




A Maria Emilia, Papà, Mamma e Dik,
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Abstract

In recent years, mobile robots start to be very often used in various applica-
tions involving home automation, planetary exploration, regions surveillance,
rescue missions, ruins exploration. In all these fields, to accomplish its tasks,
a mobile robot needs to navigate into an environment facing the localization,
mapping and path planning problems. In this thesis a set of new algorithms
to solve the mobile robots localization and mapping problems are proposed.

The aim is to provide an accurate mobile robot estimated pose and
to build a reliable map for the environment where the robot moves, ensuring
algorithms computational costs low enough so that the algorithms can
be used in real time, while the robot is moving. The localization problem is
faced in static and dynamic contexts, assuming the environment surround-
ing the robot completely known, partially known or totally unknown. In the
static context, localization algorithms based on the use of cameras and in-
ertial measurement units are proposed. In the dynamic context, the mobile
robots localization problem is solved by developing a set of new Kalman filter
versions. About the mapping problem, two novel mapping models are de-
fined. These models are used along with the proposed localization techniques
to develop three algorithms able to solve the Simultaneous Localization and
Mapping (SLAM) problem.

All the proposed solutions are tested through numerical simulations and
experimental tests in a real environment and using a real mobile robot. The
results show the effectiveness of the proposed algorithms, encouraging further
researches.

Arcavacata di Rende (CS), November, 2013 Luigi D’Alfonso





Abstract (Italian translation)

Negli ultimi anni, i robot mobili vengono adoperati sempre più spesso in un
sempre maggiore numero di applicazioni inerenti la domotica, l’esplorazione
di pianeti, la sorveglianza di luoghi, le missioni di salvataggio, l’esplorazione
di rovine. In tutti questi campi, per portare a termine i propri compiti, un
robot mobile deve navigare all’interno di un ambiente, affrontando i prob-
lemi di localizzazione, ricostruzione dell’ambiente (mapping) e pianificazione
di traiettorie. Nella presente tesi sono proposti nuovi algoritmi atti a risolvere
i problemi di localizzazione di robot mobili e ricostruzione dell’ambiente in
cui essi si muovono.

Obiettivo di tali algoritmi è fornire una stima accurata della posizione del
robot mobile ed una mappa affidabile dell’ambiente in cui esso si muove; il
tutto garantendo costi computazionali degli algoritmi sufficientemente
bassi da permettere l’utlizzo degli stessi in tempo reale, mentre il robot è
in movimento. La localizzazione del robot viene effettuata sia in situazioni
statiche che in situazioni dinamiche, assumendo l’ambiente circostante noto,
parzialmente noto oppure completamente ignoto. Nel contesto statico, viene
proposto un algoritmo di localizzazione basato sull’uso di telecamere e sen-
sori inerziali. Nel contesto dinamico, la localizzazione viene effettuata medi-
ante nuove versioni del filtro di Kalman. Per quanto riguarda la ricostruzione
dell’ambiente circostante il robot, vengono presentati due nuovi modelli di
mapping. Tali modelli vengono quindi adoperati, assieme agli algoritmi di lo-
calizzazione proposti, al fine di sviluppare tre nuove tecniche di risoluzione del
problema della localizzazione e ricostruzione simultanee (SLAM).

Tutte le soluzioni proposte sono testate attraverso simulazioni numeriche
ed esperimenti reali in un ambiente sperimentale ed adoperando un vero e
proprio robot mobile. I risultati ottenuti mostrano l’efficacia delle soluzioni
proposte, incoraggiandone sviluppi futuri.

Arcavacata di Rende (CS), November, 2013 Luigi D’Alfonso
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Introduction

This thesis focuses on the main theoretical and methodological issues related
to the mobile robots navigation. In recent years, due to the continuously
increasing use of mobile robots in various applications, all the problems related
to this research field have received very considerable attention. Whatever is
the mobile robots application goal, the robot has to face three main problems
which can be summarized by the following three well known questions:

� Where the robot is?
� Where the robot should go?
� How the robot should arrive in its goal location?

This thesis focuses on the first two questions trying to give them a reliable
answer. In particular the mobile robots localization problem and the
Simultaneous Localization and Mapping (SLAM) problem will be
discussed. A set of solutions to both the problems will be proposed in this
dissertation. The aim of the thesis is to solve the localization and mapping
problems using all the available information in the best possible way and
requiring as few a priori assumptions as possible.

History and main topics

A mobile robot is an automatic machine that is capable of movement in a
given environment. The history of mobile robots starts in 1939-1945, during
the World War II, when the first mobile robots emerged as a result of technical
advances on a number of relatively new research fields like computer science
and cybernetics. The first mobile robots examples were mostly flying bombs
like smart bombs (the V1 and V2 rockets) that only detonate within a certain
range of the target using a guiding systems and a radar control.

A second mobile robot example appears in 1948 when W. Grey Walter
builds Elmer and Elsie, two autonomous robots called Machina Speculatrix.
These robots were able to explore their environment thanks to a very simple
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but efficient strategy: they were both equipped with a light sensor and if
they found a light source they would move towards it, avoiding or moving
obstacles on their way. These robots demonstrated that complex behaviors
could arise from a simple design. The main disadvantage about Elmer and
Elsie is related to the light need; the two robots were completely unable to
explore dark rooms. Starting from the idea of overcoming this issue, in 1961
the Johns Hopkins University develops Beast, that is a mobile robot which
moves around using a sonar to detect its surrounding environment. Thanks to
the use of sonar sensors, dark rooms could be explored with no problems. In
1969, Mowbot (see Figure I.1), the first robot that would automatically mow
the lawn was developed; it was the first example of mobile robots application
in home automation.

Fig. I.1: Mowbot, the first mobile robot in home automation

In 1970 the Stanford Cart line follower was developed, it was a mobile
robot able to follow a white line, using a camera to see. It was radio linked
to a large mainframe that made the calculations and it represents the first
example of the vision based mobile robots. At about the same time, in 1966-
1972, the Stanford Research Institute built Shakey the Robot (Figure I.2) a
robot named after its jerky motion.

Shakey had a camera, a rangefinder, bump sensors and a radio link. Shakey
was the first robot that could reason about its actions. This means that Shakey
could be given very general commands, and that the robot would figure out
the necessary steps to accomplish the given task. In the same year, the Soviet
Union explores the surface of the Moon with Lunokhod 1, a lunar rover repre-
senting the first example of mobile robots space application. After six years,
in 1976, the NASA sends two unmanned spacecrafts to Mars.

In the 1980s the interest in robots rises, resulting in robots that could
be purchased for home use. These robots served entertainment or educa-
tional purposes. Examples include the RB5X, which still exists today and the
HERO series. Until the ’80s, the robot localization problem and the robot
surrounding environment mapping problem have been always faced sepa-
rately. During the 1986 IEEE Robotics and Automation Conference, held
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Fig. I.2: Shakey the robot

in San Francisco, a large number of researches as Peter Cheeseman, Jim
Crowley, and Hugh Durrant-Whyte had been looking at simultaneously apply-
ing estimation-theoretic methods to both mapping and localization problems.
Over the course of the conference many paper table cloths and napkins were
filled with long discussions about consistent mapping. The final result was a
recognition that consistent probabilistic mapping was a fundamental problem
in robotics with major conceptual and computational issues that needed to
be addressed. Over the next few years a number of key papers were produced
facing the Simultaneous Localization and Mapping problem (SLAM). The
first paper about SLAM was written by Smith and Cheeseman [38], the au-
thors describe the SLAM framework and lay down the foundations of SLAM
research. After the ’80s, robot navigation received considerable attention by
the researchers due to the always increasing interest in mobile robots. In the
1990s Joseph Engelberger, father of the industrial robotic arm, works with
colleagues to design the first commercially available autonomous mobile hos-
pital robots, sold by Helpmate. In the same year, the US Department of De-
fense founds the MDARS-I project, based on the Cybermotion indoor security
robot and André Guignard and Francesco Mondada developed Khepera, an
autonomous small mobile robot intended for research activities. In 1993-1994
Dante I and Dante II were developed by Carnegie Mellon University. Both of
them were walking robots used to explore live volcanoes. In 1995 the Pioneer
programmable mobile robot becomes commercially available at an affordable
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price, enabling a widespread increase in robotics research. In the same years,
NASA sends the Mars Pathfinder with its rover Sojourner to Mars. The rover
explores the surface, commanded from earth. Sojourner was equipped with a
hazard avoidance system which enabled Sojourner to autonomously find its
way through unknown martian terrain. In 2002 appears Roomba, a domestic
autonomous mobile robot that cleans the floor and in 2003, Axxon Robotics
purchases Intellibot, manufacturer of a line of commercial robots that scrub,
vacuum, and sweep floors in hospitals, office buildings and other commercial
buildings. Floor care robots from Intellibot Robotics LLC operate completely
autonomously, mapping their environment and using an array of sensors for
navigation and obstacle avoidance. In 2010, the Multi Autonomous Ground-
robotic International Challenge has teams of autonomous vehicles which map
a large dynamic urban environment, identify and track humans and avoid
hostile objects.

Nowadays mobile robots are used in various applications and they are
becoming a part of the human life. In particular, robot floor cleaners are
available at low prices and many families use them everyday. Robot naviga-
tion is becoming one of the most important research field due to the high
number of possible applications both in everyday life (home automation) and
in research fields (planetary exploration, regions surveillance, rescue missions,
ruins exploration).

For any mobile device, whatever is the robot application, the ability to
navigate in an environment represents a crucial requirement. Robot naviga-
tion means the robot’s ability to determine its own position in its reference
frame (localization) and then to plan a path to a goal location (path plan-
ning). Moreover, to navigate in its environment, the robot or any other mobile
device requires a representation (a map) of the environment and the ability
to interpret this representation (mapping).

Mobile robots localization

The aim of the mobile robots localization problem is to use all the available
information, by sensors and by a-priori knowledge on the environment where
the robot moves, to localize the robot. This is probably one of the main
problems in mobile robotics. To plan a path for a mobile robot or to map
the environment surrounding the robot, it is mandatory to known where the
robot is or is assumed to be in the environment.
More formally, the problem can be stated as follows:

assume the mobile robot modeled as a set of nonlinear equations

ẋ(t) = f(x(t), u(t))

where x(t) is the robot state, consisting of robot position and orien-
tation, and u(t) is a vector containing actuators inputs. Let the robot
sensors measurements be modeled as
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y(t) = h(x(t))

The goal is to obtain a reliable estimation, x̂(t), of the robot pose
(position and orientation) x(t), using all the available information
from sensors (y(t)) and actuators (u(t)).

In a schematic point of view, the aim is to develop a localization module
able to provide the estimated robot pose starting from the robot inputs and
outputs, as shown in Figure I.3.

Fig. I.3: Mobile robot localization scheme

This problem deals with a very big amount of applications. For example,
in the cited home automation contexts, the cleaner robots need to localize
themselves into the room they have to clean. Thanks to this localization,
these robots are able to define which floor parts have been cleaned and which
ones have not been visited. Whatever is the application, if an exploration task
has to be accomplished then it is required to solve at least the localization
problem.

Path planning

Given a mobile robot, modeled as

ẋ(t) = f(x(t), u(t)),

placed in an initial configuration x(ts) = xs, the goal of the path planning
problem is to move the robot from xs to a desired configuration x(tf ) = xf
following a desired trajectory χ(t), t ∈ [ts, tf ]. More formally, the path plan-
ning strategies aim to find the control moves, u(t), t ∈ [ts, tf ] which let the
robot arrive in xf , starting from xs and following as best as possible the
trajectory χ(t).
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In a schematic point of view, the aim is to develop a path planning module
able to provide the appropriate control moves to the robot, as shown in Figure
I.4.

Fig. I.4: Path planning scheme

Obviously, the path planning module needs to know the actual robot pose
x(t) and thus the obtained control moves are a function of the desired trajec-
tory χ(t) and of the robot pose x(t).

In most applications, the actual robot pose is not directly provided by
robot sensors and it has to be obtained through a localization technique.
The global scheme can be summarized as shown in Figure I.5. Just to give
an example of path planning applications, thinking at planetary exploration
tasks, the mobile robots which have to move on an unknown planet have to
detect their surrounding environment, they have to localize themselves into
this environment and then they have to plan a path to perform in order to
explore the region in the most efficient way. Also in this case, whatever is the
application, the path planning task has to be accomplished in all the situations
concerning regions exploration, navigation or inspection.

Environment mapping

The environment mapping is a task to perform in parallel with the localization
task and the path planning task. The aim is to build a robot surrounding
environment map as more as possible accurate and reliable. This task can be
accomplished in both indoor and outdoor environments and the provided map
represents a necessary information to solve the localization problem and the
path planning problem.

In particular in all the environments where the GPS can not be used
(indoor environment, forests, etc. . . ), if no preliminary assumptions on the
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Fig. I.5: Path planning + localization scheme

environment structure is done, then the localization task can be accomplished
only if the robot builds an environment map ant it localizes itself within this
map.

Also for what regards the path planning, to avoid collisions with walls or
obstacles, adapting the trajectory χ(t) to the environment, an environment
map is required. More formally, the environment mapping problem is the
problem of modeling the robot surrounding environment and of estimating its
model parameters. In a schematic point of view, a mapping algorithm can be
seen as a module which uses the sensors measurements to provide a structure
containing all the information required to build the environment map (see
Figure I.6).

As shown in Figure I.6, to obtain an environment map, the actual robot
pose is needed and, as in the path planning case, a robot pose estimation
can be use instead of real robot pose. This estimation is provided by the
localization module; the overall scheme is depicted in Figure I.7.

If all the modules in Figure I.7 are correctly developed, than the resulting
overall algorithm can be used to answer to the three main questions:

� Where the robot is? → localization task and mapping task
� Where the robot should go? → localization task and mapping task
� How the robot should arrive in its goal location? → mapping task and

path planning task

In particular, the loop formed by the localization module, which uses the
map provided by the mapping module and from the mapping module, which
uses the robot pose estimation to obtain the map, is at the basis of the so
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Fig. I.6: Environment mapping scheme

called Simultaneous Localization and Mapping (SLAM) problem (see Figure
I.8).

The mobile robots SLAM problem can be seen as an extension to the
localization problem. In the SLAM problem the robot localizes itself into
the environment where it moves and it simultaneously builds a map of this
environment. In mobile robotics, the SLAM problem is considered as chicken
and egg problem due to the very strong correlation between the mapping
task and the localization task: the robot, to localize itself within its
environment, needs to build a map of this environment but this
map can be built only if the robot position is known.

The SLAM problem is probably the mobile robotics topic which finds the
bigger amount of applications in various fields. Especially in recent years,
mobile robots started to be used in place of humans to accomplish difficult or
dangerous tasks. For example:

� rescue applications, in which team of mobile robots are used to search and
rescue people in disaster regions;

� surveillance applications, which regards the use of a single mobile robot
or of a team of robots to watch regions of interest;

� exploration applications, in which mobile robots are used to build a map
of a place in an autonomous way, without any required help by humans.
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Fig. I.7: Localization + Path planning + Mapping scheme

In all these applications the SLAM problem has to be solved and the resulting
performance are completely related to the SLAM algorithm performance.

Personal contribution

The most of the localization, mapping and SLAM techniques proposed in the
literature are based on at least some assumptions on the robot surrounding en-
vironment and very often this environment is modeled in a very approximated
way. Moreover, all the SLAM algorithms deal with the trade off between local-
ization/mapping accuracy and overall algorithm computational cost and the
proposed SLAM solutions are usually based on a massive use of the available
sensors, neglecting sensors batteries saving.

The aim of the present thesis is to develop a set of localization, mapping
and SLAM techniques which have to:

1. be based on very few and weak assumptions on the mobile robot surround-
ing environment;

2. provide as accurate as possible localization and mapping results;
3. be fast enough to allow their use in real applications;
4. be as cheap as possible in terms of used sensors (number of sensors and

sensors types very influence this point);
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Fig. I.8: Localization + Mapping scheme → SLAM scheme

5. make use of the available sensors in the most possible efficient way in order
to save sensors batteries;

6. be developed in a general form in order to allow the use of each technique
in various frameworks and using various sensors types.

In this context, a set of new techniques to solve the localization problem,
the mapping problem and the SLAM problem, will be described in the follow-
ing Chapters. All these solutions have been developed trying, step by step,
to accomplish all the previously described goals. In particular, as a first step,
some techniques to localize the robot on the basis of a complete knowledge
about the robot environment will be shown. As a second step, the required in-
formation about the environment will be reduced and a set of solutions based
on very weak assumptions on the robot working framework will be proposed.
As a final step, these techniques will be improved in order to obtain accept-
able computational costs. All the obtained solutions will be tested through
numerical simulations and real experiments.

Some of the results presented in the following of this thesis have been
published and presented in international journals and during International
Conferences. More precisely, regarding the localization problem, it has been
faced in [74, 5, 26, 25, 13, 68, 77, 67, 79]; mapping problem solutions and
SLAM problem solutions have been shown in [43, 44, 75, 76, 78] .

Thesis overview

The dissertation is organized as follows:
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- Chapter 1 focuses on the mobile robot localization and mapping frame-
work description. The mathematical model of a mobile robot moving in
a planar environment is described and the most common sensors used to
solve the localization and mapping problems are discussed.

- Chapter 2 describes all the developed mobile robots localization tech-
niques. Starting from the simpler localization problem in a perfectly known
environment, facing then the problem in a partially known environment
and, finally, proposing solutions in a completely unknown environment.

- Chapter 3 contains an accurate description of all the developed SLAM
solutions. Three main solutions will be shown: a first, very simple, one
which is fast in providing mapping and localization results but it yields
to approximate environment maps; a second solution which provides an
accurate environment description but it requires high computational costs;
finally, a third solution, which can be seen as an improvement of the latter
two ones, yielding to mapping results as good as the ones obtained using
the second technique but with a computational cost as low as the one
required by the first technique.

- Chapter 4 focuses on a set of rules and policies to optimally use the
available sensors in order to decrease their energy consumptions without
affecting their contribution to solve the localization, mapping and SLAM
problems.

- Chapter 5 shows a set of alternative mobile robots localization algorithms
based on the use of cameras and Inertial Measurement Units. Differently
from what is shown in Chapter 1, these techniques are based only on
sensors characteristics, they do not use information about the robot model
and they have been developed to work only in static context or during very
slow robot movements.

- Chapter 6 shows all the numerical simulations and real experiments per-
formed to properly test the algorithms described in the first 5 Chapters.

Finally, conclusions, showing the achieved goals and describing some possible
future investigations, are drawn.





1

Localization and Mapping framework

This Chapter focuses on the main features about the framework in which the
localization and mapping problems will be solved. The following discussion
can be seen as a setup description common to both the second chapter and
the third chapter. The mathematical model of a mobile robot moving in a
planar environment will be described and the most common sensors used to
solve the localization and mapping problems will be discussed.

1.1 Introduction

Starting from the scheme shown in Figure I.7, in this thesis the attention will
be paid on the localization and mapping modules design, assuming to be able
to properly control the robot. Looking at the literature about localization and
mapping problems, many works can be found facing the problem in different
ways and using various sensors types.

In particular, the literature shows three main topics about localization and
mapping algorithms:

1. used sensors
2. assumptions on the robot surrounding environment
3. algorithms computational cost

In the next Sections, the mobile robot model will be described and a little
description about the above three localization and mapping topics will be
provided.

1.2 Robot model

In the present thesis, the case of a mobile robot placed in indoor planar envi-
ronments will be considered. Once the environment reference frame has been
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chosen, the mobile robot, due to the environment planarity, can be character-
ized using only two variables to describe the robot position and one variable
to describe the robot orientation. Whatever is the mobile robot type, it has
three degree of freedom (d.o.f.), described as depicted in Figure 1.1.

Fig. 1.1: Mobile robot d.o.f.

Let the following notation be used:

� Ox1,x2 is the chosen absolute environment reference frame.
� R is the mobile robot center of gravity.
� (xR1 , x

R
2 ) are the mobile robot center of gravity coordinates.

� θ is the orientation of the robot w.r.t. the x1-axis, considered positive in
counterclockwise.

In mobile robots applications only the robot kinematic model is typically
used thanks to the very common assumptions of (1) very slow robot dynamics
w.r.t. the robot motor dynamics and (2) very low robot accelerations. The
mobile robot motors can thus be considered as static systems and the entire
robot dynamics can be neglected. In this context the robot center of gravity
R can be denoted as robot center and the mobile robot shown in Figure 1.1
can be described by only three differential equations, one equation for each
degree of freedom.

More precisely, the following non linear differential equations can be de-
fined 

ẋR1 (t) = f1(xR1 (t), xR2 (t), θ(t), u(t))
ẋR2 (t) = f2(xR1 (t), xR2 (t), θ(t), u(t))

θ̇(t) = fθ(x
R
1 (t), xR2 (t), θ(t), u(t))

(1.1)
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where u(t) is an array containing all the robot inputs.
Defining the robot state x(t) = [xR1 (t) , xR2 (t) , θ(t)]T , the equations (1.1)

are summarized by

ẋ(t) = f(x(t), u(t)). (1.2)

The above equations can be discretized using the Euler forward method
[80, 81], obtaining:

xk+1 = φ(xk, uk) = xk + Tf(xk, uk) (1.3)

where

� T is the sampling period.
� xk, uk are the robot state and the robot inputs vector at time tk = kT 1.
� the function f(·, ·) is the state update function shown in (1.2).

In the following of this thesis, the mobile robot will be always modeled as a
set of non linear difference equations affected by noise:

xk+1 = φ(xk, uk) + wk (1.4)

where wk = [w1,k, w2,k, wθ,k]T is a Gaussian noise, denoted as process
noise, with zero mean and covariance matrix W . This process noise takes
into account unmodeled dynamics, friction, wheels slipping and also, if the
case, external disturbances (such as wind).

1.3 Sensors used in mobile robotics applications

The localization and mapping algorithms are very influenced by the used
sensors types and the same algorithm can be very efficient using some sensors
but it can yield to poor performance using different ones. In the literature, the
most popular sensors, used to solve the localization problem and the mapping
problem, are ultrasonic sensors, laser sensors and cameras.

1.3.1 Ultrasonic Sensors

Ultrasonic sensors are widely used in many applications thanks to their sim-
plicity, availability, and low cost. Such sensors measure (within tolerance) the
distance to the surface intercepted by their beam. These sensors are the best
sensors for detecting liquids, clear objects, or irregularly shaped objects. They
work on a principle similar to radar which evaluate attributes of a target by

1 In the next Chapters and Sections it will be denoted the time step as k ∈ N
neglecting the T dependencies. This notation is justified by the isomorphism
between the set N and the set of time steps T = {t ∈ R : t = kT & k ∈ N}
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Fig. 1.2: Ultrasonic sensor example

interpreting the echoes from radio waves. Ultrasonic sensors generate high fre-
quency sound waves and evaluate the received back echo. Sensors calculate the
time interval between sending the signal and receiving the echo to determine
the distance to an object. Systems typically use a transducer which generates
sound waves in the ultrasonic range, above 18.000 hertz, by turning electrical
energy into sound, then, upon receiving the echo, the sensors turn the sound
waves into electrical energy which can be measured and displayed.

The sensors achieved performance is very affected by the detected objects
surface, material density and material consistency. Moreover, looking at a
typical ultrasonic beam shape, depicted in Figure 1.3, a set of troubles related
to the use of sonar sensors emerge.

Fig. 1.3: Ultrasonic sensor beam shape

In a nominal point of view, an ultrasonic sensor should measure the dis-
tance from an object in front of the sensor. However, due to the sensor beam
shape, the obtained measurement can be related to an object which is in the
sensor shape but not in front of the sensor itself. This situation is depicted in
Figure 1.4
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Fig. 1.4: Error in sensor measurement

If the sensor beam shape was a straight line then the obtained measure-
ment would represent the distance d to the object O. However, due to the

beam shape, the object O
′

could be detected and the obtained measurement
will be d′. In this situation the measured distance is d′ while the nominal ex-
pected measured distance is d(6= d′), thus the measurement provided by the
ultrasonic sensor is erroneous w.r.t the nominal distance.

Moreover also when no �fake �obstacles (like O
′
) are in the sensor shape,

the measurement provided by an ultrasonic sensor can be erroneous due to
sensors physical characteristics. As remarked in [1] and [2], the measurements
provided by ultrasonic sensors are really influenced by the incidence angle
between the sensor beam and the intercepted surface. Take in consideration
the situation shown in Figure 1.5. When the sensor axis is orthogonal to a flat
surface, the measurement provided is the true range, within tolerance, to the
surface. However, the measurement error can be larger when the beam strikes
a surface at a different incidence angle, γ. Consider an ultrasonic sensor, S,
which provides the distance, y, from a surface U , as depicted in Figure 1.5.

Fig. 1.5: Incidence angle

Let l(x1, x2) be the tangent line to the surface boundaries in the intersec-
tion point, A, between the incidence surface and the sensor axis. Defining −→y
as the sensor axis unit vector and

−→
b as the l(x1, x2) unit vector, the incidence

angle γ is defined as

γ = arccos(−→y ·
−→
b ) (1.5)
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The more the incidence angle is near to π
2 rad, the better the measurement

provided by the ultrasonic sensor is.
In conclusion the measurement provided by an ultrasonic sensor can be

modeled as a function
y = y(d, γ, v) (1.6)

where

� d is the nominal distance from the sensor to the incidence surface of the
detected object;

� γ is the incidence angle between the incidence surface and the sensor axis;
� v is a noise used to model the standard measurement error.

Please note that the troublesome situation depicted in Figure 1.4 is modeled
using v while the situation shown in Figure 1.5 is modeled using γ. Moreover
due to v and γ the obtained measurement y is always y 6= d.

In the literature ultrasonic sensors are widely used to solve the localization
problem and the mapping problem. Just a few examples can be found in
[32, 31, 33].

1.3.2 Laser sensors

A laser sensor is a device which uses a laser beam to determine the distance
to an object. The most common form of laser sensors operates on the time of
flight principle by sending a laser pulse in a narrow beam towards the object
and measuring the time taken by the pulse to be reflected off the target and
returned to the sender.

Fig. 1.6: Laser rangefinder placed on a mobile robot
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A laser rangefinder provides a set of measurements related to the entire
sensor surrounding environment, as shown in Figure 1.7. Laser rangefinders
can be �easily�used to obtain an environment map and a robot position esti-
mation since these sensors provide a large number of measurements and these
measurements are very accurate.

Fig. 1.7: Laser rangefinder output example

Regarding the localization and mapping problem using laser sensors, con-
crete examples can be found in [6, 40].

1.3.3 Cameras

A camera is a device that records images that may be photographs or moving
images such as videos or movies. The term camera comes from the word
camera obscura (Latin for �dark chamber�): an early mechanism for projecting
images; the modern camera evolved from the camera obscura.

Cameras may work with the light of the visible spectrum or with other
portions of the electromagnetic spectrum. A camera generally consists of an
enclosed hollow with an opening (aperture) at one end, for light to enter, and
a recording or viewing surface for capturing the light at the other end. A
majority of cameras have a lens positioned in front of the camera’s opening
to gather the incoming light and focus all or part of the image on the record-
ing surface. The diameter of the aperture is often controlled by a diaphragm
mechanism, but some cameras have a fixed-size aperture. Most cameras use
an electronic image sensor to store photographs on a flash memory. Other
cameras, especially the majority of cameras from the 20th century, use pho-
tographic film.

It has long been known that a simple pin-hole is able to create a perfect
inverted image on the wall of a darkened room, as shown in Figure 1.9.
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Fig. 1.8: Mobile robot equipped with a camera

Fig. 1.9: Pinhole model example

A digital camera is similar in principle; a glass or plastic lens forms an
image on the surface of a semiconductor chip with an array of light sensitive
devices to convert light to a digital image. The process of image formation, in
an eye or in a camera, involves a projection of the 3-dimensional world onto
a 2-dimensional surface. The depth information is lost and starting from the
image it is not possible to tell whether it is of a large object in the distance
or a smaller closer object. This transformation from the 3-dimensional
world onto the 2-dimensional one is known as perspective projection and
it will be discussed in Chapter 5.
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About using cameras to solve the localization and mapping problems, ex-
amples can be found in [41, 42].

1.4 Assumptions on the robot surrounding environment

For what concerns the assumptions on the robot surrounding environment,
most of the previously cited works assume to have at least some information
about the environment. For example in [25] and [5] the localization task is
accomplished assuming the robot placed in a totally known rectangular en-
vironment. In [36] the environment is assumed to be partially known while
in [37], the robot is placed in an environment the boundaries of which are
assumed to be orthogonal-parallel lines.

As a general rule, the more the assumptions on the robot environment are
strong, the simpler will be to solve the localization task and the mapping task.

1.5 Algorithms computational cost

In a computational point of view, it is mandatory for a localization algorithm
and for a mapping algorithm to satisfy time constraints since information
provided by these algorithms is typically used to compute the output of a
control law designed to make the robot follows a given trajectory or completes
a given task (see the path planning part in the scheme depicted in Figure I.7).

The localization problem when a map of the environment is available has
been solved before with efficient algorithms [45, 46]. Similarly, there are well
proven and efficient techniques for the generation of environment maps us-
ing observations obtained from known locations [47]. However, localizing the
robot in a totally unknown environment or simultaneously provide a robot
pose estimation and an environment map is a more challenging problem and
optimal SLAM approaches, based on Bayesian filtering, could be extremely
expensive making them difficult to apply in real time.

In this context, in [44] the proposed robot surrounding environment model
is very accurate and versatile but it requires a very high computational effort
and, as a consequence, the resulting SLAM algorithm is not feasible in real
time applications. On the contrary, the algorithm shown in [43] is based on a
more approximate environment model but it is very computationally efficient.

As a general rule, the more the provided mapping and localization results
are accurate, the higher the computational costs due to these algorithms are.
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Mobile Robots Localization

This Chapter describes a set of new mobile robots localization techniques.
Starting from the simpler localization problem in a perfectly known environ-
ment, the localization problem will be faced in a partially known environment
and, finally, in a completely unknown environment.

2.1 Introduction

The mobile robots localization problem is the problem of localizing a robot
within its environment. It finds applications in all the mobile robots con-
texts: home automation applications, planetary exploration, rescue missions,
surveillance tasks require to know the robot pose (position and orientation).
A very few robotics frameworks allow to directly know the robot pose from
sensors. For examples, outdoor mobile robotics applications use a GPS but
the measurements provided by this sensor are always noisy and very often
they are too approximative to be directly used to localize the robot in an
accurate way. To overcome this problem, these measurements are fused with
other measurements from other sensors to improve the localization results.

In indoor environments, the GPS cannot be used and thus the localiza-
tion task has to be solved using other sensors types. In the following, the
robot will be assumed to be equipped with distance sensors able to provide
measurements about the distance of the robot from the sensors detected ob-
jects. These sensors could be, for example, ultrasonic sensors, laser sensors or
properly adapted cameras. The goal of this chapter is to find, describe and
develop solutions to the Mobile Robots Localization Problem in indoor planar
environments. More formally:

given a mobile robot, described by the state equation (1.4) and equipped
with a set of distance sensors, the goal is to localize the robot within
its environment, providing an estimate of the robot position and ori-
entation (robot pose).
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2.2 Proposed Solutions

Robot localization methods can be classified into two main groups [9]: (1)
relative positioning methods, and (2) global or absolute positioning methods.
The first group (also called dead-reckoning) achieves positioning by odom-
etry, which consists of counting the number of robot wheels revolutions to
compute the offset relative to a known initial position. Odometry uses the
robot model to estimate the robot movements starting from the robot inputs
and it is very accurate for small offsets but it is not sufficiently accurate for
modeling bigger offsets, because of the unbounded accumulation of errors over
time (due to wheel slippage, imprecision in the wheel circumference, or wheel
inter axis). Furthermore odometry needs an initial position and fails when the
robot is waken-up (after a forced reset for example) or is raised and dropped
somewhere, since the reference position is unknown or modified.

