino distributions for the first and second

extractions are taken from the images of Fig. 16 of [120], which are reproduced here in

Fig. A.1.

The error for each data point due to the extraction of the data from the images are of 33

ns and of 0.4 Event/bin for the time and count variables respectively. The EMD analysis

has been carried following the steps of the alghoritm described in Sec A.2 with N = 1000

simulated realizations for each proton and neutrino distribution. For each extraction, the

periodogram derived from the mean periods of the IMFs extracted from neutrino data

which have significance of 99% CL, according to Wu-Huang test, is compared with that

corresponding to IMFs extracted from proton data, the latter binned with 150 ns of bin
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Figure A.1: Proton beam distribution from first (left panel, red line) and second (right
panel, blue line) extraction are compared with the corresponding neutrino distributions

as detected at the OPERA detector. Images taken from [120] (Fig. 16).

width in order to make comparable the time scales of neutrino and proton distributions.

The periodograms are shown in Fig. A.2. We can see that the IMFs extracted from

neutrino data have periods comparable with that extracted from the protons, except for

the largest period distribution which for neutrino data have a maximum at 6000 ns, while

for protons have a maximum at 7000 ns. From the periods distributions we have built the

new IMFs both for neutrino and for proton data. In particular, for each dataset we have

built three IMFs, denoted Clow, Chi and Cn: Clow has been derived from the lowest modes,

with periods in the range T̄ ∈ [5.5, 7.5] · 103 ns, Chi has been derived from the highest

frequency modes and which periods lie in the range T̄ ∈ [3.5, 4.5] · 103 ns. The modes with

periods lower than 3000 ns have been grouped in a single mode denoted Cn, since those

are expected to be significantly affected by noise and no relevant structures are expected.

The resulting IMFs and the mean trend extracted from neutrino and proton data are

compared in Fig. A.3. For neutrino signals the 1σ confidence region is colored in cyan,

while for the proton signals, the 1σ confidence region bound are marked with dashed line.

The trend and IMFs of neutrinos have been compared with the corresponding obtained

from proton data through a correlation test. In this test 10000 realizations of couples

of neutrino and proton signals have been obtained through a Monte Carlo simulation

analogous to that used to extract the ensemble of IMFs and for each couple, the Pearson’s

correlation coefficient r have been calculated. In Fig. A.4 are shown the histograms of r

variable.
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Figure A.2: For each extraction are reported the periodogram of characteristic IMF
periods for both neutrino (black) and proton (red) data. Proton data have been binned

with 150 ns bin width.

Figure A.3: For each extraction are shown, from to to bottom, the trend and the Clow,
Chi and Cn IMFs, with the corresponding 1σ CI, extracted both for neutrino and for

proton distribution data.
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Figure A.4: Histograms of Pearson’s correlation coefficient obtained by evaluating the
correlation coefficient for 1000 realizations of couples of neutrino and proton signals. In
particular black histograms are obtained by comparing neutrino and proton trends, red
histograms correspond to comparison between neutrino and proton Clow, green histograms
are obtained from Chi modes comparison and blue histograms are relative to Cn modes.

A.3.2 Discussions

Through the Monte Carlo alghorithm applied to the EMD technique, from proton and neu-

trino distributions for first and second extractions of CNGS beams, we have extracted the

significant IMFs toghether with the trends. In particular we have obtained from neutrino

distributions two IMFs which strongly correlate with the corresponding IMFs extracted

from proton distributions. However the IMF obtained from the low-frequency modes of

neutrino dataset exhibits a modulation with characteristic period lower than the corre-

sponding obtained from proton dataset. On the other hand the trend of neutrino distribu-

tion looks flatter, thus indicating that the main contribution in the amplitude of neutrino

signal is in the trend, thus revealing a small distorsion in neutrino distribution.



Appendix B

Helioseismic Instabilities Induced by

Time-Dependent Background

Magnetic Fields

In Sec. 1.5.3 we have considered a phenomenological model to interpret the quasi-biennial

modulation of neutrino flux as induced by a background magnetic field which varies slowly

in time. Furthermore new features arise from magneto-gravity theory when a more com-

plex time dependence is assumed for the background magnetic field. In this appendix we

will show the results of the model which we have developed during this doctoral work, of

magneto-gravity waves in presence of a time-dependent background magnetic field charac-

terized by a low-pass bandwidth.

