
A Branch and Cut Approach for
the Mixed Capacitated General

Routing Problem

Adamo Bosco

November 2010

Department of Electronics, Informatics and Systems
University of Calabria

A thesis submitted for the degree of
PhD in Operations Research

SSD: MAT/09

Coordinator
Prof. Lucio Grandinetti

Supervisor
Ing. Demetrio Laganà

Candidate
Adamo Bosco

ii

Un approccio Branch and Cut per il
Problema capacitivo di instradamento

su grafi misti con servizio sui nodi, sugli
spigoli e sugli archi

Adamo Bosco

Novembre 2010

Dipartimento di Elettronica, Informatica e Sistemistica
Università della Calabria

Tesi sottomessa per il dottorato di ricerca in
Ricerca Operativa

SSD: MAT/09

Coordinatore
Prof. Lucio Grandinetti

Supervisore
Ing. Demetrio Laganà

Candidato
Adamo Bosco

iv

Abstract

The issue addressed in this thesis consists in modeling and solving the Mixed

Capacitated General Routing Problem (MCGRP). This problem generalizes

many routing problems, either in the Node or in the Arc routing family. This

makes the problem a very general one and gives it a big interest in real-

world applications. Despite this, and because of the native difficulty of the

problem, very few papers have been devoted to this argument. In the thesis

an integer programming model for the MCGRP is proposed and several

valid inequalities for the undirected Capacitated Arc Routing polyhedron

are extended and generalized to the MCGR polyhedron. A branch and cut

algorithm for the MCGRP is developed and tested on a dataset of new

instances derived from mixed CARP benchmark instances. Moreover an

heuristic procedure is defined in order to find a good upper bound aimed

at helping the branch and cut algorithm to cut off unpromising regions of

the search tree. This schema will be used and extended in future works to

solve bigger real-world instances. Extensive numerical experiments indicate

that the algorithm is able to optimally solve many instances. In general,

it provides valid lower and upper bounds for the problem in a reasonable

amount of time.

Sommario

Nell’ambito della tesi di dottorato sono stati studiati i problemi di instrada-

mento con vincoli capacitivi su grafi misti, noti nella letteratura scientifica

con l’acronimo MCGRPs (Mixed Capacitated General Routing Problems).

Si tratta di problemi che presentano un forte impatto applicativo in una

grande varietá di situazioni reali: la manutenzione delle strade, la raccolta

dei rifiuti, la consegna della posta, l’instradamento dei bus a servizio delle

scuole, etc. Esempi classici in cui é possibile riscontrare problemi di questa

natura ricorrono nella progettazione di rotte per la raccolta dei rifiuti urbani.

In questi casi, la richiesta di servizio nelle abitazioni lungo le strade puó

essere modellata come domanda di servizio distribuita su un sottoinsieme

di archi e/o spigoli del grafo, mentre il servizio concentrato in punti isolati o

in grossi centri di accumulo (ospedali, scuole, supermercati, ...) puó essere

modellato come domanda di servizio in un sottoinsieme di nodi del grafo.

Si assume che il servizio sia eseguito con una flotta costituita da un numero

limitato di veicoli aventi la stessa capacitá (flotta omogenea), che partono

dal deposito e vi ritornano dopo avere servito alcuni archi, spigoli e/o nodi

del grafo. La rete stradale é rappresentata da un grafo misto, costituito da

archi (collegamenti orientati, rappresentanti strade a senso unico), spigoli

(collegamenti non orientati, rappresentanti strade a doppio senso) e nodi

(rappresentanti punti di intersezione dei collegamenti, punti di domanda ed

il deposto).

Tale problema é NP-arduo in quanto riducibile polinomialmente ad altri

problemi NP-ardui. In particolare, nel caso in cui: a) la flotta sia costituita

da un solo veicolo la cui capacitá sia non minore della somma delle domande

di servizio; b) il grafo sia non orientato (nessun arco) e c) il servizio sia solo

su un sottoinsieme di spigoli; allora il MCGRP si riduce al cosiddetto URPP

(Undirected Rural Postman Problem), che é stato dimostrato essere un

problema NP-arduo (Lenstra and Kan (1976)). Un gran numero di problemi

di instradamento con servizio solo su archi e spigoli, noti in letteratura come

ARPs (Arc Routing Problems), sono varianti del problema MCGRP, ad

esempio il problema del postino cinese capacitivo (CCPP), il problema del

postino rurale (RPP), in cui solo alcuni collegamenti devo essere serviti e la

corrispondente versione capacitiva (CRPP). In alcuni problemi il servizio é

richiesto sia su nodi che su collegamenti tra nodi, il problema risultante é

chiamato General Routing Problem (GRP) e, nella sua versione capacitiva,

é noto come Capacitated GRP (CGRP). Il problema oggetto della tesi é

un’ulteriore estensione naturale di questo problema, cioé il CGRP su grafi

misti.

La letteratura sui problemi di routing generalmente distingue problemi di

node routing e problemi di arc routing, a seconda che il servizio é richiesto,

rispettivamente, su nodi o archi (tutti o una parte). In teoria i problemi

di arc routing possono essere convertiti in problemi di node routing equiv-

alenti (Pearn et al. (1987), Longo et al. (2006), Baldacci and Maniezzo

(2006)). Tuttavia questa trasformazione causa un incremento della dimen-

sione delle istanze, di conseguenza, soprattutto negli ultimi anni, molti ricer-

catori hanno privilegiato lo studio diretto dei problemi di arc routing.

Letchford, Corberán and Sanchis sono stati i primi a lavorare sui problemi

di general routing su grafi non orientati. In particolare Letchford (1996),

Letchford (1999) e Corberán and Sanchis (1998) hanno proposto una classe

di diseguaglianze valide per il poliedro del GRP, successivamente Corberán

et al. (2001) ha descritto un algoritmo di tipo cutting plain per il prob-

lema. Muyldermans et al. (2005) ha descritto come alcune procedure di

local search dei problemi di node routing possano essere adattate al GRP.

Passando al problema di general routing su grafi misti (MGRP), il primo

contributo significativo che si trova in letteratura é dovuto a Corberán

et al. (2003). Gli autori hanno proposto una formulazione matematica del

problema molto stringente, tramite la quale sono riusciti a fornire una de-

scrizione molto raffinata del poliedro del MGRP. Gli stessi hanno progettato

una algoritmo cutting plane, esteso poi da Corberán et al. (2005) tramite

l’introduzione di nuove famiglie di diseguaglianze valide inducenti faccette

e relative procedure di separazione.

Riguardo al problema MCGRP, in letteratura non esistono approcci esatti.

Pandit and Muralidharan (1995) hanno proposto una procedura euristica,

di tipo instrada prima e separa dopo, che costruisce prima un giant tour

contenente tutti gli elementi di servizio e quindi partiziona questo tour in

sotto-tour che rispettano il vincolo di capacitá. Gutiérrez et al. (2002)

hanno introdotto una procedura alternativa di tipo separa prima e instrada

dopo.

Nell’ambito della tesi é stato definito un algoritmo esatto in grado di ri-

solvere all’ottimo istanze di medie dimensioni; inoltre, é stata sviluppata

una procedura euristica composta da una fase costruttiva e da una fase

migliorativa (local search) in grado sia di fornire un buon upper bound

all’algoritmo esatto e sia di determinare una buona soluzione ammissibile

laddove il metodo esatto dovesse fallire. La soluzione a questo tipo di prob-

lemi ha una serie di impatti pratici molto importanti, se si pensa che esistono

molteplici tipi di applicazioni reali che possono essere modellate come MC-

GRP Lenstra and Kan (1976). Una soluzione ottima, o near-ottima, del

problema di instradamento puó avere un impatto pratico molto rilevante

se si pensa che i costi di trasporto incidono in modo significativo sui costi

complessivi delle aziende che offrono servizi logistici di tipo distributivo.

To my parents

ii

Contents

List of Figures v

List of Tables vii

List of Algorithms ix

1 Introduction 1

1.1 Literature review . 3

1.1.1 The General Routing Problem 3

1.1.2 The Mixed General Routing Problem 3

1.1.3 The Mixed Capacitated General Routing Problem 3

1.2 Contributions . 4

2 Problem definition 5

2.1 Notations . 5

2.2 Mathematical formulation . 7

3 Valid inequalities and separation algorithms 13

3.1 Connectivity constraints separation . 13

3.1.1 Heuristic Algorithm . 13

3.1.2 Exact Algorithm . 16

3.2 Surrogate inequalities . 17

3.2.1 Capacity and odd-edge inequalities 18

3.2.2 Capacity inequalities separation 19

3.2.3 Odd-edge inequalities separation 21

iii

CONTENTS

4 An Upper bound 27

4.1 The initial solution . 27

4.1.1 Partition-First-Route-Next . 28

4.1.2 Clustering . 33

4.1.2.1 Metric . 34

4.1.2.2 Clusters generation . 34

4.2 Local Search . 36

5 The B&C Algorithm 39

5.1 Cut pool management . 39

5.2 Root node generation . 39

5.3 The Branch and Cut algorithm . 40

6 Computatonal experiments 43

6.1 A First Illustration . 43

6.2 The Instances . 44

6.3 Numerical Results . 45

7 Conclusions 51

References 53

iv

List of Figures

2.1 Flow constraints illustration . 8

2.2 Connectivity constraints illustration . 9

4.1 Computation of the average dinstance between service elements. 34

6.1 G = (V,E,A). 44

6.2 Optimal solution. 44

6.3 Comparison among Lower Bound, Upper Bound and final cost - In-

stances mgval1A to mgval5D . 48

6.4 Comparison among Lower Bound, Upper Bound and final cost - In-

stances mgval6A to mgval10D . 49

v

LIST OF FIGURES

vi

List of Tables

6.1 Computational results for mgval instances 47

vii

LIST OF TABLES

viii

List of Algorithms

1 Heuristic separation for the connectivity inequalities 14

2 Exact connectivity inequalities separation 16

3 Capacity inequalities separation . 21

4 Perturbed demand procedure . 21

5 Cut-tree . 23

6 Exact Odd Edge cut separation . 24

7 Heuristic . 27

8 Initial solution . 27

9 Partition-First-Route-Next . 29

10 Clustering . 34

11 LocalSearch . 36

12 Swap . 37

13 Subsets generation . 39

14 Branch & Cut . 40

ix

LIST OF ALGORITHMS

x

1

Introduction

The thesis deals with the problem of finding the routes for a set of vehicles in order

to ensure a service inside a given area. Each vehicle starts from an unique depot and

comes back to it after a service trip. The streets are modeled by edges or arcs of a

network whose nodes represent the intersection points of the streets or some points of

interest. In particular, a one way street is modeled with an arc in the network and a

two way street with an edge.

The problem of finding a minimum distance tour that covers at least once each street

of a network is known in literature as Chinese Postman Problem (CPP). All other arc

routing problems (ARPs) are variants of it. For example if the vehicle has a limited

capacity and the streets have a demand (or equivalently each tour has a time limit

and a known traversal time for each street) the resulting problem is called Capacitated

Chinese Postman Problem (CCPP). In another variant only some streets need a service

and we talk about Rural Postman Problem (RPP). If we have also capacity or time

limitations we obtain the Capacitated Rural Postman Problem (CRPP). Sometimes a

service is required on some nodes as well as on some streets and the resulting problem

is called General Routing Problem (GRP). The capacitated version is the Capacitated

General Routing Problem (CGRP).