Due to the above described reasons, a global positioning system is thus
required to recalibrate the robot position periodically. There are essentially
two kinds of global positioning systems:

1. techniques based only on the sensors measurements: triangulation or tri-
lateration;

2. techniques based on the sensors measurements and on the robot model:
Kalman filter based techniques.

Regarding the first family of methods: the triangulation is the geomet-
rical process of determining the location of a point by measuring angles to
it from known points; the trilateration methods involve the determination of
absolute or relative locations of points by distance measurements. Because of
the large variety of angle measurement systems, triangulation has emerged
as a widely used, robust, accurate, and flexible technique [11]. Various trian-
gulation algorithms may be found in the literature [10, 12, 11]; both trian-
gulation and trilateration methods yield to the robot position estimation at
time tk = kT using only measurements provided at step k. Thanks to this
property, these methods are usually less computationally onerous than the
techniques based on sensors measurements and robot model. However due to
the lack of knowledge about the measurements history, the triangulation and
trilateration techniques may be more affected by measurements noise.

In this thesis, all the proposed mobile robots localization solutions are
related to the use of the Kalman filter theory [82, 23]. Unlike triangulation
and trilateration methods, the Kalman filter uses the entire available infor-
mation on acquired measurements until time tk to obtain the pose estimation
at step k. In particular the Kalman filter theory is widely used in robotics
applications, concrete examples can be found in [3, 5, 13].
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2.3 Kalman Filter and its nonlinear extensions

The Kalman filter is an optimal state estimator for a linear model influenced
by zero-mean Gaussian noise. Consider the discrete-time linear time-invariant
system xk+1 = Axk +Buk + wk

yk = Cxk + vk

(2.1)

where

� xk ∈ Rn is the system state vector.
� uk ∈ Rm is the system input.
� yk ∈ Rp is the system output as measured by sensors.
� A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are the system dynamic matrix, input

matrix and output matrix respectively; more formally, the matrix A de-
scribes the dynamics of the system, that is, how the states evolve with
time; the matrix B describes how the inputs are coupled to the system
states and the matrix C describes how the system states are mapped to
the observed outputs.

� wk ∼ N(∅,W ) is the process noise and it is a Gaussian noise with zero-
mean and covariance matrix W ∈ Rn×n. This Gaussian disturbance takes
into account for unmodeled dynamics and external disturbances on the
state evolution.

� vk ∼ N(∅, V ) is the system measurement noise and it is a Gaussian noise
with zero-mean and covariance matrix V ∈ Rp×p. It models the measure-
ments noise due to the imperfections in sensors measurements model. vk
and wk are assumed to be statistically uncorrelated.

The general problem that the Kalman filters aims to solve is:

given a model of the system (A,B,C, V,W ), the known inputs uk, k ≤ k,
and the noisy sensors measurements yk, k ≤ k, estimate the state of
the system xk at step k.

For example, in a robotic localization context, xk is the unknown pose of the
robot, uk contains the commands sent to the robot motors and yk is a vector
containing the measurements provided by robot sensors. The Kalman filter is
an optimal estimator for the case where the process and measurement noises
are zero-mean Gaussian noises. The filter consists in two main steps. The first
step is a prediction of the state based on the previous state and on the inputs
that were applied.

x̂k+1|k = Ax̂k|k +Buk

Pk+1|k = APk|kA
T +W

(2.2)

where
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� x̂k+1|k is the prediction of the state xk+1 starting from all the available
information at step k.

� x̂k|k is the estimate of the system state xk, at step k, based on all the
available information at step k.

� Pk+1|k is the covariance matrix of the prediction error ek+1|k = xk+1 − x̂k+1|k.
� Pk|k is the covariance matrix of the estimation error ek|k = xk − x̂k|k.

This is an open-loop step and its accuracy depends completely on the quality
of the model A and B and on the ability to measure the inputs uk. To improve
the accuracy performance the sensors measurements information is introduced
using the so called innovation term

νk+1 = yk+1 − Cx̂k+1|k (2.3)

which is the difference between what the sensors measure (yk+1) and what
the sensors are predicted to measure (Cx̂k+1|k). A part of this difference will
be due to the noise in the sensors (the measurement noise) but the remain-
ing discrepancy indicates that the predicted state was in error and does not
properly explain the sensors observations.

At this point, the second step of the Kalman filter, the update step, uses
the Kalman gain

Lk+1 = Pk+1|kC
T (CPk+1|kC

T + V )−1 (2.4)

to map the innovation into a correction for the predicted state, optimally
tweaking1 the estimate based on what the sensors have observed. The resulting
state estimation is

x̂k+1|k+1 = x̂k+1|k + Lk+1νk+1

Pk+1|k+1 = Pk+1|k − Lk+1CPk+1|k

(2.5)

The term (CPk+1|kC
T +V ) is the estimated covariance of the innovation and

comes from the uncertainty in the state and the measurement noise covari-
ance. If the innovation has high uncertainty in relation to some states, this
will be reflected in the Kalman gain which will make correspondingly small
adjustment to those states.

The above equations constitute the classical Kalman filter which is widely
used in applications from aerospace to econometrics. The filter has a number
of important properties. Firstly it is recursive, the output of one iteration is
the input to the next. Secondly, it is asynchronous: at a particular iteration
if no sensors information is available, the prediction step is just performed

1 The Kalman gain is the gain which minimizes the covariance matrix Pk+1|k+1

and it is computed as
Lk+1 = arg min

Lk+1

Pk+1|k+1
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with no update step. In the case that there are different sensors, each with its
own C, and different sample rates, the update step is just applied using the
appropriate y and C.

The filter must be initialized with a reasonable value of x̂0|0 and P0|0.
More precisely, x̂0|0 has to be chosen such that x̂0|0 = E[x0], where E[·] is the
expected value function. The filter also requires the best possible estimates of
the covariance of the process and measurement noises (W and V respectively).

2.3.1 The Kalman Predictor

In the literature, as an alternative to the described Kalman filter, there are
also works on the use of the so called Kalman Predictor (see [82]) which
consists in a simpler algorithm than the standard Kalman filter since it is
based only on the prediction step. More formally, while the standard Kalman
filter provides the estimate x̂k|k of the state xk, the Kalman predictor yields
only the prediction x̂k|k−1 of this state. In a mathematical point of view,
the filter equations are

Kalman Predictor

Lk = APk|k−1C
T (CPk|k−1C

T + V )−1

x̂k+1|k = Ax̂k|k−1 +Buk + Lk(yk − Cx̂k|k−1)

Pk+1|k = (A− LkC)Pk|k−1(A− LkC)T +W + LkV Lk

where Pk|k−1 is the prediction error covariance matrix related to the prediction
error ek|k−1 = xk − x̂k|k−1.

It has been proved that the Kalman predictor has the same properties
of the standard Kalman filter. Obviously, in a computational point of view
the predictor is less onerous than the filter since the estimation step is not
performed. However due the estimation step loss, the prediction thanks to
the Kalman predictor is usually worse than the estimation obtained by the
Kalman filter.

2.3.2 Kalman Filter non linear extensions

Now consider the case where the system is not linear and it is described by
the equations xk+1 = φ(xk, uk) + wk

yk = h(xk) + vk

(2.6)

The function φ : Rn × Rm → Rn describes the new state in terms of the
previous state and of the system inputs. The function h : Rn → Rp maps the
state vector to the sensors measurements.
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At this point, starting from equations (2.6) various extensions to the stan-
dard Kalman filter have been developed. In this thesis two of these extensions
will be described and used.

The Extended Kalman Filter

The Extended Kalman Filter (EKF) has been used for many years to estimate
the state of nonlinear stochastic systems with noisy measurements, and it has
been probably the first concrete application of Kalman work on filtering [17].
The filter is based on the linearization of the nonlinear maps (φ, h) of (2.6)
around the estimated trajectory, and on the assumption that the initial state
and measurement noises are Gaussian and uncorrelated each other. From the
computational point of view the EKF is simply a time-varying Kalman filter
where the dynamic and output matrices are given by

Ak =
∂φ(x, uk)

∂x

∣∣∣∣
x=x̂k|k

, Ck =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

, (2.7)

and its output is a sequence of state estimates x̂k|k and matrices Pk|k.
Starting from the given (x̂0|0, P0|0), the Extended Kalman filter steps

are [23]:

Extended Kalman Filter

x̂k+1|k = φ(x̂k|k, uk)

Pk+1|k = AkPk|kA
T
k +W

Lk+1 = Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 + V )−1

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − h(x̂k+1|k))

Pk+1|k+1 = Pk+1|k − Lk+1Ck+1Pk+1|k

where x̂k+1|k represents the estimate of xk+1 before getting the observation
yk+1 (prediction), and x̂k+1|k+1 represents the estimate after getting that
observation.

In this non-linear context, differently from the linear case, Pk|k is only an
approximation (because of the linearization) of the estimation error covariance
matrix.

The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) has been developed to overcome two
main problems of the EKF:

1. the poor approximation properties of the first order approximation;
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2. the requirement for the noises to be Gaussian [18, 19].

The basic idea behind the UKF is to find a transformation that allows to
approximate the mean and covariance of a random vector, of length n, when
it is transformed by a nonlinear map. As a first step, a set of 2n + 1 points,
called σ-points, are obtained from the original random vector. As a second
step, these σ-points are transformed by the nonlinear map and finally starting
from the mean and variance of the transformed σ-points, an approximation
of the original random vector mean and variance is obtained. Refer to [19, 20]
for the theoretical aspects. Regarding the filter approximating properties, it
has been shown [19] that, while the EKF state estimate is accurate to the
first order, the UKF estimate is accurate to the third order in the case of
Gaussian noises. The covariance estimate also is accurate to the first order for
the EKF, and to the second order for the UKF. The so-called NonAugmented
version of the Unscented Kalman filter, which is suitable for additive noises,
is here reported. The description follows partially the one given in [21], with
some modifications to make it more compact and suitable for a MATLAB [22]
implementation.

Unscented Kalman Filter – NonAugmented version

At each step, starting from x̂0|0 e P0|0, do

1. Compute Bk|k =
√

(n+ λ)Pk|k, i.e, the scaled square root of matrix Pk|k

2. Compute the σ-points matrix

χk|k = [x̂k|k x̂k|k +Bk|k x̂k|k −Bk|k] ∈ Rn×(2n+1)

There (and in the next equations) the sum of a vector plus a matrix
is intended as summing the vector to all the column of the matrix
(à la MATLAB)

3. Transform the σ-points matrix (columnwise)

χ∗k+1|k = φ(χk|k, uk)

4. Compute the a-priori statistics

x̂k+1|k = χ∗k+1|k R
m

Pk+1|k = (χ∗k+1|k− x̂k+1|k)Rc(χ∗k+1|k− x̂k+1|k)T +W

5. Compute the new σ-points

Bk+1|k =
√

(n+ λ)Pk+1|k

χk+1|k = [x̂k+1|k x̂k+1|k+Bk+1|k x̂k+1|k−Bk+1|k]
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6. Compute the predicted output

Γk+1|k = h(χk+1|k)

ŷk+1|k = Γk+1|k R
m

7. Compute the Kalman gain

Pyy = (Γk+1|k − ŷk+1|k)Rc(Γk+1|k − ŷk+1|k)T + V

Pxy = (χk+1|k − x̂k+1|k)Rc(Γk+1|k − ŷk+1|k)T

Lk+1 = PxyP
−1
yy

8. Compute the a-posteriori statistics

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − ŷk+1|k)

Pk+1|k+1 = Pk+1|k − Lk+1PyyK
T
k+1

The filter’s parameters and weighs are [18]:

Rm = [Rm1 · · ·Rm2n+1]T

Rc = diag{Rc1, . . . , Rc2n+1}

where

Rm1 =
λ

n+ λ
, Rc1 =

λ

n+ λ
+ 1 + β − α2

Rmj = Rcj =
λ

2 (n+ λ)
, j = 2, . . . , 2n+ 1.

and

α = 0.001, β = 2, κ = 3− n
λ = α2(n+ κ)− n

According to [18], the choice β = 2 minimizes the error in the fourth-order
moment of the a-posteriori covariance when the random vector is Gaussian.

Please note that to use the Unscented Kalman filter no function lin-
earization is required. The UKF is then less influenced by model error
than the EKF and the estimation provided by the UKF is more accurate than
the one obtained using the EKF.

2.4 Mobile robots localization in a perfectly known
environment

In this Section a solution for the mobile robots localization in a perfectly
known environment will be proposed. Assume to have a mobile robot placed
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in a rectangular environment the boundaries of which are perfectly known.
The robot is assumed to be equipped with nS distance sensors, placed in
known locations w.r.t. the robot center and denoted by Si, i = 1, . . . , nS .
Figure 2.1 shows the described framework for the case nS = 5.

Fig. 2.1: Perfectly known rectangular environment

Assume an absolute reference frame placed in the down-left corner of the
rectangular environment. Let lx, ly be the environment width and length
and let αi, i = 1, . . . , 5 denote the orientation of the sensors with respect to
robot axis (orthogonal to wheels axes). The proposed mobile robot localization
algorithm is based on the use of an Extended Kalman filter (EKF) or of an
Unscented Kalman filter (UKF). The filters are based on the model (1.4) for
what regards the robot evolution and, for what concerns the output model,
the function h(·) in the equations (2.6) is used. Since the sensors are placed
on the robot, the measurements provided by these sensors are related to the
environment shape and thus the output equation has to take into account the
environment.

Each distance based sensor Si provides the distance of the robot center
from one point on the environment boundaries, denoted by P̃i. Starting from
the framework depicted in Figure 2.1 (for the case nS = 5), the distances
yi,k = hi(xk), i = 1, . . . , nS , measured by each distance sensor Si, are given
by

hi(xk) =
√

(tan2(θk + αi) + 1)(xR1,k)2 if pi ∈ e1,

hi(xk) =
√

(tan2(θk + αi) + 1)(xR1,k − lx)2 if pi ∈ e2,

hi(xk) =
√

( 1
tan2(θk+αi)

+ 1)(xR2,k)2 if pi ∈ e3,

hi(xk) =
√

( 1
tan2(θk+αi)

+ 1)(xR2,k − ly)2 if pi ∈ e4,
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where ei, i = 1, . . . , 4 denotes the edges of the field, the equations of which
are:

e1 : x1 = 0; e2 : x1 = lx
e3 : x2 = 0; e4 : x2 = ly

These relationships are specific to the described robot environment and
define the robot model output equation. In a more compact form, the above
relationships can be written as

yk = h(xk, lx, ly) + vk. (2.8)

As expected, the model output equation is a function of the environment
parameters lx, ly and of the robot state xk. The vector vk collects the sensor
noises, also assumed Gaussian, zero-mean, with covariance matrix V , and
uncorrelated with the process noise wk.

At this point, using equations (1.4) and (2.8), the Extended Kalman filter
and the Unscented Kalman filter presented in Section 2.3.2 can be applied.
Thanks to this filter, the robot pose can be estimated and the mobile robots
localization problem is solved.

2.5 Mobile robots localization in a partially known
environment

The previously proposed solution can be applied in a few situations due to
the very strong assumptions on the environment boundaries. In this section
the obtained results for a rectangular environment will be extended to a more
general scenario.

Assume that the robot is moving in an unknown workspace and assume
to model the environment boundaries using a set of segments, each of them
intersecting at least one point on the boundaries (see Figure 2.2).
Let Ox1,x2

be the chosen absolute reference frame and let
{Bi = (Bi1, B

i
2), i = 1, . . . , nB} be a set of environment boundaries points, the

coordinates of which are assumed to be known. The environment is approx-
imated by the segments from Bi to Bi+1, i = 1, . . . , nB and by the segment
starting from BnB and ending in B1

2. Consider the same mobile robot used
in the previous Section. The robot is equipped with nS distance sensors (see
Figure 2.2 for the case nS = 5).

Each sensor provides the distance yi between the robot center, P = (xR1 , x
R
2 ),

and one point on the surrounding environment, denoted by P̃i = (x̃i1, x̃
i
2):

2 Please note that if the environment contains obstacles, points on the obstacles
boundaries are required too. For example, if two obstacles are placed into the
environment, three points sets have to be used: the first one related to the envi-
ronment, the second one and the third one related to the obstacles. Only segments
related to points in the same set are used.
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Fig. 2.2: Partially known rectangular environment

yi =
√

(xR1 − x̃i1)2 + (xR2 − x̃i2)2. (2.9)

The above measurement is approximated by the distance between P and
the intersection point, P̄i = (x̄i1, x̄

i
2), between the Si sensor axis and one of

the segments used to model the boundaries (see Figure 2.3).
Denoting the Si sensor axis by x2 = aix1 + qi, and the detected segment

axis by x2 = cix1 + si, the intersection P̄i is

x̄i1 =
si − qi
ai − ci

, x̄i2 =
aisi − ciqi
ai − ci

. (2.10)

Finally the distance between P and P̃i is approximated by:

ηi =
√

(xR1 − x̄ii)2 + (xR2 − x̄i2)2 ≈ yi. (2.11)

Figure 2.3 shows in details the proposed observation model for the case
Si = S3.

The Si axis parameters are given by:

ai = tan(θ + αi), qi = xR2 − aixR1 , (2.12)

where θ is the robot heading. Using (2.10) and (2.12) within (2.11), a distance
function ηi depending only on the robot state and on the segment parameters,
(si, ci), can be obtained

ηi = h((xR1 , x
R
2 , θ), (si, ci)), i = 1, . . . , nS .

These relationships allow to define the robot model output equation:

yk ≈ h(xk, (s̄k, c̄k)) + vk, (2.13)
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Fig. 2.3: Measurement model

where xk = [xR1,k x
R
2,k θk]T is the robot state at time tk = kT and the vector

vk collects the sensor noises, again assumed Gaussian and zero-mean, with
covariance matrix V and uncorrelated with wk; the vectors s̄k and c̄k contain
the parameters (s, c) of all the segments, hit by at least one of the robot
sensors, at time tk. Obviously, these parameters are related to the points
{Bi = (Bi1, B

i
2), i = 1, . . . , nB}.

Using this observation model, a Segment based Extended Kalman Filter
(SEKF) (or a Segment based Unscented Kalman Filter (SUKF)) can be used
to face the localization problem. Starting from the equation (2.13), the lin-
earized output matrix Ck is

Ck =

 C1

...
CnS


where each row Ci = [Ci,1, Ci,2, Ci,3] is a three element array the entries of
which are

Ci,1 =
∂ηi

∂xR1
=

ci

(
2si−2xR2 −tan(θ+αi)

2+ci

(
2xR1 +tan(θ+αi)

))
2(ci−tan(θ+αi))2

√√√√xR2 +
(si+cixR1 −x

R
2 )2

(ci−tan(θ+αi))2
+
si tan(θ+αi)+ci(−xR2 +xR1 tan(θ+αi))

ci−tan(θ+αi)

Ci,2 =
∂ηi

∂xR2
=

−2si+2xR2 +tan(θ+αi)
2−ci

(
2xR1 +tan(θ+αi)

)
2(ci−tan(θ+αi))2

√√√√xR2 +
(si+cixR1 −x

R
2 )2

(ci−tan(θ+αi))2
+
si tan(θ+αi)+ci(−xR2 +xR1 tan(θ+αi))

ci−tan(θ+αi)

Ci,3 =
∂ηi

∂θ
=

sec(θ+αi)
3
(
cos(θ+αi)c

2
i+ci

(
− sin(θ+αi)+2 cos(θ+αi)x

R
1

)
+2 cos(θ+αi)

(
si−x

R
2

))(
si+cix

R
1 −x

R
2

)
2(ci−tan(θ+αi))3

√√√√xR2 +
(si+cixR1 −x

R
2 )2

(ci−tan(θ+αi))2
+
si tan(θ+αi)+ci(−xR2 +xR1 tan(θ+αi))

ci−tan(θ+αi)
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At this point, a standard Extended Kalman filter can be used to localize
the robot.

Fig. 2.4: Properly chosen points Bi (UP), bad chosen points Bi (DOWN)

In conclusion, when the environment is partially known, the localization
problem can be faced thanks to an EKF based on the model related to the
environment boundaries. It is not important to have a very precise model, it
is important that at least the main boundaries characteristics are modeled.
For example, using the proposed segment based model, it is mandatory to
correctly choose the points Bi. Take in consideration the environment shown
in Figure 2.4. In the first case, the points Bi have been chosen properly while in
the second case the approximation is not good and thus the proposed segment
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based filter will fail in the robot localization. To overcome these difficulties, in
the following Section a new localization technique will be proposed based on a
totally unknown environment and with no assumptions about the environment
boundaries.

2.6 Mobile robots localization in a totally unknown
environment

The observation structure (2.13) is well-posed only if (s̄k, c̄k) are known. In the
segment based EKF these parameters are assumed to be known (thanks to the
points Bi). On the contrary, if no assumption is done on the robot surrounding
environment, then an estimation of the parameters (s̄k, c̄k), namely (ˆ̄sk, ˆ̄ck),
has to be found. To this end, the Neighbors Based Algorithm (NBA)
has been devised.

2.6.1 Neighbors Based Algorithm

The NBA is based on the main idea that information on the whole environ-
ment is not needed to localize the robot. Only the environment parts that
currently interact with the robot sensors are needed to estimate the current
robot position and orientation. Starting from this idea, thanks to the prox-
imity between acquired measurements over time, it is possible to estimate
the environment parameters needed, at time tk, to model the sensors output.

More precisely, two points P1, P2 are defined as neighbors
if ||P1 − P2|| < RNBA, where RNBA > 0 is an algorithm parameter. Moreover,
for a given set of points A and a point P ∈ A, the following set-valued
closeness function N has been defined

B = N (P,A, RNBA) = {Pi ∈ A : ||Pi − P || < RNBA}

that provides the subset B, containing the points in A which are neighbors,
in a radius RNBA, of P .

Once a new measurement yi,k has been acquired by sensor Si at step
k, given the actual robot state estimate x̂k, an approximation, P ∗i,k, of the

environment point P̃i,k hit by the sensor axis, is computed as:

P ∗i,1,k = x̂R1,k + yi,k cos(θ̂k + αi)

P ∗i,2,k = x̂R2,k + yi,k sin(θ̂k + αi)

P ∗i,k = (P ∗i,1,k, P
∗
i,2,k).

(2.14)

This approximation differs from the actual point P̃i,k because of both the
estimation and the measurement errors. An example of the above approxima-
tion is shown in Figure 2.5.

Given the set of environment detected points
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Fig. 2.5: P ∗i,k approximating the point P̃i,k

Mk = {P ∗i,j , i = 1, . . . , nS , j = 0, . . . , k}, (2.15)

the NBA computes the closeness function of P ∗i,k on the set Mk (see the
second picture in Figure 2.6). At this point, the LMS function is used:

[b0, b1, . . . , bz] = LMS(A, z). (2.16)

This function computes the parameters [b0, b1, . . . , bz] of the z-th order poly-
nomial which best approximates, in a Least Mean Square (LMS) sense, the
points contained in the setA. The NBA computes the LMS line approximating
the P ∗i,k-neighbors (see the third picture in Figure 2.6):

(ŝk, ĉk) = LMS(N (P ∗i,k,Mk, RNBA), 1)

and the resulting values ŝk, ĉk are used to approximate the segment de-
tected by the i-th sensor.

Fig. 2.6: First picture: P ∗i,k and previously detected points; second picture: closeness
function on P ∗i,k; third picture: LMS line approximation
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In conclusion, the NBA algorithm can be summarized as follows:

Neighbors Based Algorithm

for each step k, given x̂R1,k, x̂
R
2,k, θ̂k,Mk−1, do

1. for each sensor Si
� acquire a measurement yi,k from the sensor Si
� compute P ∗i,k using (2.14)
end

2. Mk =Mk−1 ∪ {∪for each Si{P ∗i,k}}
3. for each Si

� (ŝi, ĉi) = LMS(N (P ∗i,k,Mk, RNBA), 1)
end

end

From now on, the NBA algorithm will be used as a function

(ˆ̄sk, ˆ̄ck) = NBA(x̂k, yk)

where (ˆ̄sk, ˆ̄ck) can be used to approximate the vectors (s̄k, c̄k) in the output
function (2.13).

Using the NBA into the standard Extended Kalman fitler, the mobile
robot localization in a totally unknown environment can be faced. The final
algorithm is

Neighbors based Extended Kalman Filter

x̂k+1|k = f(x̂k|k, uk)

Pk+1|k = AkPk|kA
T
k +W

Kk+1 = Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 + V )−1

(ˆ̄sk+1, ˆ̄ck+1) = NBA(x̂k+1|k, yk+1)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − h(x̂k+1|k, (ˆ̄sk+1, ˆ̄ck+1)))

Pk+1|k+1 = Pk+1|k −Kk+1Ck+1Pk+1|k

Following the same lines, a Neigbors based Unscented Kalman Filter (NUKF)
can be easily stated.

The main drawback of the proposed NEKF is related to the initial condi-
tion influence on the resulting estimation performance. Since no preliminary
information on the surrounding environment is required, if the initial condi-
tion is too wrong the resulting estimation can be affected by a bias w.r.t. the
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real robot state. However, this bias problem is probably unavoidable if no
assumptions are made on the robot environment.

The above considerations suggest that at least some information on the
robot surrounding environment is needed to overcome the NEKF algorithm
problems. In the next Section, a new algorithm, developed to overcome the
above drawbacks, and based on a small amount of information about the robot
surrounding environment, will be described.

2.7 Sensor fusion for the Mobile Robots Localization
Problem: the MKF algorithm

All the proposed mobile robots localization techniques are based on the sensor
fusion approach. The sensor fusion is the process of combing information from
a number of different sources to provide a robust and complete description of a
process of interest. In other words, starting from a set of noisy measurements,
the sensor fusion techniques are used to obtain a process description as less
influenced as possible by measurements noise.

In a control system various sensors types are used to provide as more
information as possible and to ensure application robustness; sensors are used
to monitor various aspects of the same system (e.g. speed, position, power,
temperature, etc. . . ). This information is always influenced by noise due to
physical sensors’ characteristics or to working environment features. The more
the number of sensors providing the same measurement is high, the higher is
the probability of extracting the real information from these measurements
neglecting the noise effects.

In the mobile robots localization context, as previously shown, the Kalman
filter theory can be suitably adapted to solve the localization problem both
in a perfectly known environment [25] and in a totally unknown environment
[13]. Instead of using robot on board distance sensors to solve the localiza-
tion problem, a possible alternative consists in using a set of out of board
distance sensors, placed in known locations in the robot environment. Con-
crete examples can be found in [3, 14, 15, 16]. Using external distance sensors,
the key idea is to estimate the robot pose by means of the robot model and
of the information about the distances from the robot to the sensors. In this
configuration, only the information about the external sensors locations is re-
quired. Solutions based on the use of only on board sensors or only out of
board sensors have both advantages and drawbacks. In particular, using ex-
ternal distance sensors, good results can be obtained on the robot position
estimation, while the orientation estimation can be quite unreliable due to
the absence of a real angular information in the sensors measurements; on the
contrary, the on board sensors information can be directly related to the robot
heading, as shown in the NEKF section (see 2.6.1) and therefore the heading
estimation is usually better than the one obtained using external sensors. As
a drawback, if on board sensors are used in an unknown environment, models
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for the measurements and for the environment have to be built and these
models can be very influenced by the robot initial condition estimation.

The described situation is very common in control systems. As previously
remarked, various kinds of sensors are used to take information about the
system state variables and not all of these sensors can estimate all the state
variables with the same performance. For example there could be a first subset
of sensors able to provide information only about some of the state variables,
while a second subset could be better to estimate the remaining state variables.
As a consequence, using only the first or the second subset always yields to
state estimation troubles.

In this Section a new sensor fusion technique will be shown based on the
idea of emphasizing the qualities and overcoming the defects of each used
sensor. Instead of fusing the entire information from all the available sensors,
which could result in a very high computational costs if the number of sensors
is high, two different filters will be used to estimate the same state variables.
The first filter will be based only on a first sensors subset’s measurements while
the second one will be based only on the remaining sensors’ measurements.
The two obtained state estimates will be then suitably combined. In this way,
the computational cost will be quite the same of using a single filter but the
global performance should be enhanced. Starting from these ideas, a Mixed
Kalman filter (MKF) is proposed and tested in a mobile robot application.

In the literature many works can be found about the use of two Kalman
filters, however, to the best of the author’s knowledge, each filter deals with the
estimate of different variables. For example, in [4, 24], the authors use a two
stage Kalman filter in order to simultaneously estimate the model parameters
and the system’s state, but the first filter is used to estimate only the model
parameters while the second one provides only an estimation of the system’s
state.

2.7.1 Mixed Kalman Fiter for LTI systems

Assume to have a linear time-invariant discrete system with two output equa-
tions: 

xk+1 = Axk +Buk + wk

y1k = C1xk + v1k
y2k = C2xk + v2k

(2.17)

where xk ∈ Rn is the state vector, y1k ∈ Rp is the first output, y2k ∈ Rq
is the second output and the noises wk, v

1
k, v

2
k are zero-mean uncorrelated

Gaussian noises modeling the process noise, the measurement noise on y1k and
the measurement noise on y2k respectively. Let W , V 1 and V 2 be the covariance
matrices of the noises wk, v1k and v2k. These matrices will be assumed to
be known. Moreover an initial prediction of the state x̂0|−1 and its related
prediction error covariance matrix P0|−1 are assumed to be known.
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To estimate the system state a possible solution is to use a standard Kalman
filter based on the predictor structure (see Section 2.3.1):

Kalman Filter (predictor structure)

Lk = APk|k−1C
T (CPk|k−1C

T + V )−1

x̂k+1|k = Ax̂k|k−1 +Buk + Lk(yk − Cx̂k|k−1)

Pk+1|k = (A− LkC)Pk|k−1(A− LkC)T +W + LkV Lk

where x̂k+1|k is the prediction of the model state at step k + 1 given all the
information available at step k, and

yk =

[
y1k
y2k

]
, C =

[
C1

C2

]
, V =

[
V 1 ∅
∅ V 2

]
are used for the filter evolution. The matrix ∅ is a null matrix of appropriate
size.

Using a filter based on both the output equations, the computational cost
and the memory requirements could be more expensive than using two filters,
one for each output equation, y1k or y2k.

