

Discontinuous Galerkin Methods

for all speed flows

by

Salvatore Manuel Renda.

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy.

Departement of Computer, Modelling,

Electronic and Information Systems Engineering,

November 2013.

Abstract

In this work we present a discontinuous Galerkin (DG) finite element

method designed to improve the accuracy and efficiency of steady solutions

of the compressible fully-coupled Reynolds Averaged Navier-Stokes (RANS)

and k − ω turbulence model equations for all-speed flows using an implicit

time integration method. The equations are solved with the backward Euler

scheme, using the restarted generalized minimum residual (GMRES) method

to approximately solve the linear system. The incomplete LU preconditioning

is employed to accelerate the convergence of the linear solver.

The DG solution is extended to the incompressible limit by implementing a

low Mach number preconditioning that affects both the time-derivative terms

of the governing equations and the numerical dissipation of the Roe’s Riemann

solver, with the Harten’s entropy fix, used to compute the numerical flux (full

preconditioning technique). A new preconditioner based on a modified version

of the Turkel preconditioning matrix, which takes into account the proposed

formulation of the governing equations in conservative variables, is presented

to improve the convergence process and accuracy.

At sonic speed the preconditioner reduces to the identity matrix thus re-

covering the non-preconditioned DG discretization and preserving the perfor-

mance of the scheme for solving high-speed flows. An artificial viscosity term

2

is added to the DG discretized equations to stabilize the solution in the pres-

ence of shocks (transonic flows) when piecewise approximations of order of

accuracy higher that one are used.

Various rescaling techniques are implemented to overcome ill-conditioning

problems that, additionally to the low Mach number stiffness, can limit the

performance of flow solvers. These approaches, through a proper manipulation

of the governing equations, reduce unbalances between residuals due to the

dependence on the size of elements in the computational mesh and due to

an inherent difference between turbulent and mean-flow variables, influencing

both the evolution of the CFL number and the robustness of the solver. Two

kinds of rescalings are discussed, the a priori scaling, which affects both the

time-step computation and the inexact solution of the linear systems, and the

auto-scaling, which alters the linear systems only.

The performance of the method is demonstrated by solving inviscid, lami-

nar and turbulent aerodynamic test cases. The computations are performed at

different Mach numbers using various degrees of polynomial approximations

to analyze the influence of the proposed numerical strategies on the accuracy,

efficiency and robustness of a high-order DG solver at different flow regimes.

3

Contents

1 Introduction 6

1.1 Motivation . 6

1.2 Background . 11

1.2.1 High-Order Methods 11

1.2.2 Discontinuous Galerkin Methods 12

1.2.3 Turbulence modelling 13

1.2.4 Preconditioning Techniques 15

1.2.5 Rescaling techniques 17

1.2.6 Shock capturing . 18

1.3 Outline of Thesis . 19

2 Physical model 20

2.1 The compressible Reynolds-Averaged Navier-Stokes and k − ω

turbulence equations . 21

2.2 Non-dimensionalization . 23

3 Discontinuous Galerkin Formulation 24

3.1 DG discretization of the RANS and k − ω equations 25

3.1.1 Oscillation control for flows with shock 27

3.2 Numerical flux function . 28

3.2.1 Roe’s approximate Riemann solver 28

3.3 Boundary Treatment . 29

3.3.1 Boundary Conditions 29

4

3.3.2 Boundary representation 33

3.4 Time integration . 33

4 Low Mach number preconditioning 35

4.1 The preconditioning approaches with implicit schemes 36

4.1.1 Low Mach number preconditioned RANS system . . . 38

4.1.2 Preconditioned numerical flux function 40

4.1.3 Boundary conditions 42

4.2 Numerical Results . 43

4.2.1 Laminar flow around a NACA0012 Airfoil 43

4.2.2 Turbulent flat plate . 58

4.2.3 L1T2 three-element airfoil 69

5 Rescaling of the RANS k − ω equations 79

5.1 Scaling problems . 80

5.2 Rescaling techniques . 82

5.2.1 A priori scalings . 82

5.2.2 Auto-scaling . 84

5.3 Numerical Results . 86

5.3.1 Inviscid flow around a NACA0012 airfoil with shock . . 86

5.3.2 RAE2822 airfoil, Case 9 95

Conclusions 104

Appendix

A Primitive variables . 108

B Preconditioned eigenvectors 110

Lists of figures . 111

Lists of tables . 117

Bibliography . 118

5

Chapter 1

Introduction

1.1 Motivation

Computer science and numerical simulation have became mandatory for the

study of the complex physical phenomena, in engineering and in general in

modern science. Nowadays, the application of numerical methods to fluid

mechanics problems, the so-called Computational Fluid Dynamics (CFD), is

routinely employed in the fields of aeronautics and aerospace, turbomachin-

ery, transport and ship design. Furthermore, applications can be found even

in various fields of numerical physics such as meteorology, oceanography, as-

trophysics, magnetohydrodynamics etc.

Aerodynamic computations performed by standard industrial codes are

currently mainly based on the numerical solution of Reynolds Averaged Navier

Stokes Equations (RANS) by means of formally second-order accurate finite

volume (FV) schemes, due to their robustness and their favourable compu-

tational cost-accuracy ratio [1–5]. Let us first clarify that, mathematically, a

numerical method is said to be of order k if the solution error e is proportional

to the mesh size h to the power k, i.e., e ∝ hk [6]. Although low-order schemes

(k ≤ 2) are widely used for engineering applications, the numerical accu-

racy provided is insufficient for turbulence, aeroacoustics, and many viscosity

6

dominant flows, such as boundary layer flows, vortical flows, shock-boundary

layer interactions, heat flux transfers, etc. In particular, it has been shown

that second-order discretization methods don’t produce a satisfactory level of

accuracy on meshes whose cell-size is typical for industrial applications. In

the case of complex applications, in fact, very fine meshes with large num-

ber of grid points are required to obtain accurate solutions with second-order

methods, leading to enormous computing times. Conversely, even on coarse

meshes, high-order discretization methods allow to compute accurate solu-

tions while significantly reducing the computational cost. Therefore, in recent

years, several high-order methods have been emerging as handy tools to go

beyond the standard accuracy of finite volume discretizations. In particular,

in the United States the computational mathematics program of the Air Force

Office of Scientific Research (AFOSR) and in Europe the project ADIGMA

(Adaptive Higher-order Variational Methods for Aerodynamic Applications in

Industry) [27] and IDIHOM [28] have devoted a significant research effort for

the developement of high-order adaptive methods in academia as well as in

industry. Many types of high-order methods have been developed in the CFD

community to deal with a diverse range of problems [18–25]. Higher order

ENO and WENO reconstructions on unstructured meshes have been imple-

mented for standard finite volume methods with the main purpose of achieving

high-order accurate solutions [7,8]. Nevertheless, these methods, based on ex-

tended stencils, are not used for industrial applications because of a certain

instability of the algorithms. Therefore, research has been focused on new

high-order schemes. One of the methods that received increasing attention

in computational fluid dynamics in the last years because of many attractive

features is the Discontinuous Galerkin (DG) finite element method [11]. The

DG discretization approximates the numerical solution within the elements

by piecewise continuous polynomial functions, whereas discontinuities of the

solution are allowed at element interfaces where numerical flux functions are

evaluated. Therefore, no global continuity is required in the computational

7

domain. In this respect, DG methods can be regarded as a hybrid of finite

volume and classical finite element methods (FEM). Generally the lack of

the global continuity constraint leads to more flexible discrete approximation.

Thus DG schemes can be constructed for both structured and unstructured

meshes allowing considerable flexibility in the use of non-conforming grids de-

signed including pending or hanging nodes and in the use of elements with

different order of accuracy, opening the way to a straightforward implementa-

tion of hp−refinement strategies. Due to their attractive capabilities, in the

last decades the DG schemes are finding larger application in problems which

traditionally were solved using the FV methods such as in various disciplines

of numerical mathematics, physics and chemistry.

The availability of flow solvers for computing efficiently and accurately

flows at all velocities is important for CFD in an industrial contex. Complex

turbulent flows with simultaneous presence of high and low-speed regions are

typical, for example, of automotive, turbomachinery and aircraft applications.

Reliable simulations of such complex flow fields at a sufficient level of accu-

racy within low turn-around times require not only advances in discretization

methods and physical modelling but also in numerical strategies in order to

improve the performance of the solvers. One of the major reasons for the in-

efficiency of the numerical simulations is the stiffness that affects the system

of equations: Euler, Navier-Stokes and RANS [29].

It’s commonly known that stiffness in the equations arises for low Mach

number and transonic flows [26]. The ill-conditioning of the discrete system

is caused by a large disparity between acoustic and convective wave speeds

which occurs as the Mach number approaches 0 or 1. As shown in [29, 30],

standard algorithms for compressible flows, applied at the incompressible limit,

suffer from slow convergence and in some cases from the lack of accuracy.

To reduce the stiffness of the governing equations, some strategies should be

applied in these cases [52–56]. In this work we focus our attention only on low

8

Mach number flows, even if the proposed approaches can be adapted also for

transonic flows [26].

In addition to the low Mach and transonic stiffness, there are some other

problems that can limit the performance of numerical schemes.

Firstly, an ill-conditioning of geometric nature, caused by a discrepancy

of cell-sizes on the same mesh, generally affects the linear system, slowing

down the convergence to steady state [31]. This is due to the scaling of the

governing equations by the Jacobian of the coordinate transformation. As a

result, the residual on cells where the mesh is coarser, is typically severals

orders of magnitude higher than the residual on cells where the mesh is finer.

Clearly, the scaling may have an influence on the linear solver and on the time

step evolution, which is often based on the norm of residuals [34].

Secondly, in general the numerical solution of the RANS equations cou-

pled with a turbulence model is challenging because of the extreme stiffness

introduced by the turbulent transport equations. Indeed, mean flow variables

typically do not exceed two, whereas turbulence model variables may be or-

ders of magnitude higher. Thus, a large disparity occurs between the residual

norm of the turbulence model equations and that of the mean-flow, leading

to a further ill-conditioning that affects the time step computation and the

efficiency of the linear solver [31, 34].

Lastly, it’s worth to point out that high-order approximations of solutions

with discontinuities, such as shocks, are oscillatory when discontinuities hap-

pen to be inside elements [44]. For this reason the discretization must include

some technique for stabilization.

In this thesis we present a DG discretization of the 2D RANS and k − ω

turbulence model equations to compute compressible all-speed flows. The con-

servative governing equations are written in terms of conservative variables

and are iterated to steady state using an implicit scheme. The DG solution

is extended to the incompressible limit by implementing a low Mach number

9

preconditioning that affects both, the time-derivative terms of the governing

equations, through the action of a modified version of the Turkel precondition-

ing matrix [57], and the numerical dissipation of the Roe’s Riemann solver,

with the Harten’s entropy fix [104], used to compute the numerical flux (full

preconditioning technique). At sonic speed the preconditioner reduces to the

identity matrix thus recovering the non-preconditioned DG discretization and

preserving the accuracy and performance of the method for solving high-speed

flows. An artificial viscosity term is added to the DG discretized equations to

stabilize the solution in the presence of shocks (transonic flows) when piece-

wise polynomials of degree p ≥ 1 are used. The shock capturing term is local

and active in every element. However, the amount of artificial viscosity added

to the scheme is almost negligible in smooth parts and large in elements con-

taining the shock, such that large high-order elements, as typically used in

high-order Discontinuous Galerkin methods, allow a sub-cell resolution of the

shock. Finally, motivated by the results of Chisholm and Zingg [31], we extend

the rescaling approaches to the high-order DG discretizations, trying to give

a clearer understanding of their effect on the efficiency and robustness of DG

flow solver.

The aim of this thesis is to contribute to the developement of a robust

high-order accurate numerical scheme for compressible all-speed flows. A fur-

ther objective is to improve the efficiency and the accuracy of the scheme

for flow fields characterized by concurrent occurrence of compressible and in-

compressible effects. The implemented numerical techniques will always try

to guarantee both the best numerical efficiency and best accuracy as possi-

ble. This will be performed depending on the local Mach number and on the

governing equations.

Please refer to section 1.2 ”Background” for a comprehensive review and a

more detailed discussion about the DG method and all the numerical strategies

adopted in this work.

10

Remark : We note that the numerical methods described in this thesis have

been implemented and tested based on two separate Discontinuous Galerkin

flow solvers: (i) the PADGE code of Hartmann et al. (DLR) [59] which is based

on the deal.II library [61] and (ii) the MIGALE code of Bassi et al. (University

of Bergamo) [62]. In particular, the low Mach number preconditioning has

been implemented in both, the PADGE and the MIGALE code, whereas rescaling

techniques have been developed in the PADGE code only. Therefore, we remark

that most of the numerical results which are presented in this thesis have been

obtained using the PADGE code.

1.2 Background

1.2.1 High-Order Methods

In the past 20 to 30 years, high-order methods have gained great attention in

the CFD community because of their potential in providing higher accuracy

with lower cost than low-order methods. A numerical method is called high or-

der, when its order of accuracy is at least greater than two. The potentialities

of high-order schemes are due to the fact that, to predict numerical solutions,

a high-order method may be more efficient than a low-order one because it

can achieve the prescribed error threshold on a much coarser mesh. Despite

second-order methods have been the workhorse for CFD, many flow problems

are still too expensive or out of their reach. On the other hand, high-order

methods have been shown to predict situations well containing both discon-

tinuities and rich structures in the smooth part of the solutions, such as the

Rayleigh-Taylor instability simulation, shock interaction with vortices, and

direct simulation of compressible turbulence. The most popular high-order

methods are the spectral ones, whose basis functions are chosen as sums of

sinusoids [16]. Although spectral methods are computationally less expen-

sive than finite element methods, they become less accurate for problems with

11

complex geometries and discontinuous solutions [17]. Motivated by the po-

tentialities emerged from these high-order schemes and with the purpose to

overcome their limitations, in the early 1980s the research moved towards the

so called p-type finite element method. The main feature of p-type FEM is

that, for a given grid spacing h, the polynomial degree p is increased to de-

crease the error. One of the results of the studies that Babuska et al. [37]

carried out in the 1981, applying this method to elasticity problems, was that

based on degrees of freedom, the rate of convergence of the p-type method

cannot be slower than that of the h-type and that, in the case of a singular-

ity problem, the rate of convergence of the p-type is twice as fast. Starting

from these first studies significant research effort has been aimed at develop-

ing high-order accurate methods. For a general review of these methods, refer

to [38–41].

1.2.2 Discontinuous Galerkin Methods

Among high-order accurate methods, one of those that has become most popu-

lar in the last years is the Discontinuous Galerkin (DG) finite element method.

Like continuous finite element methods, the DG methods can increase the ac-

curacy of the numerical solution simply by increasing the degree of the polyno-

mial approximation whithin each element, whereas, as in finite volume meth-

ods, at the element interfaces upwind discretizations of fluxes are employed.

This kind of discretization enforces no global continuity, allowing the treat-

ment of each element as a separate entity that communicates with the adjacent

elements only through the numerical fluxes, giving a compact space discretiza-

tion. This feature of the scheme is particularly advantageous when an implicit

time integration scheme is employed and/or for a parallel implementation of

the method. Moreover, the compact formulation of the scheme can be applied

close to the boundary, without any special treatment, increasing the robust-

ness and the accuracy of boundary conditions. All these aspects are crucial in

12

order to deal with shock waves, turbulence modelling and complex geometries,

typical of industrial applications.

The Discontinuous Galerkin Method was originally introduced by Reed and

Hill [42] in 1973 for neutron transport problems. The method’s accuracy and

stability properties have been rigorously proven by Johnson and Pitkarata [9],

Cockburn and Shu [24], Cockburn et al. [10], Cockburn et al. [10] and Jiang and

Shu [13] for arbitrary element shapes, any number of spatial dimensions, and

even for non-linear problems. With respect to compressible and incompressible

flows, implicit and explicit high order DG solvers of the Euler and Navier-

Stokes equations have been applied to both, model problems and complex 3D

applications, and are now rather well-established. An implicit DG method for

the coupled RANS (Reynolds-Averaged Navier-Stokes) and k − ω turbulence

model equations was developed by e.g. Bassi et al. [62,81] and Hartmann [45].

1.2.3 Turbulence modelling

Turbulent flows are very common in industrial applications. Some examples

include oil transport in pipelines, flows through pumps and turbines, flows in

boat wakes and around aircrafts.

In contrast to laminar flow, the main characteristic of a turbulent flow is

that the molecules move in a chaotic way along complex irregular paths. As

consequence, this strong chaotic motion causes an intense mixing of the various

layers of the fluid. Moreover, turbulent flows lead to higher skin friction and

heat transfer as compared to laminar ones due to an increased momentum and

energy exchange between the molecules and solid walls [33].

Despite the continuous increase of computational resources, a direct numer-

ical simulation (DNS) of Navier-Stokes equations that solves all the turbulent

scales can be carried out only for simple geometries and at low Reynolds num-

ber. As a result, turbulent phenomena need to be modelled and over the years

a large variety of turbulence models has been developed.

13

Alternative approaches to DNS technique are Large Eddy Simulations

(LES) [73] and Detached Eddy Simulations (DES) [74]. Nevertheless, these

models, in which large turbulent scales are resolved and the small scales are

modelled, turn out to be highly time consuming when the analysis has to be

extended to industrial applications, because of the more complex nature of

both the flow and the geometry. For these reasons, three-dimensional turbu-

lence models for flows of industrial interest are usually based on the Reynolds

Averaged Navier-Stokes equations (RANS), due to their higher robustness and

lower computational cost. In the RANS, all turbulent scales are modelled, with

a considerable reduction in the computational effort but, also, in the numerical

accuracy. The shortcomings of RANS models have been broadly discussed in

the literature [68–72] and their numerical validation is necessary especially for

industrial applications.

Actually, the most common RANS models in industrial CFD are k− ε [76]

and Wilcox’s k − ω [77, 78], both based on the solution of a turbulent kinetic

energy transport equation in combination with another model equation, the

dissipation rate and the specific dissipation rate transport equation, respec-

tively. A blend of these two approaches has been implemented in the k − ω

Shear Stress Transport (SST) model of Menter [79], which tries to combine the

positive features of both the previous two, employing the k−ω approach in the

sublayer and logarithmic part of the boundary layer and the k−ε one in the re-

maining part of it. Finally, the recent growth of computational power allowed

the developement of more complex turbulent models. In Reynolds Stress Mod-

els (RSM), transport equations are solved for the individual Reynolds stress

components. As a consequence, the turbulent viscosity hypothesis, one of the

major defects of k − ε and k − ω models, is eliminated [85,86].

In this work, we use the Wilcox’s k−ω model implemented in the framework

of DG schemes by Bassi et al. [81]. The RANS and k − ω equations are

supplemented with some form of limiting of the magnitude of the computed

turbulent quantities in order to prevent the blow-up of the simulations, which

14

turned out to be a particularly important issue for higher order computations

when solution is advanced in time by means of implicit integration schemes.

1.2.4 Preconditioning Techniques

Algorithms used for compressible flows suffer from a lack of accuracy and

slow convergence when solving low Mach number flows in which the density

is almost constant [29]. The reason for the bad convergence is the large dis-

parity between acoustic and convective wave speeds that causes the govern-

ing equations to be ill-conditioned. The decreasing accuracy results from a

lack of artificial dissipation for small Mach numbers, as addressed for upwind

schemes by Guillard and Viozat [30] with their asymptotic analysis of the Eu-

ler equations. The most general approach to overcome the stiffness problem

is based on the preconditioning strategy. This technique artificially modifies

the acoustic wave speeds of the governing equations reducing the condition

number and improving the convergence process. However, the time derivative

preconditioning destroys the time accuracy and can be applied to steady-state

simulations only. To overcome this limitation, dual time-stepping technique

may be employed [48]. Furthermore, also the accuracy of upwind schemes

can be improved by preconditioning, modifying the inviscid dissipation term

of the numerical flux function. Numerous studies have been carried out on

these topics in the past. In particular, in the context of high-order methods

it was shown in [52] that, because the explicit time integration schemes suffer

from severe time stepping restrictions computing low speed flows, an implicit

time integration method is more appropriate for low Mach number computa-

tions. Moreover, Bassi et al. found [89] that preconditioning only needs to

be applied to the numerical flux function (flux preconditioning technique) for

guaranteeing accuracy and convergence rate improvements. Some of the most

recognized local preconditioners for laminar flows were proposed by Choi and

Merkle [49], Turkel [52, 57], Lee and van Leer [26] and Weiss and Smith [48].

15

Extensions to turbulent flows with two equations turbulence models have been

proposed by Colin [90] and Yoo [91].

In this work, we apply the full preconditioning approach, that alters both

the time-derivative terms of the governing equations and the numerical flux

function, to the fully coupled RANS k − ω equations, in order to accurately

and efficiently compute steady low Mach number flows.

16

1.2.5 Rescaling techniques

A further issue which can greatly affect the performance of flow solvers con-

cerns the disparity in the magnitude of entries in the residual vector as well

as of entries in the Jacobian matrix, which arises because of the differences

between both the sizes of elements in the grid and the magnitude of mean-flow

and turbulent variables.