The literature traditionally devoted to vehicle routing problems considers two dif-

ferent classes of problems: node routing problems (NRPs) and arc routing problems

(ARPs). In NRPs the service activity occurs at all (or at some subset of) the nodes,

whereas in ARPs a single vehicle or a fleet of vehicles services all (or some subset of)

edges and/or arcs. Although NRPs have been studied more extensively, ARPs have

1

1. INTRODUCTION

raised a growing interest in the two last decades. Theoretically an ARP can be con-

verted into an equivalent NRP (see, e.g., Pearn et al. (1987), Longo et al. (2006), and

Baldacci and Maniezzo (2006)). However the transformation increases the size of the

instances to be solved. Consequently, most researchers prefer to study the ARPs di-

rectly. Despite the success of exact and heuristic methods for NRPs and ARPs, most

models proposed in the literature do not give a suitable representation of real scenarios.

The recent literature refers to a more general and effective class of problems, where

the service activity occurs both at all (or at some subset of) the nodes and at all (or

at some subset of) arcs and/or edges. Such problems are denoted as General Routing

Problems (GRPs). Several applications arising in the vehicle routing field may be

naturally modeled as GRP (Orloff (1974), Lenstra and Kan (1976)). For example,

in designing routes in an urban waste collection context, the collection along a street

may be modeled by means of required arcs or edges, whereas the collection occurring

in specific points (e.g., hospitals, schools, supermarkets, and multi-story apartment

blocks) may be modeled by means of required nodes. Similarly, in the postal delivery

services, a set of customers in the same neighborhood with high demands may be

modeled by means of required nodes, whereas a set of customers in the same street

with soft demands may be modeled by means of required arcs/edges.

This paper refers to the Mixed Capacitated General Routing Problem (MCGRP),

i.e., the problem of finding a set of vehicle routes on a mixed graph such that each

route starts and ends at the depot, each required node/arc/edge is serviced by exactly

one vehicle, the total demand serviced by each vehicle does not exceed its capacity, and

the total traveling cost is minimized. This problem is also referred in the literature as

CGRP, CGRP-m (Capacitated General Routing Problem on mixed graphs) or NEARP

(Node, Edge and Arc Routing Problem). Many routing problems are special cases of

the MCGRP, like the capacitated ARP (Golden and Wong (1981)), the capacitated

NRP or capacitated vehicle routing problem (see Cornuejols and Harche (1993)), and

the above-mentioned GRP and MGRP. Since the MCGRP includes a large side of NP-

hard problems, it is also an NP-hard problem. To our knowledge, the MCGRP was

exclusively tackled by means of heuristic approaches.

2

1.1 Literature review

1.1 Literature review

1.1.1 The General Routing Problem

Letchford, Corberán and Sanchis firstly worked on the GRP defined over an undi-

rect graph. Specifically, Letchford (1996), Letchford (1999) and Corberán and Sanchis

(1998) proposed a large class of valid inequalities for the GRP polyhedron. Then

Corberán et al. (2001) described a cutting plane algorithm for the GRP based on facet-

inducing inequalities. Other theoretical results were presented by Reinelt and Theis

(2008), whereas Muyldermans et al. (2005) described how the well-known 2-opt and

3-opt local search procedures for NRPs can be adapted to tackle ARPs and GRPs.

1.1.2 The Mixed General Routing Problem

The first remarkable contribution focused on the GRP over a mixed graph (MGRP) was

proposed by Corberán et al. (2003). They presented an integer programming formula-

tion and a partial description of the related polyhedron. Furthermore, they reported

computational results obtained by performing a cutting-plane algorithm. Corberán

et al. (2005) considerably improved this algorithm, by defining a new family of facet-

defining inequalities and new separation procedures. The algorithm, designed for the

MGRP, has been used as a black-box solver to tackle real instances of the asymmetric

travelling salesman problem with time-dependent costs (see Albiach et al. (2008)). Soler

et al. (2008) studied a generalization of the MGRP with turn penalties and forbidden

turns. The MGRP problem may be also modeled by resorting to windy graphs. For

example Corberán et al. (2007) and Corberán et al. (2008) presented a strong windy

general routing polyhedron description and designed a branch and cut algorithm able

to optimally solve a quite large number of MGRP benchmark instances.

1.1.3 The Mixed Capacitated General Routing Problem

Pandit and Muralidharan (1995) proposed a heuristic procedure named ROUTE1 that

starts with a condensed sub-graph obtained from the original network by considering

only the required arcs, edges and nodes. Since the condensed sub-graph is generally

disconnected, the connection is reached by adding to it the cheapest paths linking two

nodes of disjoint connected components. The sub-graph is then converted into an Eu-

lerian which admits a giant tour. A feasible MCGRP is obtained by cutting the giant

3

1. INTRODUCTION

tour into smaller tours satisfying the capacity constraints. Gutiérrez et al. (2002) in-

troduced an alternative procedure, based on the partition-first-route-next paradigm,

improving previous results. Finally, Prins and Bouchenoua (2005) described a memetic

algorithm for the MCGRP. Three simple procedures, named nearest neighbor heuris-

tic, merge heuristic and tour splitting heuristic, were defined to initialize the memetic

algorithm.

1.2 Contributions

In this section, we list the major contributions of this thesis.

• We develop a linear integer programming model for the MCGRP, based on three-

index link variables and two-index node variables. A branch-and-cut algorithm

is designed to optimally solve a class of hard instances.

• Several well-known valid inequalities for the Undirected Capacitated Arc Routing

polyhedron are extended to the Mixed Capacitated General Routing polyhedron

and the relevant separation procedures are adapted to cut off infeasible MCGRP

solutions.

• A tight lower bound at the root node of the search tree is obtained by strengthen-

ing the linear relaxation of the MCGRP through a set of connectivity constraints

and valid inequalities that are conveniently generated and inserted into the initial

formulation.

• An upper bound procedure is developed in order to find a good feasible solution

of the MCGRP aimed at reaching an efficient pruning in the search tree.

4

2

Problem definition

2.1 Notations

Let G = (V,A,E) be a mixed graph defined by a set of nodes V , a set of arcs A and a

set of edges E. Each entity in A ∪ E will be referred in the following as link. A non-

negative cost cij is associated to each link (i, j). Node 1 ∈ V represents the depot at

which identical vehicles of capacity Q are based. Some entities (tasks) require a service,

i.e., need to be visited by a vehicle. Specifically, setting C = V \ {1}, CR ⊆ C denotes

the set of required nodes (or node-tasks), while AR ⊆ A and ER ⊆ E denote the set of

required arcs (or arc-tasks) and required edges (or edge-tasks), respectively. A demand

qi > 0 is associated to each required node i ∈ CR, and a demand dij > 0 is associated

to each required link (i, j) ∈ AR ∪ ER. Let K = {1, . . . ,m} be the set of vehicles,

where m ≥ η. In order to find η, i.e., the minimum number of vehicles servicing all

tasks, a one-dimensional bin packing problem is solved Coffman et al. (1996). A simple

lower bound on η is defined by d(
∑

(i,j)∈ER∪AR
dij +

∑
i∈CR

qi)\Qe. Tasks cannot be

preempted, i.e., each task must be serviced by exactly a vehicle. To ensure feasibility,

we assume that no demand associated to tasks exceeds Q. Moreover, let S ⊂ V be a

subset of nodes, and S̄ its complementary set with respect to V (S̄ = V \ S).

The sets defined below are referred in the rest of the paper as cutsets and depend

on S.

• A+(S) = {(i, j) ∈ A, i ∈ S, j ∈ S̄} = A(S : S̄) is the set of arcs leaving S.

• A−(S) = {(i, j) ∈ A, i ∈ S̄, j ∈ S} = A(S̄ : S) is the set of arcs entering S.

5

2. PROBLEM DEFINITION

• E+(S) = {(i, j) ∈ E, i ∈ S, j ∈ S̄} = E(S : S̄) is the set of edges between S and

S̄ which are traversed from i to j in the solution.

• E−(S) = {(i, j) ∈ E, i ∈ S̄, j ∈ S} = E(S̄ : S) is the set of edges between S and

S̄ which are traversed from i to j in the solution.

• A+
R(S) = {(i, j) ∈ AR, i ∈ S, j ∈ S̄} = AR(S : S̄) is the set of arc-tasks leaving

S.

• A−R(S) = {(i, j) ∈ AR, i ∈ S̄, j ∈ S} = AR(S̄ : S) is the set of arc-tasks entering

S.

• E+
R (S) = {(i, j) ∈ ER, i ∈ S, j ∈ S̄} = ER(S : S̄) is the set of edge-tasks between

S and S̄ which are traversed from i to j in the solution.

• E−R (S) = {(i, j) ∈ ER, i ∈ S̄, j ∈ S} = ER(S̄ : S) is the set of edge-tasks between

S and S̄ which are traversed from i to j in the solution.

• A(S) = A+(S) ∪A−(S) is the set of arcs leaving or entering S.

• E(S) = E+(S) ∪ E−(S) is the set of edges between S and S̄.

• AR(S) = A+
R(S) ∪A−R(S) is the set of arc-tasks leaving or entering S.

• ER(S) = E+
R (S) ∪ E−R (S) is the set of edge-tasks between S and S̄.

When S = {i} the preceding notations become A+
i , A−i , E+

i , E−i , A+
Ri, A

−
Ri, E

+
Ri, E

−
Ri,

Ai, Ei, ARi, and ERi. Moreover, we define the following sets depending on S.

• SR = S ∩ CR is the set of node-tasks in S.

• γR(S) = {(i, j) ∈ AR ∪ ER : i ∈ S, j ∈ S} is the set of arc-tasks and edge-tasks

with both endpoints in S.

Finally, let GR = (VR, ER, AR) be the graph induced on G by all the required links

and nodes. Observe that VR may contain only one required node. GR is, in general,

non-connected. Let t be the number of its connected components and V1, V2, . . . , Vt

their related node sets (R-sets). The subgraphs of G induced by the R-sets define the

so-called R-connected components of G.

6

2.2 Mathematical formulation

2.2 Mathematical formulation

In this section we propose an integer linear programming formulation based on three-

index link variables and two-index node variables.

The following variables indicate which vehicle serves each required entity (service

variables):

xkij =


1 if and only if (i, j) ∈ AR ∪ ER is serviced by k ∈ K
which travels from node i to node j;

0 otherwise.

zki =

{
1 if and only if i ∈ CR is serviced by k ∈ K;

0 otherwise.

Moreover each link can be deadheaded, i.e., traversed without being serviced, any

number of times. Then we introduce the following variables:

ykij = number of deadheading of (i, j) ∈ A ∪ E from node i

to node j by k ∈ K.