Following this idea, assume to have a Kalman filter KF 1 based only on
y1k, C

1, V 1 and a Kalman filterKF 2 based on y2k, C
2, V 2. Let x̂1k|k−1 and x̂2k|k−1

be the state predictions provided by KF 1 and KF 2 respectively.
Since two filters are available and each of them provides the prediction of the
same state variables, a possible way to improve the prediction performance
without affecting computational costs is to suitably combine the two predic-
tions at each step. More precisely, consider the following convex combination

x̃k|k−1 = Mαx̂
1
k|k−1 + (I −Mα)x̂2k|k−1 (2.18)

where Mα = diag([α1 α2 . . . αn]) and αi ∈ [0, 1], i = 1, . . . , n.
Using at each step the above combination in the recursive equation of the

filter the following algorithm can be stated:

Mixed Kalman Filter (MKF)

x̂1k+1|k = Ax̃k|k−1 +Buk + L1
k(y1k − C1x̃k|k−1)

x̂2k+1|k = Ax̃k|k−1 +Buk + L2
k(y2k − C2x̃k|k−1)

x̃k+1|k = Mαx̂
1
k+1|k + (I −Mα)x̂2k+1|k

P̃k+1|k = Φ(P̃k|k−1)
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where

� x̃k+1|k is the MKF predicted state, the initial condition of which is
x̃0|−1 = x̂0|−1;

� P̃k+1|k is the prediction error covariance matrix related to x̃k+1|k − xk+1.

The initial condition of this covariance matrix is P̃0|−1 = P0|−1;
� L1

k and L2
k are two gains the values of which have to be properly chosen

to minimize the prediction error covariance matrix P̃k+1|k;

� the function Φ(·) describes the evolution of the covariance matrix P̃k+1|k.

Figure 2.7 shows the overall prediction scheme in the proposed configuration.

Fig. 2.7: Convex combination based prediction scheme

The more the value of Mα tends to the identity matrix, the more x̃k|k−1
tends to x̂1k|k−1. If Mα tends to the null matrix then x̃k|k−1 tends to x̂2k|k−1.

In the next Subsections the function Φ(·) and the optimal values for the gains
L1
k and L2

k will be found.

Error covariance matrix evolution

Let ek+1|k = x̃k+1|k − xk+1 be the prediction error and let M̃α = (I −Mα).
Using the MKF equations along with (2.17) the prediction error evolution is:

ek+1|k = x̃k+1|k − xk+1 = Mαx̂
1
k+1|k + M̃αx̂

2
k+1|k − xk+1 =

= Mα[(A− L1
kC

1)x̃k|k−1 +Buk + L1
ky

1
k] + M̃α[(A− L2

kC
2)x̃k|k−1 +Buk+

L2
ky

2
k]− (Axk +Buk + wk) =

= (Mα(A− L1
kC

1) + M̃α(A− L2
kC

2))(x̃k|k−1 − xk) +MαL
1
kv

1
k+

M̃αL
2
kv

2
k − wk =

= (Mα(A− L1
kC

1) + M̃α(A− L2
kC

2))ek|k−1 +MαL
1
kv

1
k + M̃αL

2
kv

2
k − wk
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and since Mα + M̃α = I, the prediction error is

ek+1|k = (A− (MαL
1
kC

1 + M̃αL
2
kC

2))ek|k−1 +MαL
1
kv

1
k + M̃αL

2
kv

2
k − wk

(2.19)
At this point the function Φ(·) can be found evaluating the ek+1|k covariance

matrix. Let ∆ = (A − (MαL
1
kC

1 + M̃αL
2
kC

2)) and let E[·] be the expected
value function. Assuming that there is no correlation between the measure-
ments noises v1k, v

2
k, the process noise wk and the prediction error ek|k−1, the

prediction error covariance matrix evolution is

P̃k+1|k = E[(ek+1|k − E[ek+1|k])(ek+1|k − E[ek+1|k])T ] = E[ek+1|ke
T
k+1|k] =

= E[(∆ek|k−1 +MαL
1
kv

1
k + M̃αL

2
kv

2
k − wk)(∆ek|k−1+

MαL
1
kv

1
k + M̃αL

2
kv

2
k − wk)T ] =

= E[∆ek|k−1e
T
k|k−1∆

T +MαL
1
kv

1
kv

1T

k L1T

k MT
α + M̃αL

2
kv

2
kv

2T

k L2T

k M̃T
α + wkw

T
k ]

and finally

P̃k+1|k = Φ(P̃k|k−1) = ∆P̃k|k−1∆
T +MαL

1
kV

1L1T

k MT
α + M̃αL

2
kV

2L2T

k M̃T
α +W

(2.20)

Please note that, since P̃k|k−1 is a positive semi-definite matrix (P̃k|k−1 ≥ 0),

then P̃k+1|k will be a positive semi-definite matrix (P̃k+1|k ≥ 0) too.

Optimal filter gains

Once the function Φ(·) has been found, the optimal values for the gains
L1
k and L2

k are computed by minimizing the covariance matrix P̃k+1|k. The

trace{P̃k+1|k} has been chosen as the minimization index and the following
optimization problem has been stated:

(L1
k, L

2
k) = arg min

L1
k,L

2
k

trace{P̃k+1|k}

subject to

P̃k+1|k = Φ(P̃k|k−1)

(2.21)

To solve the above optimization problem, let L̃1
k = MαL

1
k and L̃2

k = M̃αL
2
k.

Using the trace properties the optimization index can be written as

trace{P̃k+1|k} = trace{Φ(P̃k|k−1)} =

trace{AP̃k|k−1AT +W + L̃1
k(C1P̃k|k−1C

1T + V 1)L̃1T

k + L̃2
k(C2P̃k|k−1C

2T

+V 2)L̃2T

k + 2L̃2
kC

2P̃k|k−1C
1T L̃1T

k − 2AP̃k|k−1(C1T L̃1T

k + C2T L̃2T

k )}

At this point the derivatives of the above index w.r.t L̃1
k and L̃2

k are
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δtrace{P̃k+1|k}
δL̃1

k

= 2L̃1
k(C1P̃k|k−1C

1T + V 1)− 2AP̃k|k−1C
1T + 2L̃2

kC
2P̃k|k−1C

1T

(2.22)
and

δtrace{P̃k+1|k}
δL̃2

k

= 2L̃2
k(C2P̃k|k−1C

2T + V 2)− 2AP̃k|k−1C
2T + 2L̃1

kC
1P̃k|k−1C

2T

(2.23)
To find the minimum values of the optimization index, the following equations
are solved 

δtrace{P̃k+1|k}
δL̃1

k

= ∅

δtrace{P̃k+1|k}
δL̃2

k

= ∅

yielding to

L2
k = fL2(P̃k|k−1) = M̃−1

α (AP̃k|k−1C
2T −AP̃k|k−1C

1T (C1P̃k|k−1C
1T +

V 1)−1C1P̃k|k−1C
2T )Γ−1

L1
k = fL1(P̃k|k−1) = M−1

α (AP̃k|k−1C
1T − M̃αC

2P̃k|k−1C
1T )(C1P̃k|k−1C

1T + V 1)−1

where

Γ = (C2P̃k|k−1C
2T + V 2 − C2P̃k|k−1C

1T (C1P̃k|k−1C
1T + V 1)−1C1P̃k|k−1C

2T )

(2.24)
To ensure that the equations (2.24) are related to a minimum point of the
optimization index trace{P̃k+1|k}, the Hessian matrix of this index has to be
studied. The Hessian matrix is

H =

[
C1P̃k|k−1C

1T + V 1 C1P̃k|k−1C
2T

C2P̃k|k−1C
1T C2P̃k|k−1C

2T + V 2

]
(2.25)

Assuming q = p = 1, that is y1k has the same size of y2k and they are scalar
values, the determinant of the Hessian matrix is

D = det{H} = (C1P̃k|k−1C
1T + V 1)(C2P̃k|k−1C

2T + V 2)−
C1P̃k|k−1C

2TC2P̃k|k−1C
1T =

C1P̃k|k−1C
1TC2P̃k|k−1C

2T + V 1C2P̃k|k−1C
2T + C1P̃k|k−1C

1T V 2 + V 1V 2−
C1P̃k|k−1C

2TC2P̃k|k−1C
1T .

Since P̃k|k−1 is a symmetric positive semi-definite matrix, it is possible to
deduce that

C1P̃k|k−1C
2TC2P̃k|k−1C

1 = C1P̃k|k−1C
2TC1P̃k|k−1C

2T =

C1P̃k|k−1C
1TC2P̃k|k−1C

2T
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and thus

D = det{H} = V 1C2P̃k|k−1C
2T + C1P̃k|k−1C

1T V 2 + V 1V 2 (2.26)

Since V 1 and V 2 are positive scalar values and P̃k|k−1 ≥ 0, the Hessian matrix
determinant is D > 0 and the equations (2.24) define a minimum point for
the optimization problem (2.21).

Remark 1 The obtained result about the gains optimality is valid only if the
system (2.17) has two scalar outputs. Otherwise, there is no assurance about
the optimality of the gains defined by equations (2.24). Further studies are in
progress to validate the obtained results also when the system has not only
two scalar outputs. Moreover, as it will be shown in Section 6.6.5, numerical
and experimental tests have been performed using a system with two non
scalar outputs and very good results have been obtained.

Remark 2 The equations (2.20) and (2.24) become the standard Kalman
filter equations if Mα = I or Mα = ∅.

As the obtained equations show, the optimal gains values and the error
covariance matrix evolution are influenced by Mα, therefore it is very impor-
tant to properly choose the values of αi, i = 1, . . . , n to obtain the best state
prediction results. Choosing these values depends on the sensors related to
each output equation. For example, if the sensors related to y1k give less infor-
mation about the j-th state variable than the sensors related to y2k, αj has to
be αj → 0.

2.7.2 Mixed Kalman Filter for mobile robots localization

To adapt the Mixed Kalman filter framework to the mobile robot localization
problem, the two output equations have to be defined. The first output equa-
tion is related to the robot on board sensors and it has been defined in the
previous Sections (see (2.13)):

rk ≈ h(xk, (s̄k, c̄k)) + v1k. (2.27)

Please note that in the following, the on board sensors output will be denoted
as rk and v1k will denote the on board sensors measurement noise; the symbol
yk will be instead used to denote the entire system output, including both the
on board sensors outputs and the out of board sensors outputs.

The second output equation is related to a set of q external distance sensors
placed in known locations in the environment. These sensors measure the
distances between each out of board sensor Fi, i = 1, . . . , q, located in (F i1, F

i
2),

and the robot center P = (xR1 , x
R
2 ).

The second output equation is then
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di = h2((xR1 , x
R
2 ), (F i1, F

i
2)) =

√
(xR1 − F i1)2 + (xR2 − F i2)2

i = 1, . . . , q

and it will be written in compact form as

dk = h2(xk, F̄ ) + v2k (2.28)

where F̄ contains the parameters Fi, i = 1, . . . , q and the vector v2k collects
the out of board sensors noises, also assumed Gaussian, zero-mean and un-
correlated with wk = [wxk , w

y
k, w

θ
k]T and v1k.

Using the on board sensors measurements, a NEKF algorithm (see Sec-
tion 2.6) based on the Kalman predictor structure (see Section 2.3.1) can be
stated. For what concerns the out of board sensors, an Extended Kalman filter
algorithm, based on the output equation (2.28) and on the Kalman predictor
algorithm, can be built. The resulting filter will be denoted as Out of board
sensors based Extended Kalman Filter (OEKF).

Thanks to the use of out of board sensors, the OEKF performance are
quite influenced by the initial condition error. However, due to the absence
of a real angular information, the estimate on the robot heading can be very
noisy and inaccurate. Otherwise the NEKF algorithm, as shown in [13], is able
to provide a good heading estimation but the state estimation is very affected
by initial condition errors.

In conclusion, using (2.27) as the first output equation, (2.28) as the second
output equation, the NEKF as the first filter, the OEKF as the second one,
the resulting Mixed Extended Kalman filter (MEKF) algorithm is

Mixed Extended Kalman Filter

first filter update:NEKF

L1
k = fL1(P̃k|k−1)

(ˆ̄sk, ˆ̄ck) = NBA(x̃k|k−1, rk)
x̂1k+1|k = φ(x̃k|k−1, uk) + L1

k(rk − h(x̃k|k−1, (ˆ̄sk, ˆ̄ck)))

second filter update:OEKF

L2
k = fL2(P̃k|k−1)

x̂2k+1|k = φ(x̃k|k−1, uk) + L2
k(dk − h2(x̃k|k−1, F ))

MEKF step
x̃k+1|k = Mαx̂

1
k+1|k + (I −Mα)x̂2k+1|k

P̃k+1|k = Φ(P̃k|k−1)

where

� L1
k and L2

k are computed using C1
k , C2

k , V 1, V 2, respectively and
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Ak = ∂φ(x,uk)
∂x

∣∣∣
x=x̃k|k−1

, C1
k = ∂h(x)

∂x

∣∣∣
x=x̃k|k−1

, C2
k = ∂h2(x)

∂x

∣∣∣
x=x̃k|k−1

;

(2.29)
� V 1 and V 2 are the covariance matrices related to the on board and to the

out of board sensors’ measurements noises;
� φ(·, ·) is the robot model function;
� the MEKF initial conditions are x̃0|−1 and P̃0|−1 and they are assumed to

be known;

In the MEKF algorithm, both NEKF and OEKF are used in parallel but,
at each step, the filters recursive equations are updated through a convex
combination of the filters’ predictions. Please note that the MEKF algorithm
does not make use of a single EKF based on the entire output yk = [rk dk]T

but it uses both filters in a parallel way. Thanks to the MEKF algorithm, the
memory requirements and the computational cost of the filter are quite the
same of using only the NEKF or only the OEKF while the estimation perfor-
mance should be enhanced w.r.t these two filters, especially if α1, α2, . . . , αn
are correctly chosen.

2.8 Chapter Conclusions

In this chapter the proposed solutions to the mobile robots localization prob-
lem have been shown. The discussed topics have shown how it is not possible to
find a technique useful in all the situations and in all the contexts. Depend-
ing on the available sensors and on the available information on the robot
surrounding environment, different solutions can be adopted.

Moreover each solution has drawbacks and advantages and, in particular,
if no assumption is done on the robot environment, at least the estimation
bias problem is unavoidable.

In Chapter 5, other localization techniques will be shown. In contrast to
the algorithms proposed in this Chapter, the solutions described in Chapter 5
will be based on the use of cameras and Inertial Measurement Units (IMUs)
with no robot model information required.





3

Simultaneous Localization and Mapping
(SLAM) problem for mobile robots

3.1 Introduction

In the second chapter of this dissertation, the mobile robots localization prob-
lem has been described and faced. In particular in Section 2.6 the localization
problem in a totally unknown environment has been solved. The above situa-
tion is very common in a big amount of robotics applications. Just to give a few
examples, in mobile robots rescue missions or in planetary exploration mis-
sions, the robots usually do not have information on the environment where
they move. In these contexts, and in many other ones, the environment
mapping problem has to be solved.

Mapping is the problem of integrating the information gathered with the
robot’s sensors into a given environment representation. This problem can
be described by the question “What does the world look like?”. Key
points in mapping are the environment representation and the sensors data
interpretation.

When a robot moves in an unknown environment, it could be very in-
teresting to simultaneously localize the robot and obtain an estimation
of the robot surrounding environment. The Simultaneous Localization And
Mapping (SLAM) problem deals with these two main tasks: (1) robot lo-
calization and (2) environment mapping.

The genesis of the SLAM problem occurred at the 1986 IEEE Robotics and
Automation Conference held in San Francisco where a number of researchers
had been looking at applying estimation-theoretic methods to mapping and
localization problems. Among these researchers, Peter Cheeseman, Jim Crow-
ley, and Hugh Durrant-Whyte introduced for the first time the Simultaneous
Localization and Mapping (SLAM) problem.

In mobile robotics, this problem is considered as chicken and egg problem.
To know where the robot is, a good environment mapping is needed but to
have a reliable environment mapping, the robot’s position and orientation
should be estimated as best as possible.
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3.2 SLAM state of art

The literature shows various solutions to the SLAM problem [6, 7, 8, 32, 31, 33]
using various sensors types, e.g. wheel encoders, laser range sensors, sonar
range sensors and cameras. Each SLAM algorithm is very influenced by the
used sensors types and the algorithm performance can be very high thanks to
appropriate sensors but they can drastically degenerate using different ones.
Probably the most used sensors types in SLAM applications are laser sensors
and cameras. Regarding the SLAM problem using laser sensors, in [6] a laser
sensor based SLAM algorithm for mobile robots in outdoor environments
has been developed solving the problem through an Extended Kalman filter
(EKF) based on an unknown robot initial position. In [40] the authors propose
a SLAM algorithm which obtains one estimate of the robot pose from a dead-
reckoning scheme and another one from a laser scan matching algorithm. The
fusion of the two estimates is then done through a covariance intersection
filter. In [7] starting from laser sensors measurements, a weighted least square
fitting is used to extract certain two-dimensional environment in order to solve
the SLAM problem.
About SLAM using cameras, in [41] the proposed SLAM algorithm runs an
EKF based on a monocular camera. The algorithm uses an object recogni-
tion thread which detects objects by looking for geometric compatibility and
correspondences in the environment. When an object is recognized, it is in-
serted in the SLAM map, being its position measured and hence refined by
the SLAM algorithm in subsequent camera frames. In [42] the authors present
a robust simultaneous localization and mapping algorithm based on a single
camera catadioptric stereo system composed of vertically aligned two hyper-
boloidal mirrors and a CCD camera. The single camera catadioptric stereo
system gives the 3D landmarks locations. In [8] a novel method of mobile robot
simultaneous localization and mapping using the Rao-Blackwellised particle
filter (RBPF) for monocular vision-based autonomous robot in unknown in-
door environment is proposed. The particle filter is combined with Unscented
Kalman filter (UKF) and the landmark position estimation is implemented
through the unscented transform.

Laser sensors and cameras probably represent the best way to face the
SLAM problem but they both have some drawbacks. Laser sensors can be very
expensive while cameras provide a large amount of information and it may be
difficult and computationally onerous to extract this information starting from
the camera image. An alternative way to solve the SLAM problem consists in
the use of sonar sensors. In spite of their lower accuracy w.r.t. laser sensors,
the sonar sensors are often used because they are less expensive than laser
scanners and range cameras, their use is computationally cheap and they work
well also in dark or transparent environments, where cameras usually fail.

The literature shows many SLAM solutions based on the use of ultrasonic
sensors. In [31] Tard´os et al. describe a technique to face the SLAM problem
using standard sonar sensors and the Hough transform [34] to detect corners,
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edges and walls into the environment starting from acquired sonar data. In
[36] a range sonar array based SLAM for autonomous underwater robots is
presented, the authors propose an EKF based solution and show its effective-
ness through experimental studies on the P-SURO AUV. In [35] a pose-based
algorithm to solve the SLAM problem for an autonomous underwater vehi-
cle is proposed. A probabilistic scan matching technique using range scans
gathered from a mechanical scanning imaging sonar is used along with two
Extended Kalman filters, one for the estimation of the local path traveled by
the robot and the second one to estimate and keep the registered SLAM land-
marks. In [33] the authors use sonar measurements along with a particle filter
to solve the SLAM problem for mobile robots in non-static environments.

Very often the SLAM algorithms assume to have at least some a priori
information about the environment (for example in [36]) or they assume to
model the environment in a very approximated way: in [37] the authors assume
the robot placed in an environment modeled as a set of orthogonal-parallel
lines.

As previously remarked, in a computational point of view, it is manda-
tory for a SLAM algorithm to be as cheap as possible in order to satisfy time
constraints so that the algorithm can be used to help robot control systems
(see Figure I.7). since information provided by SLAM algorithms is typically
used to compute the output of a control law designed, for example, to make
the robot follows a given trajectory or completes a given task. Developing
a computationally cheap SLAM algorithm and obtaining an accurate envi-
ronment mapping are two conflicting goals. The more the map provided by
SLAM is accurate, the higher will be the SLAM algorithm effort to obtain
and manipulate this map.

In the present thesis, three new distance sensors based SLAM solutions will
be proposed. The first one is computationally cheap but the resulting mapping
performance can be very poor; the second one has been developed looking at
a very accurate environment mapping, but it requires a high computational
cost. Finally, the third one has been developed to be computationally less
onerous than the second one but providing mapping results better than the
ones obtained using the firs technique. In other words, looking at the trade off
between mapping performance and computational costs, the first two tech-
niques are on opposite sides while the third one is in the middle of them,
trying to achieve a good compromise between costs and performance.

In the three techniques, the robot is assumed to be equipped with nS
distance sensors and the sensors will be denoted as Si, i = 1, . . . , nS .

3.3 SLAM problem description

The goal of the SLAM process is to use the environment to update the robot
position and to use the robot position to better detect the robot surrounding
environment. Since the robot model is often erroneous, the only information
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provided by this model is not sufficient to solve the SLAM problem and the
main idea is to use information provided by sensors to properly correct the
robot pose estimation simultaneously detecting the surrounding environment
boundaries. This is accomplished by extracting features from the environment
and re-observing these features when the robot moves around. Very often a
Kalman filter is the heart of the SLAM process. The filter is responsible for
updating where the robot thinks it is, based on the environment extracted
features, commonly called landmarks. The Kalman filter keeps track of an
estimate of the uncertainty in the robots position and also of the uncertainty
in the landmarks the robot has detected in the environment.

The SLAM process consists of a 5 main steps, an outline of this process is
depicted in Figure 3.1.

Fig. 3.1: SLAM main steps

The acquired measurements yk and the actual robot pose prediction x̂k|k−1
are used to perform the data association and landmark extraction processes
yielding to the actual environment mapping. Starting from this map and from
the model inputs uk, the state estimation, state update and landmark update
processes provide the robot pose estimation x̂k|k and prediction x̂k+1|k and
properly update the environment map.

In the following Sections, the model (1.4) will be used as the robot model
and the robot will be assumed to be equipped with a set of nS on board
distance sensors.

Just to give an example of how a SLAM algorithm works, indicating the
robot as a triangle, the landmarks as stars and sensor measurements as light-
nings, the main SLAM steps, at each algorithm iteration, are:
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1. The robot initially measures, using its sensors, the location of the land-
marks, see Figure 3.2.

Fig. 3.2: SLAM first step

2. The robot moves depending on its wheels velocities inputs and the model
provides a robot pose estimation (see Figure 3.3).

Fig. 3.3: SLAM second step

3. The robot once again measures the location of the landmarks using its
distance sensors. Depending on how the measured landmarks match with
the estimated landmarks positions (computed using the robot pose esti-
mation), the algorithm modifies the robot estimated pose (see Figure 3.4).
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Fig. 3.4: SLAM third step

4. As the robot believes more its sensors than its model, it now uses the
information gained about where the landmarks actually are to determine
where it is (the location the robot originally thought it was at, is illustrated
by the dashed triangle in Figure 3.5).

Fig. 3.5: SLAM fourth step

5. At this point the SLAM process restarts from step 1.

In the following Subsections, the main topics about the SLAM algorithms will
be discussed and described.

3.3.1 Landmarks: features and properties

Landmarks are environment parts which can be easily observed, re-observed
and distinguished from the other environment portions. The landmarks are
used by the robot to find out where it is (to localize itself). One way to imagine
how this process works for the robot is to picture a human blindfolded in a
room. If he moves around blindfolded, the human may reach out and touch
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objects or hug walls so that he does not get lost. Characteristic things such
as that felt by touching a doorframe may help the human in establishing an
estimate of where he is. Distance based sensors represent the robots feeling of
touch.

Landmarks should be re-observable by allowing them for example to be
viewed (detected) from different positions. Landmarks should be unique so
that they can be easily identified from one time step to another time step
without mixing them up.

The landmark choice is a crucial point in SLAM algorithms. If the chosen
landmarks are such that the number of landmarks in the environment is very
low, the robot may have to spend extended time without enough visible land-
marks and, as a consequence, the robot may then get lost. On the contrary,
if a too high number of landmarks can be detected in the environment, the
SLAM algorithm computational cost and the algorithm memory requirements
become too onerous.
Moreover, the landmarks should be stationary. For instance, using a person
as a landmark does not represent a good choice. The reason for this criterion
is fairly straightforward: if the landmark is not always in the same place how
can the robot know, given this landmark, in which place it is?

In summary, the key points about good landmarks are:

� landmarks should be easily re-observable;
� individual landmarks should be distinguishable from each other;
� the landmarks number in the environment has to bee neither too low nor

too high;
� landmarks should be stationary.

3.3.2 Landmark Extraction

Once the landmarks have been chosen, the next step is to somehow reliably
extract them from the robot sensors measurements. There are multiple ways
to perform the landmark extraction process and the way to chose largely
depends on what types of landmarks are attempted extracted as well as what
sensors are used.

Using distance based sensors, the landmark extraction process can be ac-
complished, for example, thanks to the RANSAC method [48].

3.3.3 Data Association

The problem of data association is related to obtain matching between cur-
rently observed landmarks and previously observed ones.
The following example can be helpful to illustrate what is meant:

Consider a human in a room and let a chair be a landmark. The human
sees a specific chair and then he leaves the room and, at some later
point, subsequently returns to the room. If the human sees a chair in
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the room and he says that it is the same chair previously seen then
he has implicitly associated this chair to the old chair. This process
may seem simple but the data association is a difficult task to do well.
Imagine the room had two chairs that looked practically identical, one
on the left side of the room and the second one on the right side. When
the human subsequently returns to the room, he might not be able to
distinguish accurately which of the two chairs were which of the chairs
he originally saw (as they all look the same). In this context, the best
bet is to say that the one on the left must be the one previously seen
to the left, and the one to the right must be the one previously seen
on the right.

In practice the following problems can arise during the data association pro-
cess:

� The landmarks could not be re-observed at each time step.
� A landmark might be observed but it could be not possible to ever see it

again.
� Currently detected landmarks could be wrongly associated to previously

observed ones.

As stated in the landmarks description Section, it should be easy to re-
observe landmarks and thus the above first two cases are not acceptable for
a good landmark. In other words, if the first two situations occur, then not
reliable landmarks have been chosen. The last problem is related to a wrong
landmark association and it can be devastating as it means the robot will
think it is somewhere different from where it actually is. To avoid these prob-
lems, a typically used policy is based on a landmarks database definition. The
database is set up to store previously seen landmarks and it is usually initially
empty. Each SLAM algorithm defines a set of rules to state if a new observed
object has to be associated to a landmark or it has to be discarded. For exam-
ple, a typically used rule states that a detected object cannot be considered
as a worthwhile landmark unless it has been seen at least N times.

3.3.4 State estimation, Landmark and state update

The last three SLAM steps are usually performed thanks to an Extended
Kalman Filter. More precisely, all the proposed SLAM algorithms in this
thesis are based on a properly adapted EKF. As described in Section 2.3.2,
the EKF is typically used only to obtain a model state estimation. In other
words, the EKF, in its traditional formulation, does not deal with the map
update and estimation.
In the SLAM context, the EKF is modified in order to simultaneously provide
landmark update, robot pose estimation and update.
The main idea is to define an augmented state which contains the robot pose
along with the landmarks describing data. More precisely, starting from the
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system model (2.6), and denoting as xk the robot pose and as Ek = {lik, i =
1, . . . , nk} the estimated environment map at step k, where lik, i = 1, . . . , nk
are the nk landmarks currently detected, the following augmented sate is
defined:

Xk = [xTk , l
1
k, . . . , l

nk
k ]T = [xTk , ETk ]T

and a new system (robot and environment) model, based on the augmented
state, is obtained using the following state update function

Xk+1 =


xk+1

l1k+1
...

lnkk+1

 = F



xk
l1k
...
lnkk

 , uk
+


wk
∅
...
∅

 =


φ(xk, uk) + wk

l1k
...
lnkk

 (3.1)

that is the standard state update function φ(·, ·) (see equation (1.4)) for the
robot pose evolution and a constant function for the landmarks evolution,
stating that the landmarks data are not influenced by state noise nor by the
control inputs (landmarks have to be stationary).
Depending on the used sensors, also the output equation is properly modified
to explicitly show the relationships between the sensors measurements and
the detected landmarks. The resulting output equation is

yk = h(xk,Ek) + vk = h(Xk) + vk (3.2)

Defining an Extended Kalman filter based on the new augmented state, the
obtained estimation will be related to both the robot pose and the landmarks
data and it will be used for the SLAM state estimation, state update and
landmark update steps. More precisely, once the augmented model (equations
(3.1) and (3.2)) has been defined, also the system and filter matrices are
suitably modified to deal with the augmented state Xk.
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The resulting Extended Kalman filter algorithm suitably adapted to the aug-
mented state is

SLAM algorithm based on EKF

EKF prediction step

X̂k+1|k = F(X̂k|k, uk)

Pk+1|k = AkPk|kATk +W

SLAM step

Ek+1 = L(Ek, yk+1, X̂k+1|k)

(X̂∗k+1|k,P
∗
k+1|k) = U(X̂k+1|k,Pk+1|k,Ek,Ek+1)

X̂k+1|k = X̂∗k+1|k
Pk+1|k = P∗k+1|k

EKF estimation step
Kk+1 = Pk+1|kCTk+1(Ck+1Pk+1|kCTk+1 + V )−1

X̂k+1|k+1 = X̂k+1|k +Kk+1(yk+1 − h(X̂k+1|k))

Pk+1|k+1 = Pk+1|k −Kk+1Ck+1Pk+1|k

(3.3)

Here Ak, Ck, W and Pk are the dynamic matrix, the output matrix, the
process noise covariance matrix and the estimation error covariance matrix
respectively. All these matrices are suitably adapted to the augmented state.
The algorithm initial conditions are E0 = {∅}, X̂0|0 = [x̂0|0].

More precisely, the dynamic and output matrices are given by

Ak =
∂F(Xk, uk)

∂Xk

∣∣∣∣
Xk=X̂k|k

, Ck =
∂h(Xk)

∂Xk

∣∣∣∣
Xk=X̂k|k−1

; (3.4)

the process noise covariance matrix W is

W =

[
W ∅
∅ ∅

]
.

This matrix contains the robot pose process noise covariance matrix W and a
null matrix, ∅, of appropriate size, related to the landmarks because they are
assumed to be not influenced by process noise.
Finally, indicating with Pk the covariance matrix related to the augmented
estimation error Xk − X̂k, also this matrix has to be adapted to the aug-
mented state. Let x̂k be the state xk estimation and let l̂ik be the landmark lik
estimation, assuming n = nk for the sake of simplify notation, the estimation
error covariance matrix related to the estimation error Xk − X̂k results in
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Pk =


Pk P (x̂k, l̂

1
k) . . . P (x̂k, l̂

n
k )

P (l̂1k, x̂k) P (l̂1k, l̂
1
k) . . . P (l̂1k, l̂

n
k )

...
. . .

P (l̂nk , x̂k) P (l̂nk , l̂
1
k) . . . P (l̂nk , l̂

n
k )


where P (a, b) is the covariance matrix between the variables a and b. As initial
condition, the initial estimation error covariance matrix is P0|0 = P0|0.
In the equations (3.3), the L function contains all the operations required by
the landmark extraction and data association processes while the U function,
called update function, aims to suitably adapt the augmented state and the
filter matrices to the results provided by the L-function. The dimensions of
the augmented state Xk and of the matrices Ak, Ck,Pk,W are time varying
since the number, n = nk, of landmarks used to map the environment can
change during the SLAM process due to the landmark extraction and data
association processes.

For each change in the modeling landmarks set Ek, there is a change also
in the estimation error covariance matrix and in Xk. More precisely, if a
new landmark lrk comes out from the landmark extraction process, then the
augmented state becomes Xk = [XT

k , l
r
k]T and a new row and a new column

will be added to the estimation error covariance matrix:

P̃k =


P (xk, l̂

r
k)

Pk P (l̂1k, l̂
r
k)

...

