
UNIVERSITA’ DELLA CALABRIA 

Dipartimento di Fisica 

Dottorato di Ricerca in  

Scienze e Tecnologie Fisiche, Chimiche e dei Materiali 

CICLO 

XXXII 

TITOLO TESI 

Current anomalies and signatures of zero-energy excitations in onedimensional superconducting 
…………………………………………………………………………………………………… 
systems 
………………. 

Settore Scientifico Disciplinare FIS07 

Coordinatore: Ch.ma Prof. ssa Gabriella Cipparrone 

Firma ______ __________ 

Supervisore/Tutor:  Ch.mo Prof. Domenico Giuliano 

Firma___ _____ 

Dottorando:  Dott./ssa Rosa Giuliano 

Firma ____ ____ 

█████████████████████████████████████████████████████████████████

████████████



 



Current anomalies and signatures of zero energy excitations in onedimensional 

superconducting systems 

Abstract: 

I sistemi monodimensionali superconduttivi sono terreno fertile sia per lo studio teorico di fenomeni esotici, sia per le 

innumerevoli applicazioni ingegneristiche a cui possono dare luogo.   

In questo lavoro di tesi, l’attenzione sarà posta verso questo genere di sistemi dal punto di vista teorico, approfondendo 

ed analizzando due tipi diversi di superconduttività (in onda s ed in onda p) in sistemi monodimensionali con simmetrie 

differenti.  

Nel primo argomento trattato, si propone un modello di superconduttore in onda p, con simmetria ad anello ed 

attraversato da un flusso magnetico. In condizioni particolari, osservando lo spettro energetico del sistema, si nota la 

comparsa di modi ad energia zero, i cosiddetti Modi di Majorana, ad oggi grande argomento di studio nella fisica della 

materia condensata per le loro possibili implementazioni in qbit e porte logiche e perché non abbiamo ancora evidenze 

sperimentali della loro presenza (nonostante vi siano diversi esperimenti in atto) nella fisica delle alte energie. Il device 

così presentato diventa quindi uno strumento utilissimo per la rilevazione e lo studio di questi modi ad energia zero, 

utilizzando come quantità misurabile la corrente persistente indotta dal flusso magnetico. Infatti, essendo la corrente 

la derivata dell’energia dello stato fondamentale, le informazioni che si sono ottenute guardando allo spettro 

energetico, vengono automaticamente tradotte e ricalcate nella forma della corrente, la quale, quando si manifestano 

i Modi di Majorana nel sistema, presenta delle evidentissime discontinuità. Nel lavoro di tesi, oltre a fornire una possibile 

applicazione sperimentale, in cui basta usare un magnetometro per effettuare la misura in modo non invasivo, è stato 

proposto un modello analitico per ottenere una formula per la corrente persistente utilizzando la matrice di 

trasferimento del sistema.  Ovviamente, la manifestazione dei modi ad energia zero in un sistema finito-dimensionale 

non è banale e si manifesta solo per speciali valori del flusso magnetico che attraversa l’anello. Il modello quindi 

proposto diviene decisamente comodo per le implementazioni sperimentali. Va notato, tuttavia, che nei casi reali i 

sistemi non sono mai perfettamente aderenti al modello teorico che si propone. Per questo motivo, il passo successivo 

è stato quello di studiare lo stesso modello in presenza di disordine. Quello che è emerso dall’analisi è che per una 

quantità di disordine moderata, è ancora possibile rilevare i Modi di Majorana nel sistema attraverso la corrente 

persistente. Effettuando un’analisi statistica del sistema, è stato inoltre possibile fornire un diagramma di fase in cui 

riportiamo i valori che può assumere l’ampiezza del disordine al variare del potenziale chimico del sistema per 

mantenere la presenza dei modi ad energia zero. 