The objective is the minimization of the total cost:

Minimize λ =
∑
k∈K

∑
(i,j)∈ER

cij(x
k
ij + xkji) +

∑
k∈K

∑
(i,j)∈AR

cijx
k
ij+ (2.1)

∑
k∈K

∑
(i,j)∈E

cij(y
k
ij + ykji) +

∑
k∈K

∑
(i,j)∈A

cijy
k
ij

The constraints can be divided in four categories. Firstly each required entity must

be serviced by exactly one vehicle (assignment constraints):

∑
k∈K

(xkij + xkji) = 1, ∀ (i, j) ∈ ER (2.2)

∑
k∈K

xkij = 1, ∀ (i, j) ∈ AR (2.3)

7

2. PROBLEM DEFINITION

∑
k∈K

zki = 1, ∀ i ∈ CR (2.4)

The total demand serviced by each vehicle must not exceed its capacity (knapsack

constraints):

∑
(i,j)∈ER

dij(x
k
ij + xkji) +

∑
(i,j)∈AR

dijx
k
ij +

∑
i∈CR

qiz
k
i ≤ Q, ∀ k ∈ K (2.5)

The following inequalities represent the flow constraints and model at the same

time the balanced set constraints and the parity constraints at each node of the graph,

including the depot:

∑
j:(i,j)∈A+

Ri

xkij +
∑

j:(i,j)∈A+
i

ykij −
∑

j:(j,i)∈A−
Ri

xkji −
∑

j:(j,i)∈A−
i

ykji = (2.6)

∑
j:(j,i)∈E−

Ri

xkji +
∑

j:(j,i)∈E−
i

ykji −
∑

j:(i,j)∈E+
Ri

xkij −
∑

j:(i,j)∈E+
i

ykij ,

∀ k ∈ K, i ∈ V

For a graphical explanation of these constraints consider the node 3 in the figure 2.1:

The parity constraints impose that the number of node’s crossing must be even, while

45

3

2

Figure 2.1: Flow constraints illustration

the balanced constraints impose that the difference between the number of arcs outgoing

from the node and the number of arcs incoming in the node must be less than or equal

to the number of edges incident to it.

The following constraints (connectivity constraints) impose that for each subset of

nodes (excluding the depot) with a required link inside that is serviced by a vehicle, at

least two links incident to the subset must be used to visit it (deadheaded or serviced);

8

2.2 Mathematical formulation

they also eliminate subtours disjointed from the depot.

∑
∀(i,j)∈E+

R (S)

xkij +
∑

∀(j,i)∈E−
R (S)

xkji +
∑

∀(i,j)∈A+
R(S)

xkij +
∑

∀(j,i)∈A−
R(S)

xkji+ (2.7)

∑
∀(i,j)∈E+(S)

ykij +
∑

∀(j,i)∈E−(S)

ykji +
∑

∀(i,j)∈A+(S)

ykij +
∑

∀(j,i)∈A−(S)

ykji ≥
2(xkuv + xkvu) if (u, v) ∈ γR(S) is an edge-task;

2xkuv if (u, v) ∈ γR(S) is an arc-task;

2zkh if h ∈ SR is a node-task.

∀ k ∈ K, ∀S ⊆ C, (u, v) ∈ γR(S), h ∈ SR

The figure 2.2 illustrates the connectivity constraints. In the figure: S = {2, 3, 4}, SR =

{2, 4}, γR(S) = ∅, E+
R (S) = {(2, 1)}, E−R (S) = {(1, 2)}, A+

R(S) = ∅, A−R(S) = {(0, 3)},

E+(S) = {(4, 5), (4, 0), (2, 0), (2, 1)}, E−(S) = {(5, 4), (0, 4), (0, 2), (1, 2)}, A+(S) = ∅,

A−(S) = {(0, 3)}, then the corresponding connectivity constraints are:

xk21 + xk12 + xk03 + yk45 + yk40 + yk20 + yk21 + yk54 + yk04 + yk02 + yk12 + yk03 ≥ 2zk2 ∀ k ∈ K

xk21 + xk12 + xk03 + yk45 + yk40 + yk20 + yk21 + yk54 + yk04 + yk02 + yk12 + yk03 ≥ 2zk4 ∀ k ∈ K

S

S

3

2

4

0

1

5

6

Figure 2.2: Connectivity constraints illustration

Finally, the following constraints define the variable domains.

9

2. PROBLEM DEFINITION

xkij ∈ {0, 1}, ∀ k ∈ K, (i, j) ∈ AR ∪ ER (2.8)

ykij ∈ Z+, ∀ k ∈ K, (i, j) ∈ A ∪ E (2.9)

zki ∈ {0, 1}, ∀ k ∈ K, i ∈ CR (2.10)

The complete model is the following:

Minimize λ =
∑
k∈K

∑
(i,j)∈ER

cij(x
k
ij + xkji) +

∑
k∈K

∑
(i,j)∈AR

cijx
k
ij+ (2.1)

∑
k∈K

∑
(i,j)∈E

cij(y
k
ij + ykji) +

∑
k∈K

∑
(i,j)∈A

cijy
k
ij

∑
k∈K

(xkij + xkji) = 1, ∀ (i, j) ∈ ER (2.2)

∑
k∈K

xkij = 1, ∀ (i, j) ∈ AR (2.3)

∑
k∈K

zki = 1, ∀ i ∈ CR (2.4)

∑
(i,j)∈ER

dij(x
k
ij + xkji) +

∑
(i,j)∈AR

dijx
k
ij +

∑
i∈CR

qiz
k
i ≤ Q, ∀ k ∈ K (2.5)

∑
j:(i,j)∈A+

Ri

xkij +
∑

j:(i,j)∈A+
i

ykij −
∑

j:(j,i)∈A−
Ri

xkji −
∑

j:(j,i)∈A−
i

ykji = (2.6)

∑
j:(j,i)∈E−

Ri

xkji +
∑

j:(j,i)∈E−
i

ykji −
∑

j:(i,j)∈E+
Ri

xkij −
∑

j:(i,j)∈E+
i

ykij ,

∀ k ∈ K, i ∈ V

10

2.2 Mathematical formulation

∑
∀(i,j)∈E+

R (S)

xkij +
∑

∀(j,i)∈E−
R (S)

xkji +
∑

∀(i,j)∈A+
R(S)

xkij +
∑

∀(j,i)∈A−
R(S)

xkji+ (2.7)

∑
∀(i,j)∈E+(S)

ykij +
∑

∀(j,i)∈E−(S)

ykji +
∑

∀(i,j)∈A+(S)

ykij +
∑

∀(j,i)∈A−(S)

ykji ≥
2(xkuv + xkvu) if (u, v) ∈ γR(S) is an edge-task;

2xkuv if (u, v) ∈ γR(S) is an arc-task;

2zkh if h ∈ SR is a node-task.

∀ k ∈ K, ∀S ⊆ C, (u, v) ∈ γR(S), h ∈ SR

xkij ∈ {0, 1}, ∀ k ∈ K, (i, j) ∈ AR ∪ ER (2.8)

ykij ∈ Z+, ∀ k ∈ K, (i, j) ∈ A ∪ E (2.9)

zki ∈ {0, 1}, ∀ k ∈ K, i ∈ CR (2.10)

11

2. PROBLEM DEFINITION

12

3

Valid inequalities and separation

algorithms

3.1 Connectivity constraints separation

The constraints 2.7 are critical beacause they should be written for each subset of

nodes S ⊆ C. The number of subsets of set C is 2|C|, this is a very big number

and it makes computational intractable the real instances. We handle this problem

by solving a relaxed formulation of 2.11 in which the constraints 2.7 are written only

for the R-Sets. The solution of this relaxation is likely infeasible (because it contains

subcycles), therefore we use the separation procedures described in the following to

check the violations at each node of the search tree.

Connectivity constraints are initially checked by running a very fast heuristic algo-

rithm and using an exact separation procedure whenever the heuristic fails.

3.1.1 Heuristic Algorithm

The heuristic algorithm is based on an idea of Fischetti, Salazar and Toth Fischetti

et al. (1997). Given a solution of the relaxed MCGRP model, for a vehicle index

k three vectors of variables may be defined: xk, yk, and zk. Specifically, xk is a

(|AR|+2|ER|)-dimensional vector only including variables xkij corresponding to k, yk is

a (|A|+ 2|E|)-dimensional vector only including variables ykij corresponding to k, zk is

a (|CR|)-dimensional vector defined by variables zki corresponding to k. The heuristic

separation procedure is described in algorithm 1.

13

3. VALID INEQUALITIES AND SEPARATION ALGORITHMS

Algorithm 1: Heuristic separation for the connectivity inequalities

Require: The optimal solution of the relaxed formulation (x̄, ȳ, z̄);

Ensure: violated inequalities 2.7;

1: for all vehicle k do

2: extract an undirected auxiliary graph Gk induced in G by all the links (i, j) such

that x̄kij > 0 or ȳkij > 0;

3: find the connected components of Gk and let p be the number of connected

components not containing the depot and such that V k
1 , V

k
2 , . . . , V

k
p are the cor-

responding node sets;

4: build a new graph G
k

with a node for each node set V k
i , i = 1, . . . , p. Each pair

of nodes (i, r) corresponding to V k
s and V k

r (s, r = 1, . . . , p, s 6= r) is connected

by an edge whose cost is the sum of x̄kij and ȳkij for each i ∈ V k
s and j ∈ V k

r or

i ∈ V k
r and j ∈ V k

s . Obviously, if there is no link in G among the nodes belonging

to V k
s and V k

r then the cost of the edge is zero.

5: find the maximum spanning tree on the graph G
k
. At each step of the tree

construction, a node is selected. Let V k
s be the node set associated to the node

s. If the connectivity constraint associated with the subset Sk = V k
s is violated,

then it is introduced in the current relaxed formulation;

6: once the spanning tree is complete, another check for violated constraints is

performed by removing in turn the edges of the tree.

7: end for

Example 1 The following picture represents an MCGRP instance where Q = 10 and

the cost and demand associated with each link are represented by couple (cij, dij), while

the demand of each required node is represented by (qi).

14

3.1 Connectivity constraints separation

7

6

1

5

4

2 3

8 9

10
,8

6,0

8,0

5
,0

4,
5

3,0

2,0

3
,0

11
,0

5,0 3,
0

6,5

7,0

8
,0

7,0 5,0

3
,4

12,0

2,0

i j
cij , dij

4

2

10

qi qj

The optimal solution of the relaxed model 2.11 obtained by considering constraints

2.7 only defined for the R-Set is described as follows:

x172 = 1 y117 = y121 = 1 r1 = {1− 7− 2− 1} c1 = 21

x239 = 1 y298 = y283 = 1 z23 = z28 = 1 r2 = {3− 9− 8− 3} c2 = 10

y315 = y351 = 1 z15 = 1 r3 = {1− 5− 1} c3 = 4

x414 = x416 = 1 y445 = y451 = y461 = 1 r4 = {1− 4− 5− 1− 6− 1} c4 = 27

The optimal value is 62. The connectivity constraints introduced into the initial

formulation for S = {3, 9} and k = 2 are satisfied by the current solution. Nevertheless

such solution is infeasible for the MCGRP since it violates the connectivity constraint

defined by subset S = {3, 8, 9}:

y231 + y232 + y234 + y235 + y282 + y292 + y213 + y223 + y253 + y228 + y229 ≥ 2x239

The graph G2 generated at step 4 of the heuristic separation algorithm contains only a

node associated with the connected component defined by R-set V 2
1 = {3, 8, 9}.

15

3. VALID INEQUALITIES AND SEPARATION ALGORITHMS

3.1.2 Exact Algorithm

The exact separation algorithm follows the outline provided by Benavent et al. (2000)

for the Capacitated ARP. Specifically, for each vehicle index k, let Gk(w) be an undi-

rected graph including the depot and induced by the edges (i, j) ∈ E with a capacity

defined by wkij = x̄kij + x̄kji + ȳkij + ȳkji > 0 and the edges corresponding to the arcs

(i, j) ∈ A with a capacity defined by wkij = x̄kij + ȳkij > 0. Constraints (2.7) can be

separated in polynomial time by solving a min-cut separating the depot from each node

of Gk(w) (algorithm 2).

Algorithm 2: Exact connectivity inequalities separation

Require: The optimal solution of the relaxed formulation (x̄, ȳ, z̄);

Ensure: violated inequalities 2.7;

1: for all vehicle k do

2: extract an auxiliary directed graph Gk induced in G by all the links (i, j) ∈ E∪A.