P (x̂k, l̂
r
k) P (l̂1k, l̂

r
k) . . . P (l̂rk, l̂

r
k)

 ;Pk = P̃k (3.5)

In the same way, if one of the modeling landmarks is deleted by the land-
mark extraction process, the related entries in the augmented state and in
the matrix Pk will be deleted.
Following the above update rules, the update function

(X∗k ,P∗k ) = U(Xk,Pk,Ek−1,Ek)

properly modifies the augmented state and the estimation error covariance
matrix according to the variations in the environment mapping from Ek−1 to
Ek. The function outputs are then used as the new augmented state, Xk = X∗k ,
and as the new estimation error covariance matrix, Pk = P∗k . In the following
Sections, three new SLAM techniques will be proposed defining the related
landmarks and all the operations required by the L-function (landmark ex-
traction and data association function) and the U-function (update function).

3.3.5 SLAM tasks

In summary, the 5 SLAM steps can be seen as parts of three main SLAM
tasks:
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1. Update the current state estimation using the model data.
2. Take sensors measurements and use these measurements to extract new

landmarks or to associate the obtained data to previously detected land-
marks; this task will be denoted as landmark extraction and data associ-
ation task.

3. Update the current landmarks and robot pose estimation using an Ex-
tended Kalman filter; this task will be denoted as the state estimation,
landmarks and state update task.

The first task is very easy and it can be performed using the robot model and
the measured robot control inputs.

During the second task the re-observed landmarks and the new detected
landmarks are considered. If new landmarks are detected, their describing
data are added to the augmented state and to the filter and model matrices
(thanks to the U-function. For what regards the re-observed landmarks, us-
ing the robot estimated positions and the acquired sensors measurements, it is
possible to estimate the landmarks expected positions. The difference between
the re-observed landmarks detected positions and the expected landmarks po-
sitions represents the landmarks innovation. The total innovation is formed
by the standard robot estimation innovation and by the landmarks innova-
tion. This total innovation is basically the difference between the estimated
robot position/landmarks positions and the actual robot position/landmarks
positions, based on what the robot is able to measure. This difference will be
used in the EKF to perform the third SLAM task.

3.4 Segment based SLAM (SbSLAM)

The first proposed SLAM technique has been developed thinking at the sim-
plest way to approximate whatever curve: a set of segments. The environment
will be modeled as a set of segments such that each of them intersects
at least at one point on the environment boundaries (see Figure 3.6
for the case nS = 5). In other words, the environment will be approximated
by a set of properly chosen segments which works like an “envelope” for the
environment boundaries.
Each sensor Si provides, at each step k, the distance from the robot center,
denoted by P = (xR1,k, x

R
2,k), to one point on the environment boundaries,

denoted by P̃i = (x̃1, x̃2).
Considering the model used for the environment, the measurement provided
by the i-th sensor, Si, can be obtained using the output equation (2.13) pro-
posed in section 2.5.

3.4.1 Landmark extraction and Data association

Starting from the segment based model for the robot surrounding environ-
ment, the proposed Segment based SLAM algorithm uses landmarks, lik,
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Fig. 3.6: Real environment (red line), segment based environment boundaries ap-
proximation (blue line)

formed by the starting and ending points of each modeling segment. The
main idea behind the landmark extraction and data association algorithm is
to use the currently acquired measurements to update the actual environment
mapping by finding new surrounding environment modeling segments or by
improving the previously obtained ones. The following notation will be used:

� Ek = [pk,1, pk,2, . . . , pk,nk ] is an array of nk sorted points. In the following,
an array of points will be considered sorted if each couple (pk,i, pk,i+1), of
consecutive points, represents the starting and ending points of one of the
environment modeling segments.

� Ek is a set containing all the points in Ek.
� Πk is the set of currently acquired environment points. Using equations

(2.14), the state estimation x̂k along with the measurements yk provided
by the on board distance sensors, an approximation of the environment
points, πik, i = 1, . . . , nS , detected by the sensors, can be obtained.

The goal of the landmark extraction and data association process is to find Ek
starting from the previous environment mapping Ek−1, the predicted robot
state x̂k|k−1 and the acquired measurements yk. To accomplish this task the
main idea is to try to compute a new landmark related to each point in Πk.
The obtained nS landmarks are then suitably added to Ek−1 yielding to Ek.
More precisely, at each step k, given the prediction x̂k|k−1 and the acquired
measurements yk, the set Πk is computed. For each point πik ∈ Πk the set of
points close, in a neighborhood δ > 0 (δ is one of the algorithm parameters),
to πik is obtained using the closeness function defined in Section 2.6.1:

Ωi = N (πik, {Ek−1
⋃
Πk}, δ).
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Fig. 3.7: (a): virtual point qi computation, the orange points and the red point are
in Ωi; (b) segment bk−1 computation; (c) and (d): virtual point insertion

For each set Ωi a virtual point qi is computed through a weighted mean of
the points contained in Ωi (see Figure 3.7(a)):

qi = gx(x̂k|k−1, yk) =
1

Mi

∑
pj∈Ωi

mjpj , Mi =

|Ωi|∑
j=1

mj (3.6)

where |Ωi| is the number of elements contained in Ωi, mi = 1 if pi is one of
the currently acquired points (pi ∈ Πi), mi = ni if pi is one of the previously
obtained virtual points, computed using ni points.
Please note that the proposed weighted mean is a function of the robot pre-
dicted pose x̂k|k−1 and of the currently acquired measurements yk since each
point into Πk is computed using (2.14) and thus the function gx(x̂k|k−1, yk)
can be obtained by replacing (2.14) with (3.6).
The proposed weighted mean is such that the more the number of points
represented by a previously computed virtual point is big, the bigger this
point influence will be on the new virtual point qi. At the end, the number
of points described by the new virtual point qi is Mi and it will be related
to the new virtual point for future algorithm executions. For each set Ωi
there will be a new virtual point qi and each of these points will be related
to a different number of mapped points Mi, i =, . . . , nS . Once all the new
virtual points have been obtained, each set of points Ωi can be removed from



3.4 Segment based SLAM (SbSLAM) 63

Ek−1. The new array Ek−1 can be computed as the sorted array (following
the previously described sorting definition) containing the points in

Ẽk−1 = Ek−1 \ (

nS⋃
i=1

Ωi), Ek−1 = Ẽk−1.

Figure 3.7(a) shows Ek−1 before the Ωi deleting process while Figure 3.7(b)
shows the resulting Ek−1 after the Ωi deleting process. As shown in these
Figures, after the Ωi deleting process all the segments related to starting and
ending points in Ωi are removed.
At this point, the new virtual points qi, i = 1, . . . , nS have to be inserted
into the vector Ek−1. As previously remarked, this vector contains the sorted
sequence of starting points and ending points of each of the environment mod-
eling segments. To insert a new virtual point qi into Ek−1 without infringing
its ordering, a possible solution consists in three main steps:

1. the line r between the robot position and the virtual point is computed;
2. the subvector ek−1 of Ek−1 containing all the segments in Ek−1 intercepted

by r, and in front of the robot, is obtained;
3. the segment bk−1 contained in ek−1 and closest to the robot along the line
r is computed and let pk−1,j , pk−1,j+1 be the segment starting and ending
points respectively (see Figure 3.7(b)).

To ensure the array Ek−1 is sorted after the point qi is added, this point has
to be inserted between the starting point and the ending point of bk−1. There-
fore when a new virtual point qi is inserted into Ek−1, one of the previously
obtained segments is deleted and substituted by two new segments, the first
one ends in qi while the second one starts from qi. Figures 3.7(c) and 3.7(d)
show an example of virtual point insertion into the landmarks array Ek−1, in
particular Figure 3.7(d) shows the resulting environment mapping after the
new point insertion.

Note that after the Ωi deleting process, the resulting intermediate mapping
(blue line in Figure 3.7(b)) is usually worse than the previous one (blue line
in Figure 3.7(a)) but adding the obtained virtual point qi, the final mapping
(blue line in Figure 3.7(d)) is better and it contains a lower number of segments
than the starting mapping (blue line in Figure 3.7(a)). Moreover comparing
the segments related to the points contained into Ωi (orange points in Figure
3.7(a)) with the segments related to qi (Figure 3.7(d)), the second ones are
less influenced by noise than the first ones thanks to the equation (3.6) which
can be seen as a noise filtering operation.
As a drawback, using the described insertion strategy, segments with very
short length could be chosen after the new virtual point insertion; moreover
starting from a single segment, two new segments are always obtained and,
as a consequence, the number of segments could increase step by step with
a resulting high computational cost required by the algorithm. To face these
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problems, a minimum acceptable segment length, σ > 0, has been de-
fined and if both new segments have a length less or equal than σ, they are
discarded.

Let Ek−1 = [pk−1,1, . . . ,pk-1,j,pk-1,j+1, . . . , pk−1,nk−1
] be the array con-

taining the landmarks, and let qi be a virtual point to insert into this array. If
||pk-1,j − qi|| > σ or ||qi − pk-1,j+1|| > σ then the resulting sorted array will
be

Ek−1 =
[
pk−1,1, . . . ,pk-1,j,qi,pk-1,j+1, . . . , pk−1,nk−1

]
where the points pk-1,j,pk-1,j+1 are computed using the previously described
strategy. The related set of elements will be

Ẽk−1 = Ek−1
⋃
{qi}, Ek−1 = Ẽk−1.

Otherwise, if the minimum segments length condition is not satisfied, the
new virtual point is not added and the array Ek−1 and the set Ek−1 do not
change.

Note that the parameter σ has to be accurately chosen depending on the
desired performance. If σ → 0 then very short segments are accepted resulting
in a more precise environment estimation but also in a high computational
cost. On the contrary, if a high σ value is chosen then the algorithm computa-
tional cost will be low but the resulting estimation and mapping performance
can be very poor. After all the new virtual points have been considered, the
obtained array Ek−1 and its related set of points Ek−1 can be considered as
the updated environment map, thus Ek = Ek−1 and Ek = Ek−1. The proposed
landmark extraction and data association process can be summarized by the
landmark extraction and data association function

Ek = L(Ek−1, yk, x̂k|k−1)

which can be used in the equations (3.3).

3.4.2 State estimation, State and Landmark Update

Using the proposed segment based mapping technique, the augmented state
results in

Xk = [xTk ETk ]T = [xTk , pk,1, pk,2, . . . , pk,nk ]T

and it contains the robot pose xk and all the starting and ending points of
the environment modeling segments. Please note that each point pk,i is repre-
sented by its x1 and x2 coordinates and thus the dimension of the augmented
state is 3 + 2× nk and it is a time varying dimension.
The model output equation (2.13) is a function of both the robot state and the
environment modeling segments. Since the parameters (s, c) of each segment
can be related to its starting and ending points, the output function can be
seen as a function of the augmented state Xk:



3.4 Segment based SLAM (SbSLAM) 65

yk = h(xk, (sk, ck)) + vk = h(Xk) + vk.

The output matrix will be

Ck =


C1,k

∂h1
∂pk,1

. . .
∂h1
∂pk,nk

...
...

CnS ,k
∂hnS
∂pk,1

. . .
∂hnS
∂pk,nk


where nS is the robot number of sensors, Ci,k is the i-th row of the Ck matrix

computed as Ck = ∂h(xk)
∂xk

∣∣∣
xk=x̂k|k−1

, hi is the function h(Xk) related to the i-th

sensor and
∂hi
∂pk,i

is a two dimensional array containing the partial derivatives

of hi w.r.t the pk,i coordinates.
Due to the landmark extraction process, new points can be inserted into the
current mapping Ek or old points can be removed from it.
Let Ek−1 = [pk−1,1, . . . , pk−1,j , pk−1,j+1, . . . , pk−1,nk−1

] and assume that L(·)
extracts the point p and returns

Ek = [pk−1,1, . . . , pk−1,j ,p, pk−1,j+1, . . . , pk−1,nk−1
].

The augmented state becomes Xk = [xTk , ETk ]T and, as shown in [39], the
estimation error covariance matrix related to the augmented state after the
new landmark insertion is

P̃k = GxPkGTx +GyV G
T
y , Pk = P̃k. (3.7)

The matrix Gx is

Gx =



I3 ∅ . . . ∅ ∅ . . . ∅
∅ I2,1 . . . ∅ ∅ . . . ∅
...

...
. . .

...
...

...
∅ ∅ . . . I2,j ∅ . . . ∅
∂gx

∂xk
∅ . . . ∅ ∅ . . . ∅

∅ ∅ . . . ∅ I2,j+1 . . . ∅
...

...
...

...
. . .

...
∅ ∅ . . . ∅ ∅ . . . I2,nk


and I2,j is the identity matrix of order two related to the j-th landmark while
∅ is a null matrix of appropriate size.
The matrix Gy is

Gy =

[
∅ . . . ∅ ∂gx

∂yk

∅ . . . ∅
]T
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and
∂gx
∂yk

is the j + 1-th row of this matrix. In the above matrices the

function gx is the landmark extraction function (3.6). For what regards the
landmark elimination, if the landmark extraction process deletes a point pi
from Ek, then the corresponding entries in the augmented state and in the
matrix Pk have to be removed. Following the above update rules, the update
function

(X∗k ,P∗k ) = U(Xk,Pk,Ek−1,Ek)

can be defined and used into the equations (3.3).

3.4.3 Remarks

1. The proposed segment based SLAM algorithm represents a consistent and
useful technique since it has been developed looking for a very simple but
efficient strategy in terms of the algorithm computational requirements.
In particular, the landmark extraction process can be calibrated, depend-
ing on the chosen σ value, in order to favor the low computational cost
constraint (high σ values) or to obtain better mapping results (low σ
values).

2. For what regards the chosen landmarks, the modeling segments’ start-
ing and ending points comply with the mandatory landmarks properties
described in Section 3.3.1. In particular starting and ending points are:
� easily re-observable since their related segment maps an entire envi-

ronment part which can also be very also large;
� completely distinguishable each other thanks to their coordinates and

to the related segment mathematical characterization ((s, c) parame-
ters);

� stationary.
Moreover, thanks to the use of the σ parameters, the number of segment,
and thus of landmarks, can be controlled to not be too high nor too low.

3. The technique is based on very simple geometric considerations starting
from the sensors acquired measurements. Two main drawbacks can be
stated about this technique. First of all, the mapping algorithm provides
a set of segments connected each other. If the robot has detected and
mapped two environment boundaries portions, mapping them using the
segments b1 and b2, but it has no information about the portion in the
middle of them, the above portion is mapped, in a very poor way, by
the segment connecting the b1 ending point and the b2 starting point.
As a second drawback, the resulting segment based map can be a very
poor approximation of the robot surrounding environment due to the low
versatility of each segment. In other words, the segment based mapping is
very cheap thanks to the low required information to map the environment
using a set of segments but due to the low information contained in each
segment, the obtained mapping performance can be very poor.
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3.5 Polynomial based SLAM

The other two proposed mapping techniques have been developed looking at a
more powerful mapping model w.r.t. the previously described segment based
one. The environment will be modeled as a set of m-th order polynomials
where m is chosen a-priori (see Figure 3.8 for the case nS = 5). Starting
from this model, at each step k, the environment is described by a set of nk
polynomials, Ek = {zjk}

nk
j=1. Again, the obtained map works like an envelope

for the environment boundaries.

Fig. 3.8: Real environment (black line), environment approximating polynomials
(light blue line)

Each sensor Si provides, at each time step k, the distance from the robot center
P = (xR1,k, x

R
2,k), to one point on the environment boundaries, P̃i = (x̃1, x̃2).

Considering the model used for the environment, the measurement provided
by the i-th sensor, Si, is approximated, as shown in Figure 3.8 for the case
Si = S3 and nS = 5, by the distance from P to the intersection point, denoted
by P i = (x1, x2), between the axis of the sensor Si and one of the environment
modeling polynomials.
Marking the axis of the sensor Si as x2 = aix1+qi and denoting the intercepted
polynomial as zx, the coordinates x1, x2 of the intersection point between the
sensor axis and zx are a function of the polynomial coefficients and of the
sensor axis parameters. The measurement yi,k, provided by sensor Si at time
step k, can be modeled as

yi,k =
√

(xR1,k − x̃1)2 + (xR2,k − x̃2)2 (3.8)
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and approximated by

yi,k ≈
√

(xR1,k − x1)2 + (xR2,k − x2)2. (3.9)

By replacing (3.9) with (2.12), an observation function, yi,k, depending only
on the robot state and on the polynomial zx can be obtained as

yi,k ≈ h((xR1,k, x
R
2,k, θk), zx)), i = 1, . . . , nS

These relationships define the robot model output equation and they will be
written in the more compact form

yk ≈ h(xk, zk) + vk, (3.10)

where the dimension of vector yk is nS , zk collects the polynomials zx in-
tercepted by each sensor axis at step k and vk is a Gaussian noise assumed
uncorrelated with the process noise wk (see equation (1.4)) and used to model
the measurement noise.

The goal of the present work is to estimate the position and orienta-
tion of the robot, xk = [xR1,k xR2,k θk]T , and to simultaneously find the
best polynomial based approximation of the robot surrounding environment,
Ek = {zjk}

nk
j=1. To achieve this goal, two polynomial based SLAM algorithms

will be described in the next Sections. The first one has been developed look-
ing at high mapping performance but it results in a computationally very
onerous SLAM technique; it will be denoted as Polynomial based SLAM (Pb-
SLAM). The second proposed polynomial based SLAM technique tries to
achieve mapping performance as good as the ones obtained by the PbSLAM
but requiring lower computational costs; this technique will be indicated as
Efficient Polynomial based SLAM (EPbSLAM).

3.5.1 PbSLAM: Landmark extraction and Data association

The proposed Polynomial based SLAM technique uses polynomials as land-
marks. Indicating with {bjd,k}md=0 the polynomial coefficients, each landmark

ljk will be ljk = zjk = {bjd,k}md=0.
At each step k let Mk be the set of all the acquired environment points
(computed using equations (2.14), (2.15), the state prediction x̂k|k−1 and the
measurements yk provided by the on board distance based sensors) until step
k; the main idea behind the proposed landmark extraction and data associ-
ation algorithm is to approximate the environment boundaries by clustering
the setMk into nk subsets and associating a polynomial to each cluster. More
precisely,Mk will be partitioned into Bk = {Bjk, j = 1, . . . , nk}, a polynomial

zjk will be related to each set Bjk ∈ Bk and the final resulting environment
map will be formed by the polynomials set Ek and by the points partitioning
Bk.

First of all, given a set of points A, a point P = (xp1, x
p
2) and a polynomial

z, the following functions have been defined:
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� ELMS(z,A) which computes the least mean square error due to the ap-
proximation of each point in A using z;

� the set division function D(A, P, z) which returns the partition (A1,A2)
of Ã = {A

⋃
{P}}, such that

If z is a x11-variate polynomial

A1 = {Pj = (xj1, x
j
2) ∈ Ã : xj1 ≤ x

p
1};

else if z is a x2-variate polynomial

A1 = {Pj = (xj1, x
j
2) ∈ Ã : xj2 ≤ x

p
2}

and A2 = Ã \ A1.

The landmark extraction and data association process starts from the current
partition Bk−1 = {Bik−1, i = 1, . . . , nk−1} of Mk−1 and from the related
set of landmarks Ek−1 = {zik−1, i = 1, . . . , nk−1} and properly modifies this
partition and this polynomials set Ek−1 to include the currently acquired
environment boundaries points πik (computed using (2.14)), in order to obtain
Bk and Ek.

For each point πik the data association step is performed; the main idea
behind this process is closeness between acquired environment points. Two
points P1, P2 are defined neighbors iff they satisfy the closeness condition
defined in Section 2.6.1.

Using the set-valued closeness function N (defined in Section 2.6.1), the
point πik will be associated to the cluster Bjk−1 and, consequently, to the

landmark zjk−1, such that

Bjk−1 = max
Brk−1∈Bk−1

{|N (πik, B
r
k−1, R)|}. (3.11)

Bjk−1 is the cluster which contains the biggest number neighbors, in a radius

R > 0, of πik.
If there is not a cluster which can be associated to πik, that is

|N (πik, B
r
k−1, R)| = 0,∀Brk−1 ∈ Bk−1, then a new cluster has to be created con-

taining only the point πik. Therefore, at the end the clusters and environment
update will be

Bk = Bk−1
⋃
{πik}; Ek = Ek−1

Otherwise, the approximation error due the use of zjk−1 to model πik is com-

puted as ε = ELMS(zjk−1, {πik}). If this error is lower than a defined threshold
εTH > 0, which is one of the algorithm parameter, then

Bjk−1 = Bjk−1
⋃
{πik}; Bk = Bk−1; Ek = Ek−1

Else if ε > εTH then the total approximation error on Bjk−1 using zjk−1 is
computed as
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εa = ELMS(zjk−1, B
j
k−1

⋃
{πik}).

At this point, a new m-th order polynomial is obtained using the points in
{Bjk−1

⋃
{πik}}:

zb = LMS(Bjk−1

⋃
{πik},m)

and the related approximation error is

εb = ELMS(zb, B
j
k−1

⋃
{πik}).

Finally, the set Bjk−1 is partitioned into (Bc, Bd) as

(Bc, Bd) = D(Bjk−1

⋃
{πik}, πik, z

j
k−1)

and the related polynomials are

zc = LMS(Bc,m), zd = LMS(Bd,m)

and
εc = ELMS(zc, Bc), εd = ELMS(zd, Bd),
εe = ξ(εc + εd)

where ξ > 0 is one of the algorithm parameters and εe is considered as the
approximation error due to the use of zc and zd as environment modeling
polynomials.
At this point:

� if min(εa, εb, εe) = εa then the polynomial zjk−1 is used to approximate

the points in Bjk−1
⋃
{πik} and

Bjk−1 = Bjk−1
⋃
{πik}; Bk = Bk−1; Ek = Ek−1

� otherwise if min(εa, εb, εe) = εb then the polynomial zb is used to approx-
imate the points in Bjk−1

⋃
{πik} and

Bjk−1 = Bjk−1
⋃
{πik};

Bk = Bk−1;

Ek = {Ek−1 \ {zjk−1}}
⋃
{zb}

� else if min(εa, εb, εe) = εe, then the best possible choice is to divide the
cluster Bjk−1 and to use the two obtained polynomials zc, zd instead of

zjk−1:

Bk = {Bk−1 \Bjk−1}
⋃
{Bc, Bd};

Ek = {Ek−1 \ {zjk−1}}
⋃
{zc, zd}
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The ξ parameter is related to the number of clusters that will be found at the
end of the landmark extraction process and the bigger the value of ξ is,
the lower the number of clusters will be.

Obviously, following only the previous steps, the landmark extraction pro-
cess may yield to a continuously increasing number of clusters and polyno-
mials. To avoid a too big number of clusters, achieving better computational
performance, every Ks ∈ N steps a unification process is executed. A clus-
ter Bik is defined close to a cluster Bjk if it has at least Np points which are

neighbors to at least one point in Bjk. Using the above definition, during the

unification process, given each possible couple of close clusters Bik, B
j
k and

the related polynomials zik, z
j
k and approximation errors εi, εj , the polynomial

z = LMS(Bik
⋃
Bjk,m) is computed along with the related approximation

error ε = ELMS(z,Bik
⋃
Bjk). At this point given the algorithm parameter

ρ > 0, if ε < ρ(εi + εj) then the partition is modified as

Bk = Bk \ {Bik, B
j
k}
⋃
{Bik

⋃
Bjk};

Ek = Ek \ {zik, z
j
k}
⋃
{z}

The bigger the value of ρ is, the bigger will be the effect of the
unification process over the landmark extraction process.
As in the Segment based SLAM, the entire landmark extraction and data
association process is summarized by a function

(Bk,Ek) = L(Bk−1,Ek−1, yk, x̂k|k−1)

which can be used into the equations (3.3).

3.5.2 PbSLAM: State estimation, State and Landmark Update

The following augmented state is defined

Xk = [xTk , b
1
m,k, . . . , b

1
0,k , . . . , b

nk
m,k, . . . , b

nk
0,k]T = [xTk , z

1
k, . . . , z

nk
k ]T

Where ljk = zjk = [bjm,k, . . . , b
j
0,k]. This augmented state contains the robot

pose and all the m+1 coefficients {bjq,k}mq=0 of the j-th m-th order polynomial

zjk, j = 1, . . . , nk.
The output equation (3.10) is a function of both the robot state and the
environment modeling polynomials, therefore it can be seen as a function of
the augmented state Xk:

yk = h(xk, zk) + vk,= h(Xk) + vk

The output matrix will be
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Ck =


C1,k

∂h1
∂z1k

. . .
∂h1
∂znkk

...
...

CnS ,k
∂hnS
∂z1k

. . .
∂hnS
∂znkk


where Ci,k is the i-th row of the Ck matrix (computed

as Ck = ∂h(xk)
∂xk

∣∣∣
xk=x̂k|k−1

), hi is the function h(Xk) related to the i-th sensor

and
∂hi
∂zik

= [
∂hi

∂bm,ik

. . .
∂hi

∂b0,ik
].

For what regards the estimation error covariance matrix Pk, when a new
landmark is extracted, this matrix is modified using the equation (3.5). As a
heuristic each new extracted landmark is assumed to be not correlated with
the past ones and the landmarks are assumed to be not correlated with the
state estimate. That is, given q 6= j:

P (l̂qk, l̂
q
k) = ∅; P (l̂qk, x̂k) = ∅.

where ∅ is a null matrix of appropriate size. Each new landmark estimation
error covariance matrix is initialized as

P (l̂qk, l̂
q
k) = Im+1 × Plandmark;

where Plandmark > 0 is one of the algorithm parameters and it represents the
landmark initial estimation error covariance.

On the basis of the above update rules, the following update function is
defined

(X∗k ,P∗k ) = U(Xk,Pk,Ek−1,Ek)

and it can be used into the equation (3.3) along with the previously defined
PbSLAM landmark extraction and data association function; the resulting
formulation represent the Polynomial based SLAM algorithm.

3.5.3 PbSLAM remarks

1. As in the case of the Segment based mapping, the proposed Polynomial
based SLAM technique is based on geometric considerations starting from
the acquired measurements. The main difference w.r.t the SbSLAM is re-
lated to the higher amount of information provided by polynomials instead
of segments. This additional information ensures to better map the envi-
ronments boundaries since the polynomial based environment model can
be easily adapted to whatever indoor environment.

2. As a drawback, the computational cost due to the landmark extraction
and data association process can be very high and it can increase as the
simulation/experiment goes on. As the simulation time grows, the num-
ber of acquired points grows and, as a consequence, the computational
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cost due to the points clustering procedure through equation (3.11) and
ELMS(·) function evaluation can become unacceptable with a resulting
too high computation time. In these situations, the proposed polynomial
based solution can not be used in real experiments due to possible time
constraints violation.

3.5.4 EPbSLAM: Landmark extraction and Data association

As previously remarked, in a computational point of view, the proposed
PbSLAM algorithm can be very onerous. The PbSLAM weak point is the
landmark extraction and data association process which is based on a points
clustering procedure. To overcome this defect, in the following, a new poly-
nomial based SLAM technique will be described; this algorithm has been de-
veloped looking for a more efficient technique and for a lower computational
cost w.r.t. the PbSLAM requirements. The goal is to obtain mapping results
as good as in the PbSLAM case but avoiding the points clustering operation.

As in the PbSLAM case, the proposed efficient Polynomial based SLAM
algorithm uses a set of nk m-th order polynomials Ek = {zjk, j = 1, ..., nk} to

approximate the environment boundaries. Given a polynomial zjk and a point
q, the following notation will be used:

� the polynomial is represented by a set of coefficients,
{bjm,k, b

j
m−1,k, · · · , b

j
1,k, c

j
0,k}, where {bjq,k}mq=1} are related to the poly-

nomial shape while cj0,k is related to the polynomial position and it will be
denoted as the polynomial position coefficient in the next Sections.
For example, a x1-variate polynomial, zjk, will be modeled as

x2 = zjk(x1) = bjm,k(x1)m + bjm−1,k(x1)m−1 + · · ·+ bj1,k(x1) + cj0,k

� xc1(q, zjk) returns the x1 coordinate of q if zjk is a x1-variate polynomial, oth-

erwise it returns the x2 coordinate of q. Following the same lines, xc2(q, zjk)

returns the x2 coordinate of q if zjk is a x1-variate polynomial, else it
returns the x1 coordinate of q;

� Qbad(zjk) is a set of points badly approximated by zjk. This points set is
defined as:

Qbad(zjk) = {Qm : ρm < |xc2(Qm, z
j
k)− zjk(xc1(Qm, z

j
k))| ≤ σm}

where σm > ρm > 0 are fixed thresholds representing the maximum al-
lowed approximation error and Qm is one of the points that should be
approximated by zjk; Fig. 3.9 shows an example of the above points set;

� qjs = (xs1, x
s
2),qje = (xe1, x

e
2) are the starting point and ending point of the

environment boundaries section approximated by zjk.

� Zk−1 = {Zjk−1, j = 1, . . . , nz} is a set of points clusters. Each cluster con-
tains a set of environment boundaries points which have not been approx-
imated by any polynomial yet.
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Fig. 3.9: An environment boundaries section

At each step k, using the set of currently acquired environment boundaries
points πik, i = 1, . . . , nS , computed through equation (2.14), the landmark
extraction and data association process modifies the polynomials set Ek−1
and the set of points clusters Zk−1 into Ek and Zk.

For each acquired point πik, the first step is to compute the set of mapping
polynomials which could be used to approximate the point:

E∗k = {zjk ∈ Ek : xc1(qjs, z
j
k) ≤ xc1(πik, z

j
k) ≤ xc1(qje, z

j
k)}

If E∗k = {∅} the point πik can not be approximated by the polynomials in Ek
and it is then inserted into the cluster Zjk−1 ∈ Zk−1 containing the highest

number of points neighbors, in a radius R, to πik. If there is not a cluster
satisfying this neighborhood condition, a new cluster is created containing
only the point πik:

Z̃k−1 = Zk−1
⋃
{πik}; Zk−1 = Z̃k−1.

If E∗k 6= {∅} then the following optimization problem is solved:

z∗k = arg min
zjk∈E

∗
k

|xc2(πik, z
j
k)− zjk(xc1(πik, z

j
k))|. (3.12)

Three cases may occur. The first one is related to

|xc2(πik, z
∗
k)− z∗k(xc1(πik, z

∗
k))| ≤ ρm;

in this situation, z∗k is good to approximate πik and no further actions are
performed.
The second case occurs when

ρm < |xc2(πik, z
∗
k)− z∗k(xc1(πik, z

∗
k))| ≤ σm,
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where σm > ρm is another given threshold. In this situation, the approxima-
tion error is assumed to be only due to the low accuracy of the polynomial
coefficients. The point πik is then stored in Qbad(z∗k)
The third possible case occurs when the approximation error related to πik
using z∗k is too high, i.e.

|xc2(πik, z
∗
k)− z∗k(xc1(πik, z

∗
k))| > σm.