Nella seconda parte della tesi, l’attenzione si volge invece ai superconduttori in onda s e, in particolare, a giunzioni di 

metalli superconduttori-normali-superconduttori (SNS). In sistemi con questa simmetria, è previsto che scorra una 

corrente, detta corrente Josephson, anche in assenza di differenza di potenziale ai capi del filo. Questo fenomeno, che 

ad oggi trova largo spazio tra le implementazioni ingegneristiche, è legato alla differenza di fase tra il metallo 

superconduttore e quello normale. Allo stesso modo, si può manifestare anche tra due superconduttori che hanno una 

differenza di fase diversa da zero. Tuttavia, in particolari condizioni (quale la presenza dello spin-orbita e dell’effetto 

Zeeman), si può avere un’anomalia nella corrente ed avere, anche con differenza di fase nulla, una certa quantità di 

corrente che fluisce nel sistema. Questo effetto prende il nome di corrente Josephson anomala. Per studiarla ed 

ampliare le conoscenze su questo fenomeno, è stato pensato un sistema SNS in cui nella zona normale (N) sono presenti 

interazione spin-orbita, effetto Zeeman ed un confinamento armonico. L’approccio utilizzato è stato quello del 

formalismo della matrice di scattering per ottenere le equazioni che sono state poi risolte numericamente variando i 

parametri del sistema. In questo modo, non solo possiamo studiare l’anomalia della corrente Josephson, che risulterà 

essere evidente dai risultati riportati dai grafici di densità presenti nel lavoro di tesi, ma anche ciò che accade nel caso 

in cui si considerino più canali di scattering. Ciò che è emerso, alla fine dell’analisi, è che quando si considera un numero 

di canali di scattering maggiore di 1, la corrente, oltre a presentare la sua anomalia, presenta anche una 

asimmetrizzazione nella sua forma. Ciò implica che il movimento delle particelle da sinistra a destra è diverso dal moto 

opposto che queste hanno nella giunzione. Se ne conclude che un sistema così strutturato consente la prototipazione 

di un diodo superconduttivo. 
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Chapter 1

Introduction

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes, who was study-
ing the resistance of solid mercury at cryogenic temperatures using the recently pro-
duced liquid helium as a refrigerant. At the temperature of 4.2 K, he observed that
the resistance abruptly disappeared (1). In the subsequent decades, superconductivity
was observed in several other materials: in 1913, lead was found to superconduct at 7
K, and in 1941, niobium nitride was found to superconduct at 16 K. What was before
then observed experimentally is that the electrical resistance of a metallic conductor
decreases gradually as temperature is lowered.

In ordinary conductors, such as copper or silver, this decrease is limited by impuri-
ties and other defects. Even near 0 K, a real sample of a normal conductor shows some
resistance. In a superconductor, the resistance drops abruptly to zero when the mate-
rial is cooled below a certain temperature TC , called critical temperature, which varies
from material to material. An electric current through a loop of superconducting wire
can persist indefinitely with no power source. But the great e↵orts have been devoted
to finding out the properties of superconductors. The important step occurred in the
30s, when Meissner and Ochsenfeld discovered that superconductors expelled applied
magnetic fields, a phenomenon which has come to be known as the Meissner e↵ect (2).
The occurrence of this e↵ect indicates that superconductivity cannot be understood
simply as the idealization of perfect conductivity in classical physics. Afterwards, Fritz
and Heinz London showed that the Meissner e↵ect was a consequence of the minimiza-
tion of the electromagnetic free energy carried by superconducting current (3).Thas was
the first theory for superconductivity with which we can obtain the dependence of the
magnetic field inside the superconductor on the distance to the surface.

During the 1950s, the interest in the phenomena of superconductivity led to the
study and formulation of di↵erent theories. In those years, what we call now ”con-
ventional superconductors” were fully understood. Even today, the most significant
and important models for superconductors are the phenomenological Ginzburg-Landau
theory and the microscopic BCS theory (4; 5). The first one (6), which combined
Landau’s theory of second-order phase transitions with a Schrödinger-like wave equa-
tion, had great success in explaining the macroscopic properties of superconductors.
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In particular, Abrikosov showed that Ginzburg-Landau theory predicts the division of
superconductors into the two categories now referred to as Type I and Type II, based on
their response to the applied magnetic fields. In the same years, Maxwell and Reynolds
found that the critical temperature of a superconductor depends on the isotopic mass of
the constituent element (7; 8).This important discovery pointed to the electron-phonon
interaction as the microscopic mechanism responsible for superconductivity. The sec-
ond theory was finally proposed in 1957 by Bardeen, Cooper and Schrie↵er (9). This
BCS theory explained the superconducting current as a superfluid of Cooper pairs,
pairs of electrons interacting through the exchange of phonons. Abrikosov, Ginzburg,
Landau, Bardeen, Cooper and Schrie↵er were awarded the Nobel Prize for their work.