B.1 MHD Equations with a time-dependent Background Mag-

netic Field

We start our analysis from the basic set of MHD equations and the supplementary as-

sumptions used for Magneto-Gravity Waves theory presented by [67]. The MHD equations

considered are

• Continuity equation for mass density

d

dt
ρ+ ρu = 0 (B.1)

• Energy conservation
d

dt
P − γP

ρ

d

dt
ρ = − (γ − 1)Q (B.2)
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• Momentum equation

ρ
d

dt
v = −∇P + ρg +

1

4π
[(∇×B)×B] (B.3)

• Faraday’s equation
∂

∂t
B = ∇× (v ×B) (B.4)

In Eq. (B.1), u ≡ ∇ · v. In order to simplify the problem, we neglect the dissipative

terms which appear in the velocity and magnetic field equations. The set of equations is

completed by the supplementary equations for the divergence of magnetic field

∇ ·B = 0 (B.5)

and the gravitational field equation

∇ · g = 4πGρ (B.6)

The equations are symplified if we adopt the following assumptions

(i) An equilibrium situation is assumed where the velocity field and current density are

both zero.

(ii) We neglect energy sources and losses (Q = 0).

(iii) We adopt low-frequency approximation, in order to filter out the pressure p-modes.

Furthermore we assume a rectangular geometry with z-axis corrensponding to the radius-

direction and we consider a background density profile which decay exponentially following

the law ρ0 = ρc exp (−z/H), with H the pressure height scale (equals to 0.095Rsun).

We will assume a constant gravitational field, i.e. g = −gez. This assumption is valid

if we focus our analysis on the radiative zone, where the density scale is smaller than

temperature and gravity scales, as shown in the solar models [1, 126, 127].

B.2 Linearization

The analysis of magneto-gravity waves starts by splitting each variable into background and

fluctuating quantities. Background quatities are assumed constant in time and uniform,

except for magnetic field which we assume having a time dipendence, with a bandwidth

centered at zero and with a cut-off frequency which is smaller than the frequencies which

compose helioseismic spectrum (ωc � {ωa} , with {ωa} denoting the whole set of helioseis-

mic modes). We are in fact interested on the effects induced on magneto-gravity modes by
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the presence of a time-dependent background magnetic field originated, e.g. by dynamo

mechanisms. The equations for the fluctuating quantities can be written as follows

∂tρ
′ − vz

H ρ0 + ρ0u = 0

∂tP
′ − vz

H P0 + γP0u = 0

∂tB0 + ∂tB
′ = −uB0 + B0 · ∇v

ρ0∂tv = −∇P ′ − ρ′gez + ρ0v
2
A [f · ∇b−∇ (f · b)]

(B.7)

where B0 = B0f (t) ex and b ≡ B′/B0.

In order to find out the eigenfrequency spectrum of the system, each variable is decomposed

into its Fourier components along x- and y- direction and in frequency space. In particular

we assume the following convention

A (t) =
1√
2π

ˆ +∞

−∞
dωαA (ωα) e−iωαt

where with A (t) we denote the components in real space, i.e. A (t) = A (x, y, z, t), while

A (ωα) represents the components in the reciprocal space, i.e. A (ωα) = A (kx, ky, z, ωα).

The Inverse Fourier transform from frequency to time domain is defined as

A (ωα) =
1√
2π

ˆ +∞

−∞
dtA (t) e+iωαt

The expression for background magnetic field assumes the form

B0 (t) = B0
1√
2π

ˆ +ωc

−ωc
dωαf (ωα) e−iωαtex

here B0 may denote the mean value of background magnetic field. This imply that for

f (0) we can assume a delta function δ (0).

The equations for density and pressure becomeρ′ = −
1
iω

[
vz
H ρ0 − ρ0u

]
P ′ = − 1

iω

[
vz
H P0 − γP0u

] (B.8)

This couple of equations have the same form as the corresponding equations found in

Ref. [67], as we expect from the linearity of the equations for mass density and pressure.

Non-linear effects arise for velocity and magnetic induction equations, i.e. where the inter-

action of those fields are coupled with background magnetic field. Let we consider Faraday

equation. In the frequency space it behaves as follows
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−iωµ (fµ + bµ) = 1√
2π

´ +∞
−∞ dt eiωµt 1

2π

´ +∞
−∞ dωβ

´ +ωc
−ωc dωγ

· (−uβfγ + fγ · ∇vβ) e−i(ωβ+ωγ)t

(B.9)

By interchanging order of integration and integrating over time variable the exponential

functions, we obtain a delta function δ [ωµ − (ωβ + ωγ)] which we can use to integrate over

ωβ variable and the Faraday equation becomes

− iωµ (fµ + bµ) =
1√
2π

ˆ +ωc

−ωc
dωγfγ (−uµ−γex + ∂xv) (B.10)