To face this situation, the point πik is inserted into one of the clusters in Zk−1,
following the same lines used in the case E∗k = {∅}.
The landmark extraction and data association process could modify the map-
ping polynomials in the second and in the third case. More precisely:

� in the second case, after the insertion of a point πik into the set Qbad(z),
if the number of points in the above set becomes greater than a fixed
threshold εM , then the polynomial z is modified trying to better adapt z
to the badly approximated points contained in Qbad(z). A set of points on
z is computed as

R = {Qa : Qa = (xa1 , z(x
a
1)) , xs1 ≤ xa1 ≤ xe1,

a = 1, . . . , na , x
1
1 = xs1, x

na
1 = xe1}

if z is a x1-variate polynomial,

R = {Qa : Qa = (z(xa2), xa2) , xs2 ≤ xa2 ≤ xe2,
a = 1, . . . , na , x

1
2 = xs2, x ∗ na2 = xe2}

otherwise;

(3.13)

where xa1 , a = 1, . . . , na and xa2 , a = 1, . . . , na are na > 0 equally spaced
values on the x1-axis and on the x2-axis respectively.
At this point, a new polynomial z is computed by minimizing the least
mean square error due to the use of the polynomial z in approximating
the points contained in Qbad(z)

⋃
R:

z = LMS(Qbad(z)
⋃
R,m).

The resulting new polynomial z will be used to map the environment and
will substitute the polynomial z. More precisely

Ẽk−1 = {Ek−1
⋃
{z}} \ {z}; Ek−1 = Ẽk−1

and the related set of badly approximated points will be Qbad(z) = {∅}.
� In the third case (|xc2(πik, z

∗
k) − z∗k(xc1(πik, z

∗
k))| > σm), after the insertion

of a point πik into a cluster Zjk−1, if the number of points in the cluster
becomes greater than εM , then the cluster is removed from Zk−1

Z̃k−1 = Zk−1 \ Zjk; Zk−1 = Z̃k−1,
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and a new polynomial z is computed by minimizing the least mean square
error over the points in Zjk

z = LMS(Zjk,m).

The obtained polynomial is then inserted into the landmarks set

Ẽk−1 = Ek−1
⋃
{z}; Ek−1 = Ẽk−1.

It is to be specified that, if a new polynomial z2 approximates or includes
an environment part that has been already mapped by another polynomial
z1 ∈ Ek−1, then a third polynomial z3 is computed by minimizing the least
mean square error over the points in R1

⋃
R2 where Ri, i = 1, 2 are obtained

as shown in (3.13), for the polynomials zi, i = 1, 2. The resulting landmarks
set will be

Ẽk−1 = {Ek−1
⋃
{z3}} \ {z1}; Ek−1 = Ẽk−1

An example of the above polynomials merge is depicted in Figure 3.10.

Fig. 3.10: Overlapping polynomials

In conclusion, after all the currently acquired points {πik, i = 1, . . . , nS}
have been used, the obtained landmarks array Ek−1 and the clusters set Zk−1
become the updated environment map: Ek = Ek−1 and Zk = Zk−1.
As in the previous cases, the entire landmark extraction and data association
process can be summarized by

(Lk,Ek) = L(Lk−1,Ek−1, yk, x̂k|k−1)

and this function has to be used into the equations (3.3).

3.5.5 EPbSLAM: State estimation, state and landmark update

In contrast to the PbSLAM algorithm, in the Efficient Polynomial based
SLAM the following augmented state has been defined

Xk = [xTk , c
1
0,k, . . . , c

nk
0,k]T

containing the robot state and only the position coefficient, cj0,k, of each of

the polynomials zjk ∈ Ek. The main idea behind this choice is that, using
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distance sensors, the most logic interpretation of the Kalman filter innovation
term regarding the mapping polynomials is that, depending on the innovation
term, each polynomial has to be moved towards or away from the robot center
maintaining its shape (coefficients {bjq,k}mq=1) unchanged. In other words, the
landmark extraction process is used to obtain each polynomial shape while the
Kalman filter is used to properly move this shape towards or away from the
robot. In the landmark extraction process, each landmark is characterized by
all the polynomial coefficients while only the polynomial position coefficients
are involved into the Kalman filter: ljk = cj0,k.

About the output equation (3.10), as in the PbSLAM case, it can be seen as
a function of both the robot state and the environment modeling polynomials,
therefore it can be written as a function of the augmented state Xk too:

yk = h(xk, zk) + vk,= h(Xk) + vk

The output matrix will be

Ck =


C1,k

∂h1
∂c10,k

. . .
∂h1
∂cnk0,k

...
...

CnS ,k
∂hnS
∂c10,k

. . .
∂hnS
∂cnk0,k


where Ci,k is the i-th row of Ck = ∂h(xk)

∂xk

∣∣∣
xk=x̂k|k−1

and hi is the function

h(Xk) related to the i-th sensor.
After the landmark extraction process for each change in the modeling poly-
nomials set Ek, there is a change also in the estimation error covariance matrix
and in Xk. More precisely, if a new polynomial zrk = [brm,k, . . . , b

r
1,k, c

r
0,k] comes

out from the landmark extraction process, then the augmented state becomes
Xk = [XT

k , c
r
0,k]T and a new row and a new column will be added to the

estimation error covariance matrix as shown in (3.5).
As in the PbSLAM case, as a heuristic, each new extracted landmark

is assumed to be not correlated with the past ones and the landmarks are
assumed not correlated with the state estimate. That is, given q 6= j:

P (ĉq0,k, ĉ
j
0,k) = 0; P (ĉq0,k, x̂k) = ∅.

where ∅ is a null matrix of appropriate size. Each new landmark estimation
error covariance matrix is initialized as

P (ĉq0,k, ĉ
q
0,k) = Plandmark;

where Plandmark > 0 is the landmark initial estimation error covariance.
Once again, following the above update rules, the update function is de-

fined as:
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(X∗k ,P∗k ) = U(Xk,Pk,Ek−1,Ek).

and this function has to be used into the equations (3.3) along with the previ-
ously defined EPbSLAM landmark extraction and data association function;
the resulting formulation represent the Efficient Polynomial based SLAM al-
gorithm.

3.5.6 EPbSLAM remarks

1. The proposed efficient polynomial based SLAM does not require any
points clustering since it is assumed that the information contained into
the polynomial representing a cluster is sufficient to model the cluster it-
self. More precisely, when a new polynomial has to be computed using the
points in Qbad(z), these points are fused with a set of points computed on
z (see equation (3.13)). As a heuristic, the points computed using equation
(3.13) are assumed to be a reliable sample for all the points approximated
by z. Thanks to this assumption, the proposed mapping algorithm does
not require to use, at each step k, all the points in Mk and thus the
algorithm memory and computational costs are lower than the costs to
perform the polynomial based mapping required by the PbSLAM algo-
rithm.

2. However, as a drawback, given a boundaries portion approximated by a
polynomial z, if this polynomial is not good enough to approximate the
points related to the above portion, using the equation (3.13) instead of
clustering the points inMk may yield to poor environment approximation.

3. When a point πik has to be inserted into one of the clusters contained

in Zk−1, to find the correct cluster, Zjk−1, the equation (3.11) is used as
in the PbSLAM case. However, in the EPbSLAM case, this equation is
computed on a lower number of points since the cardinality of each cluster
contained in Zk−1 is usually lower than the cardinality of each cluster
in Bk−1. The key point is that while in the PbSLAM case, the clusters
contain all the acquired environment points, in the EPbSLAM case they
contain only the not approximated points and once a cluster cardinality
becomes greater than a given threshold εM , the approximating polynomial
is computed and the cluster is removed from Zk−1. As a consequence,
the number of points contained into a cluster Zjk−1 can not continuously
increase, while, in the PbSLAM case, the number of points contained into
the clusters continuously increase as the simulation/experiment goes on.

In conclusion, the proposed efficient polynomial based mapping is faster and
computationally cheaper than the polynomial based SLAM but the resulting
mapping performance may be worse.
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3.6 Chapter Conclusions

In this chapter the proposed solutions to the mobile robots simultaneous lo-
calization and mapping problem have been shown. The discussed topics have
shown how changing the chosen landmarks and the technique to obtain them,
the resulting mapping and computational performance can vary. In particular,
three SLAM techniques have been proposed:

1. SbSLAM with expected low computational cost but sometimes poor map-
ping performance;

2. PbSLAM with expected high computational cost and high mapping per-
formance;

3. EPbSLAM with expected good computational cost and mapping perfor-
mance comparable to the PbSLAM;

In Chapter 6 all the above considerations will be proved through numerical
simulations and experimental tests.





4

Sensors Switching Logics

To accomplish the mobile robots localization task (in the mobile robots lo-
calization problems and in the SLAM problems), it seems intuitive that the
more sensors you use, the better estimate you get. However, especially
using some sensors types, there are reasons that suggest not too exceed with
their number or use. The most important is that sensors employ robot’s bat-
teries, and an intensive use reduces the robot autonomy. This first feature can
be critical especially in planetary exploration or rescue applications, where
changing robot batteries during the robot work can be hard or impossible.

Moreover there are also situations where multiple sensors cannot operate
simultaneously, for example when they use the same frequency band [29].
When the mobile robots localization algorithm is not run on board the robot,
which is the most frequent case, one more issue is bandwidth consumption
and possible collisions when transferring measurements from the sensors to
the algorithm. In these situations, an excessive use of sensors will result in
higher energy consumption.

In order to optimize the sensors use, a possible way is to develop an appro-
priate sensors switching policy. In this way, only a part of all the available
sensors will be used, and the energy consumption will be consequently reduced.
However, this will result in a lower accuracy of the robot pose estimation.

Due to the above considerations the problem is related to finding the
“best” sequence of activation of a small (fixed) part of the available sensors
to obtain the “best” (in some statistical sense) robot pose estimation.
Within this framework, in this Chapter, two new sensors switching policies
are proposed and described. The first one is based on the statistical Kalman
filter properties while the second one is related to the sonar sensor physical
characteristics.
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4.1 Problem Statement

Consider a physical system described by the following nonlinear discrete model
(see equations (2.6)): {

xk+1 = φ(xk, uk) + wk
yk = η(xk) + vk

(4.1)

Where xk ∈ Rn is the model state vector, uk ∈ Rm is the model input
vector, yk ∈ Rp is the model output vector and vk, wk are the measurement
noise and the process noise respectively (see Section 2.3 for more details). In
this framework, the physical system has p usable sensors to detect its state
and its surrounding environment.

In a standard configuration, at each step k, the entire information provided
by these sensors is used and thus each sensor consumes energy to perform its
measurements. Moreover, using all the available sensors at the same time,
each sensor can influence the measurements provided by the other ones with
a resulting noise increment in the obtained measurements.

For example, consider a set of 3 ultrasonic sensors, Si, i = 1, 2, 3, placed
as shown in Figure 4.1.

Fig. 4.1: Problems using multiple sensors simultaneously
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Considering the ultrasonic sensor beam shape described in Section 1.3.1,
the resulting sensors beams will intersect and the resulting measurements can
be badly influenced by this intersection phenomenon.
The above motivations are only some of the possible examples about troubles
when using multiple sensors simultaneously. To overtake these problems, a
possible solution is to activate only a part of the available sensors at
each step k.

Considering the situation depicted in Figure 4.1, there are two possible
activation sequences not affected by any sensors beams intersection:

� at each step k only one of the available sensors is activated, for instance:
1. k = 1, S1 is used and S2,3 are not active
2. k = 2, S2 is used and S1,3 are not active
3. k = 3, S3 is used and S1,2 are not active
4. k = 4, S1 is used and S2,3 are not active
5. and so on.

� the system switches between two sensors configurations, depending on the
time step: a first configuration in which only S2 is activated while S1,3

are not active and a second configuration using S1 and S3 while S2 is not
active (see Figure 4.2 for more details).

Fig. 4.2: Sensors beams intersection avoidance thanks to the use of a switching rule

If one of the two above described switching policies is used, the sonar sensors
beams shown in Figure 4.1 do not intersect and, as a consequence, there are
no problems related to the mutual influence between the used sensors.
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More formally the sensors switching problem can be formulated as:

At each instant, among the p available sensors, choose q out of them
in such a way that a given cost index is minimized.
In a mathematical point of view, at step k, given the set of available
sensors S = {Si}pi=1, find the subset Q∗k ⊂ S such that

Q∗k = arg min
Q∈S2

q

Js(Q, k)

s.c.
S2q = {Q ∈ S2 : |Q| = q}

(4.2)

where
� S2q is the subset of the power set S2 containing only the sets with

q elements;
� Js(Q, k) is a cost index which has to be minimized and it is a

function of the used sensors and of the step k.

Obviously, depending on the chosen optimization index, the resulting optimal
sensors switching policy, {Q∗k}k=1,2,3,..., changes; it is therefore very important
to accurately choose the cost function Js.

Looking at the mobile robot localization problem, if at each instant q out
of p sensors are activated, the resulting output equation is a q-valued equation

h(·) and the related output matrix is a q × n matrix, Ck = ∂h(x)
∂x

∣∣∣
x=x̂k|k−1

.

Various choices of the activation sensors sequence consequently return dif-
ferent estimates of the robot state xk, whatever is the chosen localization
algorithm. Moreover, as far as a switching policy may be good, using a small
fraction, q, of the p available sensors will obviously have an impact on the
estimate. In conclusion, the goal is to find the switching policy which
provides the best robot pose estimation, in the application of in-
terest, ensuring a correct use of the available sensors. This problem
results in finding the appropriate cost index Js(Q, k) depending on the con-
sidered application. As a mandatory constraint, the cost function Js has to
be properly chosen in order to avoid a too big degradation on the estimation
performance.

Please note that finding the best sensors activation sequence could result
in a problem of combinatorial complexity and therefore, to avoid too high
computational costs, heuristics have to be defined to look for an activation
sequence approximating the best one as more as possible.

In this dissertation two possible switching rules will be described.

4.2 Switching policy based on the observations effect
maximization

The first proposed switching policy is based on the maximization of the
current observations effect on the estimation. The main idea is to chose, at
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each instant, q out of the available p sensors, in such a way that the effect of
the current observation on the estimate is maximized.

Let the chosen robot localization algorithm be related to the use of the
Kalman filter theory (see Section 2.3).

In a linear estimation problem, a meaningful quality measurement of the
estimate is the trace of the estimation error covariance matrix Pk|k, i.e., the
mean square estimation error. A simple way to evaluate the effect of the
current observation yk is to consider the trace of the difference between Pk|k−1
and Pk|k (i.e. the a-priori and a-posteriori estimation errors).

This is correct under the additional assumption that all the state variables
are coherent, i.e., they share the same measurement units. If that is not the
case, as in the mobile robot localization problem (the robot position coor-
dinates and the robot orientation angle do not share the same measurement
units), a weighted trace has to be used and the weights both make the sum
coherent and also can be chosen to emphasize some eigenvalues of Pk|k with
respect to the others.

Although in a nonlinear filtering problem the matrix Pk|k only is an ap-
proximation of the estimation error covariance, its weighted trace has been
chosen as the optimization criterion, by analogy with the linear case, and
because it is simple to be computed, as it will be shown.

Finally, the switching rule criterion will be

At each instant, among the p sensors, choose q of them in such
a way that the trace of Jk = Pk|k−1 − Pk|k is maximized. That is
Js = −trace(Jk) in the optimization problem (4.2).

The proposed approach of maximizing, at each step, the Jk trace has been
introduced for the first time in [30], for the state estimation of linear systems
using a Kalman filter, and it has been here adapted to the non linear mobile
robots localization framework.

The proposed criterion can be applied to all the filtering algorithms pro-
posed in the Chapters 2 and 3, of this dissertation. Although there is no
guarantee that this choice may take to the optimal switching sequence, as a
heuristic, this criterion will be used to try to improve the localization algo-
rithms performance.

The described localization algorithms are essentially based on the EKF or
on the UKF and thus, in the following Subsections, the proposed switching
rule will be adapted to these two Kalman filter extensions.

4.2.1 Trace criterion for the Extended Kalman Filter

The difference Jk = Pk|k−1−Pk|k, the trace of which has to be maximized, is
simply

Jk = Pk|k−1C
T
k (CkPk|k−1C

T
k + V )−1CkPk|k−1.

changing the subset of used sensors, the Ck matrix changes. Therefore the
maximization variable is the matrix Ck.



86 4 Sensors Switching Logics

When a small fraction q of sensors is used, the computational cost of this
maximization is low, because of many common terms and symmetries, and
it is suitable to be done online. The hypothesis that q is small is intrinsic
in the sensors switching problem, hence the best trace is easily computed by
enumeration of the

(
p
q

)
possible Ck matrices.

4.2.2 Trace criterion for the Unscented Kalman Filter

For the unscented filter the difference Jk = Pk|k−1 − Pk|k amounts to

Jk = KkPyyK
T
k .

Here the computation is a little more complex; let Qk be a q×p matrix where
the j-th entry of each row is one if the j-th sensor is active, and zero otherwise,
and define

ξk = (χk|k−1 − x̂k|k−1)Rc, ψk = Qk(Γk|k−1 − ŷk|k−1).

Then the value of the matrix Jk can be written as

Jk = ξkψ
T
k (ξk R

cψTk +QkV Q
T
k )−1ψkξ

T
k ,

the optimization variable is the matrix Qk and again, being Rc diagonal and
Qk sparse, and because of the symmetry, the computational cost of the trace
index is low.

It is worth noticing that the trace criterion becomes more meaningful when
the UKF is used because the approximation of Pk|k is correct to the second
order.

4.3 Switching policy based on the sensors incidence
angles

The second proposed switching policy is based on the use of sonar sensors.in
particular, the policy is based on the sonar sensors model described in Section
1.3.1. The main idea is to chose among the p available sensors, the subset of
q ones related to the best incidence angles.

Given the set of available sensors {Si, i = 1, . . . , p}, each of them is related
to an incidence angle γi. The more the incidence angle γi is near to π

2 rad, the
better the measurement provided by the ultrasonic sensor is. Using (1.5) the
following incidence parameter can be defined:

r = cos γ = −→y ·
−→
b (4.3)

since the incidence angle is γ ∈ (0, π2 ]rad, the incidence parameter r is r ∈ [0, 1).
For r → 0, the sensor axis becomes orthogonal to the incidence surface; for
r → 1 the sensor axis becomes parallel to the incidence surface.
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At this point, each sensor Si can be related to an incidence parameter ri
and the q sensors related to the lower values of ri will be chosen.
To take in consideration the influence of the incidence angle into the measure-
ment model related to an ultrasonic sensor, a possible way is to model the
measurement provided by such sensor as

yM = y +Ξ(r) (4.4)

where y is the real distance between the sensor and the incidence surface (see
Figure 1.5), yM is the measurement provided by the ultrasonic sensor and
Ξ(r) is a Gaussian noise of zero mean and covariance matrix V (r) related to
the parameter r. Such noise takes into account the incidence angle influence
on the measurement yM along with the measurement noise. In order to satisfy
the described characteristics about the incidence angle and its influence on
the sensor measurements, the incidence function Ξ(r) has to be chosen such
that:

1. its standard deviation is monotonic increasing in r;
2. V (0) has to be equal to the nominal covariance of the used sensor that

is the covariance of the measurement noise when the incidence angle is
γ = π

2 rad.

If the environment is perfectly known, starting from the sensor axis equa-
tions (2.12) and using the incidence angle equation (1.5) and the incidence
parameter equation (4.3), it is possible to obtain ri for each sensor Si. Oth-
erwise, if no assumption on the environment is made and the environment is
totally unknown, the incidence angles are not known a-priori. In this situa-
tion, to use the proposed sensors switching rule an estimate of the incidence
angles, {γ̂i, i = 1, . . . , p}, or, which is completely equivalent, of the associated
incidence parameters {r̂i, i = 1, . . . , p}, has to be found.

As explained in Section 2.6, if the environment is not known, the mobile
robots localization task can be accomplished using the proposed Neighbors
based Algorithm (NBA) (see Section 2.6.1); the information provided by the
NBA can be used to obtain the incidence parameters estimations.

More precisely, marking the axis of the sensor Si as x2 = aix1 + qi and
ignoring the translation qi, a vector on such line can be parametrized as

yi(λ) = [λ , aiλ]T , λ ∈ R

thus, the unit vector, −→y i, related to the sensor’s axis is

−→y i =
yi(λ)

||yi(λ)||
Using the current estimate x̂k, an estimation of ai can be found as âi =

tan(θ̂k + αi) (see equation (2.12)). Thus an estimation of yi(λ) is ŷi(λ) =
[λ , âiλ]T and finally the estimated unit vector is

−̂→y i =
−̂→y i(λ)

||−̂→y i(λ)||
(4.5)
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The Neighbors based Algorithm provides a set of lines, {(ŝi, ĉi)}, related
to an approximation of the parameters of the segments intercepted by the
used sensors’ axes. The line (si, ci) is related to the sensor Si and can be
assumed as an estimation of the tangent line, li(x1, x2), to the boundaries of
the environment part intercepted by such sensor’s axis. Therefore, for each

used sensor Si, an approximation of the unit vector
−→
b i of the line (li(x1, x2)

in Figure 1.3) can be found as

−̂→
b i =

b̂i(λ)

||b̂i(λ)||
(4.6)

where b̂i(λ) is the approximation of the parametrized vector on the line

li(x1, x2), that is b̂i(λ) = [λ , ĉiλ]T

At this point, using the equations (4.5) and (4.6) along with the equation
(4.3), it is possible to obtain an approximation of the incidence parameter
related to each sensor Si as

r̂i = −̂→y i ·
−̂→
b i (4.7)

Thanks to the above equation, at each step k the following switching algorithm
can be performed:

Sensors Switching Algorithm

Given (ŝk, ĉk) = NBA(x̂k, yk), do

1. evaluate −̂→y i, i = 1, . . . , p, using (4.5)

2. evaluate
−̂→
b i, i = 1, . . . , p, using (4.6)

3. evaluate r̂i = −̂→y i ·
−̂→
b i, i = 1, . . . , p, using (4.7)

4. Q∗k =MIN ({r̂i, i = 1, . . . , j}, q)

where x̂k is the actual robot pose estimation, yk contains the measurements
provided by robot sensors and the function MIN is defined as:

Given a set of variables {zi}, i = 1, . . . ,m, and z ∈ N such that z ≤ m,

MIN ({zi, i = 1, . . . ,m}, z)

returns the indexes related to the z variables with lower value than the others.

Looking at the optimization problem (4.2), the proposed switching rule is
related to the following cost function

Js(Q, k) =
∑
Si∈Q

r̂i(Si)
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where r̂i(Si) is the estimation of the incidence parameter ri related to the
sensor Si.

The first proposed switching logic is based on choosing the subset of sensors
the measurements of which have maximum effect on the current robot pose
estimation and this policy has a combinatorial computational cost on the
number, p, of available sensors. On the contrary, the incidence angle based
policy has a polynomial cost on the number, p, of sensors. Moreover, using
the proposed policy along with the NEKF algorithm, the computational cost
due to the use of the switching rule is very low since the parameters (ŝk, ĉk)
obtained by the filtering algorithm can be used by the switching policy too.
In this situation, the additional cost due to the switching policy, in the worst
case, is only related to sorting the elements r̂i, i = 1, . . . , p, and it is O(p log p).
This cost is less than the computational cost due to the NEKF and thus, in
this case, the additional computational effort due to the use of the proposed
switching rule is negligible w.r.t. the filtering algorithm.

4.4 Applications and Considerations

Depending on the desired performance and on the computational constraints,
an infinite number of sensors switching rules can be stated, each one with its
advantages and its drawbacks. Whatever is the chosen switching rule, all the
mobile robots localization algorithms, described in Chapters 2 and 3 of this
dissertation, can be suitably adapted in order to properly switch among the
available sensors.

Please note that in principle q could be a time varying value, q = q(k),
but in this dissertation only constant q switching rules have been developed.
Further studies are in progress to look for time varying q switching policies.





5

Perspective n Point using Inertial
Measurement Units

In this Chapter a set of alternative mobile robots localization algorithms will
be shown. The described techniques are based on the simultaneous use of
vision and inertial sensors. Differently from what has been shown in Chapter
2, these techniques are based only on sensors characteristics and they do
not require information about the robot model. However, as a drawback, the
proposed localization methods have been developed under the assumption of
working in a static context or during very slow robot movements.

5.1 Problem Description

Given a camera and an object in the field of view of the camera the goal
of the present chapter is to develop suitable algorithms to find the relative
position and orientation between the object and the camera. First of all, a
brief introduction about the standard camera model is required.

5.1.1 Camera Pinhole Model

The main idea behind the pinhole model is to project a 3 dimensional world
into a 2 dimensional plane, called image plane. The resulting projection rep-
resents the image provided by the camera. To model the camera behavior, the
most common and used model in computer vision is the central perspective
imaging model.

Let C be the camera focus and z = f be the distance from C to the
image plane. The rays converge on the origin of the camera frame C and a
non-inverted image is projected onto the image plane. As shown in Figure 5.1,
using similar triangles, given a point at the world coordinates P = (X,Y, Z),
this point is projected into the image plane point p = (x, y) by

x = f
X

Z
, y = f

Y

Z
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Fig. 5.1: Pinhole model example

The above equations represent a projective transformation, or more specifi-
cally a perspective projection, from the world to the image plane. The per-
spective projection has the following characteristics:

� It performs a mapping from 3-dimensional space to the 2-dimensional im-
age plane: R3 → R2.

� Straight lines in the world are projected to straight lines on the image
plane.

� Parallel lines in the world are projected to lines that intersect at a vanish-
ing point; in drawing, this effect is known as foreshortening. Lines in the
plane parallel to the image plane represent an exception since they do not
converge.

� Conics in the world are projected to conics on the image plane. For exam-
ple, a circle is projected as a circle or an ellipse.

� The mapping is not one-to-one and a unique inverse does not exist. That
is, given the image point p = (x, y), it is not possible to uniquely determine
the world point P = (X,Y, Z) which has been projected into p. All that
can be said is that the world point lies somewhere along the projecting ray
through the camera focus C and the image point p, as shown in Figure
5.1.

� The transformation is not conformal: it does not preserve shape since
internal angles are not preserved.

Due to the above properties, if no information about the object is provided,
using only one camera, it is not possible to infer information about the relative
position and orientation between the camera and an object in the field of view
of the camera. As described in 1.3.3, the process of image formation, in an
eye or in a camera, involves a projection of the 3-dimensional world onto a
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2-dimensional surface. The depth information is lost and starting from the
image it is not possible to tell whether it is of a large object in the distance or
a smaller closer object. To overcome this problem a first solution is to use two
cameras instead of a single one and to consequently find the relative position
and orientation between the camera and the object by solving a stere ovision
problem (see [72] for more details about stereo vision).

However, as it will be shown in the next Sections, if at least some infor-
mation about the object is known, the proposed localization problem may be
solved using a single camera. More precisely, in the following the perspective
n point (PnP) will be discussed. A new approach to solve this problem will be
proposed by means of inertial measurement units used to help the vision
system solve the PnP.

5.2 PnP History

In the 80’s Fischler and Bolles [48] introduced for the first time the Perspective-
n-Point (PnP) problem, also known as pose estimation. They summirize
the problem as follows:

Given the relative spatial locations of n ‘control points’ (landmarks),
and given the angle to every pair of control points from an additional
point called the Center of Perspective (CP ), find the lengths of the line
segments joining CP to each of the control points.

In other words, the problem is that of determining the relative position and
orientation of an object with respect to a camera by exploiting the image
provided by the camera and the knowledge of a feature of n points placed on
the object (see Figure 5.5). This problem finds application in several fields,
such as computer vision [58], computer animation [57], photogrammetry [59]
and robotics [60] [61] [62].

5.2.1 Classical PnP Problem

Several solutions to the PnP problem have been proposed in the literature.
From the theoretical viewpoint, it has been proved that the smallest number
of points which yield to a finite number of solutions for this problem is n =
3 [48], since the P2P problem (n = 2), in its classical formulation, admits
infinite solutions. Moreover, as proved in [53], the smallest number of feature
points ensuring a unique solution to the PnP problem in all possible object
configurations is n = 4, under the assumption they are coplanar and no more
than two of them lie on a single line. In [49] a complete analysis of the P3P
problem is provided. There, the authors show that this problem has at most
four solutions and, in some situations, it can have a unique solution. In [50] a
survey of the main methods to approach the P3P problem is provided.
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The P4P problem has been faced in many ways. Fischer and Bolles [48]
introduced the RANSAC algorithm, which faces the problem by first solving
the P3P problem for any groups of 3 points of the feature and then making
the intersection of their solutions. Rivers et al. [51] propose an approach based
on the solutions of a set of six quadratic equations with four unknowns.

Even if using n = 4 correspondences between feature points and pixels
is sufficient to obtain a unique solution for the PnP problem, a larger set of
points, say n > 4, makes the solution more robust with respect to the mea-
surement noise. For this reason, many works in the literature focus on finding
algorithms to solve the generic PnP problem for n > 4. In [52], authors con-
sider triplets of points among the n available correspondences, and for each of
them derive fourth degree polynomials in the unknowns of the problem. Then,
they rearrange such polynomials in a matrix form and use the singular value
decomposition to estimate the unknown values and solve the PnP problem.

In [70], authors propose a non-iterative solution to the PnP problem, the
computational complexity of which grows linearly with n. This method is
applicable for n ≥ 4 and handles properly both planar and non-planar config-
urations. The main idea behind this method is to express the n feature points
as a weighted sum of four virtual control points in the camera reference frame.
The control points can be estimated in O(n) time by expressing their coordi-
nates as weighted sum of the eigenvectors of a 12 × 12 matrix and solving a
small number of quadratic equations to pick the right weights.

The aforementioned methods are classified as non iterative methods as
they yield to the solution of the PnP problem in a closed form, without gen-
erating a sequence of improving sub-optimal estimates as in the case of the
iterative methods. Among the iterative methods, it is relevant to cite the one
proposed in [69], which is one of the fastest and most accurate. This method
is based on the minimization of an error index in the 3D space, optimizing
alternatively on the relative position and orientation unknowns. This algo-
rithm has a very fast convergence time, but it can get stuck in local minima,
depending on its initial guess.

In the classical PnP problem the only available information is the one
provided by the camera and the feature. However, in many cases, such as in
robotics applications, additional sensors are available and might provide fur-
ther useful information to enhance the pose estimation. For instance, mobile
robots and cameras are often equipped with Inertial Measurement Units
(IMUs) that, in the static configuration, are able to measure the gravity
vector in their own reference frame through accelerometers, and the magnetic
field by means of magnetometers.

5.2.2 Inertial Measurement Units (IMUs)

An Inertial Measurement Unit (Figure 5.2) (IMU), is an electronic device
that measures the velocity, orientation, and gravitational forces applied on
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Fig. 5.2: Inertial Measurement Unit example

the sensor itself. These measurements are obtained using a combination of
accelerometers, gyroscopes and magnetometers.
The IMUs are the main components of inertial navigation systems used in
aircrafts, mobile robots, aerial robots, spacecrafts, watercrafts and guided
missiles. These sensors are typically used, for example, to maneuver unmanned
aerial vehicles (UAVs), satellites and landers.
An IMU works by detecting the current rate of acceleration using one or more
accelerometers, and detects changes in rotational attributes like pitch, roll and
yaw, using one or more gyroscopes and one magnetometer. Therefore using
an IMU it is possible to obtain information on the roll-pitch-yaw (RPY)
angles related to the sensor orientation.
Assume to have an IMU placed on an object as shown in Figure 5.4(a) and let
OX′,Y ′,Z′ be the IMU reference frame and OX,Y,Z be the absolute reference
frame (North-East-Down reference Frame1, see Figure 5.3).
The sensor detects to two main accelerations: an acceleration −→a due to input
forces and an acceleration −→g due to earth’s gravitational field, as shown in
Figure 5.4(c). The IMU provides a measurement related to the total object
acceleration, −→a +−→g , the coordinates of which are in the IMU reference frame.