Addressing scaling problems might have a significant effect on the perfor-

mance of inexact Newton methods. Indeed, a prescribed reduction tolerance in

the residual of the linear system could be achieved by reducing only the resid-

ual of the larger grid elements and/or the residual of the turbulence model

transport equations, while the residuals of both the smaller elements, typi-

cally clustered near the wall, and the mean-flow equations, which are orders

of magnitude smaller than the previous ones, might increase leading to non-

convergence of the Newton iterations. Moreover, a poor scaling of variables

and equations can be detrimental in the evolution of the time step, because

the evolution of the CFL number is often based on the norm of the residual,

e.g. SER techniques [34].

A numerical strategy to cope with these problems is based on rescaling

techniques, as proposed by Chisholm and Zingg in [31]. In particular, there

are two kinds of approaches: inherent scaling and auto-scaling. The former

is used to fix ab initio scaling problems, such as the geometric scaling and

the inherent scaling differences between turbulent and mean-flow variables.

The latter approach rescales the linear problem of each non-linear iteration to

address discrepancies between the residual norms of the various equations. The

rescaling strategies are expected to lead to some improvements in convergence

and robustness of the solver.

17

1.2.6 Shock capturing

The numerical dissipation introduced by the DG discretization is not sufficient

to stabilize the solution in the presence of shocks when piecewise higher than

first-order approximations are used; indeed for higher order schemes a further

explicit dissipation must be added to obtain stable solutions. Several strategies

inspired by finite volume schemes have been proposed in order to accurately

represent shocks with high-order methods. For instance, a straightforward

approach is based on reducing the polynomial degree in those elements flagged

by a sensor which suggests cells lying in the shock region. Here, the amount of

numerical dissipation added by the scheme is increased, therefore an adaptive

mesh refinement close to the shock only may alleviate the problem of lack of

accuracy caused by lower order elements. Several other approaches to control

the oscillations are discussed in [7, 8, 87, 88].

Anyway, one of the most used strategies, which proved to be effective in the

framework of DG methods, consists of adding to the DG discretized equations

an artificial viscosity term that aims at controlling the high-order modes of the

numerical solution within elements while preserving as much as possible the

spatial resolution of the discontinuities. In this approach, the computed shock

capturing term is local and active in every element. In particular the amount

of artificial viscosity added to the scheme is almost negligible in smooth parts

and large in non-smooth parts. Unlike in finite volume schemes, where the

shock is spread over several elements in the mesh, in DG schemes the artificial

viscosity method has the capabilities to resolve the shock typically in only one

cell. Some shock capturing schemes have been presented by Hartmann [45] and

Bassi [44] in the context of DG schemes for inviscid and turbulent compressible

flows.

18

1.3 Outline of Thesis

This thesis deals with a high-order accurate discontinuous finite element method

for the numerical solution of the compressible Reynolds-averaged Navier-Stokes

(RANS) and k− ω turbulence equations. Low Mach number preconditioning,

shock-capturing and rescaling techniques are discussed and implemented with

the aim of increasing efficiency, robustness and accuracy of a DG solver for a

large range of flow conditions.

The outline of the present thesis is as follows:

• In Chapter 2 we present the physical model adopted in this work: the

RANS and k − ω turbulence equations in conservative form.

• In Chapter 3 we describe the Discontinuous Galerkin discretization of

the governing equations and we give details related to implicit time in-

tegration.

• In Chapter 4 we present the low Mach number preconditioning for steady

state computations of laminar and turbulent flows.

• In Chapter 5 we present the rescaling techniques. In particular, we

consider two kinds of approaches: the inherent scaling and the auto-

scaling.

Finally, at the end of this thesis the main conclusions of the study are presented

in a short ”Conclusions” section.

19

Chapter 2

Physical model

In this chapter we describe the governing equations for two-dimensional low

and high speed flows. We consider the fully coupled Reynolds-Averaged Navier-

Stokes and k − ω turbulence model equations written in conservative form.

The equations governing laminar flows can be obtained from the RANS model

switching off the k−ω transport equations and forcing the turbulent viscosity

to be zero. Finally, some considerations concerning the non-dimensionalization

of the equations are given.

20

2.1 The compressible Reynolds-Averaged Navier-

Stokes and k − ω turbulence equations

The compressible Reynolds-averaged Navier-Stokes (RANS) and k − ω tur-

bulence model equations can be written in conservative form on the domain

Ω ⊂ R2, as

Γ
∂u

∂t
+∇ · Fc −∇ · Fv −∇ · S = 0, in Ω (2.1)

with the vector of conservative variables u = {ρ, ρuj , ρE, ρk, ρω̃}T , where ρ

denotes the density, v = {u1, u2}T the velocity vector, E the total energy, k

the turbulent kinetic energy and ω the specific value of turbulence dissipation.

According to [81], the model employs the variable ω̃ = ln (ω) instead of ω to

obtain a smoother near-wall distribution and to guarantee the positivity of ω.

The matrix Γ is set equal to the identity matrix I for the system of equa-

tions written in conservative variables u. However, the preconditioned RANS

k − ω equations can be obtained from Eq. (2.1) setting Γ=Pu, where Pu de-

notes the preconditioning matrix in conservative variables. Otherwise, it is

possible to use the set of primitive variables q = {p, uj , T, k, ω̃}T , by replacing

in Eq. (2.1) u with q and Γ with ∂u
∂q
, where ∂u

∂q
is the transformation matrix

from conservative to primitive variables. Finally, the preconditioned formu-

lation of the system Eq. (2.1) rewritten in primitive variables q is obtained

for Γ = ∂u
∂q
Pq, where Pq denotes the preconditioning matrix in primitive vari-

ables [102]. Please, refer to Chapter 4 for a detailed description of precondi-

tioners. The convective fluxes Fc = (f1c , f
2
c) and the viscous ones Fv = (f1v , f

2
v)

are given by

f jc =




ρuj

ρujui +
(
p+ 2

3
ρk

)
δij

(
ρH + 2

3
ρk

)
uj

ρujk

ρujω̃




, f jv =




0

τ̂ij

uiτ̂ji +K ∂T
∂xj

+ (µ+ σkµt)
∂k
∂xj

(µ+ σkµt)
∂k
∂xj

(µ+ σωµt)
∂ω̃
∂xj




,

21

j = 1, 2.

Here H is the total enthalpy given by H = E + p

ρ
and the pressure p can be

computed using the equation of state of an ideal gas,

p = (γ − 1) ρ

(
E − v2

2
− k

)
,

where γ = cp
cv

denotes the ratio of the specific heat capacities at constant

pressure cp and at constant volume cv and equals to 1.4 for dry air. In the

heat conduction term the termal conductivity K is given by K = cp

(
µ

Pr
+ µt

Prt

)

and the temperature T by cvT = E − 1
2
v2 − k. Furthermore, Pr = 0.72 and

Prt = 0.9 are the molecular and turbulent Prandtl numbers and µ and µt are

the molecular and turbulent viscosities, respectively. The sum of pressure p

and 2
3
ρkδij is called effective pressure peff = p+ 2

3
ρkδij.

The total stress tensor, determined by the sum of the viscous stress tensor

µSij and the Reynolds stress tensor τij = µtSij − 2
3
ρkδij , is defined as

τ ij = (µ+ µt)Sij −
2

3
ρkδij, i, j = 1, 2,

where Sij is given by

Sij =

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

∂uk

∂xk

δij , i, j = 1, 2,

We note that because of the contribution 2
3
ρkδij of the Reynolds stress tensor

to the convective part, τ̂ij = τ ij +
2
3
ρkδij is used to compute the viscous fluxes.

Finally, the source term S (u,∇u) is given by

S =




0

0

0

−βkρke
ω̃r + τij

∂ui

∂xj

αωτij
ω

k

∂ui

∂xj
− βωρe

ω̃r + (µ+ σωµt)
∂ω̃
∂xk

∂ω̃
∂xk




,

where the turbulent eddy viscosity µt can be calculated as µt = Cµρk

ω
and

αω = 5
9
, βk = 9

100
, βω = 3

40
, σk = 1

2
, and σω = 1

2
stand for the closure

coefficients of the high-Reynolds number Wilcox k − ω model [77, 78].

22

In order to prevent the possibility of breakdown during the computations,

in addition to the use of the logarithm of the turbulence variable ω introduced

in [84], further realizability conditions are addressed for the turbulent stresses.

In particular, the variables k and ω̃ are limited from below by

k = max (k, 0) , ω̃r = max{ω̃, ω̃r0},

where ω̃r0 defines the lower bound on ω̃ that ensures the positivity of normal

turbulent stresses and the fulfillment of the following inequality, similar to that

proposed in [44,81]

eω̃r0 − 3

2
CµSii ≥ 0, i = 1, 2,

(
eω̃r0

)2 − 3

2
Cµ (Sii + Sjj) e

ω̃r0 +
9

4
Cµ

2
(
SiiSjj − Sij

2
)
≥ 0, i, j = 1, 2. i 6= j.

The limited turbulent eddy viscosity µt is computed by the following expression

µt = α∗ρke−ω̃r .

2.2 Non-dimensionalization

In this work we consider the governing equations in non-dimensionalized vari-

ables based on the freestream (reference) density ρ∞ = 1, pressure p∞ = 1

and temperature T∞ = 1. Therefore, the specific heat capacities at constant

volume cv, constant pressure cp and the molecular viscosity µ are given by

cv =
1

γ − 1
, cp =

γ

γ − 1
,

µ =

√
γM∞

Re∞
,

where M∞ and Re∞ are the Mach and Reynolds numbers at the freestream,

respectively. Reference values for the other quantities are derived from these

by functional relationships. With this choice of non-dimensionalized variables,

all the governing equations remain unchanged, except that the variables are

now understood to be non-dimensionalized.

23

Chapter 3

Discontinuous Galerkin

Formulation

In this chapter we present a high-order accurate DG discretization of the

Reynolds-Averaged Navier-Stokes (RANS) and the k − ω turbulence model

equations. Following the method of lines approach, we employ a separate dis-

cretization, first in space and then in time. The Roe’s approximate Riemann

solver with the Harten’s entropy fix is introduced for computing the numerical

fluxes at element interfaces. The system of equation is iterated to steady state

by means of the first-order accurate backward Euler scheme.

24

3.1 DG discretization of the RANS and k − ω

equations

The weak form of the RANS k−ω equations is obtained multiplying Eq. (2.1)

by a test function v and integrating by parts

∫

Ω

vTΓ
∂u

∂t
dx−

∫

Ω

∇vT · F (u,∇u) dx+

∫

∂Ω

vTF (u,∇u) · n dσ

−
∫

Ω

vTS (u,∇u) dx = 0, ∀v ∈ H (Ω)1, (3.1)

where Ω is the domain with boundary ∂Ω, v denotes a vector of any arbitrary,

sufficiently smooth, test functions and F is the algebraic sum of inviscid and

viscous fluxes, F = Fc − Fv.

For the sake of presenting the DG space discretization of the RANS and

turbulence model equations, we define Vh
n to be the space of discontinuous

vector-valued polynomials of degree n, on a triangulation τh = {K} of an

approximation Ωh of the domain Ω into non-overlapping elements such that

Ωh =
⋃

K∈τh K. Thus, the solution and test functions space is defined by

Vh
n = {vh ∈ L2 (Ωh) : vh|K ∈ Pn (K) ∀K ∈ τh},

where Pn (K) is the space of polynomial functions of degree at most n.

The DG approximation is obtained by evaluating the viscous flux, Fv,

according to the BR2 scheme [65,81], as

Fv|Ωh
= Fv (uh,∇uh +R (JuhK0)) ,

Fv|Γh
= Fv (uh,∇uh + ηeRe (JuhK)) ,

where Γh denotes the union of the set of internal, Γ0
h, and boundary, ∂Ωh,

element edges, E, such that Γh = Γ0
h

⋃
∂Ωh. Then the discrete problem takes

the following form: find uh ∈ Vh
n such that

∫

Ωh

vT
hΓ

∂uh

∂t
dx−

∫

Ωh

∇vT
h · (Fc (uh)− Fv (uh,∇uh +R (JuhK0))) dx

25

+

∫

Γh

JvhK ·
[
f̂c
(
uh

±,n
)
− Fv (uh,∇uh + ηeRe (JuhK))

]
dσ

−
∫

Ωh

vT
hS (uh,∇uh +R (JuhK0)) dx = 0,

∀vh ∈ Vh. (3.2)

Here, ()+ and ()− denote the values of any quantity evaluated from inside

and outside faces of an element K, and n is the unit outward normal vector

to K, see Figure 3.1.

Figure 3.1: Two elements K+ and K− sharing edge E

Re (JuhK) andR (JuhK0) are the local and global lifting operators, respectively,

given by

∫

Ωh

vT
h ·Re (JuhK) dx = −

∫

E

{
vT
h

}
· JuhK0dσ,

R (JuhK0) =
∑

E

Re (JuhK) ,

with jump J·K and average {(·)} trace operators, acting componentwise when

applied to a vector, defined as

JuhK, (uhn)
+ + (uhn)

− , {uh},
(uh)

+ + (uh)
−

2
.

Each local lifting operator is not null only on one or two elements K+ and

K− (respectively right and left state) adjacent to the generic edge E. ηe is

called penalty parameter and its lower bound is established as the number

of neighbours of the generic element K in order to guarantee the stability of

26

the method. Nevertheless, according to [75] lower values of ηe can provide

better convergences without spoiling the accuracy of the numerical solution,

due to an improved condition number of the linear system matrix. The BR2

viscous flux discretization is compact because each element K only couples

the nearest neighbor elements, simplifying an implicit implementation of the

method. Finally, in the present work the approximation of the convective

interface flux, f̂c (uh
±,n), is performed using the Roe’s scheme [3, 4] with the

Harten’s entropy fix [104,105].

3.1.1 Oscillation control for flows with shock

Spurious oscillation can be generated by the DG method in the vicinity of

discontinuities of the solution, when polynomials of higher degree (p > 0) are

used. To suppress oscillatory behaviour and computing accurate numerical

solutions, some sort of non-linear numerical dissipation, which does not ad-

versely affect the standard accuracy of the scheme, is needed. In particular,

we augment the DG discretization Eq. (3.2) with a stabilization term based

on artificial viscosity [45], generally given by

∫

Ωh

εh (uh)∇vh ·∇uhdx. (3.3)

with εh (uh) called artificial viscosity. The artificial viscosity entries can be

computed, for each element, as

εklm|K=





Cεδklh̃
2
kfp (uh) |Rp (uh) | m = 0, ..., 3

0 m = 4, 5
(3.4)

k, l = 1, 2.

Here the scalar residual term Rp (uh) is given by

Rp (uh)=
d∑

m=1

∂p

∂um

Rm (uh)

p
,

where Rm (uh) denotes the residual of cell for the component m and ∂p

∂um
is

the partial derivative of the pressure with respect to the conservative variable

27

um. Moreover, h̃k is the directional element size given by

h̃k=
hk

n+ 1
,

where hk denotes the dimension of the elementK in the xk-coordinate direction

and n polynomial degree. The pressure sensor fp (uh) defined as

fp (uh)=
hcell|∇p|
p+ ε′

,

with

hcell = (h1h2)
1

2 , ε
′

= 10−12,

is small in smooth parts and large in non-smooth parts of the flow solution,

and it decreases the effect of the artificial viscosity in smooth parts with steep

gradients. Finally Cε is a tunable parameter of the artificial viscosity [45].

3.2 Numerical flux function

3.2.1 Roe’s approximate Riemann solver

The convective flux at the element interfaces can be computed between the

left and right state of the discontinuous discrete solution by solving a local

Riemann problem. In order to reduce the computational effort for the exact

solution of the Riemann problem (Godunov scheme), Riemann approximate

solvers can be used. In this work we employ the Roe’s scheme, which is based

on a linearization of the Riemann problem. The Roe’s method is often applied

because of its high accuracy for both boundary layers and shock resolution.

The Roe flux is given by

H
(
u+,u−,n

)
=

1

2

(
Fc(u

+) · n+ Fc(u
−) · n−A

(
u+,u−,n

)
∆u

)
, (3.5)

and can be regarded as an average between the convective fluxes Fc (u
+) and

Fc (u
−) computed at the interior and exterior side of the face, plus a dissipation

term A (u+,u−,n)∆u with ∆u = u− − u+, to stabilize the scheme. The

28

matrix A, called Roe matrix or dissipation matrix, is computed using the

so-called Roe-averaged variables as

A
(
u+,u−,n

)
=

∣∣∣∣
(
∂Fc

∂u
· n

)∣∣∣∣=
(
T|Λ|T−1

)
,

where Λ = diag{αi} in the original scheme is set equal to the matrix of

eigenvalues diag{λi} with λi = {v · n,v · n,v · n,v · n,v · n+ at,v · n− at}
[105]. The eigenvalues of

(
∂Fc

∂u
· n

)
are evaluated using Roe’s averaging, as

well as the matrix of left,T−1 , and right T, eigenvectors, remembering that

T is the modal matrix that diagonalizes the matrix A. The turbulent speed

of sound at is computed as at =
√
a2 + 2

3
γk =

√
γ
peff
ρ
, using the effective

pressure instead of the standard one.

However, the standard Roe’s scheme introduces no dissipation for char-

acteristic variables whose eigenvalue is zero, leading to low stability in such

cases. To overcome this problem the Harten’s entropy-fix, which introduces a

lower bound on the eigenvalues, has been introduced in the scheme [104,105].

In particular, to limit the eigenvalues, we define αi as follows

αi=





|λi|2+δ2

2δ
|λi| ≤ δ

|λi| otherwhise
(3.6)

with

δ = δefixλmax.

The paramenter 0 ≤ δefix ≤ 1 is called entropy-fix fraction and it is typically

set equal to 0.1. For δefix = 0 we have the standard Roe’s scheme, for δefix = 1

we obtain a scheme which is close to the Lax-Friedrichs numerical flux. This

entropy-fix has the advantage of being differentiable at the point |λi| = δ.

3.3 Boundary Treatment

3.3.1 Boundary Conditions

Numerical flow simulations take into account only a limited part of the physical

domain. Thus, the truncation of the computational domain creates artificial

29

boundaries, where values of the physical quantities need to be specified. The

main problem when imposing such boundary conditions is that the solution

on the truncated domain should be as close as possible to a solution which

would be obtained for the whole physical domain. Some difficulties can result

when the numerical boundary does not coincide with the physical one. The

implementation of boundary conditions at artificial boundaries plays an im-

portant role for numerical simulation. Most of investigations on implementing

boundary conditions have focused on minimizing reflection of spurious waves

at the boundaries and applying accurate inflow and outflow conditions to have

a robust and efficient solution algorithm. Generally, in standard numerical

schemes for simulating compressible flows, the implementation of boundary

conditions at artificial boundaries is based on the characteristic variables or

the one-dimensional Riemann invariants. This kind of boundary conditions

is more appropriate for computing moderate and high Mach number flows,

whereas one drawback of this approach is that the Riemann invariants depend

on the speed of sound. As a result, at low Mach number flows, the speed

of sound approaches infinity and this treatment for boundary conditions may

not yield optimum performance [92]. Different kind of boundary conditions,

which are capable of absorbing ongoing waves at the artificial boundary, can

be found in [47, 50], while non-reflectiong boundary conditions can be found

in [51,63,94]. We consider the following types of conditions:

Farfield

A simplified set of farfield conditions is used.

• no vortex correction: at the subsonic inflow the pressure is taken from

the flow field, whereas the other variables are prescribed based on the

freestream values

ub =

(
ρ∞, ρuj∞,

p (u)

γ − 1
+

1

2
ρ∞v2

∞, ρk∞, ρω∞

)T

,

30

with the pressure p (u) computed using the equation of state of a perfect

gas. Conversely, at the subsonic outflow the pressure is prescribed based

on the freestream value and all the other variables are extrapolated from

the flow field

ub =

(
ρ, ρuj,

pout
γ − 1

+
1

2
ρv2, ρk, ρω

)T

.

• vortex correction: for aerodynamic computations, to minimize issues

associated with effect of the farfield boundary and to reduce the distance

of the far-field from the wall, which can have influence on the drag and

lift computations at high-lift conditions, a vortex correction boundary

condition can be used. In this case, density, pressure and velocity are

perturbed at the far-field according to [106]. Specifically, at the subsonic

inflow the pressure is taken from the flow field and all the other variables

are based on perturbed density and velocity

ub =

(
ρ∞, ρuj∞,

p (u)

γ − 1
+

1

2
(ρ∞ + δρ) (v∞ + δv)2, ρk∞, ρω∞

)T

.

Conversely, at the subsonic outflow the pressure is set equal to the per-

turbed outflow pressure pout + δp and all the other variables are taken

from the interior

ub =

(
ρ, ρuj ,

(pout + δp)

γ − 1
+

1

2
ρv2, ρk, ρω

)T

.