Each arc (i, j) ∈ A corresponds to an arc (i, j) in Gk with weight wij = x̄kij + ȳkij ;

while each edge (i, j) ∈ E is splitted into a couple of arcs in Gk: (i, j) with weight

wij = x̄kij + ȳkij and (j, i) with weight wji = x̄kji + ȳkji;

3: for all (i, j) ∈ ER : xkij + xkji > 0 do

4: compute the min-cuts separating the depot node and i and the depot node and

j. Let δ(Si) and δ(Sj) be the min-cuts and Fi and Fj the capacities of these

cuts.

5: if max{Fi, Fj} < 2(xkij + xkji) then

6: a violated connectivity constraint has been found.

7: end if

8: end for

9: for all (i, j) ∈ AR|xkij > 0 do

10: compute the min-cuts separating the depot node and i and the depot node and

j. Let δ(Si) and δ(Sj) be the min-cuts and Fi and Fj the capacities of these

cuts.

11: if max{Fi, Fj} < 2xkij then

12: a violated connectivity constraint has been found.

13: end if

16

3.2 Surrogate inequalities

14: end for

15: for all i ∈ VR|zki > 0 do

16: compute the min-cut separating the depot node and i. Let δ(Si) be the min-cut

and Fi the capacity of this cut.

17: if Fi < 2zki then

18: a violated connectivity constraint has been found.

19: end if

20: end for

21: end for

3.2 Surrogate inequalities

Optimally solving the capacitated routing problems is a hard issue to be addressed due

to the capacity constraints and the large number of vehicles to be used. Belenguer

and Benavent (1998) and Belenguer and Benavent (2003) observed a considerable im-

provement in a surrogate lower-bounding model for the capacitated ARP obtained by

aggregating the three-index edge variables with respect to the indices of the vehicles.

The authors proposed an integer programming model aimed at minimizing the total

deadheading cost, by ensuring no violation of aggregate capacity constraints and ag-

gregate odd edge cutset constraints. They also defined new classes of disjoint path

inequalities to tighten the lower bounds obtained through a cutting plane algorithm.

The computational results presented in their papers show that the capacity and odd

edge cutset constraints contribute more than the disjoint path inequalities to improve

the bounds. In a large number of benchmark instances their lower bounds prove the

optimality of the best known upper bounds. As following these considerations, an ini-

tial subset of capacity and odd edge cutset inequalities have been introduced into the

relaxed MCGRP formulation, with the aim of improving the lower bound at the root

node of the search tree.

17

3. VALID INEQUALITIES AND SEPARATION ALGORITHMS

3.2.1 Capacity and odd-edge inequalities

Let Gw = (V w, Ew) a windy graph obtained from G by replacing each arc (i, j) with

an edge. This transformation helps to make our problem closer to the original one by

Belenguer and Benavent. The cost on a new edge of Gw is the same of the cost of the

correspondent arc (i, j) in the original graph if the edge is used from i to j, it is ∞

otherwise. Note that V w = V and Cw = V w \ {1} = C. The notation introduced in

the Section 2.1 can be transposed to Gw. Therefore, EwR denotes the set of edge-tasks,

CwR denote the set of node-tasks, Ew(S) and EwR(S) denote respectively the (cut)sets

of edges and edge-tasks with one endpoint in S and the other out of S, SwR denotes the

set of node-tasks in S and γwR(S) denotes the set of edge-tasks with both endpoints in

S.

Let θij be the total number of times that (i, j) ∈ Ew is deadheaded by the vehicles.

We say that a given vehicle cross a cutset Ew(S) whenever it traverses an edge (i, j) ∈

Ew(S). A group of valid inequalities (capacity constraints) can be expressed in terms

of the aggregated variables θij :

∑
(i,j)∈Ew(S)

θij ≥ 2η(S)− |EwR(S)| ∀S ⊆ Cw, (3.1)

where η(S) = d(
∑

(i,j)∈γwR(S)∪Ew
R(S) dij+

∑
i∈Sw

R
qi)\Qe = dD(S)\Qe represents the min-

imum number of vehicles needed to service all the edge-tasks in the cutset EwR(S) and

inside S. In fact, a vehicle which services some edges in γwR(S) ∪ EwR(S) and/or some

nodes in SwR crosses Ew(S) at least twice, so the number of deadheading edges used by

such vehicle to cross the cutset Ew(S) is at least 2η(S)−|EwR(S)|. Capacity constraints

provide the link between the packing and routing structure of the MCGRP polyhedron.

The resulting graph associated to the feasible solutions of MCGRP must be an even

graph, i.e., all its nodes must have an even degree. It can be easily shown that a cutset

must contain an even number of edges. Therefore, for each cutset containing an odd

number of edge-tasks, at least one edge in the cut must be deadheaded. This fact is

expressed by the so-called odd edge cutset constraints:

∑
(i,j)∈Ew(S)

θij ≥ 1 ∀S ⊆ Cw, with |EwR(S)| odd. (3.2)

18

3.2 Surrogate inequalities

The constraints (3.1) and (3.2) can be rewritten in the following unified way:

∑
(i,j)∈Ew(S)

θij ≥ α(S) ∀S ⊆ Cw, (3.3)

where

α(S) =

{
max {2η(S)− |EwR(S)|, 1} if |EwR(S)| is odd,

max {2η(S)− |EwR(S)|, 0} if |EwR(S)| is even.

In order to express (3.3) in terms of the original variables of the MCGRP model, we

observe that

θij =

{ ∑
k∈K(ykij + ykji) if (i, j) is an edge in G, i.e., cij = cji in Gw,∑
k∈K y

k
ij if (i, j) is an arc in G, i.e., cji =∞ in Gw.

The sets in the formulas (e.g., EwR(S)) can be easily transformed with respect to the

original graph G.

In the following we extend to our problem the relevant identification procedures

defined by Belenguer and Benavent (2003) for the Capacitated ARP. We denote by θ̄ij

the current optimal value for the aggregated variable θij .

3.2.2 Capacity inequalities separation

The separation problem related to the capacity constraints is quite difficult to optimally

solve, mainly because the right side of (3.1) involves the integer up rounding of D(S)
Q .

The following procedure is devoted to separate a fractional relaxation of the capacity

constraints in polynomial time (see Augerat et al. (1998)). In our case, the fractional

capacity constraints are formulated as follows:

∑
(i,j)∈Ew(S)

θij ≥ 2(D(S)\Q)− |EwR(S)| ∀S ⊆ Cw. (3.4)

Since η(S) ≥ D(S)\Q, the inequalities (3.1) dominate the inequalities (3.4). The frac-

tional capacity constraints can be effectively identified by using a procedure similar to

the one described by Belenguer and Benavent (2003). It consists in solving a maximum

flow problem on a graph Ḡw obtained from Gw by adding an artificial node σ and

edges connecting σ to the other nodes in Gw. The capacity of each edge (i, j) in Ḡw is

19

3. VALID INEQUALITIES AND SEPARATION ALGORITHMS

denoted by bij and defined as follows:

bij =


θ̄ij if (i, j) ∈ Ew \ EwR ,

θ̄ij + 1− dij
Q if (i, j) ∈ EwR ,

2
Qqi + 1

Q

∑
(i,h)∈Ew

R(i) dih if i ∈ V w and j = σ.

Let υ be the minimum capacity of the cut defined by S∪{σ} and obtained by solving a

maximum flow problem on Ḡw between nodes 1 and σ. Observe that S represents the

set of the original nodes defining this optimal cut. Let us define P as 2
Q(

∑
(i,j)∈Ew

R
dij +∑

i∈V w
R
qi). The slack of constraint (3.4) with respect to S is obtained by subtracting

P to υ. In fact:

υ − P =

=
∑

(i,j)∈Ew
R(S)

bij +
∑

(i,j)∈Ew(S)\Ew
R(S)

bij +
∑

i∈V w\S

biσ −
2

Q

∑
(i,j)∈Ew

R

dij −
2

Q

∑
i∈V w

R

qi

=
∑

(i,j)∈Ew
R(S)

θ̄ij + |EwR(S)| − 1

Q

∑
(i,j)∈Ew

R(S)

dij +
∑

(i,j)∈Ew(S)\Ew
R(S)

θ̄ij +
2

Q

∑
i∈V w\S

qi

+
1

Q

∑
i∈V w\S

∑
(i,h)∈Ew

R(i)

dih −
2

Q

∑
(i,j)∈Ew

R

dij −
2

Q

∑
i∈V w

R

qi

=
∑

(i,j)∈Ew(S)

θ̄ij + |EwR(S)|+ 2

Q

∑
(i,j)∈γwR(V w\S)

dij +
2

Q

∑
i∈V w\S

qi

− 2

Q

∑
(i,j)∈Ew

R

dij −
2

Q

∑
i∈V w

R

qi

=
∑

(i,j)∈Ew(S)

θ̄ij + |EwR(S)| − 2

Q

∑
(i,j)∈γwR(S)∪Ew

R(S)

dij −
2

Q

∑
i∈Sw

R

qi

=
∑

(i,j)∈Ew(S)

θ̄ij + |EwR(S)| − 2
D(S)

Q
.

Therefore, if υ − P < 0 then the constraints (3.4) and (3.1) are violated for S. If

υ−P ≥ 0 then no constraint of type (3.4) is violated, but (3.1) could be violated for S.

Hence, this procedure is used to generate a set S for which (3.1) are checked for possible

violations (see algorithm 3). Whenever the fractional capacity identification procedure

fails, then a different method is used to identify violated capacity constraints of type

(3.1). Such method is based on a demand perturbation. Observe that the slack of (3.4)

can be approximated to the slack of (3.1) computing the first one in a graph Ḡw(p)

20

3.2 Surrogate inequalities

where the demands of edge-tasks and node-tasks are multiplied for (1 + p), 0 < p < 1.

Then, the fractional capacity identification procedure based on the minimum capacity

cut problem is applied again on Ḡw(p) (see algorithm 4).

Algorithm 3: Capacity inequalities separation

Require: The graph Gw = (V w, Ew) and a solution θ
|Ew|

;

Ensure: violated inequalities 3.1;

1: generate the support graph G(θ);

2: calculate the maximum flow from node 1 to n− 1;

3: if φ(S ∪ n+ 1)∗ − 2
Q

∑
(i,j)∈Ew

R
dij − 2

Q

∑
i∈V w qi < 0 then

4: add violated constraint 3.1 for S = S∗;

5: else

6: call algorithm 4;

7: end if

Algorithm 4: Perturbed demand procedure

Require: The graph Gw = (V w, Ew);

Ensure: violated inequalities 3.1;

1: Set Np = 0;

2: while Np < 10 do

3: choose p randomly in the interval (0, 1);

4: Np = Np + 1;

5: ∀(i, j) ∈ EwRd′ij = dij ∗ (1 + p);

6: ∀i ∈ V w
R q
′
i = qi ∗ (1 + p);

7: apply the algorithm 3 with the new demands;

8: end while

3.2.3 Odd-edge inequalities separation

The odd edge cutset inequalities can be exactly separated in polynomial time. We

implemented both an exact algorithm and a faster heuristic procedure. The former is

21

3. VALID INEQUALITIES AND SEPARATION ALGORITHMS

inspired by an algorithm proposed by Padberg and Rao (1982), whereas the heuristic

procedure is inspired by an algorithm described in Corberán et al. (2001).