Please note that if the object is static then −→a =
−→
0 and the only accelera-

tion on the object is the gravitational acceleration −→g . Therefore, in a static
context, an IMU directly provides measurements about the gravity vector −→g .
Moreover if the object speed variations are slow enough, that is −→a ≈ 0, the
measurements provided by the IMUs can be seen as an approximation of the
gravitational acceleration −→g .

1 The North-East-Down (NED) reference frame (see Figure 5.3, also known as
local tangent plane (LTP), is a geographical coordinate frame, for representing
state vectors, that is commonly used in aviation. It consists of three numbers:
one represents the position along the northern axis, one along the eastern axis,
and one represents vertical position. Down is chosen as opposed to up in order to
comply with the right-hand rule and it represents the gravity direction.
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Fig. 5.3: North East Down reference frame

(a) IMU reference frame (b) absolute reference
frame

(c) object accelerations

Fig. 5.4: IMU, reference frames and object accelerations

5.2.3 PnP Problem and IMUs

In most of the current applications (see, e.g., [55, 56]), information coming
from the camera system and from the other sensors are gathered separately
and then fused a posteriori. For instance, as for the dynamic case, in [55]
authors present an extended Kalman filter for precisely determining the un-
known transformation between a camera and an IMU. In [56], a tight coupling
of IMU and camera is achieved by an error-state extended Kalman filter which
uses each visually tracked feature contribute as an individual measurement for
its update.

The aim of this dissertation is to use the data elaborated from the IMUs
to ‘help’ the vision system solve the PnP problem. In particular, the problem
will be faced in a static configuration where, due to the high resolution of the
IMUs’ accelerometers, the proposed approach is expected not only to simplify
the solution of the PnP problem, but also to yield to a more accurate pose
estimation.

Only a few recent works using this approach have been presented in the
literature. In [54], the authors use the roll, pitch and yaw angles provided by
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the IMU to compute the translation vector between the feature and a fixed
camera with known position and orientation. In the same paper it is also shown
that, if the whole object attitude is known, the P2P problem admits a unique
solution whenever the two points on the image are distinct. However, it is
worth mentioning that the results obtained in this paper, although interesting
from the scientific viewpoint, are quite fragile w.r.t. pixel noise. Moreover,
the information about the attitude is computed by the IMU using both the
accelerometers and the compass, the latter of which, as already remarked,
can be quite noisy and unreliable. In [63], the authors assume to know the
coordinates of two points in the absolute reference frame and, using the roll
and pitch provided by an IMU mounted on the camera, they solve a P2P
problem on reconstructing the absolute camera pose. The yaw angle provided
by the IMU is discarded due to the low accuracy of the compass.

In the present dissertation a more general scenario is considered. No as-
sumption on the absolute coordinates of either the camera or the object
is made and both the observed object and the camera are assumed to be
equipped with IMUs. Several results obtained for this configuration will be
presented, both in the case 1) the information of the magnetometer is used or
2) only inclinometers are considered.

In particular, first a closed-form solution for the P2P Problem with IMUs
(i.e. using both inclinometers and magnetometers) will be proposed. This so-
lution considerably improves the robustness to pixel noise w.r.t. the algorithm
proposed in [54]. Then, the above solution will be extended to the general PnP
Problem with IMUs.

Moreover, a way to solve the P2P problem using only the information given
by the inclinometers will be provided. It will be proved that such a modified
P2P problem always gives 2 solutions, except when the 2 points are seen as
one by the camera (in this case, infinite solutions can be found). To solve the
ambiguity between the possible two solutions of the P2P, a geometrical test is
given, that allows to obtain a unique solution for the P2P problem in roughly
one half of the cases. Moreover, it will be remarked that singular configurations
and ambiguities can be avoided by using a feature of 3 non-collinear points.

Finally, the PnP problem using only inclinometers will be studied. In par-
ticular, the PnP problem will be reformulated as an optimization problem
where the objective function is a least mean square index. This choice allows
to solve the PnP problem by solving a single variable optimization problem.

5.3 Problem statement

Assume a camera and an object in the field of view of the camera. Two refer-
ence frames are defined: the camera reference frame Oxyz, the origin of which
is in the camera focus, and the object reference frame O′uvw. It is assumed
that the object is provided with a feature composed of n points, the coordi-
nates of which are known “a priori” in the object reference frame. The object
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Fig. 5.5: Camera, image and object reference frames

and the camera are equipped with an IMU capable of measuring the grav-
ity unit vector2 and the earth magnetic field unit vector: ĝo = [gu, gv, gw],
m̂o = [mu,mv,mw] in the object reference frame, and ĝc = [gx, gy, gz],
m̂c = [mx,my,mz] in the camera reference frame, respectively. It is assumed
that the distance between the camera and the object is negligible w.r.t. the
earth radius, hence ĝc, m̂c and ĝo, m̂o represent the same couple of vectors in
two different coordinate frames. Furthermore, the camera is assumed to have
no distortion and to be characterized by the focal length f and the distance
per pixel dpx.

The image reference frame is denoted by Ocxcyc , the image plane is z = f
and the image center is CI = (xCI , yCI ). The overall scenario is depicted in
Figure 5.5.

Goal of this dissertation is to solve the PnP problem using information
provided by both the IMUs and the camera. The aim is to obtain the trans-
formation matrix from the object reference frame to the camera reference
frame:

Rt =

[
R t

0 0 0 1

]
,

where R is the relative rotation matrix and t = [tx, ty, tz]
T is the translation

vector.

2 Clearly, using an IMU also the magnitude of the gravity and earth magnetic field
vectors is measured. However, for the purposes of this work only the vectors’
directions are of interest.
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5.4 PnP Problem using IMUs: proposed solutions

Using the information provided by the IMUs, the whole rotation matrix from
the object reference frame to the camera reference frame can be estimated. In
this context, solving the PnP problem translates into determining the transla-
tion vector t between the two reference frames. In the following, a new solution
to the P2P problem with IMUs will be presented. Aftewards, this solution will
be extended to the more general PnP problem with IMUs.

5.4.1 P2P Problem with known Rotation Matrix

The P2P problem is the problem of estimating the relative pose of the object in
the camera reference frame when the object contains a feature of two distinct
points A = (Au, Av, Aw) and B = (Bu, Bv, Bw), the coordinates of which are
known in the object reference frame. The information provided by the camera
can be modeled using the pinhole model [72] as follows. Let K = (Ku,Kv,Kw)
be a point in the object reference frame. Using the transformation matrix Rt,
the coordinates of K in the camera reference frame can be written as

PK = [Kx,Ky,Kz]
T = RK + t, (5.1)

and the coordinates of pixel P ∗K related to PK in the image are defined as

xK = f̃
Kx

Kz
+ xCI , yK = f̃

Ky

Kz
+ yCI , (5.2)

where f̃ = f/dpx is the camera focal length measured in pixels.
Using the above equations it is possible to compute the pixels P ∗A =

(xA, yA) and P ∗B = (xB , yB), where points A and B are projected in the

image plane. On defining P̃A = P ∗A/f̃ , P̃B = P ∗B/f̃ , from equations (5.2) and
(5.1) it is possible to obtain

P̃A = (x̃A, ỹA) =

(
r1A+ tx
r3A+ tz

,
r2A+ ty
r3A+ tz

)
,

P̃B = (x̃B , ỹB) =

(
r1B + tx
r3B + tz

,
r2B + ty
r3B + tz

)
,

(5.3)

where ri is the i-th row of matrix R.
Since all the information from the IMUs is used, the whole rotation matrix

R is known. As a consequence to solve the P2P problem simplifies into the
problem of estimating the translation vector t. A possible way to find t is to
use the results presented in [54]. There, the authors solve equations (5.3) with
respect to tx, ty, tz, obtaining the following solution:

tx = Azx̃A − r1A
ty = Az ỹA − r2A ,
tz = Az − r3A

(5.4)
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where Az is computed as follows:

if x̃B 6= x̃A then Az =
(r1 − x̃Br3) (A−B)

x̃A − x̃B

otherwise Az =
(r2 − ỹBr3)(A−B)

ỹA − ỹB
.

Although the above equations represent a formally correct solution, they are
very sensitive to pixel noise. To mitigate this problem, a possible solution is
to compute the translation vector t̂ which minimizes the following index

E = ||P̂A( t̂ )− P̃A||2 + ||P̂B( t̂ )− P̃B ||2 (5.5)

where P̂A( t̂ ) and P̂B( t̂ ) are the pixels in which points A and B are projected
using the rotation matrix provided by the IMUs, the translation vector t̂ and
equation (5.2).

The above index represents the reprojection error due to the use of the
rotation matrix R and the translation vector t̂. This index is widely used in the
literature to test the performance of PnP solutions (see [54], [63], [70]). It is
important to highlight that the resulting optimization problem must be solved
through numerical methods and may require a high computational effort. To
overcome this difficulty, in the present thesis an alternative least means square
index is proposed. The starting point is that equations (5.3) can be rewritten
as the following set of linear equations

−tx + tzx̃A = r1A− r3Ax̃A
−ty + tz ỹA = r2A− r3AỹA
−tx + tzx̃B = r1B − r3Bx̃B ,
−ty + tz ỹB = r2B − r3BỹB

(5.6)

which can be written in matrix form as follows

Qt = s, (5.7)

where

Q =


−1 0 x̃A

0 −1 ỹA
−1 0 x̃B

0 −1 ỹB

 ; s =


r1A− r3Ax̃A
r2A− r3AỹA
r1B − r3Bx̃B
r2B − r3BỹB

 . (5.8)

An index alternative to (5.5) is defined as

E2 = ||Qt− s||2, (5.9)

which is the least mean square index over equations (5.6). The main advantage
of using the index (5.9) rather than (5.5) is that, as well known, the optimal
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solution of this LMS problem can be computed by using the pseudo-inverse
matrix of Q as follows:

t̂ = Q�s. (5.10)

where t̂ is the optimal LMS approximation of the translation vector t. Clearly,
this solution is more robust with respect to pixel noise than the one provided
by (5.4).

To verify the robustness of the proposed solution with respect to pixel
noise, a set of 10 000 numerical tests have been performed, using a feature of
n = 2 points placed in A = [0, 0, 0]Tm and B = [0.1, 0.1, 0]Tm in the object
reference frame, and assuming a zero mean Gaussian noise with standard
deviation of σ = 5 pixels on the pixels provided by the camera. For each test,
the actual transformation matrix has been chosen randomly. The estimation
of the translation vector computed using the expression (5.10) here proposed
has been contrasted with the one proposed in [54] by means of the relative
error

εt =
||t− t̂||
||t||

.

Figure 5.6 shows the results of some of the performed tests.

Fig. 5.6: Index εt in some of the performed tests
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As expected, using the pseudo-inverse, the estimation error εt is generically
smaller than the one obtained using equations (5.4) of [54], and provides an
average value of 0.0691 (7% error) against an average value of 0.5029 (50%
error) for the estimation method proposed in [54].

Remark 5.1. 1 Interestingly enough, the index E and the index E2 are related
as E = ||M ||2E2, where

M =


1

r3A+tz
0 0 0

0 1
r3A+tz

0 0

0 0 1
r3B+tz

0

0 0 0 1
r3B+tz

 .
For this reason, and under appropriate assumptions (e.g., tz � r3(A−B)),

the optimal value for the index E2 can be taken as a good approximation of
the optimal value for the index E.

Remark 5.2. 2 The index E is the most used in the literature when it comes
to pose estimation, it is worth to compare it with E2, Figure 5.7 shows the εt
index, in some of the performed 10 000 tests, computed using the translation
vector obtained by equation (5.10) and the translation vector resulting from
the index E minimization.

Fig. 5.7: Index εt minimizing E and minimizing E2
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Results show no evidence of any real estimation advantages in using E and
E2. Conversely, as shown in Figure 5.8, the use of E2 clearly outperforms the
use of E in terms of computational time.

Fig. 5.8: Computation times required to minimize w.r.t. E or w.r.t. E2

The averaged computation time3, over the performed 10 000 tests, required
to solve the P2P problem is 0.0021s and 0.5563s minimizing w.r.t. E2 and E
respectively.

5.4.2 PnP Problem with known Rotation Matrix

In this section the results obtained for the P2P problem will be extended to
the PnP problem in the general case n ≥ 3. To avoid pathological situations
where all the points of the feature Pi = (Pu,i, Pv,i, Pw,i), i = 1, . . . , n are seen
by the camera as a single pixel, it will be hereafter assumed that at least three
points of the feature are not collinear.

As in the P2P case, if the rotation matrix R between the object and
the camera reference frames is provided by IMUs, the PnP problem can be

3 The computation times have been obtained using Matlab R2012 running on an
Intel(R) Core(Tm) i7 CPU Q720 processor.
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reformulated as a set of linear equations and LMS solution can be found using
the pseudo-inverse method.

More formally, given a set of n correspondences between feature points
and pixels, the Q matrix and the s vector will contain 2n rows, two rows for
each correspondence. Given a generic pixel P̃i = (x̃i, ỹi) and the related point
Pi = (Pu,i, Pv,i, Pw,i) in the object reference frame, the Q matrix and the s
vector will contain the following two rows, respectively:

Qi,1 = [−1, 0, x̃i] si,1 = r1Pi − r3Pix̃i,
Qi,2 = [0, −1, ỹi] si,2 = r2Pi − r3Piỹi,

thus the Q matrix and the s vector will have the following form:

Q =


Q1,1

Q1,2

...
Qn,1
Qn,2

 , s =


s1,1
s1,2

...
sn,1
sn,2

 . (5.11)

To obtain the PnP problem solution, the pseudo-inverse method can be
used:

t̂ = Q�s.

Remark 5.3. Please note that the dimension of the matrix Q grows only lin-
early with respect to the number n of points. Moreover, note that in the very
common case where the features points are known a priori, the pseudo-inverse
matrix Q� can be pre-computed offline in a symbolical form, translating the
PnP problem in a mere product between a matrix and a vector.

5.5 PnP Problem using accelerometers only

In the previous Section, the rotation matrix provided by the IMUs is computed
using both the magnetometers and the accelerometers. However, due to the
low reliability of the compass, the information about the magnetic field can
be quite noisy and can yield to unreliable attitude values. In these cases, a
possible choice is to neglect the measurements provided by the magnetometer
and use only the inclinometers. To this end, the first step will be to parametrize
the transformation matrix Rt with respect to the neglected data. Then, using
this new transformation matrix, a method to tackle the PnP problem will be
detailed.

5.5.1 Rotation matrix parametrization

In a static context, accelerometers measure the gravity vector in their reference
frames. To obtain the parametrized transformation matrix using only this
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information and neglecting the magnetometers measurements, the first step is
to find the parametrization of the rotation matrix R w.r.t. the missing data.

The idea is the following: let a certain reference frame h. If the rotation
matrix Rhc from this reference frame to the camera reference frame, and the
rotation matrix Rho from the h reference frame to the object reference frame
were known, then the rotation matrix R would be

R = Roc = Rhc [Rho ]T . (5.12)

The above relationship is true whatever the h reference frame is.
As well known, to obtain the rotation matrix from a reference frame to

another, the canonical basis of the first frame has to be represented in the
second one, assuming no translation. Since information on the gravity unit
vector in the object and in the camera reference frames are available in the
IMUs, it may be convenient to define an “intermediate” reference frame h
defined as an artificial NED reference frame where the Down-vector is the
gravity vector and the North-vector (and consequently the East-vector) are
chosen in an arbitrary way. Using this artificial NED reference frame, the
rotation matrices Rhc and Rho can be found. Matrix R will be finally obtained
by equation (5.12).

The first column of Rhc is the unit vector ĝc. To complete this matrix an
artificial North unit vector m̂c in the camera reference frame is arbitrarily
chosen. This unit vector must lie on the plane orthogonal to the gravity unit
vector ĝc.

For simplicity the following unit vector is here chosen4:

m̂c =

[
gz√
g2x + g2z

, 0 ,
−gx√
g2x + g2z

]T
, (5.13)

which will be the second column of Rhc . The third column of Rhc will be

n̂c = ĝc × m̂c =

[
− gxgy√

g2x + g2z
,
√
g2x + g2z , −

gygz√
g2x + g2z

]T
, (5.14)

therefore the rotation matrix from the artificial NED reference frame to the
camera reference frame is

Rhc = [ĝc m̂c n̂c] . (5.15)

Next step is to build the rotation matrix Rho from the object reference
frame to the h reference frame. Following the same lines of what done with
Rhc , the first column of Rho is ĝo. The second column should contain m̂o, that
is the artificial North unit vector in the object reference frame. However, the

4 Please note that this choice is completely arbitrary. If gx = gz = 0, which implies
that the gravity unit vector lies on the Y -axis, it is always possible to choose
another unit vector orthogonal to ĝc.
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coordinates of this vector in the object reference frame are unknown. The only
information available is that it has to lie on the plane orthogonal to ĝo and
it must be a unitary vector. As a consequence, from the geometrical point of
view, this vector will lie on the intersection between the plane orthogonal to
ĝo and a sphere with unit ray, as shown in Figure 5.9.

Fig. 5.9: Unit vectors ĝo and m̂o

This allows to introduce the following parametrization for m̂o

m̂o = m̂o(α) = m̂1 sinα+ m̂2 cosα, (5.16)

where {m̂1, m̂2} is an orthonormal basis for the plane orthogonal to ĝo and
α is an unknown angle characterizing the artificial North vector orientation.
For simplicity m̂1 has been chosen as5

m̂1 =

[
gw√
g2u + g2w

, 0,
−gu√
g2u + g2w

]T
and thus m̂2 as

m̂2 = ĝo × m̂1 =

[
− gugv√

g2u + g2w
,
√
g2u + g2w, −

gvgw√
g2u + g2w

]T
.

The third vector n̂o(α) is

n̂o(α) = ĝo × m̂o(α) =[
−
gw cosα+ gugv sinα√

g2u + g2w
,
√
g2u + g2w sinα,

gu cosα− gvgw sinα√
g2u + g2w

]T
.

(5.17)

Finally, the rotation matrix from the artificial NED reference frame to the
object reference frame is

5 As in the equation (5.13), if gu = gw = 0, another unit vector orthogonal to ĝo
can be chosen, obtaining similar results.
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Rho (α) = [ĝo m̂o(α) n̂o(α)] . (5.18)

Using Rho (α) and Rhc , the rotation matrix Roc = Roc(α) is

Roc = Roc(α) = Rhc [Rho (α)]T = R(α) (5.19)

and the whole transformation matrix will be a function of α and t

Rt(α, t) =

[
R(α) t

0 0 0 1

]
, (5.20)

where α is one of the unknowns of the problem.

5.5.2 P2P using accelerometers only

If the parametrized matrix R(α) is used instead of R in (5.3), a system with
four unknowns: tx, ty, tz, α, is obtained. The P2P problem can be solved by
computing first the value of α and then obtaining the rotation matrix R(α)
using (5.19); finally, t can be determined using (5.10).

For what regards the computation of the α angle, under the assumption
∆y = ỹA− ỹB 6= 0 and ∆x = x̃A− x̃B 6= 0, using equations (5.3) the following
equation can be found:

a sinα+ b cosα+ c = 0 (5.21)

where
a = a(A,B, x̃A, ỹA, x̃B , ỹB , ĝc, ĝo),
b = b(A,B, x̃A, ỹA, x̃B , ỹB , ĝc, ĝo),
c = c(A,B, x̃A, ỹA, x̃B , ỹB , ĝc, ĝo)

are scalar constants that can be computed in closed form on the basis of the
measured data (the details can be found in the chapter appendix). Equation
(5.21) can be solved using the relation

a sinα+ b cosα = M cos(α− β),

where
M =

√
a2 + b2, β = arctan

(a
b

)
.

Finally:

α = arccos
(
− c

M

)
+ β. (5.22)

Note that equation (5.22) has two solutions, denoted hereafter as αi, i =
1, 2.

Once the α angle and therefore the R(α) matrix are computed, the transla-
tion vector t can be obtained using equation (5.10). Given a rotation matrix R,
this equation has a unique solution for the associated translation vector t.
Then, since there are two possible values for α, i.e., α1 and α2, there are also
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two possible rotation matrices, R1 and R2, respectively, and for each of them,
a translation vector, t1 and t2.

The couples (R1, t1) and (R2, t2) are both possible solutions for the P2P
problem in the case ∆y 6= 0 and ∆x 6= 0.

There are three pixel configurations in which the assumption ∆y 6= 0 and
∆x 6= 0 does not hold, that have to be analyzed separately:

1. ∆x = 0 and ∆y 6= 0
2. ∆x 6= 0 and ∆y = 0
3. ∆x = 0 and ∆y = 0

The first configuration may be solved using the first and the third equation
in (5.3), which for x̃A = x̃B allows us to obtain

a1 sinα+ b1 cosα+ c1 = 0, (5.23)

where
a1 = a1(A,B, x̃A, ĝc, ĝo),
b1 = b1(A,B, x̃A, ĝc, ĝo),
c1 = c1(A,B, x̃A, ĝc, ĝo),

are scalar constants that can be computed in closed form (see the chapter
appendix).

Similarly, the second configuration may be faced using the second and the
fourth equation of (5.3), that for ỹA = ỹB give

a2 sinα+ b2 cosα+ c2 = 0, (5.24)

where
a2 = a2(A,B, ỹA, ĝc, ĝo),
b2 = b2(A,B, ỹA, ĝc, ĝo),
c2 = c2(A,B, ỹA, ĝc, ĝo),

are scalar constants that can be computed in closed form (see the chapter
appendix).

In these two configurations there are two possible solutions for α and then
two possible solutions for the P2P problem.

The third pixel configuration is shown in Figure 5.10, and it corresponds
to the case where the two feature points and the origin of the camera reference
frame lie on the same line. Using this information the line unit vector can be
inferred. Depending on the verse of this unit vector there are two possible
values for α. However, if it is assumed to be able to distinguish if the pixel
seen in the image is P̃A or P̃B (for example using different colors for the
feature points), the correct unit vector can be found. At this point, if the line
vector is not aligned with the gravity vector, it is possible to infer the α angle
using information on the two unit vectors. As a consequence, there is only one
solution for the rotation matrix. Otherwise, if the line and the gravity vectors
are aligned, as shown in Figure 5.11, then the information on the line vector is
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Fig. 5.10: P2P, ∆x = 0 and ∆y = 0

Fig. 5.11: P2P, ∆x = 0 and ∆y = 0: line unit vector aligned with gravity unit vector

the same provided by the IMUs and it is not possible to find a unique solution
for the orientation.
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In this configuration there are ∞1 possible solutions for the rotation ma-
trix. However, it should be noticed that the case ∆x = 0 and ∆y = 0 is a

singular configuration where the two pixels P̃A and P̃B are the same. Since
the camera sees a single point, no information on the translation vector can
be obtained. As there is no possibility to infer the distance between the two
reference frames, there are ∞1 solutions for the translation.

By the above analysis the following lemma can be stated:

Lemma 1 Using the image provided by the camera and measurements of the
gravity vectors provided by the IMUs placed on the camera and on the object,
the P2P problem yields to:

� two solutions for orientation and translation when ∆x 6= 0 or ∆y 6= 0;
� a unique solution6 for orientation and an infinite number of solutions for

translation when P̃A = P̃B and the line between the two feature points and
O is not aligned with the gravity vector;

� an infinite number of solutions for orientation and for translation when
P̃A = P̃B and the line between the two feature points and O is aligned with
the gravity vector.

Hereafter the focus will be placed on the case ∆x 6= 0 or ∆y 6= 0. It should
be remarked that although the P2P problem with accelerometers admits two
solutions, in the general case, in some situations one of these solutions has no
physical meaning and can be discarded. This situation occurs when one of the
two computed transformation matrices maps some of the points of the P2P
outside of the camera view.

The camera view, as shown in Figure 5.12, can be defined as the conic
combination of vectors v1, v2, v3, v4 pointing from the camera focus to the
image corners. As a consequence a point P expressed w.r.t. the camera frame
will be in the camera view if and only if it can be represented as a conic
combination of v1, v2, v3, v4. The latter is equivalent to say that P can be
expressed as a conic combination of either v1, v2, v3 or v1, v3, v4, i.e.:

∃ k1, k2, k3 ≥ 0 : [v1 v2 v3]

k1k2
k3

 = P

or

∃ k1, k3, k4 ≥ 0 : [v1 v3 v4]

k1k3
k4

 = P

Being v1, v2, v3 and v1, v3, v4 two sets of 3 conical independent vectors of IR3,
the latter condition is equivalent to test that:

6 This is true under the realistic assumption that it is possible to recognize which
of the two point is nearer to the camera, otherwise the possible orientations are
two.
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[v1 v2 v3]
−1

P ≥ 0 (5.25)

or
[v1 v3 v4]

−1
P ≥ 0 (5.26)

where ‘> 0’ has to be meant elementwise (each entry is greater or equal to
zero). Notice that since matrices [v1 v2 v3] and [v1 v3 v4] only depend on the
camera characteristics, they do not change in time and their inverse can be
computed a priori. To test if a given transformation matrix Rt has a physical
meaning the following algorithm can be used

Algorithm 1: P2P Solution Feasibility Test

1 compute PA = RA+ t and PB = RB + t
2 check that Eq. (5.25) or Eq. (5.26) are satisfied to ensure that PA and PB

are in the view of the camera
3 if one of the points is not in the view, then discard Rt

To evaluate the number of cases where the proposed test succeeds in elim-
inating the P2P ambiguity, a set of 125 000 randomly generated numerical
simulations has been performed. In each test, both the configuration of the
object and of the camera were randomly chosen. In 47% of the tests only one
of the obtained two solutions to the P2P problem has a physical meaning. In
these tests, thanks to the proposed field of view test, the wrong solution has
been discarded.

5.5.3 P3P problem using accelerometers only

To solve the ambiguities w.r.t. the two solutions of the P2P problem, a possible
way is to use a third feature point C = (Cu, Cv, Cw). The only assumption on
the resulting P3P problem is that points A, B and C must be not collinear.

The first main difference with respect to the P2P case is that, being the
three points non collinear, it is not possible to see a unique pixel in the image
provided by the camera, since it is impossible to have the three points and
the origin of the camera reference frame on the same line.

Without loss of generality, let us assume that A and B are not aligned
with the focus of the camera. The main steps to solve the P3P problem are:

1. solve the P2P problem related to the points A and B;
2. use the third point, C, and its related pixel in the image, P̃C , to choose

the solution of the P3P problem between the solutions of the P2P problem
related to A and B.

More precisely, assuming ∆x 6= 0 or ∆y 6= 0, first of all a P2P problem with

points A, B and pixels P̃A, P̃B is solved by using the method presented in the
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Fig. 5.12: Camera field of view as conic combination

previous sections. By doing so two possible solutions, (R1, t1) and (R2, t2) are
obtained, and the one which better projects the point C into the pixel P̃C is
chosen.

More formally, using equations (5.2), the pixels P̃C,1 and P̃C,2, which
project the point C using (R1, t1) and (R2, t2) respectively, are computed.
If ||P̃C,1 − P̃C || < ||P̃C,2 − P̃C ||, then (R1, t1) is chosen as the solution of the
P3P problem, otherwise (R2, t2) is chosen.

Remark 5.4. Please note that, compared to other algorithms based on the
solution of the P3P and P4P problems, the algorithm proposed in this dis-
sertation is typically faster, since it is based on the solution of a simple P2P
problem and a few further tests to resolve the ambiguity between its two solu-
tions. Finally, note that to increase the robustness w.r.t. pixel noise, it may be
convenient to perform the P2P on the couple of points showing the maximal
distance in the image plane.

5.5.4 PnP problem using accelerometers only

Solving the PnP problem using only information provided by accelerometers
translates in the problem of finding the angle α of the parametrized rotation
matrix R(α) and the translation vector t = [tx, ty, tz]

T between the camera
and the object.

Given the set of feature points {Pi}n1=1 in the object reference frame, and
the related set of pixels {P̃i}ni=1, the following index is defined
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J(α, tx, ty, tz) =

n∑
i=1

||P̂i(α, [tx, ty, tz]T )− P̃i||2 (5.27)

where P̂i(α, [tx, ty, tz]
T ) is the pixel in which the feature point Pi is mapped

using the transformation matrix Rt(α, [tx, ty, tz]
T ).

The above index represents the total quadratic reprojection error due to
the use of the transformation matrix Rt(α, [tx, ty, tz]

T ). Using this index, the
following optimization problem can be formulated:

{α∗, t∗x, t∗y, t∗z} = arg min
α,tx,ty,tz

J(α, tx, ty, tz) (5.28)

Once the optimal solution α∗, t∗x, t
∗
y, t
∗
z has been found, the transformation

matrix Rt(α
∗, [t∗x, t

∗
y, t
∗
z]
T ) will be the solution of the PnP problem.

As explained in Section 5.5.2, to find an optimal solution for the re-
projection index may be difficult and computationally onerous. Again, to
overcome this problem, in this dissertation the use of LMS as an alternative
cost function is proposed:

J2(α, tx, ty, tz) = ||Q(α)t− s(α)||2 (5.29)

where Q(α) and s(α) are the Q matrix and the s vector obtained in (5.11)
when the rotation matrix is R = R(α). Using this function, the optimization
problem associated to the solution of the PnP problem becomes

{α∗, t∗x, t∗y, t∗z} = arg min
α,tx,ty,tz

J2(α, tx, ty, tz) (5.30)

Interestingly enough, this four variables optimization problem can be reformu-
lated without loss of generality as an equivalent single variable optimization
problem. In fact, if the angle α is fixed, the translation vector t̂ minimizing the
cost function admits the closed-form solution (5.10). Hence, t̂ can be rewritten
as a function of α, i.e. t̂(α), and (24) can be equivalently reformulated as

α∗ = arg min
α
J2(α, t̂x(α), t̂y(α), t̂z(α)) (5.31)

where
[
t̂x(α), t̂y(α), t̂z(α)

]T
= Q(α)�s(α). Clearly, the optimal solution of

(5.31) will be the optimal solution for Problem (5.30) too.
The main advantage of this reformulation is that the optimization problem

(5.31) is a single variable unconstrained optimization problem the solution of
which is computationally less cumbersome that the one of (5.30). Several
efficient unconstrained optimization algorithms exist in the literature that
can be used to solve the optimization problem (5.31), e.g., the Nelder-Mead
method [73].

Please note that most of these algorithms are iterative and require an
initial guess. So, to solve (5.31), a good initialization value α0 is required. To
find a good initial guess, some heuristic solution must be computed. A first
possible heuristic consists of solving a P3P problem on three arbitrary chosen
feature points. Another more performing heuristic will be presented in the
next subsection.
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5.5.5 Weighted mean initialization for the PnP problem

In this subsection a possible alternative way to initialize the optimization
problem (5.31) is described. The main idea is to solve ρ P3P problems obtained
by choosing arbitrarily ρ subset of 3 non collinear feature points among the n
available.