The values of perturbed density and pressure are given by

δρ = −ρ∞
c2∞

v∞δv, δp = c2∞δp,

and the perturbed velocity by

δv =
1

2πρ∞|v∞|

((
L
βη

r̂2
−D

ξ

βr̂2

)
êξ −

(
L
βξ

r̂2
+D

βη

r̂2

)
êη

)
,

where D and L are the drag and lift forces, êξ and êη are the freestream

aligned and normal unit vectors respectively, ξ = (x− x0) êξ and η =

(x− x0) êη with x0 origin of the vortex, β =
√
1−M∞ and r̂ =

√
ξ2 + β2η2.

31

Wall

• Adiabatic wall

At the viscous wall a set of adiabatic boundary conditions is employed

ub = (ρ, 0, 0, ρE, 0, ρωw) ,

where ωw is computed following a modified version of the Menter’s ap-

proach. In detail, the standard Menter’s boundary condition [80]

ωw =
6ν

β(αpy1)
2 ,

with ν = µ

ρ
kinematic viscosity, y1 first cell-centroid height and αp =

1√
10

is replaced by a modified version proposed by Schoenawa and Hart-

mann [82] which takes into account of the degree of the polynomial ap-

proximation of the numerical solution. For this aim, αp is calculated by

projecting the near wall solution of ω (y) = 6ν
βy2

to the polynomial space

of order p employed.

Symmetry

• Symmetry boundary conditions should be defined such that the dis-

cretization on the computational domain, called half domain, resembles

the discretization on the full domain, defined as the half domain plus

its mirror with respect to the symmetry boundary. The state ub has

the opposite normal velocity component (v · n) = (v · n)+ whereas the

other variables are prescribed based on the interior. In this way the non-

permeability condition is satisfied and the mass flux computed by the

Riemann solver is null. Also the gradient ∇uh
b is modified. For a more

detailed description refer to [83].

32

3.3.2 Boundary representation

In many applications the domain Ω is not a polygonal domain but it includes

curved boundaries, therefore the boundary cannot be accurately represented

by the triangulation τh. It has been shown by Bassi and Rebay in [64] that the

DG method is highly sensitive to the accuracy of the boundary representation

and errors due to geometrical approximation may dominate the discretization

error, rendering the use of a high-order schemes useless. Therefore, a higher

order approximation of the domain boundary, achieved by using mesh elements

with one or more curved sides usually described by polynomials, is mandatory

to compute accurate solutions. In this work, we consider polynomial mapping

functions, expressed in terms of Lagrangian basis function and Lagrangian

support points (nodes). Thus, the mapping between the canonical triangle or

square and the element in physical space is given by

x =
∑

j

x(j)φj (ξ) , (3.7)

where φj is the jth basis function, ξ is the location in the reference space,

and x(j) is the location of the jth node in physical space. In general, due to

the higher order boundary approximation, the Jacobian of the mapping is not

constant. This means that triangles and quadrangles with curved edges are

allowed. Finally, by placing the boundary nodes on the real domain boundary,

a higher order geometry representation is achieved.

3.4 Time integration

The DG space discretization, Eq. (3.2), results in the following system of

ordinary differential equations in time

MΓ
dU

dt
+R (U) = 0, (3.8)

where MΓ denotes the global system matrix, U and R are the global vectors

of degrees of freedom (dofs) and of residuals, respectively. In this work, the

33

semidiscrete system of Eq. (3.8) is advanced in time to the steady state using

the implicit backward Euler scheme:

[
MΓ

∆t
+

∂Rn

∂U

]
∆Un = −Rn, (3.9)

where ∆Un = Un+1 − Un, ∂Rn

∂U
is the Jacobian matrix of the DG space dis-

cretization and
[
MΓ

∆t
+ ∂Rn

∂U

]
denotes the global system matrix. The matrix

[
MΓ

∆t
+ ∂Rn

∂U

]
can be regarded as an NK ×NK block sparse matrix where NK is

the number of elements in τh and the rank of each block is m × NK
dof , where

NK
dof is the number of dofs for each of the m conservative variables in the

generic element K. The Jacobian matrix of the DG discretization has been

computed analytically without any approximation, except of the dissipative

part of the numerical flux for which the Jacobian is computed numerically.

Using very large time steps, the method can therefore achieve quadratic con-

vergence in the computation of steady state solutions. For the backward Euler

scheme and in the limit ∆t → ∞ Eq. (3.9) is identical to one iteration of the

Newton method applied to the steady discrete problem. Finally, we remark

that we have used the restarted GMRES algorithm with ILU(0) available in

the PETSc [100] library to solve Eq. (3.9).

34

Chapter 4

Low Mach number

preconditioning

In this chapter we present the preconditioning of the fully coupled RANS k−ω

equations in order to improve the accuracy and efficiency of the solution at

low Mach numbers using an implicit time integration method. Unlike the flux

preconditioning approach, that modifying the dissipative terms of the numer-

ical flux function could also be used for time accurate computations [103],

the here employed full preconditioning approach, that alters both the time-

derivative terms of the governing equations and the numerical flux function,

can be applied to steady-state simulations only.

35

4.1 The preconditioning approaches with im-

plicit schemes

The time dependent system of the RANS k − ω equations becomes very stiff

at low Mach number. Indeed the condition number, defined as the ratio be-

tween the largest and smallest wave speeds, Ncond =
|λmax|
|λmin| =

|v·n+at|
|v·n| , increases

without bound since the smallest wave speed approaches zero.

It’s well-known that explicit schemes are typically subject to restrictive

limitations on the CFL number, and they are particularly slow to converge

at low Mach numbers. Conversely, implicit schemes as compared to explicit

ones allow to use significantly larger time steps without hampering the stabil-

ity of the time integration process. Moreover, they have superior robustness

and convergence speed in case of stiff equation systems, which are often en-

countered in real gas simulations, turbulent computations and highly stretched

grids. Otherwise, the computational effort per time step or iteration and the

required memory of implicit schemes are significantly higher than those re-

quired by explicit ones. Furthermore implicit schemes are also more difficult

to be implemented.

Despite implicit schemes may be more suitable for low-speed flows [108],

they are still adversely affected by stiffness. As a result, low Mach number

preconditioning is recommended to guarantee the efficiency as well as the ac-

curacy of numerical solution in case of upwind schemes [30]. For steady-state

computations the most efficient approach is represented by the full precon-

ditioning, which is based on both the alteration of the time derivative terms

of the governing equations and of the dissipative terms of the numerical flux

function. The premultiplication of the unsteady terms of the RANS system

by the low Mach number preconditioning matrix equalizes the speeds of con-

vective and acustic waves, improving the convergence without altering the

steady state solution, whereas the preconditioning of numerical fluxes oper-

ates so that the dissipation terms scale properly with the convective ones,

36

improving the accuracy of the solution at low Mach number [30]. Conversely,

to compute efficiently and accurately unsteady low Mach number flows, the

flux preconditioning approach, which modifies only the dissipative terms of

the numerical flux, can be used. This formulation is consistent in time since

the time-derivative terms of the governing equations are not changed, it is

quite simple to implement in existing implicit DG codes and it ensures both

accuracy and efficiency improvements since it affects both numerical fluxes

and Jacobian of the residuals [52, 103]. Otherwise, time-accurate precondi-

tioned governing equations can be solved by means of a dual time-stepping

approach, where a modified steady problem is solved at each physical time

step by advancing in pseudo time [48].

37

4.1.1 Low Mach number preconditioned RANS system

The preconditioned RANS and k − ω equations in conservative form are ob-

tained from Eq. (2.1) by replacing Γ with the preconditioning matrix, Pu,

expressed in conservative variables:

Pu

∂u

∂t
+∇ · Fc (u)−∇ · Fv (u,∇u)− S (u,∇u) = 0. (4.1)

The preconditioning matrix used in this work is based on a modified version

of the preconditioner proposed by Turkel in [57]. GivenPq, the preconditioning

matrix in primitive variables

Pq =




1
β2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−(β2−1)(2

3
ρpk+1)

(ρCp− 2

3
ρT k)β2

0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, (4.2)

with

ρp=
∂ρ

∂p

∣∣∣∣
T=const.

=
1

T
, ρT=

∂ρ

∂T

∣∣∣∣
p=const.

=− p

T 2
,

Pu is computed by means of the Jacobians of variables transformation [102]

as follows,

Pu =
∂u

∂q
Pq

∂q

∂u
.

With respect to the standard Turkel’s preconditioning matrix, the entryPq (4, 1)

has been changed to take into account the proposed formulation of the govern-

ing equations [45]. In particular, the preconditioner has been modified with-

out altering the eigenvalues’ multiplicity and structure with respect to the

non-preconditioned case. Note that, if the preconditioning is applied to the

non-conservative formulation of the governing equations the preconditioner,

Pq, only modifies the continuity and energy equations. Instead when the con-

servative form is chosen, continuity and energy equations are coupled with

38

momentum and turbulence model equations through the more complex pre-

conditioner, Pu, obtained by multiplying Pq by the transformation matrices

∂u
∂q

and ∂q

∂u
.

The low Mach number preconditioning is devoted to eliminate the ill-

conditioning of the system of equations as the Mach number tends to zero. For

this purpose, the preconditioning parameter β, which controls the wave speeds

of the system, should be chosen as O (M), enabling to achieve a bounded con-

dition number when the local Mach number M of the flow tends to zero.

However, near stagnation points, M , and hence β, become very small, making

the preconditioning matrix close to be singular. As suggested by Turkel [57],

to prevent singularities at stagnation points we introduce the following cut-off

β2 = min
(
max

(
M2, εM∞

2
)
, 1
)
. (4.3)

Here ε is a problem dependent parameter whose choice affects both the con-

vergence rate and the accuracy of the converged solution through its impact

on the dissipation matrix [109]. Moreover, it is a critical factor influencing the

robustness of the scheme. Indeed, as shown by Colin et al. [90] and Choi and

Merkle [49], the major shortcoming of the low Mach number preconditioning

is a reduced robustness, which is due, for Euler computations, to stagnation

point regions that result in high local pressure disturbances, whereas, for tur-

bulent problems, to low Reynolds number regions that may lead to instabili-

ties. Specifically, for viscosity dominated flows, the boundary layer region is

dominated by diffusion processes. Numerical studies pointed out the need to

decrease the preconditioning effect in such critical regions in order to preserve

the robustness of the numerical scheme [49]. This can be achieved by setting

properly values of ε. Generally, the criterion to set ε is that it should be chosen

as small as possible to preserve the accuracy of the numerical solution, but

large enough for not hampering the efficiency. Typically ε is set equal to 1

for viscous and easy turbulent flows, whereas it can be increased, for turbu-

lent flows and complex geometries [57,109]. It’s worth to note that choosing a

39

large ε implies that β is quite constant through the domain. Several additional

limitations have been proposed for viscous computation in order to limit the

reference velocity such that it does not become smaller than the local diffusion

velocity [48, 90]. Nevertheless, our numerical experiments on external flows

showed that the above limitation of Eq. (4.3) allowed to obtain very accurate

DG solutions with a good level of robustness without having to resort to ad-

ditional viscous limitations in agreement with results presented by Unrau and

Zingg [109] for the FV discretization.

Finally, in order to preserve the accuracy and performance of the method

for solving high-speed flows the preconditioner smoothly reduces to the iden-

tity matrix, recovering the non-preconditioned system of equations and the

standard Roe’s scheme. Specifically, in Eq. (4.3), β → 1 as M → 1 and β = 1

for M ≥ 1 .

The resultant eigenvalues of the preconditioned system Eq. (4.1) are given

by

Λ̂ = diag {v · n,v · n,v · n,v · n, v′ + a′t, v
′ − a′t} ,

where

v′ =
1

2

(
β2 + 1

)
(v · n) ,

a′t =
1

2

√
(v · n)2(β2 − 1)2 + 4β2at2.

and at is the turbulent sound speed. Note that the choice at=a yields the

preconditioned eigenvalues found by Turkel [57]. We remark that only the

acustic waves are changed by low Mach number preconditioning. At low speed,

β → 0 as M → 0 and the condition number of the preconditioned system,

Ncond =
|v′+a′t|
|v·n| , tends to 1, demonstrating the well-conditioning of the proposed

preconditioned system in the incompressible limit.

4.1.2 Preconditioned numerical flux function

To extend the Roe’s numerical flux function to the incompressible limit we

replace the dissipation matrix in Eq. (3.5) with a preconditioned version as

40

follows,

H
(
u+,u−,n

)
=

1

2

(
Fc(u

+) · n+ Fc(u
−) · n− Â

(
u+,u−,n

)
∆u

)
.

The preconditioned dissipation term is given by

Â
(
u+,u−,n

)
∆u = Pu

∣∣∣∣Pu
−1

(
∂Fc

∂u
· n

)∣∣∣∣∆u =

= Pu

(
T̂|Λ̂|T̂−1

)
∆u,

where Λ̂ = diag {v · n,v · n,v · n,v · n, v′ + a′t, v
′ − a′t} and T̂ diagonalizes the

preconditioned Jacobian Pu
−1

(
∂Fc

∂u
· n

)
. In order to simplify the eigenvector

decomposition it is easier to operate using the set of primitive variables and

to convert the dissipative terms to conservative form by means of the trans-

formation matrix ∂u
∂q

[52]. Hence, the dissipation term can be computed as

Â
(
u+,u−,n

)
∆u =

∂u

∂q
Pq

∣∣∣∣Pq
−1 ∂q

∂u

(
∂Fc

∂q
· n

)∣∣∣∣∆q =
∂u

∂q
Pq

(
T̂q|Λ̂|T̂−1

q

)
∆q.

Here, T̂q is the left eigenvector matrix which diagonalizes the preconditioned

Jacobian in primitive variables Pq
−1 ∂q

∂u

(
∂Fc

∂q
· n

)
. The subscript q denotes

that the modal matrix T̂q refers to the Jacobian in primitive variables. Note

that, the eigenvectors may become singular for some values of the numerical

parameters used for their definition, i.e. n = (n1, n2). Nevertheless, since

there is a certain flexibility in the choice of the set of eigenvectors, these have

been determined in such a way as to be always non-vanishing independent, see

Appendix B.

Finally, also in the case of the preconditioned numerical flux function the

entropy fix can be applied to the Roe’s scheme, limiting the preconditioned

eigenvalues such as

Λ̂ = diag {α̂i} ,

with α̂i computed according to the formula given in Eq. (3.6).

41

4.1.3 Boundary conditions

In general the boundary conditions at the far-field are based on characteris-

tic variables, even for viscous flows. Since the time-dependent terms of the

governing equations are changed by preconditioning, also the characteristics

of the resulting system are modified, although the signs of the eigenvalues

remain unchanged. Therefore, the boundary conditions at far-field need to

be modified accordingly [94]. Nevertheless, it was shown in [57, 92, 93] that a

simplified set of boundary conditions based on the specification of density and

velocity at the inflow and pressure at the outflow is generally non-reflective or

weakly reflective in combination with low Mach number preconditioning.

It’s worth to note that if the flux preconditioning approach is applied, the

characteristics of the system remain unchanged and the non-preconditioned

boundary conditions can be set at the far-field.

At last, we remark that the preconditioning has no effect at the wall, where

zero heat flux no-slip boundary conditions are imposed. Thus, the same wall

boundary conditions can be employed for both the preconditioned and non-

preconditioned schemes.

42

4.2 Numerical Results

In this section we present a series of results obtained for the following steady

test cases: laminar flow around a NACA0012 airfoil, turbulent flow over a

flat plate and three-element L1T2 high-lift configuration. The computations

have been performed at low Mach number, with and without preconditioning,

using various degrees of polynomial approximations. The first test case shows

the performance of the proposed DG method in solving laminar flow at differ-

ent low Mach numbers. A comparison between flux and full preconditioning

approach is also presented. The last two test cases will demonstrate the ca-

pabilities of the full preconditioning technique in conjunction with an implicit

scheme in solving turbulent flows.

4.2.1 Laminar flow around a NACA0012 Airfoil

In this first numerical experiment we consider a low Mach number laminar

flow around a NACA0012 airfoil. For this test case the simulations have been

carried out using the MIGALE code, which uses primitive variables for the com-

putations. Two grid topologies (quadrangular and triangular) have been used

in order to investigate the behaviour of both the standard and the precon-

ditioned DG scheme for different spatial discretizations, see Figure 4.1. The

quadrangular grid is a C-type grid with 1792 elements, the triangular grid with

3584 elements results from the triangulation of the quadrangular one. Curved

boundaries have been approximated by piecewise cubic elements according to

Bassi and Rebay [65]. The distance of the far-field boundary from the profile

of unit (chord) length is about 55 chords. At far-field we specify the Mach

number, M∞, at a zero angle of attack, with Reynolds number Re∞ = 500.

On the wall boundary of the airfoil we impose a zero heat flux (adiabatic) no

slip boundary condition. The simulations have been performed at M∞ = 10−1,

M∞ = 10−2 and M∞ = 10−3, using linear (P1), quadratic (P2) and cubic ele-

ments (P3). The convergence of the solution process is presented in terms of

43

the normalized L2-norm of the residuals versus the number of iterations and

versus the CPU time, whereas the accuracy of the numerical solution is ana-

lyzed, from a qualitative point of view, by the contour plots of the normalized

pressure (defined as pnorm = (p− pmin)/(pmax − pmin)).

Figure 4.1: Computational Grids for NACA0012 test case: quadrangular (left)

and triangular (right).

Effects of flux preconditioning approach on convergence speed

The convergence histories are shown only for the quadrangular grid as simi-

lar histories are obtained on the triangular one. The computations are per-

formed for a number of Krylov subspace vectors = 120, number of restarts

= 1 and relative tolerance to stop iterative solution = 10−6. Figure 4.2 com-

pares the history of residuals versus the number of implicit iteration steps

of the backward Euler scheme with and without flux preconditioning. The

plots show a deterioration in the convergence rate without preconditioning as

the Mach number gets smaller whilst the preconditioned scheme always pro-

duces quadratic convergence. The effect is appreciable at M∞ = 10−2 and

more evident at M∞ = 10−3. At M∞ = 10−1 both the non-preconditioned

and preconditioned DG schemes converge at about the same convergence rate

independently of the polynomial degree. Furthermore the corresponding non-

preconditioned and preconditioned residual histories decrease about the same

44

order of magnitude. In particular, the residuals of velocity components are

indistinguishable, whereas the non-preconditioned residuals of pressure and

temperature present a slightly larger decrease than the corresponding precon-

ditioned one. This behaviour becomes more evident at M∞ = 10−2, and at

M∞ = 10−3 because of round-off errors. The major benefits of precondition-

ing technique are shown at M∞ = 10−3, for quadratic and cubic elements,

where the convergence of the numerical solution is not reached without pre-

conditioning. This is due to the effect of low Mach number preconditioning

on the linear system matrix, through the Jacobian of the residuals. In par-

ticular, with preconditioning the full convergence of the residuals is reached

quadratically in about 10 iterations, independently of both Mach number and

polynomial degree, like for the inviscid case [66]. Figure 4.3 compares the his-

tory of residuals versus CPU time (seconds), computed on the quadrangular

grid with and without flux preconditioning. The plots show that, using the

non-preconditioned Roe’s flux, the overhead in terms of CPU time increases

as the Mach number gets smaller and the polynomial degree increases, whilst

it is almost independent of the Mach number with flux preconditioning.

45

M∞ = 10−1 M∞ = 10−2 M∞ = 10−3

Figure 4.2: History of L2-norm of residuals versus number of iterations for the

quadrangular grid. M∞ = 10−1(left column), M∞ = 10−2 (middle column)

and M∞ = 10−3 (right column). Linear, P1 (top row), quadratic, P2 (middle

row) and cubic, P3 (bottom row) elements.

46

M∞ = 10−1 M∞ = 10−2 M∞ = 10−3

Figure 4.3: History of L2-norm of residuals versus CPU time for the quad-

rangular grid. M∞ = 10−1(left column), M∞ = 10−2 (middle column) and

M∞ = 10−3 (right column). Linear, P1 (top row), quadratic, P2 (middle row)

and cubic, P3 (bottom row) elements.

The figure 4.4 illustrates the performance of the GMRES solver with (right

column) and without (left column) low Mach number preconditioning. The

results refer to linear, quadratic and cubic elements at M∞ = 10−2. Similar

results have been observed for M∞ = 10−1 and M∞ = 10−3. The plots on

the top row show the number of GMRES iterations (open symbols) and the

logarithm of CFL number (solid symbols), while those on the bottom row

show the ratio between the L2-norms of the last and the first residual of the

47

GMRES iterative solution. The quantity along the x-axis is the number of

non-linear iterations. We can observe that increasing the CFL number the

computations performed without low Mach number preconditioning rapidly

use up the maximum number of GMRES iterations (240) without satisfying

the required six-order drop of residuals. Instead the low Mach number precon-

ditioning improves the efficiency of GMRES solver so that the preconditioned

solutions require somewhat less than 120 GMRES iterations to solve the linear

system within each time step, even for the highest CFL numbers. We notice

that in comparison to the inviscid case [66] a higher number of Krylov sub-

space vectors was used (120 instead of 60), with the same number of restarts

(1) and relative tolerance (10−6). Finally we mention that, at M∞ = 10−2, the

cost to compute the analytical Jacobian relative to the computational cost of

a full time step using 240 GMRES iterations is around 31%, 41% and 60% for

the P1, P2 and P3 solutions, respectively.