The inequalities to be identified are the following:∑
(i,j)∈Ew(S)

θij ≥ 1 ∀S ⊆ Cw, with |EwR(S)| odd. (3.2)

The exact separation procedure described in Padberg and Rao (1982) is referred to the

b-matching problem. Such problem can be formulated as follows:

Maximize cTx (3.5a)

Ax ≤ b (3.5b)

x ∈ Zm+ (3.5c)

where c is a m-vector of non-negative coefficients, A ∈ {0, 1}n×m is the incidence matrix

of an undirected graph with n nodes and m edges and b is a vector of n positive integer

numbers, each representing the maximum number of edges incident to each node of the

graph. In the problem 3.5 not all the basic feasible solutions are automatically integer

(the graph is not bipartite). The valid inequalities that allow to obtain integer basic

feasible solutions are called matching constraints or blossom inequalities.

Let G = (V,E) be an undirected graph with incidence matrix A and let W ⊆ V a

subset of nodes of G (or a subset of rows of A) such that b(W) =
∑
i∈W

bi is odd. The

inequality:

x(W) =
∑

e∈γ(W)

xe ≤
1

2
(b(W)− 1) (3.6)

is valid for 3.5, where γ(W) is the set of edges with both endpoints inside W . Let s

be the vector of slack variables of the inequalities Ax ≤ b and s(W) =
∑
i∈W

si. Since

Ax+ s = b, for the subset of rows from the matrix A corresponding to the vertices in

W , then we can write 2x(W) +x(E(W)) + s(W) = b(W), where x(E(W)) =
∑

e∈E(W)

xe

and E(W) is the edge cutset defined by W . Dividing by 2, we have: x(W) = 1
2 [b(W)−

(x(E(W)) + s(W))]. The inequality 3.6 is valid if and only if:

x(E(W)) + s(W) ≥ 1, ∀W ⊆ V, such that b(W) is odd (3.7)

22

3.2 Surrogate inequalities

In the particular case s(W) = 0 (all the constraints of 3.5 corresponding to the vertices

of W satisfied as equalities), condition 3.7 becomes:

x(E(W)) ≥ 1, ∀W ⊆ V, b(W) odd (3.8)

Setting θ = x and bi the number of edges-tasks incident to each node of S = W , since

b(S) = 2|γR(S)|+ |ER(S)|, b(S) is odd if and only if |ER(S)| is odd, then:

θ(E(S)) ≥ 1, ∀S ⊆ V, |ER(S)| odd (3.9)

Constraints 3.2 are formally equal to 3.8, then the separation of 3.2 may be performed

by using the same exact separation algorithm of 3.8 whenever s(W) = 0.

Let θ ∈ Z
|Ew|
+ the solution vector at the current iteration of the cutting plane

algorithm and let G(θ) the graph induced by the edges of Ew with θij > 0. Each edge

of G(θ) has a capacity θij > 0. Let T be the set of odd nodes of G(θ) (the nodes

with an odd number of incident edge-tasks in the original graph G). We construct the

Cut-Tree by using the Gomory-Hu algorithm (algorithm 5).

Algorithm 5: Cut-tree

Require: A graph G(θ) = ((V), (E)) and a set T ⊂ (V) of terminal vertices;

Ensure: A Cut-tree C;

1: L := V

2: while T 6= V do

3: Select a terminal vertex t from T and let R ∈ L be the supernode of C that

contains t. Let r be the representative vertex of R;

4: Let GR(θ) the induced graph obtained replacing all the supernodes S1, ..., St of

the cut-tree C and incident to R, with the vertices si, i = 1, ..., l;

5: Let λGR(θ)(r, t) the maximum flow from the source node r to the destination node

t computed on the reduced graph GR(θ) and let δ(X) the minimum (r, t)-cut in

GR(θ). If GR(θ) is not connected is not possible to send a flow from r to t, then

the maximum flow is 0 and δ(X) = (V Cr , V Ct) where V Cr is the set of vertices

of the connected component the contains r, and V Ct is the set of vertices of the

connected component that contains t;

23

3. VALID INEQUALITIES AND SEPARATION ALGORITHMS

6: Let L = (L \ {R}) ∪ ({R ∩ X} ∪ ({R ∩ X}). The supernode R is replaced

by the supernodes R ∩ X and R ∩ X connected by an adge which weight is

f(R ∩X,R ∩X) = λGR(θ)(r, t)

7: For each i = 1, ..., l replace each edge (R,Si) of the cut-tree C with a new edge

(R ∩ X,Si) with weight f(R ∩ X,Si) = f(R,Si) if si ∈ X or with a new edge

(R ∩X,Si) with weight f(R ∩X,Si) = f(R,Si) if si ∈ X;

8: if R ∩X or R ∩X contains only the terminal vertex t then

9: T = T \ {t}
10: end if

11: end while

In general, let G = (V,E, γ) a undirected weighted graph, with weights γ ∈ Q
|E|
+

on the edges. Let T ⊂ V a subset made up by an even number of odd vertices. A

cut δ(U) is defined T-odd, or simply odd, if |T ∩ U | is an odd number. The minimum

odd cut problem consists in finding an odd cut δ(U) with the minimum weight γ(δ(U))

(algorithm 6).

Algorithm 6: Exact Odd Edge cut separation

Require: The optimal solution θ ∈ Z
|Ew|
+ at any iteration of the cutting plane algo-

rithm;

Ensure: A minimum odd set S for which constraints 3.2 are violated;

1: Let ε = 1;

2: Let S = ∅;
3: Generate the graph G(θ) = (V ,E) induced in G by the current solution: G(θ) =

Graph(G, θ);

4: Find the set T ⊆ V of the terminal vertices (odd vertices in G): T = GetOdd(G);

5: Invoke algoritm 5 on G(θ) with the set of terminal vertices T and obtain the cut-tree

CG(θ): CG(θ) = CutTree(G(θ), T);

6: for all |T | − 1 edges of the cut-tree CG(θ) do

7: Let δ(U e) be the cutset induced by the edge e = (Si, Sj), where Si and Sj are two

supernodes of the cut-tree. Note that U e is a set of supernodes of the cut-tree;

8: checking for any violation generated by the cut: if |T ∩U e| is odd and w(δ(U e)) =

f(Si, Sj) < ε, store in S = S ∪ {Se = GetV ertices(G,U e)} the vertices of

24

3.2 Surrogate inequalities

the original graph G included yet into the supernodes of U e, and such that

3.2 is violated. Note that f(Si, Sj) represents the maximum flow on the edge

e = (Si, Sj) of the cut-tree.

9: end for

25

3. VALID INEQUALITIES AND SEPARATION ALGORITHMS

26

4

An Upper bound

An initial feasibleMCGRP solution is generated by running a heuristic algorithm based

on a simple construction phase, followed by an improvement phase that implements a

local-search procedure.

Two different procedures are used with the aim of constructing an initial feasible

solution: the partition-first-route-next method proposed by Gutiérrez et al. (2002) and a

clustering procedure followed by the solution of a GRP problem for each cluster. Then,

an iterative local search procedure is performed to improve the solution obtained in the

previous phase according to the pseudo-code of the overall algorithm in 7.

Algorithm 7: Heuristic

Require: An MCGRP instance;

Ensure: A feasible solution S = (x, y, z);

1: S′ = InitialSolution();

2: S = LocalSearch(S′);

4.1 The initial solution

An initial solution is obtained by using the heuristic procedure of Gutiérrez et al. (2002).

Whenever the solution is m-infeasible (it does not contain m routes), then a clustering

method is used (see algorithm 8).

Algorithm 8: Initial solution

27

4. AN UPPER BOUND

Require: An MCGRP instance;

Ensure: A feasible solution S = (x, y, z);

1: S = Partition− First−Route−Next();
2: if Routes(S) 6= |K| then

3: S = Clustering();

4: end if

A detailed description of how the two procedures work is reported in the following

section.

4.1.1 Partition-First-Route-Next

This heuristic procedure constructs one route at a time. Firstly, for each required arc,

edge or isolated vertex it finds a minimum cost initial route connecting the required

element to the depot. Then the remaining largest initial route is selected and other

required elements (edge, arc or node) are serviced at the minimum cost, according to

the following preferences. The required elements nearest to the one defining the initial

route, and according to the capacity constraint are firstly considered. Then, all the

deadhead elements which demands do not exceed the residual capacity of the vehicle

are taken into account for possible insertion. Finally, all the required elements very

close to the route and with a demand not greater than 0.9Q are considered.

More notation is required in order to understand the outlines referred to the de-

scribed procedures.

• the depot is identified by the vertex 1;

• Qt: total demand in the graph;

• Ca: accumulated cost of the assigned routes;

• Da: accumulated demand of the assigned routes;

• required element : each required isolated vertex (non incident with required arcs

or edges) and each required arc or edge together with its two incident vertices. A

required element is denoted by (i, j). If i = j this element is a (isolated) vertex;

28

4.1 The initial solution

• B: the set of required elements not yet inserted in a route;

• R(i, j): a route containing the depot and the required element (i, j);

• C(i, j): total cost of the route R(i, j);

• D(i, j): total demand of the route R(i, j);

• N : number of assigned routes;

• SP (u, v): shortest path from vertex u to vertex v;

• CSP (u, v): cost of SP (u, v) (CSP (u, u) = 0);

• q0: minimal demand corresponding to the required vertices (all), arcs and edges

not yet assigned to any route;

• DF : demand needed to saturate the capacity Q of a route;

• M0: statistical median of the costs of all edges and arcs of the graph;

• KI(u, v): insertion path from vertex u to vertex v. If u 6= v, KI(u, v) is a segment

of route between vertices corresponding to two consecutive required elements,

including the depot inserted in the route, and such that this segment does not

contain any other required element inserted in the route. Necessarily KI(u, v) =

SP (u, v). If u = v, KI(u, u) = u.

Algorithm 9: Partition-First-Route-Next

Require: An MCGRP instance;

Ensure: A feasible solution S = (x, y, z);

1: {Initialization}
2: Find the initial route for each (i, j) ∈ B:

• for each edge (i, j) ∈ B its initial route is the one of least cost between

R(i, j) = SP (1, i) ∪ (i, j) ∪ SP (j, 1) and R(j, i) = SP (1, j) ∪ (j, i) ∪ SP (i, 1);

• for each arc (i, j) ∈ B its initial route is R(i, j) = SP (1, i) ∪ (i, j) ∪ SP (j, 1);

29

4. AN UPPER BOUND

• for each isolated vertex (i, i) ∈ B (i = (i, i)) its initial route is R(i, i) =

SP (1, i) ∪ SP (i, 1).

3: For each pair (u1, u2), (v1, v2) of required elements of the graph, including the

depot, calculate the distance between them, defined as

min{CSP (u1, v1), CSP (u1, v2), CSP (u2, v1), CSP (u2, v2),

CSP (v1, u1), CSP (v1, u2), CSP (v2, u1), CSP (v2, u2)}

4: DA = 0, CA = 0, N = 0

5: N = N + 1, I = 0

6: Select the initial route R(i, j) with largest cost corresponding to a required element

(i, j) ∈ B. Let R(i, j) = SP (1, i) ∪ (i, j) ∪ SP (j, 1) be this route, consider the

insertion paths: KI(1, i),KI(j, 1),KI(1, 1),KI(i, i),KI(j, j), being (i, j) the first

inserted required element in route N .

7: D(i, j) = qi + qij + qj , DF = QD(i, j).