At this point, let (α̃j , t̃j), j = 1, . . . , ρ be the ρ solutions of these P3P
problems, the following weights can be then computed

wj =

 1
n∑
i=1

||Px,i − P̂x,i(α̃j , t̃j)||2


2

ρ∑
j=1

 1
n∑
i=1

||Px,i − P̂x,i(α̃j , t̃j)||2


2 (5.32)

where P̂x,i(α̃j , t̃j) is the pixel computed using the transformation matrix
Rt(α̃j , t̃j).

By using these weights, the following estimation of α can be obtained

α̂ =

ρ∑
j=1

wjα̃j (5.33)

which can be used as initialization value, α0 = α̃, for the optimization problem
(5.31). Using the proposed weights wi, i = 1, . . . , ρ, an angle αj will give higher
contribute to the final α̂ if its transformation matrix Rt(α̃j , t̃j) has a lower
quadratic re-projection error over the n correspondences.

The proposed heuristic can be summarized by the following algorithm:

Algorithm 2: PnP Problem Initialization Algorithm

1 choose ρ subsets of 3 not collinear feature points;
2 solve ρ P3P problems over the ρ subsets and find (α̃j , t̃j), j = 1, . . . , ρ;
3 evaluate wj , j = 1, . . . , ρ using (5.32);
4 evaluate α̂ using (5.33).

5.6 Chapter Conclusions

In this Chapter the problem of estimating the relative orientation and po-
sition between a camera and an object has been considered. It is assumed
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that both the camera and the object are equipped with an IMU and that
the object contains a feature of n points the position of which in the object
reference frame is known a priori. Using the image provided by the camera
and the information measured by the IMUs, two new algorithms to solve the
PnP problem have been presented. The first covers the case all the informa-
tion provided by the IMU is used. The second algorithm covers the case only
the measurements provided by inclinometers are used and the ones from the
magnetometer are discarded due to their unreliability. It has been shown that
if the entire information provided by IMUs is used, then the resulting PnP
problem solution is more affected by noise than the solution obtained using
only cameras and inclinometers. In Chapter 6, numerical simulations and ex-
perimental tests will show the effectiveness of the proposed solution for the
PnP problem.
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Appendix

Equation (5.21) assuming x̃A − x̃B 6= 0 and ỹA − ỹB 6= 0, from the first and
the third equation in (5.3) tx and tz may be written as

tz = 1

(x̃A−x̃B)
√

(g2u+g
2
w)(g2x+g

2
z)

[
√

(g2u + g2w)(g2x + g2z)

× (gu(Bu(x̃Bgz − gx) +Au(gx − x̃Agz))
+ gv(Bv(x̃Bgz − gx) +Av(gx − x̃Agz)))
+ (gugv(Bu(gxx̃B + gz)−Au(gxx̃A + gz)) + g2u(Av(gxx̃A + gz)
−Bv(gxx̃B + gz) + gwgy(Au(gx − x̃Agz)−Bu(gx − x̃Bgz)))
+ gw(Avgw(gxx̃A + gz)−Bvgw(gxx̃B + gz)
+ gy(g2v + g2w)(Bu(x̃Bgz − gx) +Au(gx − x̃Agz)))) cosα
+ (gy(g2u + g2w)(Av(x̃Agz − gx) +Bv(gx − x̃Bgz))
+Au(gw(gxx̃A + gz) + gugvgy(gx − x̃Agz))
−Bu(gw(gxx̃B + gz) + gugvgy(gx − x̃Bgz))) sinα]

tx = 1

(x̃A−x̃B)
√

(g2u+g
2
w)(g2x+g

2
z)

[
√

(g2u + g2w)(g2x + g2z)

× (gu(Aux̃B(gx − x̃Agz) +Bux̃A(x̃Bgz − gx))
+ gv(Avx̃B(gx − x̃Agz) +Bvx̃A(x̃Bgz − gx)))
+ (gugv(−Aux̃B(gxx̃A + gz) +Bux̃A(gxx̃B + gz))
+ g2u(Avx̃B(gxx̃A + gz)−Bvx̃A(gxx̃B + gz)
+ gwgy(Bux̃A(x̃Bgz − gx) +Aux̃B(gx − x̃Agz))
+ gw(Avgwx̃B(gxx̃A + gz)−Bvgwx̃A(gxx̃B + gz)
+ gy(g2v + g2w)(Aux̃b(gx − x̃Agz) +Bux̃A(x̃Bgz − gx)))) cosα
+ (Aux̃B(gw(gxx̃A + gz) + gugvgy(gx − x̃Agz))
+ (g2u + g2w)gy(Avx̃B(−gx + x̃Agz) +Bv(gx − x̃Bgz))
−Bux̃A(gw(gxx̃B + gz) + gugvgy(gx − x̃bgz))) sinα]

while from the second and the fourth equation in (5.3) ty and tz are

tz = 1

(ỹA−ỹB)
√

(g2u+g
2
w)(g2x+g

2
z)

[
√

(g2u + g2w)(g2x + g2z)

× (gu(Bu(ỹBgz − gy) +Au(gy − ỹAgz))
+ gv(Bv(ỹBgz − gy) +Av(gy − ỹAgz)))
+ (gugvgx(−AuỹA +BuỹB) + g2u(gx(Av ỹA −Bv ỹB)+
+Bugw(g2x + gy ỹBgz + g2z)−Augw(g2x + gz(gy ỹA + gz)))
+ gw(gwgx(Av ỹA −Bv ỹB)−Au(g2v + g2w)(g2x + gz(gy ỹA + gz))
+Bu(g2v + g2w)(g2x + gz(gy ỹB + gz)))) cosα+ (gw(gx(AuỹA −BuỹB)
−Bvgw(g2x + gy ỹBgz + g2z) +Avgw(g2x + gz(gy ỹA + gz)))
+ gugv(−Au(g2x + gz(gy ỹA + gz)) +Bu(g2x + gz(gy ỹB + gz)))
+ g2u(Av(g

2
x + gz(gy ỹA + gz))−Bv(g2x + gz(gy ỹB + gz)))) sinα]
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ty = 1

(ỹA−ỹB)
√

(g2u+g
2
w)(g2x+g

2
z)

[
√

(g2u + g2w)(g2x + g2z)

× (gu(AuỹB(gy − ỹAgz) +Bu(−gy ỹA + ỹAỹBgz)) + gv(Av ỹB(gy − ỹAgz)
+Bv(−gy ỹA + ỹAỹBgz))) + (gu(−Au +Bu)gvgxỹABv
+ g2u(BugwỹA(g2x + gz(gy ỹB + gz))− ỹB((−Av +Bv)gwgxỹA
+Au(g2v + g2w)(g2x + gz(gy ỹA + gz))))) cosα
+ (gugv(−AuỹB(g2x + gy ỹAgz + g2z) +BuỹA(g2x + gy ỹBgz + g2z))
+ g2u(Av ỹB(g2x + gy ỹAgz + g2z)−Bv ỹA(g2x + gy ỹBgz + g2z))
+ gw(−BvgwỹA(g2x + gz(gy ỹB + gz))
+ ỹB((Au −Bu)gxỹA +Avgw(g2x + gy ỹAgz + g2z)))) sinα]

By equating the two values of tz we obtain

a sinα+ b cosα+ c = 0

where

a = + 1
x̃A−x̃B [(g2u + g2v)gy(−Avgx +Bvgx +Avx̃Agz −Bvx̃Bgz)

+Au(gw(gxx̃A + gz) + gugvgy(gx − x̃Agz))
−Bu(gw(gxx̃B + gz) + gugvgy(gx − x̃Bgz))]
− 1

ỹA−ỹB [gw(gx(AuỹA −BuỹB)−Bvgw(g2x + gy ỹBgz + g2z)

+Avgw(g2x + gz(gy ỹA + gz))) + gugv(−Au(g2x + gz(gy ỹA + gz))
+Bv(g

2
x + gz(gy ỹB + gz))) + g2u(Av(g

2
x + gz(gy ỹA + gz))

−Bv(g2x + gz(gy ỹB + gz)))]

b = + 1
x̃A−x̃B [gugv(−Au(gxx̃A + gz) +Bu(gxBv + gz))

+ g2u(Av(gxx̃A + gz)−Bv(gxx̃B + gz)
+ gwgy(Augx −Bugx −Aux̃Agz +Bux̃Bgz))
+ gw(Avgw(gxx̃A + gz)−Bvgw(gxx̃B + gz)
+ gy(g2v + g2w)(−Bugx +Bux̃Bgz +Au(gx − x̃Agz)))]
− 1

ỹA−ỹB [gugvgx(−AuỹA +BuỹB) + g2u(gx(Av ỹA −Bv ỹB)

+Bugw(g2x + gy ỹBgz + g2z)−Au(g2v + g2w)(g2x + gz(gy ỹA + gz))
+Bu(g2v + g2w)(g2x + gz(gy ỹB + gz)))]

c = +

√
(g2u+g

2
w)(g2x+g

2
z)

x̃A−x̃B [gu(−Bugx +Bux̃Bgz +Au(gx − x̃Agz))
+ gv(−Bvgx +Bvx̃Bgz +Av(gx − x̃Agz))]

−
√

(g2u+g
2
w)(g2x+g

2
z)

ỹA−ỹB [gu(−Bugy +BuỹBgz +Au(gy − ỹAgz))
+ gv(−Bvgy +Bv ỹBgz +Av(gy − ỹAgz))]

Equation (5.21) assuming ∆x = 0 and ∆y 6= 0.
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a1 = − gy(Av −Bv)(g2u + g2w)(gx − x̃Agz) +Au(gw(gxx̃A + gz) + gugvgy(gx − x̃Agz))
−Bu(gw(xx̃A + gz) + gugvgy(gx − x̃Agz))

b1 = − gugv(Au −Bu)(gxx̃A + gz)
+ g2u(Av(gxx̃A + gz)−Bv(gxx̃A + gz) + (Au −Bu)gwgy(gx − x̃Agz))
+ gw(Avgw(gxx̃A + gz)−Bvgw(gxx̃A + gz) + gy(Au −Bu)(g2v + g2w)(gx − x̃Agz))

c1 = + gu(Au −Bu) + gv(Av −Bv)(gx − x̃Agz)
√

(g2u + g2w)(g2x + g2z)

Equation (5.21) assuming ∆x 6= 0 and ∆y = 0.

a2 = − gugv(Au −Bu)(g2x + gz(gy ỹA + gz)) + g2u(Av −Bv)(g2x + gz(gy ỹA + gz))
+ gw((Au −Bu)gxỹA −Bvgw(g2x + gy ỹAgz + g2z) +Avgw(g2x + gz(gy ỹA + gz)))

b2 = + gugvgxỹA(−Au +Bu)
+ g2u((Av −Bv)gxỹA +Bugw(g2x + gy ỹAgz + g2z)−Augw(g2x + gz(gy ỹA + gz)))
+ gw((Av −Bv)gwgxỹA −Au(g2v + g2w)(g2x + gz(gy ỹA + gz))
+Bu(g2v + g2w)(g2x + gz(gy ỹA + gz)))

c2 = + gu(Au −Bu) + gv(Av −Bv)(gy − ỹAgz)
√

(g2u + g2w)(g2x + g2z)
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Numerical and Experimental Results

In this Chapter, all the previously proposed techniques will be tested through
numerical simulations and real experiments. First of all, the robot model will
be described, then the proposed simulative and real environments will be dis-
cussed. A set of performance indexes will be defined and the set of performed
simulations and experiments will be detailed showing the obtained results.

6.1 Robot Model

The mobile robots localization, mapping and SLAM techniques proposed in
the previous Chapters can be adapted to whatever mobile robot type.

Whatever is the mobile robot type, assuming it moves on a plane, its model
can be surely described using a set of equations like (1.2). All the algorithms
described in the present thesis have been developed in a general framework,
starting from the equation (1.2) and thus the specific mobile robot model
choice does not influence any mathematical step in the algorithms developing.
In the simulative and experimental framework a differential drive robot has
been chosen.

A differential drive robot is a mobile robot the movement of which is based
on two separately driven wheels placed on either side of the robot body.
The robot can change its direction by varying the relative rate of rotation
of its wheels. To balance the robot, an additional castor wheel is added, as
shown in Figure 6.1.

If both the wheels are driven with the same speed, the robot will go in a
straight line. If the wheels are driven with equal speed but in opposite direc-
tions, the robot will rotate about the central point of the axis. Otherwise, the
robot will perform a curved trajectory depending on the values of the wheels
speeds. A differentially steered robot is similar to the differential gears used
in automobiles where both the wheels can have different rates of rotations.
Unlike the differential gearing system, a differentially steered system will have
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Fig. 6.1: Differential Drive Robot examples

both the wheels powered. Differential wheeled robots are used extensively in
robotics, since their motion is easy to program and it can be well controlled.
More formally this robot type can be described as shown in Figure 6.2.

Fig. 6.2: Differential Drive Robot kinematic model

where:

� r is the wheels radius;
� L is the axle length between drive wheels;
� A(t) = (xA1 (t), xA2 (t)) is the center of axle between drive wheels;
� R(t) = (xR1 (t), xR2 (t)) is the robot center of gravity, hereafter denoted as

robot center since a kinematic model is considered;
� θ(t) is robot orientation w.r.t. robot axis, orthogonal to wheels axis;
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� d = ||A(t)−R(t)|| is the distance between the robot center and the center
of axle;

� ωR(t), ωL(t) are the right and left angular velocities respectively;
� Γ (t) is the point A(t) linear velocity;
� ΓR(t), ΓL(t) are the right wheel and left wheel linear velocities respectively;
� ω(t) is the mobile robot rotational speed.

Starting from Figure 6.2 and neglecting the time dependencies for the sake of
simplify notation, the velocity of the point A can be described by

ẋA1 = Γ cos θ, ẋA2 = Γ sin θ

while the robot rotational velocity is defined as

θ̇ = ω

The linear velocity Γ and the rotational speed ω are related to the wheels
angular velocities by the following relationships:

Γ = rωR + ωL
2 , ω = rωR − ωLL .

Using the above equations the kinematic model for a differential drive robot
results in 

ẋA1

ẋA2

θ̇

 =


rωR + ωL

2 cos θ

rωR + ωL
2 sin θ

rωR − ωLL

 (6.1)

At this point the velocity of the robot center R can be obtained as

ẋR1 = ẋA1 + θ̇d sin θ

ẋR2 = ẋA2 − θ̇d cos θ
(6.2)

In the following, it will be assumed, without loss of generality, that the
robot center is coincident with the axle center, that is A ≡ R and d = 0.
Defining the robot state x(t) = [xR1 (t), xR2 (t), θ(t)], the robot inputs vector
u = [ωR(t), ωL(t)] and neglecting the time dependencies, the differential drive
model is

ẋ =


ẋR1

ẋR2

θ̇

 =


rωR + ωL

2 cos θ

rωR + ωL
2 sin θ

rωR − ωLL

 = f



xR1

xR2

θ

 ,
[
ωR
ωL

] = f(x, u) (6.3)

The equations (6.3) show how the differential drive kinematic model can be
adapted to the general framework defined by the equation (1.2).
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6.1.1 Differential Drive Discrete model equations

The model (6.3) discretized using (1.3) is described by the following equations
xR1,k+1 = xR1,k + Γk T cos(θk+1)

xR2,k+1 = xR2,k + Γk T sin(θk+1)

θk+1 = θk +∆k,

(6.4)

where:

� (xR1,k, x
R
2,k) is the robot center position at time tk = kT ;

� θk is the angle between the robot axle and the x1-axis, at time tk;

� ωL,k and ωR,k are the wheels angular velocities;

� ∆k = r
(ωL,k − ωR,k)T

L is the rotation within [tk−1, tk]

� T = tk − tk−1 is the sampling period.

The above model does not take into account unmodeled dynamics, fric-
tion, wheels sleeping and external disturbances (such as wind). To con-
sider the influence of these phenomena on the robot evolution and to not
complicate the robot model, as described in Section 2.3, a process noise
wk = [w1,k, w2,k, wθ,k]T is added to the robot evolution. The resulting model
is

xk+1 = φ(xk, uk) + wk (6.5)

Where the φ(·, ·) function consists in the equations (6.4) and it represents
the robot evolution discrete model obtained thanks to the Euler approxima-
tion of the f(·, ·) function (see equation (1.3)).

6.1.2 Robot Khepera III

In the experimental framework a Khepera III mobile robot [27] has been
used. This mobile robot, shown in Figure 6.3 has been chosen because of its
small dimensions, which make it suitable for indoor experiments, and for its
capability to be programmed using different operating systems and languages.
Its communication module allows the robot to be monitored and controlled
by a Personal Computer using the Bluetooth protocol. The robot is equipped
with nS = 5 on board ultrasonic sensors able to detect in a range from 20cm
to 4m.

In the experimental tests, all the proposed localization, mapping and
SLAM algorithms have been implemented in Matlab code. The robot input
velocities are computed using Matlab and they are sent to the robot through
a bluetooth communication; using the same channel, all the robot sensors ac-
quired measurements have been sent to Matlab to use them into the described
localization and mapping algorithms.
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Fig. 6.3: Robot Khepera III equipped with upper body (on the left) and not equipped
with upper body (on the right)

6.2 Robot surrounding environments

In this Section, the environments used during the simulation and experimen-
tal tests will be shown. To properly test all the proposed algorithms, two
simulative environments and one real environment have been made.

6.2.1 Simulative environments

Single room environment

The first simulative environment (see Figure 6.4) aims to represent a single
room in which the robot is placed. The room walls have various shapes and
the room covered surface is about 2m2.

Three-rooms environment

The second simulative environment (see Figure 6.5) aims to represent three
rooms connected by corridors. The robot starts its path into one of the rooms
or into one of the corridors and then it moves into the entire environment.
Also in this case, the room walls have various shapes; the environment covered
surface is about 8m2.

6.2.2 Experimental environment

The experimental environment is a rectangular field of 1.30m × 1.00m con-
taining two boxes as shown in Figure 6.6.
The experimental environment boundaries are shown in Figure 6.7.
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Fig. 6.4: Simulative environment: single room. The red triangle represents the robot
while the blue circle is robot center coordinates. The black dashed lines are the robot
on board distance sensors measurements

Fig. 6.5: Simulative environment: three-rooms. The red triangle represents the robot
while the blue circle is robot center coordinates. The black dashed lines are the robot
on board distance sensors measurements

6.3 Robot planned trajectories

As remarked into the Introduction, this dissertation does not aim to solve the
path planning problem. The robot control inputs are assumed to be precom-
puted so that the robot follows the desired trajectories avoiding the obstacles
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Fig. 6.6: Experimental environment. The robot Khepera III has been placed into
the environment.

Fig. 6.7: Experimental environment boundaries

and the walls into the environment. More precisely a set of trajectories have
been planned and used into the previously described environments.

6.3.1 Rectangle trajectory

The first trajectory planned is shown in Figure 6.8. It is a rectangle trav-
eled by the robot starting from (0.50, 0.40)m with zero heading, passing by
(1.00, 0.40)m, (1.00, 0.60)m, (0.50, 0.60)m and coming back to (0.50, 0.40)m.
The entire path is performed in kf = 120 steps.
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Fig. 6.8: Rectangle trajectory into the single room simulative environment. The blue
triangle is robot initial pose

6.3.2 I-like trajectory

The second trajectory planned is shown in Figure 6.9. It is an I-like trajec-
tory, starting from (0.26, 0.50)m with zero heading, passing by (0.26, 0.40)m,
(0.26, 0.50)m, (1.10, 0.50)m, (1.10, 0.40)m, (1.10, 0.60)m, (1.10, 0.50)m,
(0.26, 0.50)m, (0.26, 0.60)m and coming back to (0.26, 0.50)m. The entire path
is performed in kf = 200 steps.

6.3.3 L-like trajectory

In the three-rooms simulated environment, the planned robot trajectory starts
from (0.5, 0.9)m, with zero heading, and passes by (3.9, 0.9)m, (3.9,−1.6)m,
(3.7,−1.6), (3.7, 0.8) and (0.5, 0.8). The overall path is performed in kf = 500
steps, it is shown in Figure 6.10 and it will be hereafter denoted as L-like
trajectory.
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Fig. 6.9: I-like trajectory into the single room simulative environment. The blue
triangle is robot initial pose

6.4 Robot and Kalman Filter parameters

The following parameters will be used for the mobile robot parameters model
(see equations (6.4) and (6.5)) and for the Kalman filter matrices:

� nS = p = 5 on board sensors placed as depicted in Fig. 6.11;
� L = 0.09m, r = 0.0205m for the robot;
� Sampling period T = 1s;
� V = 0.052InS , where InS is an identity matrix of order nS . Each on board

sensor measurement is then affected by a noise with standard deviation of
0.05m;

� W = diag{0.012, 0.012, 0.00172}: a standard deviation of 0.01m on w1,k

and w2,k, a standard deviation of 0.1°on wθ,k;

� P̃0|0 = diag{0.052, 0.052, 0.08732}: a standard deviation of 0.05m on robot
initial estimation position error and a standard deviation of 5° on robot
initial estimation heading error.

The following UKF weights will be used:

α = 0.001, β = 2, κ = 3− n,
λ = α2(n+ κ)− n.
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Fig. 6.10: L-like trajectory into the three-rooms simulative environment. The blue
triangle is robot initial pose

According to [18], the choice β = 2 minimizes the error in the fourth-order
moment of the a-posteriori covariance when the random vector is Gaussian.
Furthermore:

Rm1 =
λ

n+ λ
, Rc1 =

λ

n+ λ
+ 1 + β − α2

Rmj = Rcj =
λ

2 (n+ λ)
, j = 2, . . . , 2n+ 1.

For what regards the mobile robot parameters (wheels radius, wheels dis-
tance, on board sensors locations), the Khepera III parameters have been
used. About the filter initial condition x̂0|0, it has been randomly generated
on the basis of the statistical properties imposed by P0|0.

6.5 Performance Indexes

To evaluate the proposed algorithms performance, three indexes have been
defined.
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Fig. 6.11: Mobile robot on board sensors locations

Estimation/Localization index

To evaluate the localization performance of the mobile robots localization and
SLAM algorithms, the following index has been used

ε =
1

kf + 1

2εp + εo
3

× 100 (6.6)

where

εp =

kf∑
k=0

∥∥∥∥∥
[
xR1,k
xR2,k

]
−

[
x̂R1,k|k
x̂R2,k|k

]∥∥∥∥∥∥∥∥∥∥
[
xR1,k
xR2,k

] ∥∥∥∥∥
is related to robot position estimation error, while

εo =

kf∑
k=0

∥∥∥∥∥
[

cos(θk)
sin(θk)

]
−
[

cos(θ̂k|k)

sin(θ̂k|k)

] ∥∥∥∥∥
is related to robot orientation estimation error.
kf is the number of steps in which each experiment/simulation is performed
and || · || is the euclidean norm. The above index represents the percentage
relative localization error between the estimated robot pose x̂k|k and the real
robot pose xk.

Following the same lines, the estimation performance of the PnP problem
solutions (proposed in Chapter 5) has been evaluated by the index
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ε =
||Rt − R̂t||
||Rt||

(6.7)

where ||·|| is the euclidean norm, Rt is the real transformation matrix between
the object and the camera while R̂t is the estimated transformation matrix.
This index represents the relative estimation error between the estimated
transformation matrix and the real one.

Mapping index

To evaluate the quality of the environment mapping algorithms a further index
γ has been used. The index is evaluated as follows: all the proposed mapping
algorithms provide a set of landmarks approximating environment portions.
Given the i-th landmark, a set of ni points, P i,j , j = 1, . . . , ni, equally spaced
by an amount equal to 0.01, is computed on the landmark surface (e.g. on the
polynomial shape if the landmark is a polynomial). For each point P i,j , the
distance di,j between this point and its nearest real environment boundaries
point is computed yielding to the index

γ =
1

nk

nk∑
i=1

γi (6.8)

where γi = 1
ni

ni∑
j=1

di,j and nk is the number of landmarks contained into Ek

(see Chapter 3 for more details).

Computation time index

The third index is used to evaluate the time performance and the required
computational effort, of the proposed algorithms. It is defined as

τ =
1

kf + 1

kf∑
k=0

τk (6.9)

where τk is the execution time of the algorithm of interest at step k. This
index represents the algorithm averaged execution time.

Please note that the computed τ index values can not be considered in an
absolute point of view since they are obviously influenced by the used CPU
and by the used operative system. However these values can be read as an
indication of the algorithm time performance and they provide very important
information in a relative point of view. Neglecting a common bias affecting
all the τ indexes values (due to CPU and operating system), considerations
about the fastest or the slowest algorithm can be extracted from these indexes
values.
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6.6 Mobile robots localization results

In this Section the numerical and experimental results about the mobile robot
localization techniques proposed in Chapter 2 will be shown.

6.6.1 Mobile robots localization in a perfectly known environment

Assuming the robot placed in the environment shown in Figure 2.1, with
lx = 1.5m and ly = 1m, two sets of 100 real experiments have been performed.
In the first set the robot follows the rectangle trajectory while in the second
set it performs the I-like trajectory.

Fig. 6.12: Real perfectly known rectangular environment

Table 6.1 shows the results using the Extended Kalman filter and the
Unscented Kalman filter in terms of the averaged localization performance
index ε and of the averaged computational cost index τ , over the performed
tests in the real experimental framework.

Table 6.1: ε index and τ index - perfectly known environment - real framework
experiments

EKF UKF

Trajectory averaged ε averaged τ averaged ε averaged τ

Rectangle 1.8% 0.077s 1.7% 0.25s

I-like 2.2% 0.075s 4% 0.23s

Figures 6.13(a), 6.13(b), 6.14(a), 6.14(b) show a localization example in
the experimental framework.

The most evident consideration which comes from the analysis of the re-
sults shown in Table 6.1 is that the Extended Kalman filter and the Unscented
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(a) EKF localization result (b) EKF estimated pose

Fig. 6.13: Experimental result using the EKF, rectangle trajectory

(a) UKF localization result (b) UKF estimated pose

Fig. 6.14: Experimental result using the UKF, I-like trajectory

Kalman filter perform comparably well in reconstructing the robot pose. This
is quite surprising, as the estimation properties of the UKF are superior to
those of the EKF (as shown in [19]), and it is probably due to the very smooth
nonlinearities in the differential drive robot model; these nonlinearities are not
bad enough to highlight any substantial difference between the UKF perfor-
mance and the EKF performance.

Localization using the Switching logic based on the Observations
Effect Maximization

In the following, the mobile robot localization results, in a perfectly known
environment, using the observations effect maximization switching rule pro-
posed in Chapter 4, along with the Extended Kalman filter and the Unscented
Kalman filter, will be shown. Once again 100 real experiments have been per-
formed and three kinds of estimation algorithms have been used:

� Estimation algorithm (EKF/UKF) using a single sensor kept fixed along
all the path. This case will be referred as Sj − filter for the case where
the j-th sensor is used.
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� Estimation algorithm (EKF/UKF) using the proposed observations effect
maximization switching rule. This case will be referred as Switching-filter.

� Traditional estimation algorithm (EKF/UKF) based on the use of all the
nS = 5 available sensors. This case will be referred as Standard filter.

Table 6.2 shows the results in the performed experiments.

Table 6.2: ε index and τ index - perfectly known environment - real framework
experiments

EKF UKF

Trajectory Filter averaged ε averaged τ averaged ε averaged τ

Rectangle

s1 − filter 2.5% 0.075s 2.9% 0.23s

s2 − filter 3% 0.074s 3% 0.23s

s3 − filter 2.7% 0.072s 2.8% 0.22s

s4 − filter 2.9% 0.074s 3.1% 0.24s

s5 − filter 2.45% 0.075s 2.8% 0.23s

Switching − filter 2.4% 0.09s 2.7% 0.26s

Standard filter 1.8% 0.077s 1.7% 0.25s

I-like

s1 − filter 3.2% 0.075s 4.3% 0.24s

s2 − filter 3.5% 0.074s 4.4% 0.24s

s3 − filter 3% 0.072s 4.3% 0.23s

s4 − filter 3.4% 0.074s 4.6% 0.25s

s5 − filter 3.3% 0.075s 4.5% 0.23s

Switching − filter 2.9% 0.09s 4.2% 0.27s

Standard filter 2.2% 0.075s 4% 0.23s

Figures 6.15(a), 6.15(b), 6.16(a), 6.16(b) show a localization example in the
experimental framework.

(a) EKF localization result (b) EKF estimated pose

Fig. 6.15: Experimental result using the EKF along with the observations effect
maximization switching logic, rectangle trajectory
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(a) UKF localization result (b) UKF estimated pose

Fig. 6.16: Experimental result using the UKF along with the Observations effect
maximization switching logic, I-like trajectory

The proposed sensors switching policy shows to be effective for both filters,
always giving a value of the index ε which is better than the ones given by
any fixed sensor, and close to the one obtained when all sensors are used.

6.6.2 Mobile robots localization in a totally unknown environment

Assuming the robot placed in the environment shown in Figure 6.4, two sets
of 500 numerical simulations have been performed. In the first set the robot
follows the rectangle trajectory while in the second set it performs the I-like
trajectory. Moreover 100 real experiments have been performed placing the
robot Khepera III into the unknown rectangular environment shown in Figure
6.6 and letting it perform the I-like trajectory.

In both the numerical simulations and the experimental tests the Neigh-
bors based Extended Kalman filter (NEKF) and the Neighbors based Un-
scented Kalman filter (NUKF) (see Section 2.6.1 for more details about the
neighbors based algorithm used into the proposed modified Extended and
Unscented Kalman filters) have been used to compare their performance in
terms of ε and τ indexes. The Neighbors based algorithm parameter RNBA
has been chosen as RNBA = 0.1m.

Tables 6.3 and 6.4 show the obtained averaged indexes ε and τ , over the
performed tests, using the NEKF and the NUKF in the simulative case and
in the real experimental framework respectively.

Table 6.3: ε index and τ index - totally unknown environment - simulative framework
case

NEKF NUKF

Trajectory averaged ε averaged τ averaged ε averaged τ

Rectangle 7% 0.014s 7% 0.09s

I-like 7.5% 0.0145s 7% 0.09s



6.6 Mobile robots localization results 135

Table 6.4: ε index and τ index - totally unknown environment - real framework case
NEKF NUKF

Trajectory averaged ε averaged τ averaged ε averaged τ

I-like 4% 0.05s 10% 0.13s

Tables 6.3 and 6.4 show that the proposed Neighbors based algorithm
allows to obtain good localization results also with no assumptions on the
robot surrounding environment and with no knowledge about the environ-
ment shape. Moreover, as in the case the environment is perfectly known,
performed simulations/experiments show that the EKF and the UKF per-
form comparably well in reconstructing the robot pose also in their neighbors
based versions.

Figures 6.17(a), 6.17(b), 6.18(a), 6.18(b) show a localization example in
the simulative framework while Figures 6.19(a), 6.19(b), 6.20(a), 6.20(b) show
a localization example in the real framework.