48

Non-linear iterations

G
M

R
E

S
ite

ra
tio

ns

Lo
g

C
F

L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

220

240

0

2

4

6

8

10

12

14

16

P1
P2
P3

Non-linear iterations

G
M

R
E

S
ite

ra
tio

ns

Lo
g

C
F

L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

220

240

0

2

4

6

8

10

12

14

16

P1
P2
P3

Non-linear iterations

||R
es

f||
/||

R
es

i||

0 2 4 6 8 10 12 14 16
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P1

P2

P3

||Res f||/||Res i||=10 -6

Non-linear iterations

||R
es

f||
/||

R
es

i||

0 2 4 6 8 10 12 14 16
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P1

P2

P3

||Res f||/||Res i||=10 -6

Figure 4.4: Behaviour of the GMRES solver with (right column) and without

(left column) low Mach number preconditioning for M∞ = 10−2.

Effects of full preconditioning on convergence speed

In general, preconditioning modifies the unsteady terms of the governing equa-

tions by a preconditioning matrix. This results in an improved residual con-

vergence speed of steady-state solutions. Figure 4.5 compares the history

of residuals versus the number of iterations (top row) and versus CPU time

(bottom row) with and without the time derivative preconditioning for the

quadrangular grid. The plots show computations performed at M∞ = 10−2

for linear, quadratic and cubic elements. Similar results have been obtained

49

at M∞ = 10−1 and M∞ = 10−3. At far-field a set of non-reflecting boundary

conditions are employed which specify entropy, stagnation enthalpy, and the

tangential velocity at the inlet and pressure at the outlet boundary [92]. The

graphs show that the corresponding residual histories obtained with the flux-

preconditioning and full-preconditioning approach decrease about the same

order of magnitude. Nevertheless the preconditioning of the time dependent

terms produces an improvement in the convergence rate and CPU time. For

all polynomial approximations, the full convergence was reached in a lower

number of non-linear iterations. Furthermore, the overhead, in terms of CPU

time, reduces as the polynomial degree increases. The gain of efficiency is

due to the improvement of the condition number of the linear system matrix

produced by the preconditioning of the time derivative terms. This is evident

in Figure 4.6 where we compared the performance of the GMRES solver with

flux (open symbols) and full (solid symbols) low Mach number precondition-

ing. The graphs show the results for P1, P2 and P3 solutions at M∞ = 10−2.

The plot on the left column shows the logarithm of CFL number while that

on the right column shows the number of GMRES iterations. The quantity

on the x-axis is the number of non-linear iterations. We remark that the plots

of Figure 4.6 have been obtained for fixed GMRES parameters (number of

Krylov-subspace vectors = 120 with one restarts performed at and relative

tolerance to stop iterative solution = 10−6). The result of the full precondi-

tioning approach is that it allows higher CFL numbers with a reduced number

of linear iterations needed to reach the full convergence of each variable as

compared to the flux preconditioning approach.

50

P1 P2 P3

Figure 4.5: History of L2-norm of residuals versus number of iterations (top

row) and CPU time (bottom row) for M∞ = 10−2 (quadrangular grid). Linear,

P1 (top row), quadratic, P2 (middle row) and cubic, P3 (bottom row) elements.

51

Non-linear iterations

Lo
g

C
F

L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

P1
P2
P3

Non-linear iterations

G
M

R
E

S
ite

ra
tio

ns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

200

220

240

P1
P2
P3

Figure 4.6: Behaviour of the GMRES solver with flux (open symbols) and full

(solid symbols) preconditioning: Logarithm of the CFL numbers vs non-linear

iterations (left column) and GMRES iterations vs non-linear iterations (right

column) at M∞ = 10−2.

Effects of preconditioning on the solution accuracy

The isolines of normalized pressure computed on the quadrangular grid at

M∞ = 10−1, M∞ = 10−2, M∞ = 10−3 using linear, quadratic and cubic ele-

ments without and with preconditioning are displayed in Figures 4.7 and 4.8,

respectively. As expected, the preconditioned solutions are more accurate than

the corresponding non-preconditioned ones by virtue of the preconditioning of

the dissipative term of the Roe’s Riemann solver. We note that for a given

Mach number, the loss of accuracy of the non-preconditioned solutions reduces,

due to the increased polynomial degree when passing from linear to cubic el-

ements. Conversely, for a given polynomial degree, the non-preconditioned

solution becomes worse as the Mach number reduces. A distinguishing feature

of this test case is the presence of a stagnation point at the leading edge. In Fig-

ure 4.9 we compare the contours of normalized pressure without (top row) and

with (middle row) preconditioning, near the leading edge, computed on a quad-

rangular grid, at M∞ = 10−3, for linear P1 (left column), quadratic P2 (central

52

column), and cubic P3 (right column) elements. The non-preconditioned con-

tours at M∞ = 0.4 (bottom row) are also shown as reference. It is evident

that approaching the stagnation point the solution degrades and that this ef-

fect reduces by increasing the degree of polynomial approximation. Figure 4.10

shows the same local analysis of Figure 4.9, for the triangular grid. Overall,

it is worth noting that also in the case of the Navier-Stokes equations, the

DG discretization on triangular grid yields remarkably accurate solutions at

low Mach number even without preconditioning, like found for the inviscid

case [66]. In particular, the preconditioned and the non-preconditioned con-

tours of normalized pressure are almost indistinguishable using P3 elements,

whereas some small differences can be seen in the P1 and P2 solutions. The

marked influence of the geometrical shape of the elements on the accuracy

of the Roe’s flux in the low Mach number limit could be explained by the

asymptotic analysis recently performed by Rieper and Bader [95, 96] and by

Guillard [97], for the first-order Roe scheme. Our current work seems to indi-

cate that low order DG schemes face the same problems as the standard finite

volume upwind schemes: at low Mach number they only work on triangular

elements.

53

M∞ = 10−1 M∞ = 10−2 M∞ = 10−3

Figure 4.7: NACA0012 test case: contours of normalized pressure without

preconditioning for quadrangular grid. M∞ = 10−1 (left column), M∞ = 10−2

(middle column) and M∞ = 10−3 (right column). P1 (top row), P2 (middle

row) and P3 (bottom rows) elements.

54

M∞ = 10−1 M∞ = 10−2 M∞ = 10−3

Figure 4.8: NACA0012 test case: contours of normalized pressure with pre-

conditioning for quadrangular grid. M∞ = 10−1 (left column), M∞ = 10−2

(middle column) and M∞ = 10−3 (right column). P1 (top row), P2 (middle

row) and P3 (bottom rows) elements.

55

P1 P2 P3

Figure 4.9: NACA0012 test case: contours of normalized pressure near the

leading edge for M∞ = 10−3, non-preconditioned (top row), preconditioned

(middle row) and non-preconditioned at M∞ = 0.4 (bottom row). Linear, P1

(left column), quadratic, P2 (central column), and cubic, P3 (right column)

elements.

56

P1 P2 P3

Figure 4.10: NACA0012 test case, triangular grid: contours of normalized

pressure near the leading edge for M∞ = 10−3, non-preconditioned (top row),

preconditioned (middle row) and non-preconditioned at M∞ = 0.4 (bottom

row). Linear, P1 (left column), quadratic, P2 (central column) and cubic, P3

(right column) elements.

57

4.2.2 Turbulent flat plate

The second test case concerns a turbulent flow horizontally passing over a flat

plate. This test case is that reported by Wieghardt [98, 99] and it is one of

the validation cases used by the NPARC Alliance to evaluate the accuracy of

turbulence models. The Reynolds number based on the plate length is equal

to 11.1 · 106. With the aim of reducing the effect of compressibility, the free-

stream Mach number, equal to 0.096 in the experiment, is reduced to 0.01 in

the computations. The numerical simulations are carried out on a sequence

of nested quadrangular grids consisting of 560, 2240, 8960 and 35840 elements

respectively, starting from the initial flow field based on the free-stream val-

ues, through a sequence of polynomial approximations up to P4 elements. The

meshes are refined near the leading edge of the plate and to better resolve the

boundary layer as shown in Figure 4.11. A zero heat flux no slip boundary

condition, with ωw computed following the Menter’s projection approach [82],

is prescribed from x = 0 to x = 1 along the lower boundary (flat plate) and

symmetry conditions upstream of these points, x ∈ [−2, 0]. At the inflow, the

pressure is taken from the flow field, whereas the other variables are prescribed

based on the free-stream values, with turbulence intensity, It, and turbulent

viscosity ratio, µt

µ
, set both equal to 10−4. For the upper and downstream

boundaries, the pressure is set to the free-stream value. The preconditioning

constant ε is set equal to 1. Note that, for some cases which are harder to

converge (P3 elements) it is necessary to increase this value to 3. For this

test case there is no presence of stagnation regions unlike in the previous one.

Anyway, its solution requires the use of a turbulence model, allowing to gain

insight into how well the proposed DG scheme can approximate turbulent

boundary layers in the incompressible limit. Finally, we remark that, for each

polynomial degree, the initial CFL number of the non-preconditioned compu-

tation has been chosen higher than that of the corresponding preconditioned

case in order to ensure the convergence of the non-preconditioned solution in

58

a reasonable number of non-linear iterations.

Figure 4.11: Computational grid for the flat plate test case (2240 elements).

Efficiency of preconditioned schemes

In the flat plate computations, the Krylov process for each linear problem

is stopped when the linear residual is reduced by 5 orders of magnitude or

after 600 iterations with 1 restart. The Newton iteration is stopped when

the L2-norm of the non-linear residuals is reduced by 10 orders of magnitude.

Figure 4.12 compares the history of residuals versus non-linear iterations (left

column) and CPU time (right column), with and without full preconditioning.

Note that the simulations are carried out using a p-refinement strategy. How-

ever, to illustrate more clearly the influence of preconditioning on higher order

approximations, the convergence histories are shown separately for the differ-

ent polynomial degrees without considering the number of non-linear iterations

and the CPU overhead required to compute the starting solutions.

Results refer to computations performed on the mesh with 2240 cells using

linear, quadratic and cubic elements. Overall, we see that preconditioning

improves the convergence rate and greatly reduces the overhead of CPU time as

compared to the non-preconditioned case. This can be already seen for the P1

and P2 solutions, where quadratic convergence is achieved in less then 100 non-

linear iterations with preconditioning. For P3 computations, after a drop of 8

orders, residuals increase before reaching the prescribed convergence criterion.

59

This behaviour of the preconditioned residuals depends on the value of the ε

parameter that affects the dissipation introduced by the preconditioning into

DG scheme. Specifically, Figure 4.13 shows that an increment of ε from 1 to

3 reduces oscillations in all residual components and thereby improving the

convergence rate.

60

P1

Iterations

R
es

id
ua

l

0 500 1000 1500
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho k
Prec. rho omega

CPU time

R
es

id
ua

l

0 20000 40000 60000
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho k
Prec. rho omega

P2

Iterations

R
es

id
ua

l

0 100 200 300 400
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho k
Prec. rho omega

CPU time

R
es

id
ua

l

0 10000 20000 30000 40000 50000
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho k
Prec. rho omega

P3

Iterations

R
es

id
ua

l

0 50 100 150 200 250
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho k
Prec. rho omega

CPU time

R
es

id
ua

l

0 10000 20000 30000 40000 50000
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho k
Prec. rho omega

Figure 4.12: Turbulent flat plate: history of L2-norm of residuals versus num-

ber of iterations (left column) and CPU time (right column) at M∞ = 10−2.

Linear, P1 (top row) quadratic, P2 (middle row) and cubic, P3 (bottom row)

elements.
61

x

x

x

x x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

Iterations

R
es

id
ua

l

0 100 200 300 400
10-12

10-10

10-8

10-6

10-4

10-2

100

102

Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho (epsilon = 1)
Prec. rho k (epsilon = 1)
Prec. rho omega (epsilon = 1)
Prec. rho (epsilon = 3)
Prec. rho k (epsilon = 3)
Prec. rho omega (epsilon = 3)

x
x
x

x

x

x

x x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

CPU time

R
es

id
ua

l

0 10000 20000 30000 40000 50000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

Non-Prec. rho
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho (epsilon = 1)
Prec. rho k (epsilon = 1)
Prec. rho omega (epsilon = 1)
Prec. rho (epsilon = 3)
Prec. rho k (epsilon = 3)
Prec. rho omega (epsilon = 3)

x
x
x

Figure 4.13: Turbulent flat plate, influence of the parameter ε on convergence

process: history of L2-norm of residuals versus number of iterations (left col-

umn) and CPU time (right column) at M∞ = 10−2 for P3 elements.

In Figure 4.14 we present the performance of the GMRES solver with

(right column) and without (left column) low Mach number preconditioning

for linear, quadratic and cubic elements. The plots on the top row show

the number of GMRES iterations (open symbols) and the logarithm of the

CFL number (solid symbols), while those on the bottom row show the ratio

between the L2-norms of the last and the first linear residual of the GMRES

solver iteration. The quantity along the x-axis is the number of non-linear

iterations. In agreement with the results of laminar test case, we can see

that, as the CFL number increases, the computations performed without low

Mach number preconditioning rapidly use up the maximum number of GMRES

iterations (600) without satisfying the required five-order drop of residuals.

On the contrary, with preconditioning, for the most part of the non-linear

iterations, the required GMRES residual drop is satisfied without reaching

the maximum number of linear iterations, thus improving the efficiency of the

Krylov solver.

62

Non-Linear Iterations

G
M

R
E

S
ite

ra
tio

ns

Lo
g

C
F

L

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

0

1

2

3

4

5

6

7

8

9

10

P1

P2

P3

Non-Linear Iterations

G
M

R
E

S
ite

ra
tio

ns

Lo
g

C
F

L

0 50 100 150 200
0

100

200

300

400

500

600

700

0

1

2

3

4

5

6

7

8

9

10

P1

P2

P3

Non-Linear Iterations

||R
es

f||
/||

R
es

i||

0 200 400 600 800 1000 1200
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P1

P2

P3

||Res f||/||Res i||=10 -5

Non-Linear Iterations

||R
es

f||
/||

R
es

i||

0 50 100 150 200
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P1

P2

P3

||Res f||/||Res i||=10 -5

Figure 4.14: Turbulent flat plate: behaviour of the GMRES solver with (right

column) and without (left column) low Mach number preconditioning for

M∞ = 10−2.

Pressure distribution and skin friction computations

The accuracy capability of the DG scheme can be pointed out qualitatively by

the contours of pressure. Figure 4.15 shows the isolines of normalized pressure,

at M∞ = 0.01 for P1, P2 and P3 elements without and with preconditioning,

respectively. Overall, from the plots, we can appreciate that the precondi-

tioned DG solutions are remarkably more accurate than the corresponding

non-preconditioned ones. Furthermore, it is evident that as the polynomial

63

degree increases, the numerical approximation significantly improves and the

difference between preconditioned and non-preconditioned DG solutions re-

duces.

To analyze more in detail the accuracy of the preconditioned and the non-

preconditioned DG schemes in solving the boundary layer over a flat plate, we

compare in Figure 4.16 the distribution of the skin friction, cf , distribution

along the wall computed with and without preconditioning, up to fourth-order

of accuracy. Firstly we note that, in each case, numerical behaviours are qual-

itatively similar to the experimental one but with a more dissipative nature,

due to the constant eddy viscosity assumption of the k − ω turbulence model

here adopted. Furthermore, the plots show that preconditioning improves the

accuracy of the results. In particular, the P1 solutions are clearly less accurate

in the non-preconditioned case than in the preconditioned one. This loss of

accuracy is less evident using P2 and P3 elements; in fact small differences

between preconditioned and non-preconditioned solutions occur only close to

the outlet boundary (see the zoom in Figure 4.16). Thus, we can conclude

that, the higher the polynomial degree, the lower the difference between pre-

conditioned and non-preconditioned solutions.

64

Figure 4.15: Turbulent flat plate: contours of normalized pressure with pre-

conditioning (right column) and without preconditioning (left column) at

M∞ = 10−2 for a grid of 2240 elements. P1 (top row), P2 (middle row) and P3

(bottom rows) elements.

65

x

C
f

0 0.2 0.4 0.6 0.8 1
0.002

0.004

0.006

0.008

0.01
Non-Prec. P1

Non-Prec. P2

Non-Prec. P3

Prec. P1

Prec. P2

Prec. P3

Exp.

x

C
f

0.84 0.88 0.92 0.96 1
0.0024

0.0028

0.0032

Figure 4.16: Flat plate test case at turbulent conditions: skin friction distri-

bution at wall, with and without preconditioning, for P1, P2 and P3 elements.

Convergence study of the drag coefficient

For this test case, convergence studies of the drag coefficient, Cd, have been

performed for high-order discretizations on globally refined meshes. The drag

coefficient, Cd, is given by

Cd =
2

ρ∞|v∞|2l∞

∫

S

(pn− τn) · (cosα, sinα)T ds, (4.4)

where S denotes the surface of the airfoil, l∞ its chord length, α is the angle

of attack, p is the pressure and τ is the total stress tensor, |v∞| and ρ∞ are

the reference velocity and density, respectively [46].

The results are shown in Figure 4.17, where Cd is plotted versus the num-

bers of degrees of freedom and CPU time for the different polynomial degrees,

with and without preconditioning. Overall, we can observe that, in each case

preconditioning allows to reduce the computational effort. The right plot of

the figure shows that for a given drag value the CPU time required by a pre-

conditioned computation is lower than that for the non-preconditioned one.

Concerning the accuracy of the solutions, both the plots put in evidence that

66

the preconditioned and non-preconditioned drag histories converge towards

the same value. Moreover, preconditioning allows to improve the robustness

of the scheme. In fact, it permits to compute solutions which do not converge

without preconditioning, i.e. P1 solution on the finest mesh of 35840 cells. The

numerical results of both spatial refinement and efficiency are summarized in

Tables 4.1, 4.2 and 4.3, where the drag values and CPU times computed on

the coarse, medium and fine grid, respectively, for different degrees of freedom

are presented.

x

x

x
x

x

x xx x xx

number of dofs

C
d

104 105 1060.003

0.0032

0.0034

0.0036

0.0038

0.004 P1 Non-Prec.
P1 Prec.
P2 Non-Prec.
P2 Prec.
P3 Non-Prec.
P3 Prec.
P4 Non-Prec.
P4 Prec.

x

x

x

x

x

x

x
x

x

x xx x xx

CPU time

C
d

102 103 104 105 1060.003

0.0032

0.0034

0.0036

0.0038

0.004 P1 Non-Prec.
P1 Prec.
P2 Non-Prec.
P2 Prec.
P3 Non-Prec.
P3 Prec.
P4 Non-Prec.
P4 Prec.

x

x

x

x

Figure 4.17: Flat plate test case at turbulent conditions: Cd versus degrees of

freedom (left column) and versus CPU time (right column).

67

Non-Prec. Prec.

560 el. dofs CPU time (s) Cd CPU time (s) Cd

P1 10080 2820 0.00337 165 0.00378

P2 20160 17300 0.00315 420 0.00319

P3 33600 15150 0.00312 1475 0.00309

P4 50400 16100 0.00309 2685 0.00309

Table 4.1: Flat plate test case at turbulent conditions: number of degrees of

freedom, CPU time and drag coefficient values for P1-P4 computations on the

coarse mesh.

Non-Prec. Prec.

2240 el. dofs CPU time (s) Cd CPU time (s) Cd

P1 40320 48700 0.00321 1700 0.00331

P2 80640 35000 0.00311 2800 0.00312

P3 134400 47800 0.00310 15400 0.00308

Table 4.2: Flat plate test case at turbulent conditions: number of degrees of

freedom, CPU time and drag coefficient values for P1-P3 computations on the

medium mesh.

Non-Prec. Prec.

8960 el. dofs CPU time (s) Cd CPU time (s) Cd

P1 161280 144200 0.00316 10315 0.00316

P2 322560 103600 0.00310 37150 0.00310

P3 537600 191620 0.00309 86500 0.00309

Table 4.3: Flat plate test case at turbulent conditions: number of degrees of

freedom, CPU time and drag coefficient values for P1-P3 computations on the

fine mesh.

68

4.2.3 L1T2 three-element airfoil

In the last test case, we consider a turbulent flow around the L1T2 three-

element airfoil at a Reynolds number Re∞ = 3.52 · 106 and angle of attack

α = 20.18◦. This problem is aimed at testing the effectiveness of precondi-

tioned and non-preconditioned DG schemes on a two-dimensional low Mach

number turbulent flow around a geometrically complex configuration. An orig-

inal block-structured mesh with 75,840 quadrangular elements has been ag-

glomerated twice resulting in a coarse mesh of 4740 elements. The additional

points of the original mesh have been used to define 4740 curved elements,

where the mesh edges are treated as quartic polynomials, see Figure 4.18.