8: Put in order the demands of the remainder elements of B according to the instance

of the required element to (i, j) in increasing order of distance. Given this order,

calculate the maximal accumulated demand Fs (s implies that Fs corresponds to

the first s elements) such that Fs ≤ DF .

9: Let As be the set containing the first s required elements. If As = ∅ (s = 0) GO

TO step 20

10: D(i, j) = D(i, j) + Fs, DF = Q−D(i, j).

11: For each element of As not inserted yet in the route N , calculate the cost increment

due to its insertion in each one of the new insertion paths KI(ui, vi). This cost is

defined in the following way:

• For each non inserted edge (u, v) ∈ As, min{CSP (ui, u) + cuv +CSP (v, vi)−
CSP (ui, vi), CSP (ui, v) + cuv + CSP (u, vi)− CSP (ui, vi)};

• For each non inserted arc (u, v) ∈ As, CSP (ui, u) + cuv + CSP (v, vi) −
CSP (ui, vi);

30

4.1 The initial solution

• For each non inserted isolated vertex u ∈ As, CSP (ui, u) + CSP (u, vi) −
CSP (ui, vi).

12: Select the insertion path KI(ui, vi) and the required element (u, v) ∈ As for which

the minimum cost increment is reached in Step 11.

Insert this required element in the route N by replacing KI(ui, vi) with SP (ui, u)∪
(u, v) ∪ SP (v, vi). R(i, j) is then updated: R(i, j) = {R(i, j) − KI(ui, vi)} ∪
SP (ui, u) ∪ (u, v) ∪ SP (v, vi). Remove KI(ui, vi) from the list of insertion paths

and add to this list the new insertion paths: KI(ui, u), KI(v, vi), KI(u, u) and

KI(v, v) (note that occasionally ui = vi and/or u = v).

13: I = I + 1

14: if I < s then

15: GO TO step 11

16: end if

17: if DF < q0 then

18: GO TO step 54

19: end if

20: Consider the demands not yet inserted in any route and located at vertices and

links traversed by the route R(i, j). Put in order these demands according to their

distance to the depot in the route, going to or coming from the depot, in increasing

order of distance. To do this, consider that a demand corresponding to an arc or

edge is located in the center of the link. Given this order, calculate the maximal

accumulated demand Fm (m implies that Fm corresponds to the first m elements)

such that Fm ≤ DF and let Fn be the total non inserted demand located in R(i, j).

21: if Fm = 0 (m = 0) then

22: GO TO step 32

23: end if

24: D(i, j) = D(i, j) + Fm

25: DF = DF − Fm
26: if DF < q0 then

27: GO TO step 54

28: end if

31

4. AN UPPER BOUND

29: if Fm = Fn then

30: GO TO step 41

31: end if

32: Put in increasing order the remaining demands not yet inserted in any route and lo-

cated at vertices and links traversed by the route R(i, j). Given this order, calculate

the maximal accumulated demand Fp such that Fp ≤ DF .

33: if Fp = 0 then

34: GO TO step 41

35: end if

36: D(i, j) = D(i, j) + Fp

37: DF = DF − Fp
38: if DF < q0 OR DF ≤ 0.1Q then

39: GO TO step 54

40: end if

41: From among the required elements (u, v) ∈ B not present in R(i, j), not labeled

and such that at least one of its demands qu, quv, qv, is different from zero and little

or equal than DF , select the one that minimizes min{CSP (ui, u) + CSP (v, ui) :

uiis a vertex belonging to a required element inserted inR(i, j), including the depot}
if this minimum is little or equal than 2M0.

42: if such required element (u, v) does not exist then

43: GO TO step 54

44: end if

45: Let duv = qu + quv + qv be the demand of (u, v).

46: if duv ≤ DF then

47: d0 = duv and GO TO step 50.

48: end if

49: From among the six elements qu, qv, quv, qu + qv, qu + quv, qv + quv, select the largest

one little or equal than DF . Let d0 be this element.

50: D(i, j) = D(i, j) + d0, DF = DF − d0 and:

• R(i, j) = R(i, j) ∪ SP (ui, u) ∪ (u, v) ∪ SP (v, ui) if d0 contains quv.

• R(i, j) = R(i, j) ∪ SP (ui, u) ∪ SP (u, ui) if d0 = qu.

• R(i, j) = R(i, j) ∪ SP (ui, v) ∪ SP (v, ui) if d0 = qv.

32

4.1 The initial solution

• R(i, j) = R(i, j)∪SP (ui, u)∪(u, v)∪SP (v, ui) if d0 = qu+qv and CSP (ui, u)+

cuv + CSP (v, ui) ≤ CSP (ui, u) + CSP (u, ui) + CSP (ui, v) + CSP (v, ui).

• R(i, j) = R(i, j) ∪ SP (ui, u) ∪ SP (u, ui) ∪ SP (ui, v) ∪ SP (v, ui) otherwise.

51: if DF > 0.10Q and DF ≥ q0 then

52: label (u, v) and GO TO step 41.

53: end if

54: Consider route R(i, j) as a definitive route.

55: DA = DA+D(i, j)

56: CA = CA+ C(i, j)

57: if DA = Q then

58: STOP

59: end if

60: Update B, update the demands of its elements and for each required vertex become

isolated, find its initial route and calculate its distances to the remaining required

elements. Remove the label to the required elements labeled in step 50.

61: GO TO step 5.

The above heuristic has polynomial complexity. In fact, the steps with largest

number of operations are: step 1 with complexity O(|V |3) (in the worst case, the

set of its operations is dominated by the computation of the shortest path between

each ordered pair of vertices in G, which are stored in such a way that we do not

need to compute them in the following steps); step 8 with complexity O(r2) being

r = |AR ∪ ER|+ |VR| (in the worst case, the set of its operations is dominated by the

ordering of the demands of all required elements in G); step 11 that, after all the times

that the heuristic passes through it, has complexity O(r|V |2) (r|V |2 is an upper bound

on the number of combinations between a required element and an insertion path) and

finally step 41 whose complexity is O(r|V |). Then, we may conclude that our heuristic

has polynomial complexity upper-bounded by O(s3) being s = max{|V |, r} (note that

k ≤ r).

4.1.2 Clustering

The cluster’s elements are the arcs, edges and vertices tasks. Each required arc, edge

and vertex must be contained in exactly a cluster. The total demand of the elements

33

4. AN UPPER BOUND

in a cluster must not exceed Q (the capacity of the vehicle). The clustering algorithm

proposed here starts with random “seeds” (a seed is a required element). The elements

of the cluster Cj are the elements served by the j − th route. Consequently, if X is the

set of clusters, then |X| = |K|

4.1.2.1 Metric

The clusters generation requires the definition of a metric for the evaluation of the

distances among service elements. These distances can be calculated in advance and

saved in a |R| × |R| matrix called D, where R is the set of all the service elements

(R = AR ∪ER ∪CR). The element (h, k) of this matrix represents the average distance

between the service elements h and k. The computation of these distances is illustrated

in figure 4.1, where the dashed lines are shortest paths. The average distance dAB

between two required vertices A and B, for example, is the average between the cost

of the shortest path from A to B and the cost of the shortest path from B to A.

A

B

A A

Figure 4.1: Computation of the average dinstance between service elements.

Let Cj be a cluster and h a service element, the dinstance between Cj and h is

defined as the arithmetic mean of the average dinstances between h and each other

element i in Cj :

dCjh =
1

|Cj |

|Cj |∑
i=1

dih (4.1)

4.1.2.2 Clusters generation

Algorithm 10: Clustering

Require: The graph G and the dinstance metric matrix D

Ensure: The set of clusters X

1: {Seeds selection}
2: Choose a random seed s, insert it in the first cluster C1 and label s as choosen.

34

4.1 The initial solution

3: for i = 2 to |K| do

4: s = arg max
k∈R|k not labeled

{dCjk|j < i}.

5: Insert s in the cluster Ci and label s as choosen.

6: end for

7: {Fill the clusters}

8: Set the capacity of the cluster j to j
|K|Q.

9: for i = 1 to |K| do

10: {Insert in the cluster Ci the elements closest to the ones already present in it}

11: while The capacity of the cluster Ci is not saturated do

12: s = arg min
k∈R|k not labeled

{dCik}.

13: Insert s in the cluster Ci and label s as choosen.

14: end while

15: end for

16: {Insert remaining elements}

17: Restore the original capacities.

18: Sort the not labeled elements of R by non increasing demand.

19: for all Not labeled element s ∈ R do

20: c = arg min
j∈X|j is compatible with s

{dCjs}

21: if c exists then

22: Insert s in the cluster Cc and label s as choosen.

23: else

24: Create a new cluster C ′, insert s in C ′ and label s as choosen.

25: end if

26: end for

The step 8 is necessary to avoid a penalization of the last clusters. Without this

step, in fact, the last clusters could be filled with elements very far from each other.

In the step 24 a new cluster is generated, in this case the algorithm returns a set of

clusters X with |X| > |K|.

35

4. AN UPPER BOUND

4.2 Local Search

The local search algorithm is an iterative procedure moving from a solution to a better

one in the space of candidate solutions until a given condition is reached (no more

improving solutions or time limit). The search starts from a candidate solution (the

initial solution described in section 4.1) and iteratively moves to a neighbor solution.

A neighbor solution is obtained through a move named in the sequel switch(n, 1).

This move involves two clusters (Ci and Cj) and swaps n required elements of Ci with

one required element of Cj . The move works on the clusters and not directly on the

routes. After the swap operation, the new routes (and consequently the new cost of

the solution) are obtained by solving two GRP problems on Ci and on Cj . Both the

clusters and the required elements to swap are randomly choosen. The procedure ends

when no improvements for γ consecutive swap operations occur. In the computational

experiments we randomly choose between swap(2, 1) and swap(1, 1) at each iteration.

The procedure is illustrated in the algorithm 11.

Algorithm 11: LocalSearch

Require: A set of clusters X

Ensure: A solution S

1: I = 0

2: while I < γ do

3: Ci =random cluster in X;

4: Cj =random cluster in X different from Ci;

5: n = random{1, 2};
6: X ′ = swap(n, 1, Ci, Cj);

7: calculate the total cost of X ′;

8: if cost(X ′) < cost(X) then

9: I = 0;

10: X = X ′;

11: else

12: I = I + 1;

13: end if

14: end while

36

4.2 Local Search

In the step 7, the total cost of the new clustering X ′ is calculated by optimally

solving a GRP problem on Ci and Cj in order to obtain the new optimal routes and

summing the costs of these routes to the ones of the unchanged clusters. The algorithm

swap(n, 1, Ci, Cj) is detailed in 12.

Algorithm 12: Swap

Require: n, Ci, Cj

Ensure: A new clustering X ′

1: L = n random elements of Ci;

2: e = 1 random element of Cj ;

3: if load(Ci) − load(L) + load({e}) ≤ Q AND load(Ci) − load({e}) + load(L) ≤ Q

then

4: X ′ = X \ {Ci, Cj};
5: C ′i = Ci \ L ∪ {e};
6: C ′j = Cj \ {e} ∪ L;

7: X ′ = X ′ ∪ C ′i ∪ C ′j ;
8: else

9: X ′ = X;

10: end if

With the notation load(L) we indicate the total demand in L (where L is a set of

required elements).

37

4. AN UPPER BOUND

38

5

The B&C Algorithm

Before the step by step branch and cut algorithm description, a strategy managing a

particular set of inequalities (cut pool) and a simple procedure generating capacity and

odd edge cutset constraints at the root node of the search tree are illustrated below.