(a) NEKF localization result (b) NEKF estimated pose

Fig. 6.17: Numerical result using the NEKF, rectangle trajectory

Localization using the Switching logic based on the Observations
Effect Maximization

The mobile robot localization problem in a totally unknown environment will
be now faced using the observations effect maximization switching rule pro-
posed in Chapter 4 along with the NEKF and the NUKF. Once again 500
numerical simulations and 100 real experiments have been performed and
three kinds of estimation algorithms have been used:

� Estimation algorithm (NEKF/NUKF) using a single sensor kept fixed
along all the path. This case will be referred as Sj − filter for the case
where the j-th sensor is used.
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(a) NUKF localization result (b) NUKF estimated pose

Fig. 6.18: Numerical result using the NUKF, I-like trajectory

(a) NEKF localization result (b) NEKF estimated pose

Fig. 6.19: Experimental result using the NEKF, I-like trajectory

(a) NUKF localization result (b) NUKF estimated pose

Fig. 6.20: Experimental result using the NUKF, I-like trajectory

� Estimation algorithm (NEKF/NUKF) using at each step only one sensor,
choosing it through the proposed observations effect maximization switch-
ing rule. This case will be referred as Switching-filter.

� Traditional estimation algorithm (NEKF/NUKF) based on the use of all
the nS = 5 available sensors. This case will be referred as Standard filter.

Tables 6.5 and 6.6 show the results in the performed simulations and experi-
ments.

Also in this case, the proposed sensors switching policy shows to be ef-
fective for both filters, always giving a value of the index ε better than the
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Table 6.5: ε index and τ index - totally unknown environment - simulative framework
case

NEKF NUKF

Trajectory Filter averaged ε averaged τ averaged ε averaged τ

Rectangle

s1 − filter 9% 0.0115s 8% 0.083s

s2 − filter 8% 0.0115s 10% 0.085s

s3 − filter 10% 0.0114s 11% 0.082s

s4 − filter 8% 0.0113s 16% 0.084s

s5 − filter 10% 0.0113s 12% 0.087s

Switching − filter 7.8% 0.013s% 7.5% 0.09s

Standard filter 7% 0.014s 7% 0.09s

I-like

s1 − filter 10% 0.0113s 8% 0.083s

s2 − filter 8.5% 0.0113s 10% 0.085s

s3 − filter 9% 0.0114s 11% 0.082s

s4 − filter 9% 0.0113s 16% 0.084s

s5 − filter 10% 0.0113s 12% 0.087s

Switching − filter 8% 0.013s% 7.5% 0.09s

Standard filter 7.5% 0.0145s 7% 0.09s

Table 6.6: ε index and τ index - totally unknown environment - real framework case
NEKF NUKF

Trajectory Filter averaged ε averaged τ averaged ε averaged τ

I-like

s1 − filter 9% 0.03s 12% 0.05ss

s2 − filter 10% 0.03s 11.5% 0.05s

s3 − filter 8% 0.03s 12% 0.07s

s4 − filter 10% 0.02s 12% 0.08s

s5 − filter 7% 0.03s 13% 0.09s

Switching − filter 5% 0.04s% 11% 0.11s

Standard filter 4% 0.05s 10% 0.13s

ones given by any fixed sensor and close to the one obtained when all sensors
are used. Looking at the time performance, as shown in Table 6.5, the aver-
aged computation time required by the proposed switching strategy is a little
higher than the time required by the single fixed sensor filtering strategies due
to the computations required by the switching policy. However, as shown by τ
index values, all the computation times are of the same order of magnitude. In
conclusion, numerical simulations and real experiments show the effectiveness
of the proposed switching rule since it provides estimation results close to the
results due to the use of all the available sensors but with a more efficient
sensors use and with very low additional computation effort.

Figures 6.21(a), 6.21(b), 6.22(a), 6.22(b) show a localization example in
the simulative framework while Figures 6.23(a), 6.23(b), 6.24(a), 6.24(b) show
a localization example in the real framework.
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(a) NEKF localization result (b) NEKF estimated pose

Fig. 6.21: Numerical result using the NEKF along with the observations effect max-
imization switching logic, rectangle trajectory

(a) NUKF localization result (b) NUKF estimated pose

Fig. 6.22: Numerical result using the NUKF along with the observations effect max-
imization switching logic, I-like trajectory

(a) NEKF localization result (b) NEKF estimated pose

Fig. 6.23: Experimental result using the NEKF along with the observations effect
maximization switching logic, I-like trajectory

Remark In conclusion, both in the case the environment is perfectly known
or it is totally unknown, using the Extended Kalman filter (EKF or NEKF)
or the Unscented Kalman filter (UKF or NUKF), the same localization per-
formance are obtained. As a consequence, in the following, only one of the
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(a) NUKF localization result (b) NUKF estimated pose

Fig. 6.24: Experimental result using the NUKF along with the observations effect
maximization switching logic, I-like trajectory

two Kalman filter extensions will be used assuming that using the other one,
analogous results would be obtained. With no loss of generality, the Extended
Kalman filter (EKF or NEKF) will be hereafter used.

Moreover only the case the environment is totally unknown will be consid-
ered since it is the more realistic case in mobile robots applications and since
the Neighbors based algorithm shows to be effective enough to allow mobile
robot localization also with no information about the robot surrounding en-
vironment.

6.6.3 Localization using the Incidence Angle based Switching logic

In this Section the performance of the Neighbors based Extended Kalman
filter will be tested using the incidence angle based switching rule proposed
in Chapter 4. The above switching rule can be used if the robot is equipped
with ultrasonic sensors. Since this is the case of the robot Khepera III, the
incidence angle based switching policy can be tested.
First of all, the sensor model proposed in (4.4) has been validated. To this
end, the noise covariance function V (r) has been estimated through a series
of experiments, each one related to a different value of the incidence angle,
from 90◦ to 60◦. For each angle value, a set of 1000 measurements has been
taken by the S3 sensor on the Khepera III, and the corresponding standard
deviation has been estimated. The obtained results are shown in Figure 6.25.
Using the obtained data, the standard deviation of the incidence function
Ξ(r) can be estimated through a LMS approximation of the values by a poly-
nomial curve. As it can be seen, such standard deviation function can be well
approximated by a second order polynomial function. Such function is mono-
tonic increasing in r and thus the experimental data confirm the correctness
of the model (4.4) used for the ultrasonic sensors.

At this point, to evaluate the performance of the proposed sensors switch-
ing rule two sets of 100 real experiments have been performed placing the
Khepera III into the environment shown in Figure 6.6. The robot performed
the I-like trajectory and the rectangle trajectory.
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Fig. 6.25: Standard deviation function estimation

In each experiment, three different filters have been tested. The first one uses
two sensors Si, Sj , keeping them fixed along the path; this test has been
repeated for all the

(
5
2

)
= 10 possible sensors configurations. The second one

uses two sensors (q = 2) out of the five available, switching between sensors
using the incidence angle based switching policy shown in Section 4.3. The
third one uses all five sensors together.

In Table 6.7 the results are reported in terms of the ε index; the values
are averaged over the 100 experiments. In this table:

� zi indicates a generic pair of sensors among the
(
5
2

)
available;

� Switching refers to the proposed switching policy with q = 2;
� All refers to the case where all sensors are used together-

Table 6.7: Averaged ε index over the performed 100 experiments

Trajectory I-like Rectangle

Switching 8% 12%

z1 10% 14%

z2 21% 15%

z3 13% 14%

z4 17% 17%

z5 16% 13%

z6 10% 13%

z7 15% 17%

z8 16% 15%

z9 21% 17%

z10 12% 13%

All 4% 10%
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As shown by the results, the proposed incidence angle based switching
rule provides very good estimation results for both the trajectories yielding
to a very low estimation error ε. Moreover the averaged tau index, over the
performed experiments, using the zi based localization algorithm is τ = 0.03s
for the rectangle trajectory and for the I-like trajectory while the index value
using the incidence angle based switching rule is τ = 0.035s and using all
the sensors it is τ = 0.036s, for both trajectories. The above results show the
computational efficiency of the proposed switching rule since the filter based
on the above rule does not require a too high additional computation time
w.r.t. the filter based on a fixed set of used sensors (zi filters).

To further test the proposed switching rule, a set of 1000 numerical simula-
tions, based on the same parameters and trajectories used in the experimental
setting, has been performed. Simulation tests show the effectiveness of the pro-
posed switching policy. In the performed numerical tests, the filter based on
the switching policy and q = 2 sensors performed always better than each
other possible fixed pair of sensors.

6.6.4 Conclusions about switching logics

As shown in the previous Sections, using the proposed switching logics, the
localization results do not degrade w.r.t using all the available sensors. As a
consequence, if the application requirements impose an energy saving use of
the available sensors, using one of the two proposed sensors switching rules
could help efficiently solving the problem. The used switching rule has to be
chosen depending on the used localization algorithm, on the available com-
putation power and on the used sensors types. As previously remarked, if
a neighbors based localization algorithm (NEKF or NUKF) is used starting
from sensors measurements, the additional computational effort due to the
use of the incidence angle based switching rule is very low and acceptable also
if the available computational power is low too.

If the used localization algorithm is not neighbors based, than information
on the incidence angle has to be extracted starting from the available infor-
mation about the robot surrounding environment. This step could result in
higher computational costs w.r.t using the observations effect maximization
switching rule, especially if the number of available sensors is low enough. In
this case, observations effect maximization switching rule could be used along
with the chosen localization algorithm. Moreover, if the available sensors are
not sonar sensors, the incidence angle based switching rule can not be used
since it is based on the sonar sensors physical features.

In conclusion, depending on the application, one of the two switching rules
can be used with no appreciable degradation on the localization results. Due to
the above considerations, in the following the localization module will always
be implemented and tested using all the available sensors understanding that,
if required, one of the proposed switching rules could be used instead.
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6.6.5 Localization using a Mixed Kalman Filter

In this Section the localization performance of the Mixed Extended Kalman
filter (MEKF) proposed in Section 2.7.2 will be tested placing the robot in the
real environment shown in Figure 6.6 and acquiring measurements from the
Khepera III on board sensors and from q = 4 out of board sensors placed in
the corners of the environment bounds. More precisely the mobile robot has
been equipped with an ultrasonic transmitter and four ultrasonic receivers
have been placed on the environment boundaries corners (as shown in [28]
and in Figure 6.26). The measurement noise covariance matrix related to the
out of board sensors is V 2 = 0.022I4.

Fig. 6.26: Experimental framework with out of board sensors

The following filters have been tested: an Extended Kalman filter (EKF) based
on the entire output formed by on board and out of board sensors measure-
ments; the proposed Mixed Extended Kalman filter (MEKF) with various
values of Mα = diag{α1, α2, αθ}; the Neighbors based EKF (NEKF) and the
Out of board sensors based EKF (OEKF).

In each experiment, the robot performs the I-like trajectory and Table 6.8
shows the averaged ε values over the 50 performed experiments.

As shown by Table 6.8, the proposed MEKF algorithm performance is
satisfactory, whatever is the Mα value. In particular, using
Mα = diag{0.1, 0.1, 0.9}, that is a mixed filter essentially based on the
OEKF for the position prediction and on the NEKF for the heading predic-
tion, the proposed MEKF algorithm performs better than the other filters
(EKF, OEKF, NEKF). This result is consistent with the previously described
NEKF and OEKF properties. Since the NEKF is better than the OEKF to
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Table 6.8: averaged ε index, over the 50 experiments
filter ε

MEKF Mα = diag{0.1, 0.1, 0.1} 9.02%

MEKF Mα = diag{0.5, 0.5, 0.5} 9%

MEKF Mα = diag{0.9, 0.9, 0.9} 9.5%

MEKF Mα = diag{0.9, 0.9, 0.1} 12%

MEKF Mα = diag{0.1, 0.1, 0.9} 8.8%

NEKF 11.2%

OEKF 9.3%

EKF 8.9%

predict robot heading, while the OEKF is more reliable than the NEKF w.r.t.
the robot position prediction, using a low value of α1, α2 and a high value of
αθ the MEKF performance increases.

A typical result of the MEKF algorithm, using Mα = diag{0.1, 0.1, 0.9},
is shown in Figure 6.34.

Fig. 6.27: MEKF experimental results using Mα = diag{0.1, 0.1, 0.9}

6.6.6 Conclusions about localization

In conclusion, all the proposed mobile robot localization techniques have
shown to be effective in estimating the robot pose. The techniques have been
tested in both numerical and experimental settings and the results are very
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satisfactory and encouraging both if the robot surrounding environment is
perfectly known or if it is totally unknown. In the next Sections, some of the
proposed mobile robot localization algorithms will be used as the localiza-
tion module in the Simultaneous Localization and Mapping scheme shown in
Figure I.7.

6.7 SLAM results

In this Section the numerical and experimental results about the three SLAM
techniques proposed in Chapter 3 will be shown. The following numerical
simulations and experimental tests have been performed:

� 100 numerical simulations placing the robot into the single room environ-
ment shown in Figure 6.4 and letting it perform the rectangle trajectory;

� 100 numerical simulations placing the robot into the three-rooms environ-
ment shown in Figure 6.5 and letting it perform the L-like trajectory;

� 50 real experiments placing the robot Khepera III into the real framework
shown in Figure 6.6 and letting it perform the I-like trajectory.

6.7.1 Segment based SLAM (SbSLAM) results

The SbSLAM algorithm proposed in Section 3.4 changes its properties de-
pending on its two main parameters δ and σ. In all the performed simulations
the SbSLAM parameter δ = 0.1 has been used and the SLAM algorithm per-
formance evolution depending on the σ parameter has been studied. To this
end, for each simulation, four possible values of the SbSLAM parameter σ
have been tested: 0.06, 0.08, 0.1, 0.12. The obtained averaged ε, γ, τ indexes
over the 100 simulations are shown in Tables 6.9 and 6.10 for the single room
simulations and for the three-rooms simulations respectively. To clearly show
the σ parameter influence on the algorithm performance, the values contained
in Table 6.10 are also depicted in Figure 6.281.

Table 6.9: Averaged indexes over the 100 performed simulations in the single
room environment

index σ = 0.06 σ = 0.08 σ = 0.1 σ = 0.12
ε 0.79% 0.85% 4.8% 9.1%
γ 4.2% 4.6% 4.7% 6.7%
τ 0.47s 0.35s 0.21s 0.17s

1 Analogous results would be obtained if the values in Table 6.9 were plotted.
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Table 6.10: Averaged indexes over the 100 performed simulations in the three-
rooms environment

index σ = 0.06 σ = 0.08 σ = 0.1 σ = 0.12
ε 1.09% 1.21% 1.46% 4.16%
γ 5.76% 6.15% 7.83% 11.68%
τ 1.35s 0.96s 0.85s 0.71s

Fig. 6.28: ε, γ, τ evolution changing σ values

Tables 6.9 and 6.10 show that the performance of the proposed Segment
based SLAM algorithm is satisfying using all the tested σ values since the
algorithm yields to low localization and mapping errors. Moreover, choosing
σ ≥ 0.08, τ index is always such that the algorithm can be used during the
robot evolution with no delays troubles since the algorithm execution time is
lower than the chosen sampling time T = 1s. As shown in Figure 6.28, when σ
tends to 0, the estimation and mapping errors decrease and τ index grows; as
σ grows, the estimation and mapping performance are deteriorated while the
time performance increases. A typical result of the SLAM algorithm, using
σ = 0.08, is depicted in Figures 6.29 and 6.33 for the single room simulations
and for the three-rooms simulation respectively.
In the experimental setup σ = 0.08 has been used for the SbSLAM landmark
extraction and data association step. The obtained averaged indexes over the
performed 50 real experiments are: ε = 5.1%, γ = 12%, τ = 0.41s and also in
this case they are very encouraging and the time constraints are satisfied. A
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(a) SbSLAM result (black line: real
environment, green line: estimated
environment)

(b) SbSLAM estimated pose

Fig. 6.29: SbSLAM simulation result (single room, σ = 0.08)

(a) SbSLAM result (black line: real
environment, green line: estimated
environment)

(b) SbSLAM estimated pose

Fig. 6.30: SbSLAM simulation result (three-rooms, σ = 0.08)

typical result of the SLAM algorithm in a real experiment is shown in Figure
6.34.

6.7.2 Polynomial based SLAM (PbSLAM) results

The polynomial based SLAM algorithm described in Section 3.5.1 has been
tested using ξ = 1

3 , εTH = 0.05, ρ = 1
2 , m = 3, Ks = 10, R = 0.1m, Np = 15

for the landmark extraction and data association steps.
The obtained averaged ε, τ, γ indexes over the 100 numerical simulations

are ε = 3.5%, γ = 3%, τ = 5.1s and ε = 3.4%, γ = 3%, τ = 8.65s, for
the rectangular trajectory in the single room environment and for the L-like
trajectory into the three-rooms environment respectively. A typical result of
the SLAM algorithm is depicted in Figures 6.32 and 6.33.
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Fig. 6.31: Segment based SLAM results in a real experiment

(a) PbSLAM result (black line: real
environment, green line: estimated
environment)

(b) PbSLAM estimated pose

Fig. 6.32: PbSLAM simulation result (single room)

In the experimental framework, the obtained averaged indexes over the 50
experiments are ε = 18%, γ = 5%, τ = 5s. A typical result of the SLAM
algorithm is depicted in Figure 6.34.

As shown by the numerical and experimental results, the proposed polyno-
mial based mapping is really consistent with the real environment boundaries.
Comparing the indexes values with the results by the SbSLAM, the PbSLAM
algorithm yields to better mapping results but it requires an averaged com-
putation time one order of magnitude greater than the one required by the
SbSLAM.
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(a) PbSLAM result (black line: real
environment, green line: estimated
environment)

(b) PbSLAM estimated pose

Fig. 6.33: PbSLAM simulation result (three-rooms)

Fig. 6.34: PbSLAM real result, black line: real environment, green line: estimated
environment

6.7.3 Efficient Polynomial based SLAM (EPbSLAM) results

The efficient polynomial based SLAM algorithm described in Section 3.5.4
has been tested using ρm = 0.05m, σm = 0.25m, εM = 10, εz = 20, na = εM ,
m = 3, R = 0.1m for the landmark extraction and data association steps.

The averaged performance indexes over the simulation tests are ε = 3%,
γ = 3.5%, τ = 0.12s and ε = 2.5%, γ = 5%, τ = 0.58s for the single room
case and for the three-rooms case respectively.
A typical result of the SLAM algorithm is depicted in Figures 6.35 and 6.36 .

In the experimental setup the obtained averaged indexes, over the 50 ex-
periments, are ε = 11%, γ = 8% and τ = 0.68s. A typical result of the
EPbSLAM algorithm is depicted in Figure 6.37.
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(a) EPbSLAM result (black line: real
environment, green line: estimated
environment)

(b) EPbSLAM estimated pose

Fig. 6.35: EPbSLAM simulation result (single room)

(a) EPbSLAM result (black line: real
environment, green line: estimated
environment)

(b) EPbSLAM estimated pose

Fig. 6.36: EPbSLAM simulation result (three-rooms)

As shown by the numerical and experimental tests, the proposed EPbSLAM
is effective in localizing the robot and building a map of its surrounding en-
vironment requiring a very low computation time.

6.7.4 Conclusions about SLAM

Numerical simulations and experimental tests have shown the effectiveness of
the proposed three SLAM algorithms in facing both the mobile robot local-
ization problem and the surrounding environment mapping problem. All the
proposed SLAM techniques provide very satisfactory results in terms of the
mapping error index γ and localization error index ε.
Tables 6.11, 6.12 and 6.13 summarize the results obtained using the three
proposed SLAM techniques.

As shown in Tables 6.11, 6.12 and 6.13, looking at the localization results
(index ε), the SbSLAM yields to the lowest index values, however this algo-
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Fig. 6.37: Real result using the EPbSLAM algorithm

Table 6.11: Averaged indexes over the 100 performed simulations in the single
room environment

ε γ τ
SbSLAM(σ = 0.08) 0.8% 4.6% 0.35s
PbSLAM 3.5% 3% 5.1s
EPbSLAM 3% 3.5% 0.12s

Table 6.12: Averaged indexes over the 100 performed simulations in the three-
rooms environment

ε γ τ
SbSLAM(σ = 0.08) 1% 6.15% 0.96s
PbSLAM 3.4% 3% 8.65s
EPbSLAM 2.5% 5% 0.58s

rithm yields to the worse mapping performance. The PbSLAM shows to be the
most effective in mapping the robot environment but its required computation
time is one order of magnitude bigger than the ones required by the other two
algorithms. In particular, both the SbSLAM and the EPbSLAM algorithms
can be used in real time, in the proposed experimental framework, since their
averaged computation times are lower than the chosen sampling time T = 1s.
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Table 6.13: Averaged indexes over the 50 performed experiments

ε γ τ
SbSLAM(σ = 0.08) 5.1% 12% 0.41s
PbSLAM 18% 5% 5s
EPbSLAM 11% 8% 0.68s

The localization results using the EPbSLAM algorithm are quite the same
of the results obtained thanks to the SbSLAM algorithm, but the proposed
efficient polynomial based SLAM is better than the SbSLAM in terms of the
mapping results. In conclusion:

� the SbSLAM algorithm provides the best localization results, it is very
computationally efficient but it provides the worse mapping results due to
the use of a very simple mapping model (segment based).

� the PbSLAM algorithm is the best algorithm in terms of mapping per-
formance but it can not be used in real time during robot motion due to
its required high computational cost; more precisely, the high versatility
of the points clustering based polynomial mapping model requires high
computational costs to find and update the environment map;

� the EPbSLAM algorithm is not the best in terms of mapping or localization
performance but it provides good results requiring low computational cost.
This algorithm has proven to be a right compromise between the high
mapping performance of the PbSLAM and the high computation time
performance of the SbSLAM.

The above considerations are summarized in Table 6.14 where the pointing
up arrows represent optimal results, the pointing right-up arrows stay for very
good results, the pointing right arrows denote good results and the pointing
down arrows represent bad results.

Table 6.14: Overall results provided by SbSLAM, PbSLAM and EPbSLAM

algorithm localization mapping time

SbSLAM ↑ −→ ↑
PbSLAM ↑ ↑ ↓
EPbSLAM ↑ ↗ ↗
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6.8 PnP problem using IMUs

To assess the performance of the proposed algorithm, several numerical sim-
ulations and real experiments have been performed. The following three algo-
rithms have been compared:

1. the method (5.31) proposed in this paper, implemented through the
Nelder-Mead algorithm (Matlab fminsearch) and hereafter denoted as α-
PnP;

2. the efficient PnP algorithm proposed in [70], denoted as e-PnP, in the
implementation provided by the Machine Vision Toolbox for MATLAB
[71].

3. the PnP with IMUs method proposed in Section 5.4.2. In this implementa-
tion, the whole rotation matrix is provided by IMUs while the translation
vector is computed using (5.10). Hereafter this algorithm will be denoted
as IMU -PnP.

To compare the results obtained by the three algorithms the relative error
index defined by 6.7 has been used.

6.8.1 Numerical Simulations

To evaluate the performance of the proposed solutions to the PnP problem,
a set of simulations have been performed. In all the simulations, different
features with points randomly generated in a box [−0.2, 0.2]m×[−0.2, 0.2]m×
[−0.2, 0.2]m have been used. To ensure the existence of at least three non
collinear feature points, the first three points of each feature are always P1 =
(0, 0, 0)m, P2 = (0.1, 0.1, 0)m and P3 = (0.1, 0, 0)m. For each test, the relative
rotation and translation between the camera and the object reference frames
have been randomly generated in a box [−0.5, 0.5]m×[−0.5, 0.5]m×[0.5, 2.5]m.

In all numerical tests, a camera with f̃ = 800 pixels, resolution [640×480]
and center CI = (320, 240) has been simulated.
The data acquired by the IMUs and the image provided by the camera are
affected by Gaussian noise with zero mean and standard deviation of:

� σg = I3 ∗ 0.01m for ĝc and ĝo;
� σpixel = 5 pixels in the image;
� σmag = 8° on the measurements provided by the magnetometer.

The performance of the algorithms have been tested with different values of
the number n of feature points, starting from n = 4 up to n = 200. Each set
of feature points has been tested in 300 different configurations. Figure 6.38
shows the averaged value of the ε index as n changes.

Note that the α-PnP algorithm proposed in this paper performs better
than the e-PnP and the IMU-PnP algorithms, yielding always to a lower
value of the ε index. Moreover note that, after a certain number of points
(about 40), to add further points to the feature does not increase significantly
the quality of the solution.
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Fig. 6.38: Averaged ε index over 300 configurations with n = 4, 5, . . . , 200 feature
points

6.8.2 Real Experiments

To experimentally test the proposed PnP solutions, the following experimental
setting has been used:

� A Logitech C310 HD webcam with resolution 1280 × 960 [64]. The in-
trinsic parameters of the camera have been estimated using the Camera
Calibration Toolbox [65].

� Two ArduIMU V3 Inertial Measurement Units [66].
� The four squares feature shown in Figure 6.39. Each corner of the squares

can be used as a feature point.

A set of experiments has been performed using the following procedure

1. the camera and the object have been placed in an unknown configuration,
with the object in the field of view of the camera, and an estimation R̂t,1
of the actual transformation matrix Rt,1 has been computed using the
α-PnP, the IMU -PnP and the e-PnP algorithms.

2. The object has been rotated and translated of a known transformation
matrix Rt,2.

3. An estimation of Rt,2, namely R̂t,2, has been obtained.
4. An estimation of the displacement matrix between the two configurations

has been computed as R̂2
t,1 = (R̂t,1)−1R̂t,2.

5. The estimation R̂2
t,1 has been compared with the real R2

t,1.

Figure 6.40 shows two pictures taken during the experiments. The perfor-
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Fig. 6.39: The four squares feature

Fig. 6.40: Pictures taken by the camera in the configuration Rt,1 (right) and Rt,2
(left)

mance of the above algorithms have been contrasted through the proposed
index ε using n = 4, . . . , 16 feature points. A set of 42 experiments has been
performed changing the relative rotation and translation between the camera
and the object. The ε index has been computed over the obtained R2

t,1 and

R̂2
t,1. The resulting averaged ε index is ε = 29% for the e-PnP algorithm,

ε = 34% for the IMU -PnP algorithm and ε = 24% for the α-PnP algorithm.
Again the α-PnP algorithm presented in this paper performs in the average
better than the e-PnP and the IMU -PnP algorithms.



Conclusions

In this thesis a set of new algorithms to solve the mobile robots localization
and mapping problems have been proposed.

All the proposed algorithms have been developed looking at obtaining
good localization/mapping results and simultaneously minimizing the re-
quired computational costs, so that the proposed solutions can be used in
real time during the robot motion.

Main results

Localization

The localization problem has been faced in the static and in dynamic contexts.
In the static contexts, the problem has been solved by means of a camera and
two inertial measurement units. More precisely, the mobile robot localization
problem has been translated into a Perspective-n-Point problem and the iner-
tial measurement units have been used to help the vision system solve the PnP
problem. In the dynamic contexts the Kalman filter theory has been suitably
adapted to the mobile robot localization problem in the cases: (1) the robot
surrounding environment is perfectly known; (2) only a few information is
known about the robot environment and (3) no information is available about
the environment.

In particular, in the case the environment is unknown, a measurements
closeness strategy has been developed resulting in the Neighbors based Algo-
rithm (NBA) and in the Neighbors based Extended and Unscented Kalman
filters (NEKF and NUKF). All these solutions have shown to be effective
in localizing the robot with no required assumptions about its surrounding
environment.

Finally, strategies to localize the robot efficiently using the available sen-
sors have been proposed. Two sensors switching logics to allow robot batteries



156 Conclusions

saving have been described and tested, showing that, depending on the ap-
plication requirements, good localization results may be obtained using only
a part of the available sensors. Moreover, a new sensor fusing technique has
been developed looking at emphasizing the sensors qualities simultaneously
overcoming their defects. The resulting Mixed Kalman filter has been stud-
ied, in terms of its properties, and tested in numerical and experimental ways,
showing its effectiveness.

Mapping and SLAM

Three new mapping strategies have been proposed based on two new mapping
models. The first model is a segment based model and aims to map the robot
surrounding environment by means of a set of segments forming an environ-
ment envelope. The second model is based on a polynomial approximation
of the environment boundaries. The segment based model is computationally
very efficient but it could provides poor mapping performance. On the con-
trary, the polynomial based model is versatile in mapping the environment,
yielding to good mapping results, but it could require high computational costs
to obtain the environment map. These two models clearly show the trade off
between map accuracy and time to obtain it. A set of heuristics has been de-
veloped to make the polynomial mapping model computationally cheaper with
no excessively affecting its mapping performance. The resulting segment based
mapping algorithm (first model), polynomial based mapping algorithm (sec-
ond model) and efficient polynomial based mapping algorithm (second model
using heuristics) have been then used to develop three SLAM techniques: Seg-
ment based SLAM, Polynomial based SLAM and Efficient Polynomial based
SLAM. These three techniques have been tested through numerical simula-
tions and real experiments showing their effectiveness in localizing the mobile
robot and simultaneously providing a reliable environment mapping. In par-
ticular the results have shown that the EPbSLAM mapping performance are
quite the same of the PbSLAM technique but the required computational cost
is drastically reduced.

Applications

The proposed algorithms can be suitably used in all the mobile robots appli-
cations involving a robot navigation. In particular, depending on the require-
ments about energy saving, on the localization and mapping performance, on
the available computational power, one of the proposed algorithms could be
better than the remaining ones. Expertise can help to choose the appropriate
solution.

Regarding the PnP problem solution using IMUs, it can be used in mobile
robots applications or also in cameras systems calibration where using IMUs,
the calibration performance can be improved by comparing the results by
cameras with the results by cameras and IMUs.
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Future research directions

The numerical and experimental results provided in this thesis are really en-
couraging and the proposed approaches deserve further investigations. In par-
ticular, the following future research directions have to be pointed out:

� facing the path planning problem so that the mobile robot exploration
problem (localization, mapping and path planning) can be faced;

� providing further experimental results using a bigger environment and
testing all the proposed localization and SLAM algorithms;

� extending the Mixed Kalman filter gains optimality proof to the case the
measurements are not scalar; studying the filter stability properties;

� facing the SLAM problem for a team of mobile robots by properly extend-
ing the proposed single robot SLAM algorithms;

� providing and testing new mapping models;
� testing the proposed switching rules in the SLAM algorithms;
� extending the provided PnP algorithms to more dynamical scenarios.
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menti. E di questo ti ringrazio. Grazie perché quando mi vedi stanco per il
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Grazie agli amici dell’università: Walter, Antonio, Stefano M., Stefano
(piccolo), Giuseppe, Spillo, Felice, Matteo, Francesco, Simona. Le pause pas-
sate a scherzare con tutti voi (in Italia e in Belgio) mi hanno sempre aiutato
a ripartire con più carica.
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vicina in ogni mio gesto e in ogni mio respiro. Grazie per avermi accompagnato
durante tutto il mio dottorato. Grazie per avermi sopportato, so che non è
stato facile, e supportato ogni giorno. Pensare al futuro è più semplice da
quando so che tu sarai al mio fianco, a stringere la mia mano. Ogni frase mi
pare superflua, potrei continuare a scrivere pagine e pagine ringraziandoti ma
ciò non basterebbe comunque a rendere l’idea di quanto questo mio GRAZIE
venga direttamente dalla parte più profonda del mio cuore, dove tu oramai
vivi da un bel pò. Grazie mia bella, grazie di esistere e di essere al mio fianco.
Ogni mio traguardo è nulla in confronto alla gioia che provo quando tu mi
sorridi. Ti amo, sempre e per sempre, sempre e per sempre.

A tutti voi, GRAZIE. Con il vostro aiuto punterò a raggiungere sempre
nuovi traguardi.

Rende, 29/11/2013