At the far-field, a vortex correction boundary condition which specifies

density, velocity, turbulent kinetic energy and turbulence dissipation rate at

the inflow and pressure at the outflow is used [106]. At the inflow, k and ω

are computed based on specified values of turbulence intensity, It, and turbu-

lent viscosity ratio, µt

µ
, set equal to 10−3 and 10−2, respectively. At the wall

boundary of the airfoil, we impose a zero heat flux (adiabatic) no-slip boundary

condition prescribing ωw by means of Menter’s projection method [82].

The computations have been carried out without and with the full precon-

ditioning approach, at M∞ = 0.197 and at a lower Mach number M∞ = 0.01

in order to reduce the effect of compressibility, using up to a P3 polynomial

approximation. The preconditioning constant ε is set equal to 5 in order to

ensure the convergence of numerical solution.

To assess the efficiency of the preconditioned and non-preconditioned DG

schemes, convergence histories of residuals versus the number of iterations and

versus the CPU time are presented, whereas the accuracy of the numerical

solution is analyzed, from a qualitative point of view, by the contour plots

of the normalized pressure. Finally, convergence studies of drag, Cd, and lift,

Cl, coefficients are presented. Here the Cl coefficient is computed replacing

(cosα, sinα)T by (− sinα, cosα)T in Eq. (4.4).

69

Figure 4.18: Computational grid for the L1T2 test case, 4740 elements.

Effects of preconditioning on convergence speed

For this test case the computations have been performed using two different

sets of GMRES parameters. On the coarsest mesh the linear system for each

non-linear iteration is solved with 240 linear steps and 1 restart; on the re-

fined meshes, the number of linear steps is doubled to 480 with the restart

performed after 240 iterations. The linear solver is stopped once the linear

residual is reduced by a factor of 10−5 or the maximum number of linear iter-

ations is reached. Starting from the initial flow field, based on the free-stream

values, the computations have been performed through a sequence of polyno-

mial approximations up to the fourth-order of accuracy.

Figure 4.19 compares history of residuals versus non-linear iterations (left

column) and CPU time (right column) computed at M∞ = 0.197, with and

without full preconditioning. Note that, as for the flat plate, in the plots

we compare the number of non-linear iterations and CPU time without con-

sidering the computational cost of computing the lower order solutions. The

convergence histories are shown for the medium mesh (18960 elements) only

as similar convergence histories are obtained on the other ones. The plots

show that, for each polynomial degree, preconditioning reduces both the num-

ber of non-linear iterations and the computational cost required to satisfy the

70

convergence criterion despite the Mach number is far from the incompressible

limit. In particular, in comparison to the non-preconditioned case, the num-

ber of non-linear iterations is almost halved and the overhead of CPU time

is reduced approximately by 33%, 28% and 19% for P1, P2 and P3 elements,

respectively.

71

P1

Iterations

R
es

id
ua

l

0 500 1000 1500
10-12

10-10

10-8

10-6

10-4

10-2

100

102

104
Non-Prec. rho
Non-Prec. rho u
Non-Prec. rho v
Non-Prec. rho E
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho u
Prec. rho v
Prec. rho E
Prec. rho k
Prec. rho omega

CPU time

R
es

id
ua

l

0 25000 50000 75000 100000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

104
Non-Prec. rho
Non-Prec. rho u
Non-Prec. rho v
Non-Prec. rho E
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho u
Prec. rho v
Prec. rho E
Prec. rho k
Prec. rho omega

P2

Iterations

R
es

id
ua

l

0 100 200 300 400 500
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho u
Non-Prec. rho v
Non-Prec. rho E
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho u
Prec. rho v
Prec. rho E
Prec. rho k
Prec. rho omega

CPU time

R
es

id
ua

l

0 50000 100000 150000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

104
Non-Prec. rho
Non-Prec. rho u
Non-Prec. rho v
Non-Prec. rho E
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho u
Prec. rho v
Prec. rho E
Prec. rho k
Prec. rho omega

P3

Iterations

R
es

id
ua

l

0 100 200 300 400 500
10-12

10-10

10-8

10-6

10-4

10-2

100

102
Non-Prec. rho
Non-Prec. rho u
Non-Prec. rho v
Non-Prec. rho E
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho u
Prec. rho v
Prec. rho E
Prec. rho k
Prec. rho omega

CPU time

R
es

id
ua

l

0 100000 200000 300000 400000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

104
Non-Prec. rho
Non-Prec. rho u
Non-Prec. rho v
Non-Prec. rho E
Non-Prec. rho k
Non-Prec. rho omega
Prec. rho
Prec. rho u
Prec. rho v
Prec. rho E
Prec. rho k
Prec. rho omega

Figure 4.19: L1T2 high-lift configuration: history of L2-norm of residuals

versus number of iterations (left column) and CPU time (right column) on

medium mesh (18960 elements) at M∞ = 0.197. Linear, P1 (top row),

quadratic, P2 (middle row) and cubic, P3 (bottom row) elements.

72

Effects of preconditioning on accuracy

Figure 4.20 shows the isolines of normalized pressure computed on the coarsest

grid at M∞ = 0.197, using linear, quadratic and cubic elements, without

(left column) and with (right column) preconditioning. We can observe that,

in all cases, both the non-preconditioned and preconditioned DG solutions

yield comparable and very similar contours of pressure. In particular, the P3

solutions are almost identical whereas only small differences are visible in the

P1 and P2 solutions. Here, the isolines of the preconditioned solutions are

slightly more accurate than those without preconditioning.

In order to investigate in more detail the effectiveness of preconditioning on

the accuracy of solution, we performed computations at a lower Mach number

to better satisfy the incompressibility condition. Figure 4.21 shows the isolines

of normalized pressure computed at M∞ = 0.01, without (left column) and

with (right column) preconditioning. Overall, independent of the polynomial

degree, the preconditioned isolines are now remarkably more accurate than

the corresponding non-preconditioned ones. In particular, we note that even

the P1 isolines are accurately computed with preconditioning, whereas the

second-order accurate non-preconditioned contours appear degraded.

73

Figure 4.20: L1T2 high-lift configuration: contours of normalized pressure with

preconditioning (right column) and without preconditioning (left column) at

M∞ = 0.197 on quadrangular grid. P1 (top row), P2 (middle row) and P3

(bottom rows) elements.

74

Figure 4.21: L1T2 high-lift configuration: contours of normalized pressure with

preconditioning (right column) and without preconditioning (left column) at

M∞ = 10−2 on quadrangular grid. P1 (top row), P2 (middle row) and P3

(bottom rows) elements.

75

Convergence study of drag and lift coefficients

In Figure 4.22 we plot Cd (top row) and Cl (bottom row) values computed

at M∞ = 0.197, with and without preconditioning, versus the number of

degrees of freedom (left column) and CPU time (right column). As convergence

criterion for achieving the steady-state force coefficients, a non-linear residual

reduction of 8 orders of magnitude from the initial residual, based on free-

stream conditions, is considered. The graphs show results for linear, quadratic

and cubic elements on coarse and medium meshes, and for linear and quadratic

elements on the finest mesh. Although being far from the grid converged the

results in the plots show that, in agreement with the results obtained for the

turbulent flat plate, the force coefficients converge towards similar values with

and without preconditioning. Furthermore, preconditioned computations are

more efficient than the non-preconditioned ones where the savings in CPU

time become larger as the number of degrees of freedom increases. These

results are summarized in Tables 4.4, 4.5 and 4.6, where the drag values and

CPU times computed on the coarse, medium and fine grids, respectively, for

different degrees of freedom, are presented.

76

x

x

x
x

x

x

x

number of dofs

C
d

105 106

0.04

0.08

0.12

0.16

0.2 P1 Non-Prec.
P1 Prec.
P2 Non-Prec.
P2 Prec.
P3 Non-Prec.
P3 Prec.

x

x

x

x

x

x
x

x

x

x

CPU time

C
d

104 105 106

0.04

0.08

0.12

0.16

0.2 P1 Non-Prec.
P1 Prec.
P2 Non-Prec.
P2 Prec.
P3 Non-Prec.
P3 Prec.

x

x

x

x

x

x

x

x

x

x

number of dofs

C
l

105 1063.4

3.6

3.8

4

4.2

P1 Non-Prec.
P1 Prec.
P2 Non-Prec.
P2 Prec.
P3 Non-Prec.
P3 Prec.

x

x

x

x

x

x

x

x

x

x

CPU time

C
l

104 105 1063.4

3.6

3.8

4

4.2

P1 Non-Prec.
P1 Prec.
P2 Non-Prec.
P2 Prec.
P3 Non-Prec.
P3 Prec.

x

x

x

Figure 4.22: L1T2 high-lift configuration: Cd (top row) and Cl (bottom row)

versus degrees of freedom (left column) and versus CPU time (right column)

at M∞ = 0.197.

77

Non-Prec. Prec.

4740 el. dofs CPU (s) Cd Cl CPU (s) Cd Cl

P1 85320 7000 3.664 0.01848 5130 3.685 0.16293

P2 170640 14400 3.946 0.07759 7300 3.989 0.07577

P3 284400 20900 4.027 0.06562 13600 4.023 0.06602

Table 4.4: L1T2: number of degrees of freedom, CPU times and force coeffi-

cients values of P1-P3 computations at M∞ = 0.197 on the coarse mesh.

Non-Prec. Prec.

18960 el. dofs CPU (s) Cd Cl CPU (s) Cd Cl

P1 341200 80800 3.939 0.08748 53600 3.948 0.08361

P2 682560 120100 4.067 0.06207 85900 4.069 0.06186

P3 1137600 315800 4.099 0.05798 256400 4.094 0.05833

Table 4.5: L1T2: number of degrees of freedom, CPU times and force coeffi-

cients values of P1-P3 computations at M∞ = 0.197 on the medium mesh.

Non-Prec. Prec.

75840 el. dofs CPU (s) Cd Cl CPU (s) Cd Cl

P1 1365120 828000 4.015 0.06947 604650 4.033 0.06680

P2 2730240 1052000 4.138 0.05207 717000 4.149 0.05102

Table 4.6: L1T2: number of degrees of freedom, CPU times and force coeffi-

cients values of P1-P2 computations at M∞ = 0.197 on the fine mesh.

78

Chapter 5

Rescaling of the RANS k − ω

equations

In this chapter we present several rescaling techniques applied to the RANS

k − ω equations in combination with a DG spatial discretization. With the

aim to develop a more efficient and robust high-order flow solver, two kinds of

scalings are considered. Firstly, the governing equations are rescaled based on

metric terms such as the inverse cell area or the inverse mass matrix and/or

based on turbulent quantities. Secondly, a so-called auto-scaling approach is

implemented, which rescales the linear system (Ax = b) arising in an implicit

solution algorithm. Note that, all the remarks and techniques presented in

this chapter can be generalized and adapted to other numerical schemes and

turbulence models.

79

5.1 Scaling problems

The entries of the global residual vector may be highly unbalanced because of

poor scaling of variables and equations. Scaling problems can be detrimental

for the efficiency of implicit solvers in which the linear systems are solved inex-

actly and the time step evolution depends on the convergence of the residual

components.

A first reason for the disparity between residual components is concerned

with geometric features and it is specially related to the computational mesh

and coordinate transformation of elements from reference to physical space.

Since the equations have an element-by-element scaling of the metric Jacobian,

the residual at cells far from the body, where metric Jacobian is large, is

generally severals orders of magnitude higher than the residual at cells close

to the wall boundary, where the metric Jacobian is small due to the finer mesh

targeted to resolve the boundary layer.

Secondly, the residuals are unbalanced due to the fact that mean-flow and

turbulent variables differ by several orders of magnitude. For example, when

the k − ω model [77, 81] is used, the turbulent variable ω theoretically could

range up to infinity (value at wall), while the mean-flow variables typically do

not exceed two. More in detail, mean-flow variables are typically of the order

of 1, k is in the order of 0.001 ÷ 0.1, whilst ω takes sufficiently high values

that approximate infinity, such as 106 ÷ 109. Since in the present work the

turbulence model is implemented in terms of ω̃ = ln ω instead of ω, a value of

ω̃ equal to 15 or 20 can represent its upper bound in numerical simulations. A

similar disparity affects the residual when other turbulence models are used,

such as the Spalart-Allmaras model [67], where the turbulent viscosity variable,

ν̃, ranges up to roughly 1000. As a result, turbulent residuals can be orders

of magnitude larger than that of the mean-flow equations. Furthermore, also

the entries in each Jacobian block of the linear system matrix are affected

by the lack of proper scaling due to the disparity between mean-flow and

80

turbulent variables. In particular, large differences arise in entries resulting

from the derivative of mean-flow quantities with respect to the turbulent ones.

Lastly, local changes in residuals potentially can occur when highly non-linear

components are present in the physical model or the discretization, such as in

several turbulence models [67, 75] or shock capturing schemes [44,45].

Since the linear systems arising in the implicit solver are solved inexactly,

i.e. by means of the GMRES algorithm [36] with a stopping criterion based on

the maximum number of Krylov steps or a linear residual reduction, it may be

that only the residual at cells far from the body is reduced by the approximate

linear solver, while the residual at cells close to wall boundaries can potentially

increase. Similarly, only the residual of the turbulence model can be reduced

while the residual of the mean-flow equations may increase. Now, if the linear

residual in one of the mean-flow equations is not sufficiently decreased, or even

increased, this could cause unphysical values in the next non-linear solution

iteration (e.g. density/pressure < 0) and thus a break-down of the non-linear

solution process. Additionally, addressing scaling problems might allow to use

larger time steps and higher tolerances of the linear solver, i.e. a more inexact

solution, resulting in a saving of computational time.

Finally, when the CFL strategy evolution is based on the Switched Evo-

lution Relaxation (SER) or Residual Difference Method (RDM) algorithms

[34, 35], the sequence of CFL numbers selected is not only determined by the

choice of the control parameters, but also on the norm of the residual. There-

fore a disparity between residual components can adversely affect the time

step size. In particular, following the SER strategy, the CFL number at the

n-th iteration is defined as follows

CFLn = min

(
CFL0

(‖R0‖2
‖Rn‖2

)α

, CFLmax

)
(5.1)

where ‖R0‖2 and ‖R0‖n are the L2-norms of residual at the initial and current

iteration step, respectively. CFL0 is the initial CFL number, while CFLmax

and α are two control parameters. For turbulent flows, CFLn will be strongly

81

influenced by the ω-equation. As a result, convergence problems may occur

in the other equations due to an inappropriate choice of the CFL number.

Finally, we remark that, even if the dependence of the CFL number from

a single equation is released, i.e. CFL is not related/is weakly related to a

particular equation (like e.g. in laminar case), the L2-norm computation still

remains influenced by the metric scaling due to the grid dependence of the

residuals.

5.2 Rescaling techniques

Problems caused by a lack of scaling in the metric and the equations can be

addressed by means of rescaling techniques. A generic scaling can be applied

to the linear system Ax = b of Eq. (3.9) as row scaling as follows

SAx = Sb, (5.2)

where S is a vector, or equivalently a (block) diagonal matrix that scales the

residual and the matrix A in the linear system.

Two kinds of rescaling approaches are considered: inherent scaling (a priori

or ab initio scaling) and auto-scaling. The former aims to overcome perma-

nent scaling problems such as grid dependence and inherent differences be-

tween turbulence and mean-flow variables and has an effect on the time step

computation. Basically, it is equivalent to rewrite the equations in a different

way. The latter is implemented to avoid that by solving the linear system in-

accurately, the residuals of mean-flow equations increase resulting in negative

pressures or densities and is calculated on an iteration-by-iteration basis.

5.2.1 A priori scalings

To eliminate the influence of local element sizes, the linear system needs to be

scaled by some metric of the grid closely related to the Jacobian of the coordi-

nate transformation, such as the cell area (or volume), JK , of each element K,

82

evaluated by integrating the determinant of the mapping over the reference

element K̂ [110]. The resulting scaling vector SJ−1 of size m × NK
dof × NK ,

with NK number of elements and NK
dof number of dofs in the generic element

K for each of the m conservative variables, is given by

SJ−1 = {J1
−1,J2

−1, ...,JNK

−1}T ,

where JK
−1 defined as follows

JK
−1 = {JK−1, JK

−1, ..., JK
−1}m×NK

dof
.

The cell area JK is a constant quantity of the element K, therefore the scaling

factor 1
JK

is the same for all of the m×NK
dof dofs of the element K. Notwith-

standing, in DG methods, it’s common practice to deal with curved elements

by employing higher order polynomial mappings of the reference element K̂

onto the element K in the physical space. Consequently, the Jacobian of the

mapping is not generally constant within the element. To take into account

the variation of the metric Jacobian within the cell, a more general metric

scaling approach consists in replacing the vector SJ−1 by the inverse of the

mass matrix M, with

Mij =

∫

Ω

vivj dx, i, j = 1, ...,m×NK
dof ×NK .

Each diagonal block of M−1, which represents the inverse of the element mass

matrixMK , withMKij =
∫
K
vivj dx, i, j = 1, ...,m×NK

dof , better approximates

the Jacobian within the cell K. The application of either of these scalings

should yield a reduction of the ill-conditioning of the linear system due to the

grid dependence. However, disparity between residual components may still

persist for turbulent computations due to the difference among the magnitude

of mean-flow and turbulent variables. For the purpose of limiting this source

of unbalance, another scaling, impacting on turbulence model equations only,

needs to be applied. More in detail, the turbulence model equations can be

scaled by the maximum values of the transported turbulent variables kmax and

ω̃max. The resulting scaling vector is given by

83

Sturb = {Jkω̃
−1,Jkω̃

−1, ...,Jkω̃
−1}NK

dof
×NK

T
,

with

Jkω̃
−1 = {1, 1, 1, 1, k̂−1, ˆ̃ω

−1}m.

Here k̂ and ˆ̃ω are approximations of kmax and ω̃max, respectively. Although

the maximum values of k and ω̃ depend on the flow solution, they must be

specified a priori. In particular, k̂ could be estimated from semi-empirical

correlations for simple flows such as the flat plate. A more general strategy in

the framework of DG methods would be the computation of the maximum k

value, for a given polynomial degree p, from the discrete solution of polynomial

degree p−1. Anyway, in our numerical experiments it was found that k̂ ≈ 0.03

works well for aerodynamic computations of flows around airfoils. Concerning

ˆ̃ω, DG computations showed that a value between 15 ÷ 20 can be specified

without significant changes in convergence history and numerical results.

Once metric and turbulent scalings vectors are built, they can be combined

and applied to the linear system of Eq. (3.9) as follows

(SJ−1Sturb)Ax = (SJ−1Sturb)b

or
(
M−1Sturb

)
Ax =

(
M−1Sturb

)
b,

resulting in a new rescaled system

ASx = bS. (5.3)

Hence, the new CFL number, and the local time-steps, are computed based

on the L2-norm of the scaled global vector of residuals bS.

5.2.2 Auto-scaling

Despite the use of a priori scaling techniques, disparities still persist between

the entries of bs when solving the linear system. To reduce these unbalances,

84

a further scaling, called auto-scaling, Sauto, is applied to the rescaled system

of Eq. (5.3) as follows,

SautoASx = SautobS. (5.4)

The auto-scaling Sauto is calculated, at each non-linear iteration, in order

to keep the maximum difference between residual norms to within a specified

order of magnitude (typically one order). Specifically, we build Sauto based on

a vector Rs, which depends on the scaled residual vector bs. The components

of Sauto are computed by imposing the constraint that the entries of SautoRs

are within a prescribed tolerance. Rs is the vector with components given

by the L2-norms of residuals computed for each degree of freedom of each

equation as follows,

RSj =

√∑NK

i=1 bsj,i
2

NK

, j = 1, ...,m×NK
dofs,

with bsj,i, entry of the scaled residual vector bs, associated to the j-th dof of

the element i. We recall that NK
dofs is the number of degrees of freedom for

each of the m governing equations and NK is the total number of elements.

Note that, in order to build Rs and thus Sauto others strategies have been

implemented and tested, although without substantial changes in results.

Finally, we remark that auto-scaling has an influence on the linear solver

only, since the time step computation is performed before the auto-scaling is

applied to the linear system.

85

5.3 Numerical Results

In this section two aerodynamic test cases are presented in order to asses the

effectiveness of the rescaling algorithms in the framework of DG schemes: an

inviscid transonic flow around the NACA0012 airfoil and a turbulent tran-

sonic flow around the RAE2822 airfoil. The test cases are both characterized

by the presence of shocks. Hence a stabilization technique, as described in Sec-

tion 3.1.1 is used to stabilize the discretization near the shocks. Comparisons

between non-scaled and scaled results obtained using cell metrics, turbulent

quantities and auto-scaling are presented.

The computations are performed using various degrees of polynomial ap-

proximations for the purpose of demonstrating the effect of the different rescal-

ing techniques in improving the efficiency of a high-order flow solver. Com-

putations are carried out for fixed GMRES parameters (number of Krylov

vectors, restarts and relative tolerance to stop iterative solution), with the

convergence of the solution process presented in terms of histories of the lift

coefficient, Cl, and of the L2-norm of residuals versus number of iterations and

CPU time (seconds), respectively.