Generalizations of BCS theory for conventional superconductors form the basis for
understanding of the phenomenon of superfluidity, because they fall into the lambda
transition universality class. The extent to which such generalizations can be applied
to unconventional superconductors is still controversial. For all the superconductors
discovered so far, the flux quantization experiments have, indeed, provided strong evi-
dence that the superconductivity arises from the formation of Cooper pairs by electrons.
However, the mechanism for glueing electrons depends on the material which we are
considering. In a conventional superconductor, the Cooper pairs are, as we have already
illustrated, mediated by the lattice vibrational modes, the phonons; in this case, we have
the so-called ”s� wave” pairing. Alternately,in unconventional superconductors, they
are mediated via the fluctuations of electron spins and we can have ”p, d, f � wave”
superconducting pairing. Accordingly to this, the pairing potential that describes the
Cooper pairs orbital motion can be di↵erent. As we will see, indeed, di↵erent kinds of
superconductivity rise up di↵erent and exotic behaviour and states of matter. Uncon-
ventional superconductors can be interesting because they include high-temperature
cuprates, heavy fermion inter-metallic compounds, and iron-based superconductors.
This kind of materials are accompanied with multiple electronic phases, a typical fea-
ture of strong correlated matter. Although the BCS theory was originally developed
for conventional superconductors, we can use it also for the unconventional ones. This
is the important basic assumption for the Bogolioubov- de Gennes (BdG) approach
to superconductivity. This formalism relies on the assumption there exist well-defined
quasi-particles in the superconductor. It has the advantage to provide information
about the one-particle excitations of the system. The quasi particle excitation spec-
trum, indeed, can be derived together with the corresponding quasi-particle amplitudes.
The BdG formalism is essentially correct in the weak-coupling regime, but also yields
qualitative results in situations of very strong coupling. The interest in microscopic
electronic structure calculations of this type was revived by low-temperature scanning-
tunneling-microscopy (STM) experiments which provided extremely detailed, spatially
resolved, excitation spectra around a single impurity, near the interfaces of supercon-
ductors’ junctions or near their surfaces, or around a vortex core in the presence of an
Abrikosov flux lattice.

In recent years, superconductivity has become increasingly popular. As the exper-
imental realization became more and more achievable , the various properties of the
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superconductors began to appeal to industries. For this reason, the demand for super-
conducting metals and devices has increased. A typical use of superconductors is to
build magnet coils: the use of superconducting cables greatly reduces their size, weight
and energy consumption for the same magnetic field strength. Obviously the construc-
tion and operation of a superconducting magnet is much more expensive, requiring it
to be kept at a temperature lower than the critical temperature. A typical application
of this type concerns the construction of the large toroids of clinical nuclear magnetic
resonance systems. Superconductors have been used in experimental conditions even on
a large scale in large machines such as CERN accelerators, they have been used in LEP
conductor cables and currently in the LHC where it is necessary to have very intense
magnetic fields (about 9T ). Potentially, the possible developments are enormous in
fields such as accumulation and transmission of energy, electric motors and realization
of large magnetic fields.

However, the use of superconductors in a trivial way is only the tip of the iceberg.
Various studies have revealed more and more remarkable properties of the supercon-
ductors that have brought them even more in vogue.