5.1 Cut pool management

An iteration of the branch and cut algorithm involves the selection of a subproblem

from the list of active subproblems and the addition of violated constraints and valid

inequalities to this subproblem. The set containing these violated constraints and valid

inequalities is called cut pool. It is cleaned every 50 iterations by eliminating inequalities

with slack variables more than ε or dual variables less than ε, where ε = 10−6 is a

tolerance.

5.2 Root node generation

The root node problem is composed by the objective function 2.1, the constraints from

2.2 to 2.6, the connectivity constranints 2.7 for the R-Sets (see 2.1) and the odd-edge

and capacity constraints 3.3 and other connectivity constraints for some subsets of

nodes generated by the routine 13.

Algorithm 13: Subsets generation

1: W = {1}
2: while W 6= V do

39

5. THE B&C ALGORITHM

3: S = V \W
4: if α(S) > 1 then

5: generate constraint 3.1 for S

6: else if ER(S) is odd then

7: generate constraint 3.2 for S

8: end if

9: generate constraint 2.7 for S

10: Add to W those nodes adjacent to at least one node of W

11: end while

12: for all i ∈ C do

13: if ER({i}) is odd then

14: generate constraint 3.2 for {i}
15: end if

16: end for

5.3 The Branch and Cut algorithm

A simple outline of the overall algorithm is provided in the algorithm 14.

Algorithm 14: Branch & Cut

1: Compute an upper bound λ̄ on the optimal solution value λ∗ by using the local-

search procedure described if chapter 4.

2: Define a relaxed MCGRP formulation as described in section 5.2 and eliminating

integrality constraints. Insert the resulting subproblem in a list L.

3: I = 0

4: if L is empty then

5: STOP.

6: else

7: Extract a subproblem from L.

8: end if

9: Solve the subproblem. Let λ be the solution value. If λ ≥ λ̄, go back to step 4.

10: Identify constraints 2.7 through the heuristic algorithm 1.

40

5.3 The Branch and Cut algorithm

11: if No constraints 2.7 are identified by the heuristic algorithm 1 then

12: Identify constraints (2.7) through the exact algorithm 2.

13: end if

14: Identify constraints 3.1 through the algorithm 3.

15: if No constraints 2.7 are identified by the heuristic algorithm 1 then

16: Identify constraints (2.7) through the exact algorithm 2.

17: end if

18: if No inequalities of type 2.7 and 3.1 has been identified then

19: go to step 29.

20: else

21: Add the violated inequalities identified to the cut pool and to the current sub-

problem.

22: end if

23: I = I + 1

24: if I > 50 then

25: Remove from the cut pool and from the current subproblem the contraints with

slack variables more than ε or dual variables less than ε, where ε = 10−6 is a

tolerance

26: I = 0

27: end if

28: Go back to step 9

29: Generate two son subproblems by branching on a fractional variable. Select the

branching variable by considering the following order: xkij ∈ {0, 1}, zki ∈ {0, 1},
ykij ∈ Z+. Insert the subproblems in L and go back to step 4.

41

5. THE B&C ALGORITHM

42

6

Computatonal experiments

Computational experiments have been carried out on a dataset of 34 instances with an

Intel E2140 processor clocked at 1.60 GHz with 1.75 Gbyte RAM. The branch-and-cut

algorithm has been coded in Java 1.6, by using ILOG CPLEX library, release 12.2. A

time limit of four hours has been imposed to the computations by CPLEX, so that valid

lower and upper bounds for the MCGRP are detected whenever the algorithm stops

without satisfying the termination criterion (CPLEX optimality gap equal to zero).

Note that the mixed integer problem cuts of CPLEX are active.

6.1 A First Illustration

In order to illustrate the complexity of the problem, we consider the MCGRP instance

defined by the graph G depicted in Figure (6.1) and a fleet of m = 4 vehicles with

capacity Q = 10. The optimal solution was obtained by running the complete MCGRP

formulation (2.11). All the non-empty subsets of C = {1, 2, 3, 4, 5, 6} were automatically

generated and all the related connectivity constraints were introduced into the MCGRP

model. CPLEX was able to find the optimal solution within a time of 0.42 seconds by

exploring a search tree of 235 nodes, while our branch and cut algorithm reached the

optimal solution in 0.09 seconds at the root node and by globally adding 11 inequalities.

The optimal MCGRP solution consisting of 4 routes is shown in Figure (6.2), where

solid lines indicate the links serviced in the route, dashed lines indicate the deadheading

links and dotted lines represent the vertices that are not serviced. We remark that

for instances a bit larger than the previous, with regard to the number of vertices

43

6. COMPUTATONAL EXPERIMENTS

and links, CPLEX provides neither a lower bound nor an upper bound within a large

computational time (i.e., more than 4 hours). Our branch and cut algorithm represents

a first effective effort to approach the problem through an exact method, as shown in

the following.

3

2

12,0

4

11
,0

3,0

0
8,5

3,
0

2,0

1

5,0

7,4

5
4,
5

3,0

5,0

6
6,0

8,0

10
,8

i j
cij , dij

10

6

qi qj

Figure 6.1: G = (V,E,A).

0

1

6

route 1

03

4 5

route 2

0

2 1

route 3

0

4

route 4

Figure 6.2: Optimal solution.

6.2 The Instances

We derived a dataset of new instances for the MCGRP from 34 instances called mval

and designed by Belenguer et al. (2006) for the mixed capacitated ARP. The original

instances contain 24-50 nodes and 43-138 links, all required. Each of them was con-

verted into an mgval one (g like general), with the same total demand, as follows. Let

π = |AR ∪ER| be the number of required links for an mval instance. The demands on

44

6.3 Numerical Results

d0.1πe randomly selected links were transferred to d0.1πe randomly selected nodes. So,

for example, if an mval instance has 24 nodes and 55 required links, the corresponding

mgval instance has 6 required nodes, 18 non-required nodes, 49 required links, and 6

non-required links.

6.3 Numerical Results

The numerical results obtained on the above sets of instances are reported in table 6.1.

The column headings are defined as follows:

file : instance name;

|V | : number of vertices of the graph;

|A ∪ E| : number of arcs and edges of the graph;

m : number of vehicles;

LB : lower bound at the root of the search tree;

UB : initial upper bound;

CON : number of added connectivity constraints;

SUR : number of added surrogate capacity inequalities;

λ : solution value (final upper bound);

GAP% : percentage gap computed with respect to the optimal value;

|LB − λ|
λ

: integer ratio;

Nodes : number of nodes in the search tree.

Observe that the GAP% is defined as CPLEX parameter in the following way: |BestNode−
BestInteger| / (10−10 +|BestInteger|). BestNode is the best objective value returned

by CPLEX within the time limit and BestInteger is the best integer solution value.

Whenever the model is solved to optimality, GAP% is equal to zero and we report in

column λ the optimal value (an asterisk denotes this case). Otherwise, BestNode is

computed as the minimum value of the objective function of all remaining unexplored

nodes.

45

6. COMPUTATONAL EXPERIMENTS

The number of instances solved to optimality is equal to 12. Specifically, we obtained

optimal solutions for instances with a number of vehicles less than or equal to 4 for

small and large graphs. In general, some branching is required to reach such optimal

solutions, with the exception of two instances that were solved at the root node. For

the remaining instances lower and upper bounds are reported in table 6.1.

Observe that connectivity constraints were added in each instances in order to

ensure the feasibility of the solution. Surrogate capacity inequalities considerably con-

tribute to obtain a feasible or optimal solution. For instances, in the instance mgval2b

the number of identified surrogate inequalities is huge. Only in 6 instances they are

irrelevant.

In figures 6.3 and 6.4 we can observe that for the instances in which we have the

optimal solution, the optimal cost is very close to the lower bound (except for mgval9c).

For the other instances the final feasible solution has a cost close to the upper bound.

This suggest that is not convenient work on the lower bound improvement, but reducing

the upper bound can help to reduce the computational effort by cutting the branch and

cut tree.

46

6.3 Numerical Results

f
il
e

|V
|
|A
∪
E
|

m
L

B
U

B
C

O
N

S
U

R
λ

G
A

P
%

|L
B
−
λ
|

λ
N

o
d

es

m
gv

a
l1

a
24

5
5

2
20

0.
00

20
8

14
75

0
20

2
∗

0.
00

1.
00

4
m

gv
a
l1

b
24

5
1

3
23

6.
00

28
7

25
4

17
23

6
∗

0.
00

0.
00

5
m

gv
a
l1

c
24

5
3

8
25

9.
70

—
15

32
2

28
30

9
15

.9
7

19
.0

0
83

73
m

gv
a
l2

a
24

4
4

2
30

5.
00

37
9

17
01

23
30

5
∗

0.
00

0.
00

1
m

gv
a
l2

b
24

5
2

3
37

4.
70

39
3

10
23

1
45

9
38

1
∗

0.
00

1.
69

29
72

m
gv

a
l2

c
24

4
9

8
33

2.
00

63
0

20
89

5
66

00
61

7
45

.8
3

85
.8

4
10

19
5

m
gv

a
l3

a
24

4
8

2
10

4.
00

11
5

14
44

10
10

5
∗

0.
00

0.
96

4
m

gv
a
l3

b
24

4
5

3
13

7.
00

15
5

32
7

6
13

7
∗

0.
00

0.
00

1
m

gv
a
l3

c
24

4
3

7
14

2.
00

18
2

10
89

1
15

85
1

16
5

12
.4

9
16

.2
0

16
46

6
m

gv
a
l4

a
41

9
5

3
54

3.
00

59
0

10
99

18
74

93
56

0
1.

84
3.

13
68

36
m

gv
a
l4

b
41

10
2

4
58

5.
00

69
6

11
26

06
27

73
59

0
0.

85
0.

85
20

56
m

gv
a
l4

c
41

10
3

5
57

5.
00

74
4

79
33

7
25

79
64

1
10

.3
11

.4
8

14
79

m
gv

a
l4

d
41

10
4

9
60

1.
00

87
2

20
06

3
25

4
87

2
31

.0
8

45
.0

9
1

m
gv

a
l5

a
34

9
6

3
54

7.
00

59
9

78
53

86
54

7
∗

0
0.

00
7

m
gv

a
l5

b
34

9
1

4
52

3.
00

61
6

66
36

3
45

23
54

2
3.

51
3.

63
53

40
m

gv
a
l5

c
34

9
8

5
64

6.
00

75
0

47
80

9
46

8
66

3
2.

56
2.

63
47

15
m

gv
a
l5

d
34

9
2

9
61

6.
00

86
6

34
26

0
64

0
86

6
28

.8
7

40
.5

8
71

m
gv

a
l6

a
31

6
9

3
28

7.
00

32
1

77
6

17
28

7
∗

0
0.

00
3

m
gv

a
l6

b
31

6
6

4
29

6.
00

32
3

19
87

1
29

6
∗

0
0.

00
1

m
gv

a
l6

c
31

6
8

10
30

4.
00

44
0

22
60

0
10

55
44

0
30

.9
1

44
.7

4
68

1
m

gv
a
l7

a
40

8
6

3
33

6.
50

38
3

21
74

4
2

34
1
∗

0
1.

34
27

m
gv

a
l7

b
40

9
1

4
38

8.
00

43
1

21
51

0
38

8
∗

0
0.

00
1

m
gv

a
l7

c
40

9
0

9
36

9.
00

47
3

15
10

1
18

8
47

3
21

.9
9

28
.1

8
17

m
gv

a
l8

a
30

9
6

3
56

6.
00

60
3

74
74

17
56

6
∗

0
0.