5.3.1 Inviscid flow around a NACA0012 airfoil with shock

In the first test case, we consider an inviscid flow around a NACA0012 air-

foil. The computational domain consists of 1600 quadrilateral elements, with

curved boundaries approximated by piecewise quadratic polynomials, see Fig-

ure 5.1. At the far-field boundary we specify a Mach number M∞ = 0.8 at an

angle of attack α = 1.25◦; on the wall, we set a slip-wall boundary condition

which imposes v · n = 0 to guarantee no flow normal to the surface. For this

test case we compute the flow solutions up to the fifth-order of accuracy using

tensor product Lagrange polynomials. In each non-linear solution step a lin-

ear system is solved with the restarted and block-ILU-preconditioned GMRES

method. A maximum of 180, 240 and 300 Krylov vectors has been specified

86

for quadratic, cubic and quartic elements respectively, with a restart of the al-

gorithm performed after 120 iterations. The linear solver is stopped once the

maximum number of linear iterations is reached or the initial linear residual

is reduced by a factor of 10−6 or 10−1, respectively.

Figure 5.1: Computational grid, NACA0012 test case.

First, we investigate the influence of various scalings on the convergence

rate of the non-linear solution algorithm. To this end, Figure 5.2 compares

the Cl convergence histories in terms of number of non-linear iterations and

CPU time using the non-scaled (left) and the scaled (right) DG algorithms for a

linear tolerance of 10−6. In particular, we consider the use of the metric scaling,

the inverse cell area SJ−1 or the inverse mass matrix M−1, with and without

auto-scaling. The plots show that, in all cases, the non-scaled and scaled

algorithms yield comparable lift behaviours and at convergence, the lift value

is the same for both the schemes. This is due to the fact that scalings impact

on efficiency, without altering the accuracy of the fully converged solution. In

fact, the scaled solutions converge in a smaller number of non-linear iterations

than the non-scaled ones, with the benefit of reducing the computational effort.

Furthermore, we can appreciate that there is no substantial difference in the

P2 and P3 results obtained using, either the inverse cell area or the inverse

87

mass matrix as scaling factor, whereas only small differences appear for P4

solutions. Finally, Figure 5.2 shows that auto-scaling has almost no effect on

the accuracy and efficiency of the J−1 or M−1 rescaled solutions.

To evaluate the impact of the scalings on the inexact solution of the linear

system more in depth, Figure 5.3 shows the convergence histories of the lift

coefficients obtained considering a linear tolerance of 10−1. Also in this case

the scaled solutions converge faster than the non-scaled ones. In particular, the

rescaling shows remarkably higher efficiency for third- and fifth-order accurate

solutions with just slight improvements in the P3 computations. Furthermore,

we can see that the metric scaling based on the inverse cell area is more

efficient than the inverse mass matrix approach. The saving of CPU time,

which is negligible for P2 computations, increases with the polynomial degree.

Unlike previous results, the combination of auto-scaling and metric scaling is

now shown to have some influence on the convergence histories, although its

contribution to the improvement of the performance is less significant. Finally,

the comparison between the corresponding Cl versus CPU time behaviours of

Figure 5.3 and Figure 5.2 shows that a linear tolerance of 10−1 improves the

efficiency of the implicit solver, independently of the metric scaling.

These results point out that only the metric scaling, in particular if based

on the cell area, significantly improves the convergence rate, whilst auto-scaling

poorly influences the performance of the scheme. However, as all the scalings,

except of the auto-scaling, impact on both the time step evolution and the

solution of the linear system, further investigations have been carried out to

gain more insight into how scalings improve the performance of the scheme.

Figure 5.4 shows histories of the lift coefficient obtained by applying the in-

verse cell area scaling to the time step computation and to the linear system,

separately. All plots suggest that rescaling mainly contributes to the compu-

tational efficiency through the time step, whereas its influence through the

linear system is almost negligible.

In Figures 5.5 and 5.6 we now illustrate the histories of the L2-norm of

88

the non-scaled and scaled residuals obtained using inverse cell area, versus

the number of iterations and CPU time, respectively. Convergence histo-

ries of other scaled computations are not presented because of very similar

behaviours. The plots of both figures confirm the results presented so far.

Rescaling techniques allow to improve the efficiency of DG computations by re-

ducing the number of non-linear iterations and the computational effort needed

to reach the convergence of each variable.

89

P2

x x

x

x x

x x

x

x x

Iterations

C
l

0 5 10 15 20 25 30 35 40
0.324

0.326

0.328

0.33

0.332

0.334

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

x x

x

x x

x x

x

x x

CPU time

C
l

0 50 100 150
0.324

0.326

0.328

0.33

0.332

0.334

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

P3

x x

x

x x

x x

x x

x

x

x x x

Iterations

C
l

0 5 10 15 20 25 30
0.312

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

x x

x

x x

x x

x x

x

x

x x x

CPU time

C
l

0 100 200 300 400 500
0.312

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

P4

x x x

x

x

x

x

x

x x

x x x

x x x

x

x

x

x

x

x

x x x

Iterations

C
l

0 10 20 30 40 50 60
0.302

0.304

0.306

0.308

0.31

0.312

0.314

0.316

0.318
Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

x x x

x

x

x

x

x

x x

x x x

x x x

x

x

x

x

x

x

x x x

CPU time

C
l

0 500 1000 1500 2000
0.302

0.304

0.306

0.308

0.31

0.312

0.314

0.316

0.318
Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

Figure 5.2: NACA0012 test case: Cl versus number of iterations (left column)

and CPU time (right column) with and without scalings. Quadratic, P2 (top

row), cubic, P3 (middle row) and quartic, P4 (bottom row) elements. Linear

residual reduction = 10−6.

90

P2

x

x

x

x
x x

x

x

x

x
x x

Iterations

C
l

0 5 10 15 20 25 30
0.324

0.326

0.328

0.33

0.332

0.334

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

x

x

x

x
x x

x

x

x

x
x x

CPU time

C
l

0 20 40 60 80
0.324

0.326

0.328

0.33

0.332

0.334

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

P3

x x

x

x
x

x x x

x x

x

x x

x x x

Iterations

C
l

0 5 10 15 20 25 30 35 40
0.312

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

x x

x

x
x

x x x

x x

x

x x

x x x

CPU time

C
l

0 50 100 150 200 250
0.312

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328

Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

P4

x x x

x

x

x
x

x
x

x x x

x x x

x

x

x

x

x x x x

Iterations

C
l

0 10 20 30 40 50 60
0.302

0.304

0.306

0.308

0.31

0.312

0.314

0.316

0.318
Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

x x x

x

x

x
x

x
x

x x x

x x x

x

x

x

x

x x x x

CPU time

C
l

0 500 1000 1500
0.302

0.304

0.306

0.308

0.31

0.312

0.314

0.316

0.318
Non-scaled
metric J_1
metric J_1 & autoscaling
metric M_1
metric M_1 & autoscaling

x

x

Figure 5.3: NACA0012 test case: Cl versus number of iterations (left column)

and CPU time (right column) with and without scalings. Quadratic, P2 (top

row), cubic, P3 (middle row) and quartic, P4 (bottom row) elements. Linear

residual reduction = 10−1.

91

P2

Iterations

C
l

0 5 10 15 20 25 30
0.324

0.326

0.328

0.33

0.332

0.334
Non-scaled
metric J_1 on linear system
metric J_1 on time step
metric J_1 on linear system & time step

CPU time

C
l

0 20 40 60 80
0.324

0.326

0.328

0.33

0.332

0.334 Non-scaled
metric J_1 on linear system
metric J_1 on time step
metric J_1 on linear system & time step

P3

Iterations

C
l

0 5 10 15 20 25 30 35 40
0.312

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328
Non-scaled
metric J_1 on linear system
metric J_1 on time step
metric J_1 on linear system & time step

CPU time

C
l

0 50 100 150 200 250
0.312

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328

Non-scaled
metric J_1 on linear system
metric J_1 on time step
metric J_1 on linear system & time step

P4

Iterations

C
l

0 10 20 30 40 50 60
0.302

0.304

0.306

0.308

0.31

0.312

0.314

0.316

0.318
Non-scaled
metric J_1 on linear system
metric J_1 on time step
metric J_1 on linear system & time step

CPU time

C
l

0 500 1000 1500
0.302

0.304

0.306

0.308

0.31

0.312

0.314

0.316

0.318
Non-scaled
metric J_1 on linear system
metric J_1 on time step
metric J_1 on linear system & time step

Figure 5.4: NACA0012 test case: Cl versus number of iterations (left column)

and CPU time (right column) with and without metric scaling. Quadratic,

P2 (top row), cubic, P3 (middle row) and quartic, P4 (bottom row) elements.

Linear residual reduction 10−1.

92

Non-Scaled Scaled (J−1)

P2

Iterations

R
es

id
ua

l

0 10 20 30 4010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rho
rho u
rho v
rho E

Iterations

R
es

id
ua

l

0 10 20 30 4010-12

10-10

10-8

10-6

10-4

10-2

100

102

rho
rho u
rho v
rho E

P3

Iterations

R
es

id
ua

l

0 10 20 3010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rho
rho u
rho v
rho E

Iterations

R
es

id
ua

l

0 10 20 3010-12

10-10

10-8

10-6

10-4

10-2

100

102

rho
rho u
rho v
rho E

P4

Iterations

R
es

id
ua

l

0 10 20 30 40 50 6010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rho
rho u
rho v
rho E

Iterations

R
es

id
ua

l

0 10 20 30 40 50 6010-12

10-10

10-8

10-6

10-4

10-2

100

102

rho
rho u
rho v
rho E

Figure 5.5: NACA0012 test case: history of L2-norm of residuals versus num-

ber of iterations. Non-Scaled (left column) and Scaled (J−1) (right column).

Quadratic, P2 (top row), cubic, P3 (middle row) and quartic, P4 (bottom row)

elements. Linear residual reduction = 10−6

93

Non-Scaled Scaled (J−1)

P2

CPU time

R
es

id
ua

l

0 50 100 15010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rho
rho u
rho v
rho E

CPU time

R
es

id
ua

l

0 50 100 15010-12

10-10

10-8

10-6

10-4

10-2

100

102

rho
rho u
rho v
rho E

P3

CPU time

R
es

id
ua

l

0 100 200 300 400 50010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rho
rho u
rho v
rho E

CPU time

R
es

id
ua

l

0 100 200 300 400 50010-12

10-10

10-8

10-6

10-4

10-2

100

102

rho
rho u
rho v
rho E

P4

CPU time

R
es

id
ua

l

0 500 1000 1500 200010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rho
rho u
rho v
rho E

CPU time

R
es

id
ua

l

0 500 1000 1500 200010-12

10-10

10-8

10-6

10-4

10-2

100

102

rho
rho u
rho v
rho E

Figure 5.6: NACA0012 test case: history of L2-norm of residuals versus CPU

time. Non-Scaled (left column) and Scaled (J−1) (middle column). Quadratic,

P2 (top row), cubic, P3 (middle row) and quartic, P4 (bottom row) elements.

Linear residual reduction = 10−6

94

5.3.2 RAE2822 airfoil, Case 9

In the second test case we consider a turbulent flow around a RAE2822 airfoil

with the free-stream Mach number of M∞ = 0.73, Reynolds number Re =

6.5 · 106 and angle of attack α = 3.19◦, decreased to α = 2.79◦ in order to take

into account the wind tunnel corrections. This is one of the standard turbulent

test cases of the AGARD [111] and it was also considered in the ADIGMA

project [27]. Our computations refer to the transonic conditions denoted by

Case 9. A quadrilateral mesh of 8096 elements is used with lines represented

by polynomials of degree 4, in order to represent the curved geometry, see

Figure 5.7. A zero heat flux no slip boundary condition, where the ωw is

computed according to the projection discussed in Section 3.3.1, whereas at

far-field the free-stream conditions with vortex correction are applied. At

the inflow, k and ω are computed based on prescribed values of turbulence

intensity, It, and turbulent viscosity ratio, µt

µ
, set equal to 10−3 and 10−2,

respectively. For this test case, the linear systems at each Newton iteration

are solved with 400 linear steps and one restart performed after 200 iterations.

The linear solver is stopped once the linear residual is reduced by a factor of

10−8 or the maximum number of linear iterations is reached. The solutions

are computed through a sequence of P1, P2 and P3 approximations that starts

from an initialization of free-stream values for P0 elements.

95

Figure 5.7: Computational grid, RAE2822 test case.

Figure 5.8 shows convergence histories of the lift coefficient obtained with

non-scaled and scaled algorithms. A comparison between inverse cell area met-

ric scaling, turbulent scaling, auto-scaling and their combination is presented.

Note that, the inverse mass matrix scaling results are not shown since they

do not lead to any improvement in the efficiency in comparison to the inverse

cell area scaling. The computations are performed using the same initial CFL

numbers, CFL0 = {10, 8, 5}, for P1, P2 and P3 elements, respectively. Overall,

graphs show that, for each polynomial degree, lift coefficients converge to the

same values independent of the scalings used. Furthermore, in the most of the

cases, the use of scalings improves the efficiency of the scheme. In particular,

for P1 elements, scaled and non-scaled solutions exhibit similar convergence

histories, except that for the inverse cell area scaling, which is less performant

than the others due to instabilities caused by a too-big CFL0. For P2 el-

ements we observe that the convergence history computed using the scaling

of the turbulence model equations only is similar to that computed without

scaling, whereas the use of the inverse cell area scaling allows a faster con-

vergence to the reference value of the lift coefficient. Moreover, we note that,

the coupling of the turbulent scaling and of the auto-scaling to the metric

96

scaling (full scaling) does not lead to any improvement in convergence rate

and efficiency. Similarly, for P3 solutions, turbulent scaling yields the same

convergence behaviour of the non-scaled algorithm, whereas the other scalings

allow to converge faster to the reference lift value. In particular, the Cl conver-

gence is achieved with the lowest number of iterations and CPU time by using

the metric scaling only. Finally, we remark that, using P2 and P3 elements,

the scaled computations, except those performed using the turbulent scaling,

allow to reduce the CPU time by a factor of 2 with respect to the non-scaled

algorithm.

Figure 5.9 displays the history of residuals versus the number of implicit

iteration steps of the backward Euler scheme with and without scalings, for

linear, quadratic and cubic elements. The plots refer to computations per-

formed using non-scaling and the more efficient scaling approaches. Overall,

it is evident that scaling leads to a reduction in the number of non-linear it-

erations in comparison to the non-scaled algorithm, except for the P1 metric

scaled residuals that show spikes in the turbulent variable behaviours, which

deteriorate the convergence process. The spikes in the residuals correspond

to a large initial CFL number for the turbulent transport equations and are

indicative of an instable solution. The addition of the turbulent scaling to the

metric scaling ensures a stable P1 solution, balancing the turbulent and the

mean-flow residuals in the non-linear solver. Furthermore it is evident that

auto-scaling does not lead to any improvement in the convergence of residu-

als. Finally, note that the difference between non-scaled and scaled Newton

iterations becomes larger as the polynomial degree increases.

Figure 5.10 shows the histories of residuals versus CPU time (seconds).

These plots point out that using P2 and P3 elements, scaling reduces the

computational cost required to achieve convergence of the non-linear residuals

as compared to the non-scaled algorithm, whereas P1 computations are slightly

more efficient without scaling. Furthermore, the saving of CPU time between

non-scaled and scaled solutions increases when passing from linear to cubic

97

elements.

Figure 5.11 shows the effect of initial CFL number, CFL0, on the conver-

gence rate (left column) and efficiency (right column) of scaled and non-scaled

computations using P2 elements. The plots show that the metric scaling allows

to converge in a lower number of non-linear iterations and exhibit a reduced

computational time with respect to the other approaches up to CFL0 = 2.

Choosing higher initial CFL numbers, CFL0 = 5, 10 and 15, results in a

breakdown of the iteration process. The coupling of the metric scaling with

turbulent and auto-scaling is less sensitive to numerical instabilities and allows

to achieve the convergence for all the considered initial CLF numbers (except

for CFL0 = 5). The full scaled approach is shown to be more efficient than the

non-scaled algorithm even if the gain in terms of number of iterations and CPU

time decreases as the initial CFL number increases. Furthermore, it allowed to

obtain the convergence for CFL0 = 15, even if the non-scaled algorithm was

more stable for CFL0 = 5. These results, summarized in Tables 5.1 and 5.2,

show that scaling influences both the evolution of the CFL number far from

the solution (small CFL), improving the convergence rate to steady state, and

the robustness of the solver.

98

P1

Iterations

C
l

0 50 100 150 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Non-scaled
metric J_1
k-omega
metric J_1 & k-omega
metric J_1 & k-omega &autoscaling

CPU time

C
l

0 2000 4000 6000 8000 10000 12000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Non-scaled
metric J_1
k-omega
metric J_1 & k-omega
metric J_1 & k-omega &autoscaling

P2

Iterations

C
l

0 50 100 150 200 250
0.83

0.84

0.85

0.86

0.87

Non-scaled
metric J_1
k-omega
metric J_1 & k-omega
metric J_1 & k-omega &autoscaling

CPU time

C
l

0 20000 40000 60000
0.83

0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

Non-scaled
metric J_1
k-omega
metric J_1 & k-omega
metric J_1 & k-omega &autoscaling

P3

Iterations

C
l

0 100 200 300 400
0.86

0.8605

0.861

0.8615

0.862

0.8625

0.863

0.8635

0.864

Non-scaled
metric J_1
k-omega
metric J_1 & k-omega
metric J_1 & k-omega &autoscaling

CPU time

C
l

0 50000 100000 150000 200000
0.86

0.8605

0.861

0.8615

0.862

0.8625

0.863

0.8635

0.864

Non-scaled
metric J_1
k-omega
metric J_1 & k-omega
metric J_1 & k-omega &autoscaling

Figure 5.8: RAE2822 test case: Cl versus number of iterations (left column)

and CPU time (right column) with and without scalings. Linear, P1 (top row),

quadratic, P2 (middle row) and cubic, P3 (bottom row) elements.

99

P1 P2 P3

Non-scaled

x

x x x
x

x
x x x x x x x

x
x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x

x x

x

x
x

x
x

x
x

x x
x

x
x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x
x

x x
x x x x x x x x x x x x x

x x x

x

x

Iterations

R
es

id
ua

l

0 100 200 300 40010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104 rho
rho u
rho v
rho E
rho k
rho omega

x

Scaled (J−1)

x

x

x

x

x

x

x x x x x x x x x x
x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-8

102

1012

1022 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x
x x x x x

x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x

x
x x

x

x

x

Iterations

R
es

id
ua

l

0 100 200 300 40010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

Scaled (J−1, k − ω)

x

x x x x
x

x
x x x x x

x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x
x x x x x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x x
x

x
x

x x

x

Iterations

R
es

id
ua

l

0 100 200 300 40010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

Scaled (J−1, k − ω, auto)

x

x x x x
x

x
x x x x x

x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x
x x x x x

x

x

Iterations

R
es

id
ua

l

0 25 50 75 100 125 15010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

x

x x
x

x
x

x x

x

Iterations

R
es

id
ua

l

0 100 200 300 40010-6

10-4

10-2

100

102

104

106

108 rho
rho u
rho v
rho E
rho k
rho omega

x

Figure 5.9: RAE2822 test case: history of L2-norm of residuals versus number

of iterations. Non-Scaled (first row) and Scaled by (J−1) (second row), Scaled

by (J−1, kω) (third row) and Scaled by (J−1, kω, auto-scaling) (last row).

Linear, P1 (left column), quadratic, P2 (middle column) and cubic, P3 (right

column) elements.

100

P1 P2 P3

Non-scaled

x x x
x

x
x x x x x x x

x
x

x

x

CPU time

R
es

id
ua

l

0 2500 5000 7500 1000010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104
rho
rho u
rho v
rho E
rho k
rho omega

x

x

x x

x

x
x

x
x

x
x

x x
x

x
x

x

x

CPU time

R
es

id
ua

l

0 10000 20000 3000010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104
rho
rho u
rho v
rho E
rho k
rho omega

x

x
x

x x
x x x x x x x x x x x x x

x x x

x

x

CPU time

R
es

id
ua

l

0 50000 100000 150000 20000010-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104
rho
rho u
rho v
rho E
rho k
rho omega

x

Scaled (J−1)

x

x

x

x

x

x x x x x x x x x x
x

x

x

CPU time

R
es

id
ua

l

0 2500 5000 7500 1000010-8

102

1012

1022
rho
rho u
rho v
rho E
rho k
rho omega

x

x
x x x x x

x

x

x

CPU time

R
es

id
ua

l

0 10000 20000 3000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

x

x
x x

x

x

x

CPU time

R
es

id
ua

l

0 50000 100000 150000 20000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

Scaled (J−1, k − ω)

x x x x
x

x
x x x x x

x

x

x

CPU time

R
es

id
ua

l

0 2500 5000 7500 1000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

x
x x x x x

x

x

CPU time

R
es

id
ua

l

0 10000 20000 3000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

x x
x

x
x

x x

x

CPU time

R
es

id
ua

l

0 50000 100000 150000 20000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

Scaled (J−1, k − ω, auto)

x x x x
x

x
x x x x x

x

x

x

CPU time

R
es

id
ua

l

0 2500 5000 7500 1000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

x
x x x x x

x

x

CPU time

R
es

id
ua

l

0 10000 20000 3000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

x x
x

x
x

x x

x

CPU time

R
es

id
ua

l

0 50000 100000 150000 20000010-6

10-4

10-2

100

102

104

106

108
rho
rho u
rho v
rho E
rho k
rho omega

x

Figure 5.10: RAE2822 test case: history of L2-norm of residuals versus CPU

time. Non-Scaled (first row) and Scaled by (J−1) (second row), Scaled by

(J−1, kω) (third row) and Scaled by (J−1, kω, auto-scaling) (last row). Linear,

P1 (left column), quadratic, P2 (middle column) and cubic, P3 (right column)

elements.