For example, after the discovery of Josephson junctions (18; 19), there was been
a real revolution in the field of superconductor applications. The extreme sensitivity,
precision and speed of transmission due to the presence of electro-magnetic fields is
used in these devices to give extremely precise measurements of these fields, or to
obtain localized switching to superconducting (or from superconducting to normal)
extremely sensitive and fast; given the nanometric (and quantum) nature of the device
the switching times are extremely short (picoseconds). For example, the junctions are
used in the realization of devices for measuring the magnetic field (SQUID) capable
of measuring infinitesimal magnetic field values and used, also in the medical field, for
some types of analysis. These junctions are also used in particle detectors to detect very
small temperature changes caused by interaction with the particle to be detected. When
a particle passes through the detector, it gives it energy that causes a temperature rise.
By measuring the change in resistance of the detector, which is kept near the critical
temperature, it can be detected when a particle crosses the sensor.

Moreover, in very recent times, the first quantum processor based on Josephson
junctions was announced (21; 22; 23; 24). Indeed, as we will see, Josephson junctions
can be used to made prototypes for electronic components, such as diodes or transis-
tors. Examples of circuits using Josephson junctions include digital circuits based on
superconducting logic (i.e. a class of logic circuits or logic gates that use the unique
properties of superconductors, including zero-resistance wires, ultrafast Josephson junc-
tion switches, and quantization of magnetic flux (fluxoid)), superconducting quantum
computing circuits, superconducting analog circuits, and so on (20).

However, the properties of superconductors do not only reduce to the Josephson
or zero resistance current. As mentioned above, there are di↵erent types of supercon-
ductivity and a special consideration must be made for p-wave superconductors, since
they reserve very interesting physical and applicative properties. Indeed, in 2001 Ki-
taev proposed a one-dimensional p-superconductive model in which zero-energy modes
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emerged (142), the Majorana modes (10). The toy-model has become a starting point
for countless research and experimental realizations in search of further proof of the
existence of the Majorana modes.

The research on Majorana modes arise after his proposal in 1937, when, trying to
complete the standard model, he proposed a kind of particles that were antiparticles of
themselves (10). Although today there are several experiments that attempt to prove
the existence of Majorana fermions through double beta decay (such as GERDA and
NEMO-3), assuming neutrinos to potential candidates, there are no experimental proofs
in the field of high-energy physics. However, starting from Kitaev formulation, an ex-
perimental measurement of the equivalent of Majorana fermions in condensed matter
( precisely, Majorana modes) was proposed in the last years (51). This measure is
currently subject to various criticisms from the scientific community, but unquestion-
ably remains a valuable starting point. Advances in experimental realizations of such
Majorana modes were facilitated by various proposals which involved superconductor-
topological insulator interfaces, proximity-induced superconductivity in spin-orbit cou-
pled wires, ferromagnetic atoms in proximity to superconductor. Several reports of
experiments show highly suggestive evidence of the existence of the Majorana modes
in these systems (56). Moreover, conclusive evidence of their existence is of great in-
terest from the perspective of topological quantum computing given their non-Abelian
braiding statistics (57; 58) and that they form a natural basis for topological qubits.
The theoretical prediction that the combination of spin-orbit coupling, Zeeman spin
splitting, and ordinary s-wave superconductivity could lead to an e↵ective topological
superconducting phase under appropriate (and experimentally achievable) conditions
has led to an explosion of theoretical and experimental activities in semiconductor
nanowires (InSb or InAs) in proximity to a superconductor (NbTi or Al) in the pres-
ence of an external magnetic field. The experimental finding of a zero-bias peak (ZBP)
(59; 60; 61; 62; 63), in precise agreement with the theoretical predictions in the dif-
ferential tunneling conductance of an InSb nanowire (in contact with a NbTiN super-
conducting substrate) at a finite external magnetic field (B ⇠ 0.1 � 1 T ), followed by
independent corroborative observation of such ZBP both in InSb and InAs nanowires
in contact with superconducting Nb and Al by several groups, has created excitement
in the condensed matter physics community as well as the broader scientific community
as perhaps the first direct evidence supporting the existence of the exotic, the elusive,
and the emergent Majorana bound states in solids.

So, the study of superconducting systems, and in particular of the physics that
emerges from them (Majorana modes, anomalous currents, and so on), is today one of
the major topics of debate and research. The proposal of the first quantum computer
recently made by Google is not indi↵erent (25; 26).