00
1

m
gv

a
l8

b
30

9
1

4
48

2.
00

55
2

48
81

0
53

2
48

4
∗

0
0.

41
38

5
m

gv
a
l8

c
30

8
3

9
51

1.
00

72
0

27
42

4
47

5
72

0
29

.0
3

40
.9

0
30

m
gv

a
l9

a
50

13
2

3
40

4.
60

45
5

47
69

6
28

4
40

7
∗

0
0.

60
52

m
gv

a
l9

b
50

12
0

4
39

3.
00

47
3

94
63

9
21

50
39

6
0.

76
0.

76
17

19
m

gv
a
l9

c
50

12
5

5
39

6.
00

45
5

69
23

6
19

6
45

5
∗

12
.9

7
14

.9
0

1
m

gv
a
l9

d
50

13
1

10
43

6.
00

57
3

91
61

12
7

57
3

23
.9

1
31

.4
2

1
m

gv
a
l1

0
a

50
13

8
3

59
3.

00
63

2
15

21
4

20
59

3
∗

0
0.

00
1

m
gv

a
l1

0
b

50
13

4
4

57
0.

00
66

6
92

36
2

65
57

2
0.

35
0.

35
97

1
m

gv
a
l1

0
c

50
13

6
5

56
3.

50
64

0
85

54
7

32
1

64
0

11
.9

5
13

.5
8

1
m

gv
a
l1

0
d

50
12

9
10

53
6.

00
74

4
11

58
6

25
7

74
4

27
.9

6
38

.8
1

1

T
a
b

le
6
.1

:
C

o
m

p
u

ta
ti

o
n

a
l

re
su

lt
s

fo
r

m
gv

a
l

in
st

a
n

ce
s

47

6. COMPUTATONAL EXPERIMENTS

 100

 200

 300

 400

 500

 600

 700

 800

 900

1a* 1b* 1c 2a* 2b* 2c 3a* 3b* 3c 4a 4b 4c 4d 5a* 5b 5c 5d

 100

 200

 300

 400

 500

 600

 700

 800

 900

1a* 1b* 1c 2a* 2b* 2c 3a* 3b* 3c 4a 4b 4c 4d 5a* 5b 5c 5d

Figure 6.3: Comparison among Lower Bound, Upper Bound and final cost - Instances

mgval1A to mgval5D

48

6.3 Numerical Results

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

6a* 6b* 6c 7a* 7b* 7c 8a* 8b* 8c 9a* 9b 9c* 9d 10a* 10b 10c 10d

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

6a* 6b* 6c 7a* 7b* 7c 8a* 8b* 8c 9a* 9b 9c* 9d 10a* 10b 10c 10d

Figure 6.4: Comparison among Lower Bound, Upper Bound and final cost - Instances

mgval6A to mgval10D

49

6. COMPUTATONAL EXPERIMENTS

50

7

Conclusions

This thesis deals with the problem of optimally solve the Mixed Capacitated General

Routing through a branch and cut algorithm. In Chapter 1 we give a brief introduc-

tion on the problem, highlighting its practical impact in many real life circumstances.

Moreover we expose the literature on this problem, observing that there are no other

works regarding any exact approach to solve it.

In Chapter 2 we introduce an integer programming model for the MCGRP, based

on three-index link variables and two-index node variables. This model contains an

huge number of constraints due to the presence of the classical connectivity constraints

derived by the TSP problem. For this reason, in Chapter 3 the relevant separation

procedure are described in order to identify violations of such inequalities. In the

same chapter is described how to extend some well-known valid inequalities for the

Undirected Capacitated Arc Routing polyhedron to the Mixed Capacitated General

Routing polyhedron with the aim of improving the lower bound at the root node of the

search tree and cutting off the fractional solutions. This issue is addressed by designing

heuristic and exact separation procedures.

In Chapter 4 an upper bound procedure is described to obtain either a good feasible

solution of the problem helping the pruning process in the search tree or a good near-

optimal solution for big instances whether the branch and cut algorithm is not able to

achieve an optimal solution.

The Chapter 5 describes the overall branch and cut algorithm and Chapter 6

presents the computational results on a set of instances derived from the mixed capac-

itated ARP and adapted to the MCGRP. The results show that our algorithm is able

51

7. CONCLUSIONS

to find the optimal solution on about half of the instances and a good feasible solution

on the remaining instances. We observe that the complexity of the problem increases

with the number of vehicles needed to service all the required elements, whereas the

optimal solutions are very close to the lower bounds. These considerations suggest to

concentrate the future efforts towards improving the upper bound procedures.

52

References

J. Albiach, J.M. Sanchis, and D. Soler.

An asymmetric tsp with time windows

and with time-dependent travel times and

costs: An exact solution through a graph

transformation. European Journal of Op-

erational Research, 189(3):789–802, 2008.

3

P. Augerat, J.M. Belenguer, E. Benavent,

A. Corberán, and D. Naddef. Separating

capacity constraints in the cvrp using tabu

search. European Journal of Operational

Research, 106:546–557, 1998. 19

R. Baldacci and V. Maniezzo. Exact meth-

ods based on node-routing formulations

for undirected arc-routing problems. Net-

works, 47(1):52–60, 2006. viii, 2

J.M. Belenguer and E. Benavent. The ca-

pacitated arc routing problem: Valid in-

equalities and facets. Computational Opti-

mization and Applications, 10(2):165–187,

1998. 17

J.M. Belenguer and E. Benavent. A cut-

ting plane algorithm for the capacitated

arc routing problem. Computers and Oper-

ations Research, 30(5):705–728, 2003. 17,

19

J.M. Belenguer, E. Benavent, P. Lacomme,

and C. Prins. Lower and upper bounds

for the mixed capacitated arc routing prob-

lem. Computers and Operations Research,

33(12):3363–3383, 2006. 44

E. Benavent, A. Corberán, and J.M. San-

chis. Arc routing: Theory, solutions and

applications, chapter Linear programming

based methods for solving arc routing

problems., pages 231–275. Kluwer Aca-

demic Publishers, Boston, USA, 2000. 16

E.G. Coffman, Garey M.R., and Johnson

D.S. Approximation Algorithms for NP-

Hard Problems, chapter Approximation al-

gorithms for bin packing: A survey., pages

46–93. PWS Publishing, Boston, USA,

1996. 5

A. Corberán and J.M. Sanchis. The gen-

eral routing problem polyhedron: Facets

from the rpp and gtsp polyhedra. European

Journal of Operational Research, 108(3):

538–550, 1998. viii, 3

A. Corberán, A.N. Letchford, and J.M. San-

chis. A cutting plane algorithm for the gen-

eral routing problem. Mathematical Pro-

gramming, Ser. A, 90(2):291–316, 2001.

viii, 3, 22

A. Corberán, A. Romero, and J.M. San-

chis. The mixed general routing polyhe-

dron. Mathematical Programming, Ser. A,

96(1):103–137, 2003. viii, 3

A. Corberán, G. Mej́ıa, and J.M. Sanchis.

New results on the mixed general routing

problem. Operations Research, 53(2):363–

376, 2005. ix, 3

A. Corberán, I. Plana, and J.M. Sanchis. A

branch&cut algorithm for the windy gen-

eral routing problem and special cases.

Networks, 49(4):245–257, 2007. 3

53

REFERENCES

A. Corberán, I. Plana, and J.M. Sanchis.

The windy general routing polyhedron: A

global view of many known arc routing

polyhedra. SIAM Journal on Discrete

Mathematics, 22(2):606–628, 2008. 3

G. Cornuejols and F. Harche. Polyhedral

study of the capacitated vehicle routing

problem. Mathematical Programming, 60:

21–52, 1993. 2

M. Fischetti, J.J. Salazar, and P. Toth. A

branch-and-cut algorithm for the symmet-

ric generalized traveling salesman problem.

Operations Research, 45(3):378–394, 1997.

13

B.L. Golden and R.T. Wong. Capacitated

arc routing problems. Networks, 11(3):305–

315, 1981. 2

J.C.A. Gutiérrez, D. Soler, and A. Hervás.

The capacitated general routing problem

on mixed graphs. Revista Investigacion

Operacional, 23(1):15–26, 2002. ix, 4, 27

J.K. Lenstra and A.H.G. Rinnooy Kan. On

general routing problems. Networks, 6(3):

273–280, 1976. viii, ix, 2

A.N. Letchford. New inequalities for the gen-

eral routing problem. European Journal of

Operational Research, 96(2):317–322, 1996.

viii, 3

A.N. Letchford. The general routing poly-

hedron: A unifying framework. European

Journal of Operational Research, 112(1):

122–133, 1999. viii, 3

H. Longo, M. Poggi de Aragão, and E. Uchoa.

Solving capacitated arc routing problems

using a transformation to the cvrp. Com-

puters and Operations Research, 33(6):

1823–1837, 2006. viii, 2

L. Muyldermans, P. Beullens, D. Cattrysse,

and D. Van Oudheusden. Exploring vari-

ants of 2-opt and 3-opt for the general rout-

ing problem. Operations Research, 53(6):

982–995, 2005. viii, 3

C.S. Orloff. A fundamental problem in ve-

hicle routing. Networks, 4(1):35–64, 1974.

2

M.W. Padberg and M.R. Rao. Odd minimum

cut-sets and b-matchings. Mathematics of

Operations Research, 7(1):67–80, 1982. 22

R. Pandit and B. Muralidharan. A capac-

itated general routing problem on mixed

networks. Computers and Operations Re-

search, 22(5):465–478, 1995. ix, 3

W.L. Pearn, A. Assad, and B.L. Golden.

Transforming arc routing into node rout-

ing problems. Computers and Operations

Research, 14(4):285–288, 1987. viii, 2

C. Prins and S. Bouchenoua. Studies in Fuzzi-

ness and Soft Computing, Recent Advances

in Memetic Algorithms, volume 166, chap-

ter A Memetic Algorithm Solving the VRP,

the CARP and general routing problems

with nodes, edges and arcs., pages 65–85.

Springer, 2005. 4

G. Reinelt and D.O. Theis. On the general

routing polytope. Discrete Applied Mathe-

matics, 156(3):368–384, 2008. 3

D. Soler, E. Mart́ınez, and J.C. Micó. A

transformation for the mixed general rout-

ing problem with turn penalties. Journal

of the Operational Research Society, 59(4):

540–547, 2008. 3

54

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Literature review
	1.1.1 The General Routing Problem
	1.1.2 The Mixed General Routing Problem
	1.1.3 The Mixed Capacitated General Routing Problem

	1.2 Contributions

	2 Problem definition
	2.1 Notations
	2.2 Mathematical formulation

	3 Valid inequalities and separation algorithms
	3.1 Connectivity constraints separation
	3.1.1 Heuristic Algorithm
	3.1.2 Exact Algorithm

	3.2 Surrogate inequalities
	3.2.1 Capacity and odd-edge inequalities
	3.2.2 Capacity inequalities separation
	3.2.3 Odd-edge inequalities separation

	4 An Upper bound
	4.1 The initial solution
	4.1.1 Partition-First-Route-Next
	4.1.2 Clustering
	4.1.2.1 Metric
	4.1.2.2 Clusters generation

	4.2 Local Search

	5 The B&C Algorithm
	5.1 Cut pool management
	5.2 Root node generation
	5.3 The Branch and Cut algorithm

	6 Computatonal experiments
	6.1 A First Illustration
	6.2 The Instances
	6.3 Numerical Results

	7 Conclusions
	References

