Mostra i principali dati dell'item
On iterative methods for quasi-nonexpansive mappings
dc.contributor.author | Rugiano, Angela | |
dc.contributor.author | Leone, Nicola | |
dc.contributor.author | Marino, Giuseppe | |
dc.contributor.author | Cianciaruso, Filomena | |
dc.date.accessioned | 2018-12-03T10:32:31Z | |
dc.date.available | 2018-12-03T10:32:31Z | |
dc.date.issued | 2015-12-15 | |
dc.identifier.uri | http://hdl.handle.net/10955/1367 | |
dc.identifier.uri | https://doi.org/10.13126/UNICAL.IT/DOTTORATI/1367 | |
dc.description | Dottorato di Ricerca in Matematica ed Informatica, Ciclo XXVIII a.a. 2015-2016 | en_US |
dc.description.abstract | Lo scopo di questa tesi e quello di risolvere alcuni problemi di approssimazioni di punti ssi di mappe non lineari e approssimazioni di soluzioni di disequazioni variazionali, illustrati in una ricca raccolta e collezione di signi cativi risultati sui metodi iterativi introdotti. Numerosi problemi in molte aree della matematica possono essere riformulati come un problema di punto sso di una mappa non lineare, de nita su un sottoinsieme non vuoto di uno spazio di Banach X in se stesso, e, dunque, si riducono a trovare le soluzioni della seguente equazione x = Tx; x 2 X: Vi presenteremo il nostro contributo ai seguenti problemi proposti. Problem 1: Non sappiamo se e possibile ottenere un Teorema di convergenza forte per un metodo di tipo Halpern per mappe nonspreading, vedi [40] Abbiamo dato una risposta parziale in F. Cianciaruso, G. Marino, A. Rugiano, B. Scardamaglia, On Strong convergence of Halpern's method using averaged type mappings, J. Appl. Math., (2014), Art. ID 473243, 11 pages. Nel Capitolo 2, discuteremo in modo accurato i nostri risultati. Problem 2: Non sappiamo se e possibile ottenere un Teorema di convergenza forte per un metodo di tipo viscoso per approssimare punti ssi comuni di due mappe. Abbiamo presentato una risposta parziale in F. Cianciaruso, G. Marino, A. Rugiano, B. Scardamaglia, On strong convergence of viscosity type method using averaged type mappings, Journal of Nonlinear and Convex Analysis no. 8, vol. 16, (2015), 1619-1640. Riporteremo i nostri risultati nel Capitolo 3. Problem 3: E di notevole interessante capire per quali classi di mappe e possibile ottenere un Teorema di convergenza forte per un metodo di tipo Halpern, senza introdurre le mappe di tipo average. Abbiamo discusso una risposta parziale in J. Garcia Falset, E. LLorens Fuster, G. Marino, A. Rugiano, On strong convergence of Halpern's method for quasi-nonexpansive mappings in Hilbert Spaces, submitted for publication. Il Capitolo 4 e dedicato all'analisi dei rusultati ottenuti. Problem 4: Non sappiamo se e possibile ottenere un Teorema di convergenza forte per il metodo iterativo introdotto da Iemoto and Takahashi in [31]. Abbiamo illustrato una risposta parziale in A. Rugiano, B. Scardamaglia, S. Wang, Hybrid iterative algorithms for a nite family of nonexpansive mappings and for a countable family of nonspreading mappings in Hilbert spaces, to appear in Journal of Nonlinear and Convex Analysis. Analizzeremo in dettaglio i nostri risultati nel Capitolo 5. | en_US |
dc.description.sponsorship | Università della Calabria | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartofseries | MAT/05; | |
dc.subject | Mathematical analysis | en_US |
dc.subject | Nonexpansive mappings | en_US |
dc.subject | Iterative methods | en_US |
dc.title | On iterative methods for quasi-nonexpansive mappings | en_US |
dc.type | Thesis | en_US |