In this thesis, we will propose a model for the study of the anomalous Josephson
current and in particular of its asymmetry under specific conditions. Moreover, using a
ring symmetry, we will propose a way to measure the presence of the Majorana modes
in a completely non-invasive way and their resistance to disorder. Specifically, the work
is divided as follows:
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• In Chapter 2 we will examine the Josephson current in superconducting-normal-
superconducting (SNS) junctions. Here we introduce the history, the engineering
uses and the theoretical treatment of the Josephson current and the anomalous
phenomenon. To easily calculate the current, as we will show, we will present a
formalism based on the classic BTK approach and the Scattering matrix. Once
the technique used is exposed, we will use it to calculate the anomalous Joseph-
son current in systems in which spin-orbit interaction and the Zeeman e↵ect are
present.

• In Chapter 3 we will analize hybrid superconducting rings pierced by a magnetic
flux to obtain informations about Majorana modes through the persistent cur-
rent. We will see, through a numerical approach, how, when the system is in the
topological phase condition, it is possible to highlight the presence of the Majo-
rana modes in the system through the discontinuities of the current. This kind
of signature will allow us to study the robustness of the Majorana modes with
respect to a certain amount of disorder applied to the system.

• In Chapter 4 we propose an analytical technique to calculate the persistent current
in the superconducting hybrid rings through the calculation of the transfer matrix
of the system. Specifically, the concept of transfer matrix will be depth and it
will be shown how it is linked to the secular equation of the system. Next, we
will show how it is possible to use an integration technique on the complex plane
to facilitate the calculation of the current. The analytical study of the current
will also allow us to provide an exhaustive formal proof of the presence of the
Majorana modes in the ring.

• Finally, in Chapter 5 we will provide a brief discussion of the major results ob-
tained in the previous chapters and provide our conclusions.
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Chapter 2

The anomalous Josephson current

in Spin-Orbit superconducting-

normal-superconducting

junctions

The Josephson e↵ect is the flow of current through two superconductors, or a superconducting-
normal-superconducting metal junction (SNS junctions), due to the phase di↵erence '
of the superconducting pairing between them. This current, as we wills see in the fol-
lowing, is a periodic function of '. Usually, when there is no phase di↵erence between
the two superconducting metals that make up the junction, the Josephson current is
zero. However, under certain conditions, the current can be zero when ' is equal to
a certain value '0. This phenomenon is called Anomalous Josephson e↵ect. Nowaday,
Josephson junctions have important applications in quantum-mechanical circuits, such
as SQUIDs, which are very sensitive magnetometers used to measure extremely sub-
tle magnetic fields, superconducting qubits, that that big technology companies, like
Google (25; 26; 12) , Microsoft (13) , IBM (14) and Rigetti (15) , today want to use
for the realization of quantum computers, and RSFQ digital electronics. The NIST
(National Institute of Standards and Technology) standard for one volt is achieved by
an array of 20208 Josephson junctions in series. Moreover, as will be explicitly shown
below, the anomaly of the Josephson current and its possible asymmetries can be ex-
ploited for the construction of electronic components, such as, for example, diodes and
transistors. Anomalous Josephson current and the asimmetry of the current will be the
main protagonists of this chapter.

Drawing inspiration from what has just been said, we will focus, in the following
sections, our attention on the calculation of the Josephson current in SNS junctions in
which the normal region can present several peculiarities (i.e. the presence of barriers,
spin interaction orbit, etc.). As we will see in detail, through a scattering matrix
formalism, it will be possible, in the short junction limit (i.e. when the coherence length
of the superconductor ⇠ is smaller than the length of the normal region), to reduce the
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calculation of the Josephson current to the resolution of a scattering problem in the
normal region. The purpose of the chapter, in addition to providing details on the
technique used to compute analytically and numerically the Josephson current, is to
highlight the conditions under which the parameters choice of the SNS junction brings
out not only the anomaly, but also an asymmetry in the current. We find that in the case
of one open channel in the normal region (the nanowire) '0 can deviate substantially
from zero but the critical current does not show any direction dependence, contrary to
the case in which we have two (or more) transport channels. In both case we find the
anomaly in the current, i.e. a finite '0 for su�ciently strong spin-orbit interaction and
magnetic field but, as we will show below, we observe a substantially di↵erent behaviour
of the junction.