101

CFL0

Ite
ra

tio
ns

5 10 15 20

200

400

600

800

1000

1200 Non-Scaled
metric
kw
metric & kw
metric & kw & autoscaling

CFL0

C
P

U
tim

e

5 10 15 20
104

105

106

Non-Scaled
metric
kw
metric & kw
metric & kw & autoscaling

Figure 5.11: RAE2822 test case: number of iterations (left column) and CPU

time (right column) required to achieve converged solution versus CFL0 using

non-scaled and scaled algorithms, P2 elements.

102

Iterations

CFL0 Non-Scal. J−1 k − ω J−1 & k − ω Full-Scal.

0.5 913 286 979 459 458

1 531 161 547 225 225

2 351 106 726 X 130

5 164 X 167 X X

10 119 X 392 87 124

15 X X 180 68 66

20 78 67 77 69 69

Table 5.1: RAE2822 test case: number of iterations required to achieve con-

verged P2 solutions using non-scaled and scaled algorithms for various initial

CFL numbers.

CPU time

CFL0 Non-Scal. J−1 k − ω J−1 & k − ω Full-Scal.

0.5 100000 51700 110000 70000 72500

1 72500 32500 78000 42500 43700

2 52700 22000 72000 X 27000

5 31500 X 41900 X X

10 23000 X 41600 16000 21600

15 X X 29800 14200 14000

20 16300 14000 16200 18500 14700

Table 5.2: RAE2822 test case: CPU time (sec) required to achieve converged

P2 solutions using non-scaled and scaled algorithms for various initial CFL

numbers.

103

Conclusions

The goal of this research was to give a contribution to the development of a

high-order accurate Discontinuous Galerkin finite element method (DG) for

compressible all-speed flows.

This work was motivated by the increasing demand of industry to advance

CFD-aided design and analysis procedures.

The problems faced with the standard industrial codes are:

• Low accuracy (formally second-order) for turbulence, aeroacoustics, and

many viscosity dominant flows, such as boundary layer flows, vortical

flows, shock-boundary layer interactions, heat flux transfers, etc.

• Difficulties to treat complex turbulent flows with simultaneous presence

of high and low-speed regions.

• Extreme stiffness introduced by the turbulent transport equations.

• Poor conditioning of the algebraic system arising from the discretization

of the governing equations on grids with a large range of element sizes.

The flow solver is based on the discretization of the compressible fully-

coupled Reynolds-Averaged Navier-Stokes and k − ω turbulence model equa-

tions in conservative variables by means of a DG method, to preserve the

high-order spatial accuracy for simulations in complex geometries at different

flow regimes using unstructured grids. The Roe’s approximate Riemann solver

with the Harten’s entropy-fix was introduced to compute the numerical fluxes

at element interfaces. The semi-discrete equations were integrated in time by

104

the backward Euler scheme, using the restarted generalized minimum residual

(GMRES) method to approximately solve the linear systems. The incomplete

LU preconditioning was employed to accelerate the convergence of the linear

solver.

The DG solution was extended to the incompressible limit by implementing

a low Mach number preconditioning technique. A new preconditioner based

on a modified version of the Turkel’s preconditioning matrix was presented to

take into account the proposed formulation of the governing equations. The

preconditioning method employed in this work alters both the time-derivative

terms of the system of equations and the dissipative terms of the numerical flux

function (full preconditioning approach) in order to improve the accuracy and

efficiency of the scheme for steady state computations. The performance of the

method was demonstrated by computing laminar and turbulent aerodynamic

test cases at variours low Mach numbers.

The results showed that accurate solutions on relatively coarse meshes can

be computed, even without preconditioning, provided that high-order elements

are used. Nevertheless, the accuracy of the numerical solution is always im-

proved by preconditioning as compared to the non-preconditioned case. Fur-

thermore, preconditioning was proven to enhance the convergence rate and to

reduce the computational effort, improving the efficiency of the GMRES solver.

The impact of preconditioning on the robustness of the numerical scheme was

also discussed showing that, for complex turbulent applications, a proper set-

ting of the preconditioning parameters reduces oscillations in the convergence

history of the non-linear residuals improving the stability of the convergence

process.

The scaling of the equations was adopted to overcome the ill-conditioning

problems arising from both the use of non-uniform grids (metric scaling) and

the inherent difference between turbulence and mean-flow variables (turbulent

scaling). Furthermore, another kind of scaling, named auto-scaling, was im-

105

plemented to keep the maximum difference between linear residuals to within

one order of magnitude. Since transonic test cases were computed to assess

the effectiveness of the rescaling algorithms in the framework of DG schemes,

an artificial viscosity term was added to the DG discretized equations for the

non-linear control of oscillations at discontinuities. Furthermore, the standard

DG discretization, based on the non-preconditioned eigenvalues and eigenvec-

tors, was used due to the fact that the preconditioner reduces to the identity

matrix for high speed flow computations.

For most of the results obtained by applying the rescaling techniques to in-

viscid and turbulent problems, it was demonstrated that this technique is effec-

tive. In particular, it was shown that the metric scaling significantly improves

the convergence rate and efficiency, whilst turbulent scaling and auto-scaling

poorly influence the performance of the scheme. However, when coupled with

the metric scaling, turbulent and auto- scalings improve the robustness of the

algorithm. In conclusion, our findings suggest that the best approach to im-

prove the efficiency and robustness of the scheme is to use the full scaling

approach. Since scalings impact on both the time step evolution and the so-

lution of the linear system, a further investigation has been carried out to

gain more insight into how this approach influences the performance of the

flow solver. The results clearly showed that rescaling mainly contributes to

the computational efficiency through the evolution of the time step, whereas

its influence through the linear system is almost negligible. Basically, for the

given GMRES parameters, metric scaling improves the performance of the

CFL evolution strategy far from the solution (small CFL) allowing the non-

linear iterations to converge in less iterations and CPU time as compared to the

non-scaled computations. Future work should further explore the parameters

in the method that could improve the benefits of the scaling. In particular,

the control parameters determining the sequence of CFL numbers and the

convergence of the GMRES solver, respectively.

106

Nota: La presente tesi è cofinanziata con il sostegno della Commissione

Europea, Fondo Sociale Europeo e della Regione Calabria. L’autore è il solo

responsabile di questa tesi e la Commissione Europea e la Regione Calabria

declinano ogni responsabilità sull’uso che potrà essere fatto delle informazioni

in essa contenute.

107

Appendix A

Primitive variables

In the following, we give the formulae and matrices for the transformation

between conservative variables u = (ρ, ρu1, ρu2, ρE, ρk, ρω̃)T and primitive

variables q = (p, u1, u2, T, k, ω̃)
T . Here ρ denotes the density, v2 = (u1, u2)

T

the velocity vector, E the total energy, k the turbulent kinetic energy and

ω̃ = ln (ω), where ω is the turbulence dissipation rate. The pressure p can be

computed using the equation of state of a perfect gas, p = ρRT . The gas

constant R is given by the difference between the specific heat capacities at

constant pressure, cp, and constant volume, cv, R = cp − cv. Furthermore, the

total energy E is given by the relation E = cvT + 1
2
v2 + k, where T denotes

the temperature.

Given u in conservative variables we compute q in primitive ones as follows

q =




p

u1

u2

T

k

ω̃




=




(γ − 1) ρe

ρu1

ρ

ρu2

ρ

(γ − 1) ρe

ρ

ρk

ρ

ρω̃

ρ




,

where the static specific energy e for a perfect gas is calculated from the

conservative variables as:

ρe = ρE − 1

2ρ

[
(ρu1)

2 + (ρu2)
2]− ρk.

108

Given q in primitive variables we compute u in conservative ones as follows

u =




ρ

ρu1

ρu2

ρE

ρk

ρω̃




=




p

T

p

T
u1

p

T
u2

p

(γ−1)
+ p

2T
(u2

1 + u2
2) +

p

T
k

p

T
k

p

T
ω̃




.

Thereby, the transformation matrix from conservative to primitive vari-

ables Γ is given by

Γ =
∂u

∂q
=




ρp 0 0 ρT 0 0

ρpu1 ρ 0 ρTu1 0 0

ρpu2 0 ρ ρTu2 0 0

ρpH − 1 ρu1 ρu2 ρTH + ρcp ρ 0

ρpk 0 0 ρTk ρ 0

ρpω̃ 0 0 ρT ω̃ 0 ρ




,

with

ρp =
1

T
,

ρT = − p

T 2
= − ρ

T
,

and

H = E +
p

ρ
.

Finally, the transformation matrix from primitive to conservative variables

Γ−1 is given by

Γ−1 =
∂q

∂u
=




ρcp+ρT (H−k−q2)
cpρρp+ρT

u1ρT
cpρρp+ρT

u1ρT
cpρρp+ρT

− ρT
cpρρp+ρT

ρT
cpρρp+ρT

0

−u1

ρ
1
ρ

0 0 0 0

−u2

ρ
0 1

ρ
0 0 0

ρp(q2−H+k)
cpρρp+ρT

u1ρp
cpρρp+ρT

u2ρp
cpρρp+ρT

ρp
cpρρp+ρT

− ρp
cpρρp+ρT

0

−k
ρ

0 0 0 1
ρ

0

− ω̃
ρ

0 0 0 0 1
ρ




.

109

Appendix B

Preconditioned eigenvectors

The preconditioned dissipation matrix of the Roe scheme is given by

Â
(
u+,u−,n

)
∆u =

∂u

∂q
Pq

∣∣∣∣Pq
−1 ∂q

∂u

(
∂Fc

∂q
· n

)∣∣∣∣∆q =
∂u

∂q
Pq

(
T̂q|Λ̂|T̂−1

q

)
∆q,

where the eigenvalues of the convective flux Jacobian are

Λ̂ = diag {v · n,v · n,v · n,v · n, v′ − a′t, v
′ + a′t} ,

and their associated eigenvectors, columns of the matrix T̂q, are given by

{0, 0, 0, 0, 0, 1}T ,

{− 2Tρ

2k + 3T
,

6Tu1 (β
2 − 1)

(2k + 3T) β2 (2k (γ − 1) + 3Tγ)
,

6Tu2 (β
2 − 1)

(2k + 3T) β2 (2k (γ − 1) + 3Tγ)
, 0, 1, 0}T ,

{ 2kρ

2k + 3T
,− 6ku1 (β

2 − 1)

(2k + 3T) β2 (2k (γ − 1) + 3Tγ)
,− 6ku2 (β

2 − 1)

(2k + 3T) β2 (2k (γ − 1) + 3Tγ)
, 1, 0, 0}T ,

{0,−n2, n1, 0, 0, 0}T ,

{(2k (γ − 1) + 3Tγ) ρ

((γ − 1) (2k + 3T))
,− (3n1 (a

′
t − v · n+ v′))

((γ − 1) β2 (2k + 3T))
,− (3n2 (a

′
t − v · n+ v′))

((γ − 1) β2 (2k + 3T))
, 1, 0, 0}T ,

{(2k (γ − 1) + 3Tγ) ρ

(γ − 1) (2k + 3T)
,
3n1 (a

′
t + v · n− v′)

(γ − 1) β2 (2k + 3T)
,
3n2 (a

′
t + v · n− v′)

(γ − 1) β2 (2k + 3T)
, 1, 0, 0}T ,

with

v′ =
1

2

(
β2 + 1

)
(v · n) ,

a′t =
1

2

√
(v · n)2(β2 − 1)2 + 4β2at2.

110

List of Figures

3.1 Two elements K+ and K− sharing edge E 26

4.1 Computational Grids for NACA0012 test case: quadrangular

(left) and triangular (right). 44

4.2 History of L2-norm of residuals versus number of iterations for

the quadrangular grid. M∞ = 10−1(left column), M∞ = 10−2

(middle column) and M∞ = 10−3 (right column). Linear, P1

(top row), quadratic, P2 (middle row) and cubic, P3 (bottom

row) elements. 46

4.3 History of L2-norm of residuals versus CPU time for the quad-

rangular grid. M∞ = 10−1(left column), M∞ = 10−2 (middle

column) and M∞ = 10−3 (right column). Linear, P1 (top row),

quadratic, P2 (middle row) and cubic, P3 (bottom row) ele-

ments. 47

4.4 Behaviour of the GMRES solver with (right column) and with-

out (left column) low Mach number preconditioning for M∞ =

10−2. 49

4.5 History of L2-norm of residuals versus number of iterations (top

row) and CPU time (bottom row) forM∞ = 10−2 (quadrangular

grid). Linear, P1 (top row), quadratic, P2 (middle row) and

cubic, P3 (bottom row) elements. 51

111

4.6 Behaviour of the GMRES solver with flux (open symbols) and

full (solid symbols) preconditioning: Logarithm of the CFL

numbers vs non-linear iterations (left column) and GMRES it-

erations vs non-linear iterations (right column) at M∞ = 10−2. 52

4.7 NACA0012 test case: contours of normalized pressure without

preconditioning for quadrangular grid. M∞ = 10−1 (left col-

umn), M∞ = 10−2 (middle column) and M∞ = 10−3 (right

column). P1 (top row), P2 (middle row) and P3 (bottom rows)

elements. 54

4.8 NACA0012 test case: contours of normalized pressure with pre-

conditioning for quadrangular grid. M∞ = 10−1 (left column),

M∞ = 10−2 (middle column) and M∞ = 10−3 (right column).

P1 (top row), P2 (middle row) and P3 (bottom rows) elements. 55

4.9 NACA0012 test case: contours of normalized pressure near the

leading edge forM∞ = 10−3, non-preconditioned (top row), pre-

conditioned (middle row) and non-preconditioned at M∞ = 0.4

(bottom row). Linear, P1 (left column), quadratic, P2 (central

column), and cubic, P3 (right column) elements. 56

4.10 NACA0012 test case, triangular grid: contours of normalized

pressure near the leading edge forM∞ = 10−3, non-preconditioned

(top row), preconditioned (middle row) and non-preconditioned

at M∞ = 0.4 (bottom row). Linear, P1 (left column), quadratic,

P2 (central column) and cubic, P3 (right column) elements. . 57

4.11 Computational grid for the flat plate test case (2240 elements). 59

4.12 Turbulent flat plate: history of L2-norm of residuals versus num-

ber of iterations (left column) and CPU time (right column) at

M∞ = 10−2. Linear, P1 (top row) quadratic, P2 (middle row)

and cubic, P3 (bottom row) elements. 61

112

4.13 Turbulent flat plate, influence of the parameter ε on convergence

process: history of L2-norm of residuals versus number of itera-

tions (left column) and CPU time (right column) at M∞ = 10−2

for P3 elements. 62

4.14 Turbulent flat plate: behaviour of the GMRES solver with (right

column) and without (left column) low Mach number precondi-

tioning for M∞ = 10−2. 63

4.15 Turbulent flat plate: contours of normalized pressure with pre-

conditioning (right column) and without preconditioning (left

column) at M∞ = 10−2 for a grid of 2240 elements. P1 (top

row), P2 (middle row) and P3 (bottom rows) elements. 65

4.16 Flat plate test case at turbulent conditions: skin friction dis-

tribution at wall, with and without preconditioning, for P1, P2

and P3 elements. 66

4.17 Flat plate test case at turbulent conditions: Cd versus degrees

of freedom (left column) and versus CPU time (right column). 67

4.18 Computational grid for the L1T2 test case, 4740 elements. . . 70

4.19 L1T2 high-lift configuration: history of L2-norm of residuals

versus number of iterations (left column) and CPU time (right

column) on medium mesh (18960 elements) at M∞ = 0.197.

Linear, P1 (top row), quadratic, P2 (middle row) and cubic, P3

(bottom row) elements. 72

4.20 L1T2 high-lift configuration: contours of normalized pressure

with preconditioning (right column) and without precondition-

ing (left column) at M∞ = 0.197 on quadrangular grid. P1 (top

row), P2 (middle row) and P3 (bottom rows) elements. 74

4.21 L1T2 high-lift configuration: contours of normalized pressure

with preconditioning (right column) and without precondition-

ing (left column) at M∞ = 10−2 on quadrangular grid. P1 (top

row), P2 (middle row) and P3 (bottom rows) elements. 75

113

4.22 L1T2 high-lift configuration: Cd (top row) and Cl (bottom row)

versus degrees of freedom (left column) and versus CPU time

(right column) at M∞ = 0.197. 77

5.1 Computational grid, NACA0012 test case. 87

5.2 NACA0012 test case: Cl versus number of iterations (left col-

umn) and CPU time (right column) with and without scalings.

Quadratic, P2 (top row), cubic, P3 (middle row) and quartic,

P4 (bottom row) elements. Linear residual reduction = 10−6. . 90

5.3 NACA0012 test case: Cl versus number of iterations (left col-

umn) and CPU time (right column) with and without scalings.

Quadratic, P2 (top row), cubic, P3 (middle row) and quartic,

P4 (bottom row) elements. Linear residual reduction = 10−1. . 91

5.4 NACA0012 test case: Cl versus number of iterations (left col-

umn) and CPU time (right column) with and without metric

scaling. Quadratic, P2 (top row), cubic, P3 (middle row) and

quartic, P4 (bottom row) elements. Linear residual reduction

10−1. 92

5.5 NACA0012 test case: history of L2-norm of residuals versus

number of iterations. Non-Scaled (left column) and Scaled

(J−1) (right column). Quadratic, P2 (top row), cubic, P3 (mid-

dle row) and quartic, P4 (bottom row) elements. Linear residual

reduction = 10−6 . 93

5.6 NACA0012 test case: history of L2-norm of residuals versus

CPU time. Non-Scaled (left column) and Scaled (J−1) (middle

column). Quadratic, P2 (top row), cubic, P3 (middle row) and

quartic, P4 (bottom row) elements. Linear residual reduction

= 10−6 . 94

5.7 Computational grid, RAE2822 test case. 96

114

5.8 RAE2822 test case: Cl versus number of iterations (left col-

umn) and CPU time (right column) with and without scalings.

Linear, P1 (top row), quadratic, P2 (middle row) and cubic, P3

(bottom row) elements. 99

5.9 RAE2822 test case: history of L2-norm of residuals versus num-

ber of iterations. Non-Scaled (first row) and Scaled by (J−1)

(second row), Scaled by (J−1, kω) (third row) and Scaled by

(J−1, kω, auto-scaling) (last row). Linear, P1 (left column),

quadratic, P2 (middle column) and cubic, P3 (right column)

elements. 100

5.10 RAE2822 test case: history of L2-norm of residuals versus CPU

time. Non-Scaled (first row) and Scaled by (J−1) (second row),

Scaled by (J−1, kω) (third row) and Scaled by (J−1, kω, auto-

scaling) (last row). Linear, P1 (left column), quadratic, P2 (mid-

dle column) and cubic, P3 (right column) elements. 101

5.11 RAE2822 test case: number of iterations (left column) and CPU

time (right column) required to achieve converged solution ver-

sus CFL0 using non-scaled and scaled algorithms, P2 elements. 102

115

List of Tables

4.1 Flat plate test case at turbulent conditions: number of degrees

of freedom, CPU time and drag coefficient values for P1-P4 com-

putations on the coarse mesh. 68

4.2 Flat plate test case at turbulent conditions: number of degrees

of freedom, CPU time and drag coefficient values for P1-P3 com-

putations on the medium mesh. 68

4.3 Flat plate test case at turbulent conditions: number of degrees

of freedom, CPU time and drag coefficient values for P1-P3 com-

putations on the fine mesh. 68

4.4 L1T2: number of degrees of freedom, CPU times and force co-

efficients values of P1-P3 computations at M∞ = 0.197 on the

coarse mesh. 78

4.5 L1T2: number of degrees of freedom, CPU times and force co-

efficients values of P1-P3 computations at M∞ = 0.197 on the

medium mesh. 78

4.6 L1T2: number of degrees of freedom, CPU times and force co-

efficients values of P1-P2 computations at M∞ = 0.197 on the

fine mesh. 78

5.1 RAE2822 test case: number of iterations required to achieve

converged P2 solutions using non-scaled and scaled algorithms

for various initial CFL numbers. 103

116

5.2 RAE2822 test case: CPU time (sec) required to achieve con-

verged P2 solutions using non-scaled and scaled algorithms for

various initial CFL numbers. 103

117

Bibliography

[1] B. Van Leer. Flux-vector splitting for the Euler equations. Technical Report

81-11, ICASE, 1981.

[2] B. Van Leer. Upwind-difference methods for Aerodynamic problems gov-

erned by the Euler equations. Lectures in Applied Mathematics, 22, 1985.