Because of the structure assumed for background magnetic field, we can neglect fµ. Fur-

thermore the terms which appear in the form Aµ−γ can be developed in Taylor series

around ωµ

Aµ−γ ≡ A (ωµ − ωγ) ' A (ωµ)− ωγ∂µA (ωµ) +O
(
ω2
γ

)
(B.11)

where ∂µ ≡ ∂ωµ .
The equations for x- and z- components of bµ become1−iωµbx,µ = Ôγfγ (1− ωγ∂µ) (−uµ + ikxvx,µ)

−iωµbz,µ = ikxÔγfγ (1− ωγ∂µ) vz,µ

(B.12)

where for simplicity we have introduced the operator Ôγ ≡ 1/
√

2π
´ ωc
−ωc dωγ . Taking into

account the above rules to approximate convolution products, the equations for x- and z-

components of velocity vector become


−ω2

µvx,µ = ikx
(
c2
suµ − gvz,µ

)
−ω2

µvz,µ = −g∂zvz,µ − (γ − 1) guµ + c2
s∂zuµ

+iωµv
2
AÔγfγ (1− ωγ∂µ) (∂zbx,µ − ikxbz,µ)

(B.13)

It is more convenient to focus on the equation for vz,µ. All the other quantities can be

derived from it. After some algebraic manipulation, the master equation for vz can be

written as follows

∂2
zvz,µ − N2

g ∂zvz,µ + k2
⊥

(
−1 + N2

ω2
µ

)
vz,µ =

k2
⊥v

2
A

ω2
µ

·ÔγfγÔγ′fγ′ (1− ωγ∂µ)
(
1− ωγ′∂µ

) (
−k2
⊥ + ∂2

z

)
vz,µ

(B.14)

1The y- component of perturbations and wave vector can be set equal to zero.
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where k⊥ = kx. Introducing the variable ξ ≡ k2
⊥v

2
A/ω

2e−z/H and omitting terms of order

O
[
(ωγ/ωµ)2

]
, eq. (B.14) becomes2

4θαξ4...v + [(1 + 12θ)αξ − 1] ξ2v̈

+
{[

1− 4
(
K2 − 1

)
θ
]
αξ − 1

γ

}
ξv̇

−K2
[
αξ +

(
κ2 − 1

)]
v = 0

(B.15)

where v̇ ≡ dv/dξ, κ ≡ N/ω and where we have introduced the variables α and θ defined as

α ≡ 1

2π

[ˆ ωc

−ωc
dωγf (ωγ)

]2

= [f (t = 0)]2 (B.16)

and

θ ≡ i∆ωγ
ω

(B.17)

with

i∆ωγ ≡
´ ωc
−ωc dωγf (ωγ)ωγ´ ωc
−ωc dωγf (ωγ)

= i
2
´ ωc

0 dωγ= [f (ωγ)]ωγ

f (t = 0)
(B.18)

where = (z) denotes the imaginary part of z. In defining the variables α and θ we have

considered the reality condition for the background magnetic profile (i.e. f (−ω) = f∗ (ω)).

Eq. (B.15) reduces to Burgess equation in the limit (α, θ) → (1, 0). We search solutions

of the form v = ξσY . Introducing this expression for v in Eq. (B.15) and using for σ the

expression3

σ =
1

2

[
γ − 1

γ
+

√(
γ − 1

γ

)
− 4K2 (κ2 − 1)

]
' γ − 1

2γ
+ i

β

2
(B.19)

with β ≡ 2KN/ω � 1 and K ≡ k⊥H, we can rewrite the master equation in the form

4θαξ3
...
Y + {[1 + 12 (σ + 1) θ]αξ − 1} ξŸ

+
{[

(2σ + 1)− 4
(
K2 − 3σ2 − 3σ − 1

)
θ
]
αξ − 2σ − 1

γ

}
Ẏ

−
(
K2 − σ2

)
(1 + 4σθ)αY = 0

(B.20)

We note that the parameter σ is tha same as found in Ref. [67]. The general solution of

this equation can be expressed in terms of Meijer-G functions [?, 128] as follows

v =

(
1

4θα

)σ 3∑
q=1

CqG
12
23

 1
4θαξ

∣∣∣ a1 a2

bq bm+1 bm+2

 (B.21)

where the {ai} and {bi} coefficients are defined as
2From this point we will omit µ subscript for helioseismic modes in order to simplify the notation.
3Here and throughout the work we will use the same notation used in Ref. [67].
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{
a1 = 1− σ a2 = 1

γ + σ

b1 = K b2 = −K b3 = 1
4θ

The coefficient C2 can be set equal to zero, because it corresponds to the solution which

grows as ξK . It is more convenient to pass from (C1, C3) constants to the new couple of

constants (D1, D3) defined as
(

1
4θα

)σ
C1 = D1 Γ

(
1− 1

4θ

)
(

1
4θα

)σ
C3 = D3

Γ( 1
4θ )