The chapter is structured as follows:

• In Section 2.1 we will give a brief description of the Josephson e↵ect and introduce
the anomalous Josephson current, underlying the dependence of the current of the
phase di↵erence '.

• In Section 2.2 we introduce the Scattering matrix approach to the computation
of the Andreev bound states and, consequently, of the Josephson current in SNS
junctions. Here, we will discuss the case of a SNS junction in which a delta-like
potential barrier is introduced in the normal region (it can be seen as an impurity
in the system) and we will do some indication to improve the Scattering matrix
approach in the presence of more scattering channel (for more details about this
topic, we refer to Appendix E).

• In Section 2.3 we discuss a SNS junction in which Rashba spin orbit interaction
and Zeeman e↵ect are introduced into the normal region. This, as we will see,
will cause anomaly and an asymmetry in the current. In addition, density plots
will be presented to highlight the dependence of asymmetry and anomaly on the
varying intensity of the spin-orbit interaction on the applied magnetic field.

2.1 The Josephson current

We know from the BCS theory that superconductivity is a result of the correlated
motion of electrons in the superconducting solid. Part of this correlation is the for-
mation of pairs of electrons called Cooper pairs. According to Josephson (18; 19) ,
under certain circumstances these Cooper pairs move from one superconductor to the
other across the thin insulating layer. Generally, when two (or more) superconducting
wires form a contact, there will be a motion of Cooper pairs due to the fact that the
pairings � = |�|ei' can have di↵erent order parameter phase '. Such motion of pairs
of electrons constitutes what we call Josephson current, and the process by which the
pairs cross the insulating layer is called Josephson tunneling. Before Josephson’s pre-
diction, it was only known that normal electrons can flow through an insulating barrier,
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by means of quantum tunneling. Josephson was the first to predict the tunneling of
superconducting Cooper pairs.

Consider two pieces of superconductor, that we will index as ”1” and ”2”, with
a junction between them. The respective superconducting phases are defined as '1

and '2, the coupling of the junction between the two superconductors is , while µ1

and µ2 are the chemical potentials of the respectively regions. To derive the Joseph-
son equations, we start introducing  1 and  2, the quantum mechanical wavefunction
of the superconducting state in the left and the right superconductor, respectively.
The dynamics of the two wavefunctions are then determined by the following coupled
Schrödinger equations:

i~@ 1

@t
= µ1 1 +  2

i~@ 2

@t
= µ2 2 +  1 (2.1)

We make the ansatz that the wavefunctions can be written as:

 1 =
p
⌫1e

i'1

 2 =
p
⌫2e

i'2 (2.2)

where ⌫i, i = 1, 2 are the density of the Cooper pairs in the two regions. Substituting
Eqs.(2.2) in Eqs.(2.1), we find that:

~@⌫1
@t

= �~@⌫2
@t

= 2
p
⌫1⌫2 sin (')

�~@'
@t

= µ2 � µ1 (2.3)

where ' = '2 � '1. Eqs.(2.3) are the governing equations for the Josephson e↵ect,
but they can be written in a more compact way. At first, the time derivative of the
density of Cooper pairs describes a charge transport and thus:

I =
@⌫1
@t

(2.4)

If a voltage V (t) is applied between the junctions the energy levels will shift accord-
ing to:

2eV (t) = µ2 � µ1 (2.5)

where e is the electron charge. If we define I0 = 2
p
⌫1⌫2, the Josephson junction

equations become:
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d'

dt
=

e

~V (t) (2.6)

I(') = I0 sin(') (2.7)

where I(') is called Josephson current and I0, which is called ”critical current”,
states the maximum value of the supercurrent. The critical current is an important
phenomenological parameter of the device that can be a↵ected by temperature as well
as by an applied magnetic field.