[3] P. Roe. Approximate Riemann solvers, parameter vectors and difference

schemes. Journal of Computational Physics, 43(2):357–372, 1981.

[4] P. Roe. Characteristic-based schemes for the Euler equations. Annual

Review of Fluid Mechanics, 18:337–365, 1986.

[5] B. Van Leer, J. Thomas, P. Roe, and R. Newsome. A comparison of

numerical flux formulas for the Euler and Navier-Stokes equations. AIAA

Paper, 87-1104, 1987.

[6] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary,

H. Deconinck, R. Hartmann, K. Hillewaert, H.T. Huynh, N. Kroll, G. May,

P.O. Persson, B. van Leer, M. Visbal. High-Order CFD methods: current

status and perspective. Int. J. Numer. Meth. Fluids, 72(8):811–845, 2013.

[7] C.W. Shu and S. Osher. Efficient implementation of essentially nonoscil-

latory shock-capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[8] C.W. Shu and S. Osher. Efficient implementation of essentially nonoscil-

latory shock-capturing schemes. II. J. Comput. Phys., 83(1):32–78, 1989.

118

[9] C. Johnson and J. Pitkarata. An Analysis of the Discontinuous Galerkin

Method for a Scalar Hyperbolic Equation. Mathematics of Computation,

46:1–26, 1986.

[10] B. Cockburn, S.Y. Lin and C.W. Shu. TVB Runge-Kutta Local Projec-

tion Discontinuous Galerkin Finite Element Method for Conservation Laws

III: One Dimensional Systems. J. Comp. Phys., 84:90–113, 1989.

[11] B. Cockburn, G. Karniadakis, C.W. Shu. The development of discontinu-

ous Galerkin methods. Discontinuous Galerkin Methods, Springer, 11:3–50,

1999.

[12] B. Cockburn, S. Hou and C.W. Shu. The Runge-Kutta Local Projection

Discontinuous Galerkin Finite Element Method for Conservation Laws IV:

The Multidimensional Case. Mathematics of Computation, 54(190):545–

581, 1990.

[13] G. Jiang and C.W. Shu. On Cell Entropy Inequality for Discontinuous

Galerkin Method for Hyperbolic Equations. AIAA Journal, 36:775–782,

1998.

[14] S.S Collis. The DG/VMS method for unified turbulence simulations.

AIAA Paper 2002-3124, 32nd AIAA Fluid Dynamics Conference 2002

[15] T.J.R. Hughes, G. Scovazzi, P.B. Bochev, A. Buffa. A multiscale discon-

tinuous Galerkin method with the computational structure of a continuous

Galerkin method. Comput. Methods Appl. Mwech. Engrg., 195:2761–2787,

2006.

[16] S. Gottlieb, A. Orszag. Numerical Analysis of Spectral Methods: Theory

and Applications. SIAM Philadelphia, 1977.

[17] S. Gottlieb, JS. Hesthaven. Spectral Methods for Hyperbolic Prob-

lems Journal of Computational and Applied Mathematics, 128(1-2):83–131,

2001.

119

[18] A. Harten, B. Engquist, S. Osher, S. Chakravarthy. Uniformly high order

essentially non-oscillatory schemes III. Journal of Computational Physics,

71:231, 1987.

[19] S. Lele. Compact finite difference schemes with spectral-like resolution.

Journal of Computational Physics, 103:16–42, 1992.

[20] B.V. Leer. Towards the ultimate conservative difference scheme V. A sec-

ond order sequel to Godunov’s method. Journal of Computational Physics,

32:101–136, 1979.

[21] M. Visbal, D. Gaitonde. On the use of higher-order finite-difference

schemes on curvilinear and deforming meshes. Journal of Computational

Physics, 181(1):155–185, 2002.

[22] R. Abgrall, A. Larat, M. Ricchiuto. Construction of very high order

residual distribution schemes for steady inviscid flow problems on hybrid

unstructured meshes. Journal of Computational Physics, 230(11):4103–

4136, 2011.

[23] T. Barth, P. Frederickson. High-order solution of the Euler equations on

unstructured grids using quadratic reconstruction. AIAA Paper, 90–0013

1990.

[24] B. Cockburn, CW. Shu. TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws ii: general framework.

Mathematics of Computation, 52:411–435, 1989.

[25] F. Bassi, S. Rebay. A high-order accurate discontinuous finite element

method for the numerical solution of the compressible Navier-Stokes equa-

tions. Journal of Computational Physics, 131:267–279, 1997.

[26] B. Van Leer, W.T. Lee, P.L. Roe. Characteristic time-stepping or local

preconditioning of the Euler equations. AIAA-1991-1552, 260–282, 1991.

120

[27] N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, K.

Sorensen. ADIGMA - A European Initiative on the Development of Adap-

tive Higher-order Variational Methods for Aerospace Applications. Notes

on Numerical Fluid Mechanics and Multidisciplinary Design, Springer,

113, 2010.

[28] N. Kroll. European project on Industrialization of High-Order Meth-

ods for Aeronautical Applications. Proceedings of the ECCOMAS 2012,

September 10-14, Vienna, Austria, 2012.

[29] G. Volpe. Performance of compressible flow codes at low Mach numbers.

AIAA Journal, 31:49–56, 1993.

[30] H. Guillard, C. Viozat. On the behavior of upwind schemes in the low

Mach number limit. Computers & Fluids, 28:63–86, 1999.

[31] T.T. Chisholm, DW. Zingg. A Jacobian-free Newton-Krylov algorithm

for compressible turbulent fluid flows. Journal of Computational Physics,

228:3490–3507, 2009.

[32] T.T. Chisholm. A fully coupled Newton-Krylov solver with a one-equation

turbulence model. PhD thesis, Insitute for Aerospace Studies, University

of Toronto, 2005.

[33] J. Blazek. Computational Fluid Dynamics: Principles and Applications.

Elsevier Science, 460, Hardbound, 2001.

[34] W.A. Mulder, B. van Leer. Experiments with implicit upwind methods

for the Euler equations. Journal of Computational Physics, 59(2):232–246,

1985.

[35] H.M. Bucker, B. Pollul, A. Rasch. On CFL Evolution Strategies for

Implicit Upwind Methods in Linearized Euler Equations. International

Journal for Numerical Methods in Fluids, 59(1):1–18, 2009.

121

[36] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.

Comput., 7:856–869, 1986. doi:10.1137/0907058

[37] I. Babuska, B.A. Szabo, and I.N. Katz. The p-Version of the Finite Ele-

ment Method. SIAM J. Numer. Anal., 18(3), 515–545, 1981.

[38] J. Ekaterinaris. High-order accurate, low numerical diffusion methods for

aerodynamics. Progress in Aerospace Sciences, 41:192–300, 2005.

[39] P. Houston and E. Suli. A Note on the Design of hp-Adaptive Finite

Element Methods for Elliptic Partial Differential Equations. Computer

Methods in Applied Mechanics and Engineering 194(2-5):229-243, 2005.

[40] T. Leicht and R. Hartmann. Error Estimation and hp–Adaptive Mesh Re-

finement for Discontinuous Galerkin Methods. Adaptive High-Order Meth-

ods in Computational Fluid Dynamics, 2(3):67–94, World Science Books.

Ed. Z. J. Wang, 2011.

[41] Z.J. Wang. High-order methods for the Euler and Navier-Stokes equations

on unstructured grids. Progress in Aerospace Sciences, 43:1–41, 2007.

[42] W.H. Reed, T.R. Hill. Triangular mesh methods for the neutron trans-

port equation. 1em Technical Report LA-UR-73-479, Los Alamos Scientific

Laboratory, 1973.

[43] B. Cockburn, G. Karniadakis, and C. Shu. Discontinuous Galerkin meth-

ods: theory, computation and applications. Lecture Notes in Computa-

tional Science and Engineering, Springer, 11, 2000.

[44] F. Bassi, L. Botti, A. Colombo, A. Ghidoni, S. Rebay. Discontinuous

Galerkin for Turbulent Flows. Adaptive High-Order Methods in Computa-

tional Fluid Dynamics, Advances in Computational Fluid Dynamics, World

Science Books. Ed. Z. J. Wang, 2011.

122

[45] R. Hartmann. Higher-order and adaptive discontinuous Galerkin methods

with shock-capturing applied to transonic turbulent delta wing flow. Int.

J. Numer. Meth. Fluids, 72:883–894, 2013.

[46] R. Hartmann and P. Houston. Symmetric interior penalty DG methods

for the compressible NavierStokes equations I: method formulation. Inter-

national Journal of Numerical Analysis and Modeling, 3(1):1–20, 2006.

[47] B. Engquist and A. Majda. Absorbing boundary conditions for numerical

simulation of waves. Mathematics of Computations, 31:629–651, 1997.

[48] J. Weiss and W.A. Smith. Preconditioning applied to variable and con-

stant density flows. AIAA Journal, 33:2050–2057, 1995.

[49] Y.H. Choi and C.L. Merkle. The Application of Preconditioning in Vis-

cous Flows. Journal of Computational Physics, 105:207–223, 1993.

[50] D. Givoli. Non-reflecting boundary conditions. Journal of Computational

Physics, 94:1–29, 1991.

[51] A. Bayliss and E. Turkel. Far field boundary conditions for compressible

flow. Journal of Computational Physics, 48:182–199, 1982.

[52] E. Turkel. Preconditioning techniques in computational fluid dynamics.

Annual Review of Fluid Mechanics, 31:385–416, 1999.

[53] X.S. Li and C.W. Gu. An All-Speed Roe-type scheme and its asymptotic

analysis of low Mach number behaviour. Journal of Computational Physics,

227(10):5144–5159, 2008.

[54] A.J. Chorin. A numerical method for solving incompressible viscous flow

problems. Journal of Computational Physics, 135:118–125, 1997.

[55] F. Rieper. A low-Mach number fix for Roe’s approximate Riemann solver.

Journal of Computational Physics, 230(13):5263–5287, 2011.

123

[56] C. Rossow. A blended pressure-density based method for the computa-

tion of incompressible and compressible flows. Journal of Computational

Physics, 185(2):375–398, 2003.

[57] E. Turkel. Preconditioned Methods for solving the Incompressible and

Low Speed Compressible Equations. Journal of Computational Physics,

72:277–298, 1987.

[58] W.T. Lee. Local Preconditioning of the Euler equations. PhD thesis,

University of Michigan, 1991.

[59] R. Hartmann, J. Held, T. Leicht and F. Prill. Discontinuous Galerkin

Methods for Computational Aerodynamics – 3D Adaptive Flow Simulation

with the DLR PADGE Code., Aerosp. Sci. Technol., 14:512–519, 2010.

[60] R. Hartmann. Adaptive discontinuous Galerkin methods with shock-

capturing for the compressible Navier-Stokes equations. Int. J. Numer.

Meth. Fluids, 51(9-10):1131–1156, 2006.

[61] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – A General Pur-

pose Object Oriented Finite Element Library. ACM Transactions on Math-

ematical Software, 33(4) 24:1–24:27, 2007.

[62] F. Bassi, A. Crivellini, D.A. Di Pietro, and S. Rebay. A high-order Discon-

tinuous Galerkin solver for 3D aerodynamic turbulent flows. Proceedings

of the Conference ECCOMAS CFD, 2006

[63] B. Gustafsson. Far field boundary conditions for time-dependent hy-

perbolic systems. SIAM Journal on Scientific and Statistical Computing,

9(5):812–828, 1988.

[64] F. Bassi and S. Rebay. High order accurate discontinuous finite element

solution of the 2d Euler equations. Journal of Computational Physics,

138:251–285, 1997.

124

[65] F. Bassi and S. Rebay. High-order accurate discontinuous Galerkin meth-

ods in computational fluid dynamics: from model problems to complex

turbulent flows - Part 1. In VKI LS 2008-08, 35th CFD/Adigma Course

on Very High Order Discretization Methods: October 13 - 17, Deconinck

H (ed.). von Karman institute: Rhode Saint Genese, 1-31, 2008.

[66] F. Bassi and A. Nigro. A discontinuous Galerkin method for inviscid low

Mach number flows. Journal of Computational Physics 228(11):3996–4011,

2009.

[67] P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for

Aerodynamic Flows. Recherche Aerospatiale, No. 1, 5–21, 1994.

[68] T. Gatski and J. Bonnet. Compressibility, Turbulence and High Speed

Flow. Elsevier, Amsterdam, 2009.

[69] K. Hanjalic. Will RANS Survive LES? A View of Perspectives. Journal

of Fluids Engineering, 127:831–839, 2005.

[70] C.H. Son, T.A. Shethaji, C.J. Rutland, H. Barths, A. Lippert, S.H. El

Tahry. Application of nonlinear turbulence models in an engine-type flow

configuration. International Journal of Engine Research, 8:449–464, 2007.

[71] S.H. El Tahry, D.C. Haworth, Directions in turbulence modeling for

in-cylinder Flows in reciprocating IC engines. AIAA Journal Prop. and

Power, 8:1040–1048, 1992.

[72] S.H. El Tahry, D.C. Haworth. A perspective on the state-of-the-art in IC

engine combustion modeling. Proc. SIAM Sixth International Conference

on Combustion, New Orleans - LA, 1996.

[73] M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A dynamic sub-grid

scale eddy viscosity model. Physics of Fluids, A(3):1760–1765, 1991.

125

[74] P.R. Spalart. Comments on the feasibility of LES for wing and on a

hybrid RANS/LES approach, 1st ASOSR CONFERENCE on DNS/LES.

Arlington, TX, 1997.

[75] F. Bassi, L. Botti, A. Colombo, C. De Bartolo. Implict high-order dis-

continuous Galerkin solution of turbulent flows with an explicit algebraic

Reynolds stress model. ECCOMAS 2012 J. Eberhardsteiner et al. (eds.)

Vienna, Austria, September 10-14, 2012

[76] KY. Chien. Predictions of Channel and Boundary-Layer Flows with a

Low-Reynolds-Number Turbulence Model. AIAA Journal, 20(1):33–38,

1982.

[77] DC. Wilcox. Turbulence Modeling for CFD. 3rd edition, DCW Industries,

Inc., La Canada CA, 2006.

[78] DC. Wilcox, Formulation of the k-omega Turbulence Model Revisited.

AIAA Journal, 46(11):2823–2838, 2008.

[79] F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engi-

neering Applications. AIAA Journal, 32(8):1598–1605, 1994.

[80] F. Menter. Improved two-equation k − ω turbulence models for aerody-

namic flows. NASA Technical Memorandum 103975, 1992.

[81] F. Bassi, A. Crivellini, S. Rebay, M. Savini. Discontinuous Galerkin so-

lution of the Reynolds-averaged NavierStokes and k− ω turbulence model

equations. Computers & Fluids, 34:507–540, 2005.

[82] S. Schoenawa and R. Hartmann. Discontinuous Galerkin discretization

of the Reynolds-averaged Navier-Stokes equations with the shear-stress

transport model. J. Comput. Phys., In review, 2014.

[83] T. Leicht and R. Hartmann. Error estimation and anisotropic mesh re-

finement for 3d laminar aerodynamic flow simulations. J. Comput. Phys.,

229(19):7344-7360, 2010.

126

[84] F. Ilinca and D. Pelletier. Positivity preservation and adaptive solution

for the k − ω model of turbulence. AIAA Journal, 36(1):44–50, 1996.

[85] B. Eisfeld Implementation of Reynolds Stress Models into the DLR-

FLOWer Code. Institutsbericht, DLR-IB 124-2004/31, Report of the In-

stitute of Aerodynamics and Flow Technology, Braunschweig, ISSN 1614-

7790, 2004.

[86] B. Eisfeld and O. Brodersen. Advanced Turbulence Modelling and Stress

Analysis for the DLR-F6 Configuration. AIAA Paper 4727, June 2005.

[87] P. Persson and J. Peraire. Sub-Cell Shock Capturing for Discontinuous

Galerkin Methods. American Institute of Aeronautics and Astronautics,

10.2514/6.2006-112, 2006.

[88] A. Burbeau and A. Sagaut and C.H. Bruneau A problem-independent

limiter for high-order Runge-Kutta discontinuous Galerkin methods. J.

Comput. Phys., 169(1):111–150, 2001.

[89] F. Bassi, C. De Bartolo, R. Hartmann, A. Nigro. A discontinuous Galerkin

method for inviscid low Mach number flow. Journal of Computational

Physics, 228(11):3996–4011, 2009.

[90] Y. Colin, H. Deniau, J.F. Boussuge. A robust low speed precondition-

ing formulation for viscous flow computations. Journal of Computational

Physics, 47(1):1–15, 2011.

[91] I. Yoo, E. Kwak, S. Lee, B.S. Kim, S.H. Park. Computational study

on aerodynamics of long-span bridges. Journal of Mechanical Science and

Technology, 23:802–813, 2009.

[92] D.L. Darmofal, P. Moinier, M.B Giles. Eigenmode analysis of boundary

conditions for the one-dimensional preconditioned Euler equations. Journal

of Computational Physics 160:369–384, 2000.

127

[93] P. Moinier, M.B. Giles. Compressible Navier-Stokes equations for low

Mach number applications. European Conference on Computational Fluid

Dynamics ECCOMAS CFD 2001, 2001.

[94] K. Hejranfar, R. Kamali-Moghadam. Preconditioned characteristic

boundary conditions for solution of the preconditioned Euler equations

at low Mach number flows. Journal of Computational Physics, 231:4384–

4402, 2012.

[95] F. Rieper, G. Bader. The influence of cell geometry on the accuracy of

upwind schemes in the low Mach number regime. Journal of Computational

Physics 228:2918–2933, 2009.

[96] F. Rieper. On the dissipation mechanism of upwind-schemes in the low

Mach number regime: a comparison between Roe and HLL. Journal of

Computational Physics 229:221–232, 2010.

[97] H. Guillard. On the behavior of upwind schemes in the low Mach number

limit. IV: P0 approximation on triangular and tetrahedral cells. Computers

& Fluids 38:1969–1972, 2009.

[98] K. Wieghardt and W. Tillman. On the turbulent friction layer for rising

pressure. Technical Memorandum 1314, NACA, 1951. 1951.

[99] D.E. Coles and E.A. Hirst. Computation of turbulent boundary layers.

1968 AFOSR-IFP-Stanford Conference. Stanford University, 1969.

[100] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,

L. Curfman McInnes, B. F. Smith, and H. Zhang. PETSc Web page.

http://www.mcs.anl.gov/petsc, 2001.

[101] P. L. Roe and J. Pike. Efficient construction and utilization of approx-

imate Riemann solutions. North Holland Publishing, The Netherlands,

1984.

128

[102] E. Turkel, V.N. Vatsa, R. Radespiel. Preconditioning methods for low-

speed flows. NASA Contractor Report 201605, ICASE Report No. 96-57.

[103] A. Nigro, S. Renda, C. De Bartolo, R. Hartmann, F. Bassi. A high-

order accurate discontinuous Galerkin finite element method for laminar

low Mach number flows. Int. J. for Numerical Methods in Fluids, 72(1):43–

68, 2013.

[104] A. Harten, J.M. Hyman. Self adjusting grid methods for one-

dimensional hyperbolic conservation laws. Journal of Computational

Physics, 50(2):235–269, 1983.

[105] M. Wallraff, T. Leicht, M. Lange-Hegermann. Numerical flux functions

for Reynolds-Averaged Navier-Stokes and k−ω turbulence model computa-

tions with a line-preconditioned p-multigrid discontinuous Galerkin solver.

Int. J. Numer. Meth. Fluids, 71:1055-1072, 2013.

[106] S. R. Allmaras, V. Venkatakrishnan, and F. T. Johnson. Farfield bound-

ary conditions for 2-D airfoils. 43th AIAA Aerospace Sciences Meeting,

AIAA 2005-4711, 2005.

[107] F. Bassi, L. Botti, A. Colombo, A. Crivellini, N. Franchina, A. Ghidoni,

S. Rebay. Very high-order accurate discontinuous Galerkin computation

of transonic turbulent flows on aeronautical configurations, in N. Kroll,

H. Bieler, H. Deconinck, V. Couallier, H. van der Ven, K. Sorensen (Eds.),

ADIGMA - A European Initiative on the Development of Adaptive Higher-

Order Variational Methods for Aerospace Applications. Notes on Numer-

ical Fluid Mechanics and Multidisciplinary Design, Springer, 113:25–38,

2010.

[108] P. Birken, A. Meister. Stability of preconditioned finite volume schemes

at low Mach numbers. BIT, 45:463-480, 2005.

129

[109] D. Unrau, DW. Zingg. Viscous airfoil computations using local precon-

ditioning. AIAA Paper, 96:2088, 1996.

[110] R. Hartmann. Adaptive Finite Element Methods for the Compressible

Euler Equations. PhD thesis, University of Heidelberg, 2002.

[111] P.H. Cook, M.A. Mc Donald, M.C.P. Firmin. Aerofoil RAE 2822, pres-

sure distributions, and boundary layer and wake measurements. Experi-

mental Data Base for Computer Program Assessment, AGARD Report AR

138, 1979.

130