(B.22)

Through this choise it is easier to see how the solutions obtained behave in the limit of

θ → 0. We have in fact that



lim
1
4θ
→∞

α→1

Γ
(
1− 1

4θ

)
G12

23

 1
4θαξ

∣∣∣ 1− σ 1− σ∗

K −K 1
4θ

 = G12
22

 −1
ξ

∣∣∣ 1− σ 1− σ∗

K −K



lim
1
4θ
→∞

α→1

1
Γ( 1

4θ )
G12

23

 1
4θαξ

∣∣∣ 1− σ 1− σ∗
1
4θ −K K

 = G02
23

 1
ξ

∣∣∣ 1− σ 1− σ∗

K −K



(B.23)

Of the two asymptotic solutions, only the former coincides with that found by Burgess et

al. so that we can set D3 = 0.4 The solution that we have obtained contains terms of order

higher than O (θ). The solution which have terms of the correct order can be obtained

using the integral definition of Mejier-G

Gmnpq

(
z|

a

b

)
=

1

2πi

ˆ
L
ds z−s

∏m
j=1 Γ (bj + s)

∏n
j=1 Γ (1− aj − s)∏q

j=m+1 Γ (1− bj − s)
∏p
j=n+1 Γ (aj − s)

(B.24)

For the properties of Mejier-G function and the definition of the path L see [129].

Taking into account the asymptotic form for Γ expressed in the form

Γ (z + a)

Γ (z + b)
∼ za−b

[
1 +

1

2
(a− b) (a+ b− 1)

1

z
+O

(
1

z2

)]
The final expression for the solution is

4We note that in principle there is no reason to descard the complete solution with both D1 and D3

different by zero, but the study of this solution is out of the aim of our analysis.
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v
D = G12

22

(
− 1
αξ

∣∣∣ 1− σ 1
γ + σ

K −K

)

+2θG13
33

(
− 1
αξ

∣∣∣ 1− σ 1
γ + σ −1

K −K 1

)

=
[
1 + 2θ (−αξ)2 ∂2

∂(αξ)2

]
G12

22

(
− 1
αξ

∣∣∣ 1− σ 1
γ + σ

K −K

) (B.25)

The dispersion relation is obtained using the boundary condition v (z = 0) = 0. In order

to solve the equation, it is convenient to express Eq. (B.25) in terms of hypergeometric

functions 2F1

(
α, β; γ; 1− (αξc)

−1
)
and, using the Watson asymptotic expansion of gaus-

sian hypergeometric function [129, 130] respect to the parameter β (see Ref. [131] for more

details), finally we obtain two branches of frequancy spectrum, depending on the sign of

the variable d, defined through ω = ωr (1 + id). In particular we have

• For sign (d) = −1

χ =
√
αvA

4HN coshχ{(
2πn+ π 1+γ

γ − i ln
∣∣∣tan π

γ

∣∣∣)+ log

[
1+2iθK2

(
1+a∗

K
cothχ+a∗2

K2 coth
2
χ
)

1+2iθK2
(

1−a∗
K
cothχ+a∗2

K2 coth
2
χ
)
]}
(B.26)

• For sign (d) = 1

[
1 + 2θK2

]
tanh2 χ+ 2θKa∗ tanhχ+ 2θa∗2 = 0 (B.27)

where χ variable is related to ξc through the relation ξc = (coshχ)−2. The first branch

corresponds to Burgess magnetogravity dispersion relation, a part from a corrective factor

which is negligible in the range ω < N . The second branch corresponds to instable modes.

The spectrum for the second branch shows small dependence from B0, so that we can omit

its contribution in the Eq. (B.27) and an analytical expression can be given for frequency

in the form

x = iµ

2

√
1 + µ

µ
cosh

1

3
arccosh

 2µ2 + 3µ+ 3

2
√
µ (1 + µ)3

− iπ
3

− 1

 (B.28)

where x is the frequency normalized to N and µ ≡ 2K2∆ωγ/N . In the limit of high K

values, the solution tends to an asymptotic value < (xmax) = sin (π/3) and = (xmax) =

cos (π/3), with < and = respectively denoting real and imaginary part of the argument.

We note that |ωmax| = N . In Figs. B.1 and B.2 are shown the real and imaginary part,

respectively, for the spectrum of the instable modes branch.
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Figure B.1: Real part of Branch 2 solution for the dispersion relation for different values
of ∆f = ∆ω/2π.

Figure B.2: Imaginary part of Branch 2 solution for the dispersion relation for different
values of ∆f = ∆ω/2π.
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