The weak link can consist of a thin insulating barrier (known as a superconductor�insulator�superconductor
junction, or SIS), a short section of non-superconducting metal (SNS junctions), or a
physical constriction that weakens the superconductivity at the point of contact (SsS
junctions) (16). Moreover, Josephson junctions exhibit a variety of phenomena, such as
the DC Josephson e↵ect, which is a constant current flow in the absence of any voltage
biases between the di↵erent superconductors; the AC Josephson e↵ect which is, instead,
an alternating current flow in the presence of constant voltage biases, and the Shapiro
steps, which appear as plateaus in plots of the average voltage versus average current
when the currents are made periodical. The physics of such junctions is known to rely
crucially on the pairing symmetry of its constituent superconductors. For example, a
junction of two p-wave superconductors exhibits a fractional Josephson e↵ect (27; 17)
which manifests itself in a fractional Josephson frequency !J = eV/~ or the absence
of odd-integer Shapiro steps. The latter property of such junctions has been used ex-
perimentally for the detection of Majorana modes (17; 104). Furthermore, a junction
of two superconducting wires of s� and p � wave symmetriesis known to generate a
magnetic moment at the interface whose time variation can be controlled by an exter-
nal applied voltage (27; 28). Multiple junctions with s � wave superconductors have
been studied using a scattering matrix formalism (104; 86; 93; 29; 30; 31; 32; 101)
,and voltage-induced Shapiro steps have been studied in a junction of threes-wave
superconductors(33) . However, no such studies have been carried out for multiter-
minal junctions involving unconventional superconductors. The discovery of the super-
current, as we will see in details in the following, helped to the realization of digital
logic circuitry, that can be used as ultrafast computers using Josephson logic. Josephson
junctions can also be involved into circuits called SQUIDs, an acronym for Supercon-
ducting QuantUm Interference Device. These devices are extremely sensitive and very
useful in constructing extremely sensitive magnetometers and voltmeters. For example,
one can make a voltmeter that can measure picovolts.

2.1.1 The Anomalous Josephson current

The Josephson e↵ect, as we have just seen, is traditionally expressed by a current-phase
relation of the form I(') = I0 sin(') with ' the phase di↵erence of the order parameter
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of the two superconducting leads. A priori the current-phase relation could also be of
the form:

I(') = I0 sin('+ '0) (2.8)

that allows a non-zero current even when the two superconducting leads have the
same phase (i.e. ' = 0) and it can be shown that several symmetries can enforce '0

to be strictly zero. Despite this, as we shall see, it may be interesting for engineering
applications the study of the cases in which '0 has a finite non-zero value; this is the
Anomalous Josephson e↵ect. To observe this e↵ect in the current, is necessary to break
the time reversal symmetry, by introducing into the system a magnetic field B, and
spin-rotation (chiral) symmetry, by means introduce a spin orbit interaction (SOI).

In the last years, to observe the anomalous Josephson e↵ect, several possibilities have
been addressed. In particular, for superconducting-normal junctions, we can improve
the time-reversal and spin-rotational-simmetry breaking in the normal region. To realize
such kind of system, we can consider, for example, a magnetic normal metal (34; 35;
36; 37; 38) , a one-dimensional quantum wire, a quantum dot (39; 40) , a multichannel
system with a barrier or a quantum point contact (41; 42) , or, a semiconducting
nanowire (43; 44) . Anomalies of the Josephson current have also been predicted in
presence of Coulomb interactions and SOI for a wire (45; 46) or a quantum dot (40)
contacted with conventional s-wave superconductors. More recent proposals suggest the
possibility of realizing a non-coplanar ferromagnetic junction (47) . Most interestingly
in other systems the anomalous Josephson e↵ect (AJE) can be exploited to discern
topological versus conventional superconductivity (48; 49; 50) . Recently, the anomalous
Josephson current has been demonstrated in an experiment using gate defined quantum
dot in a InSb nanowire embedded in a superconducting quantum interferometer (51) .
Moreover advances in the fabrication of nanowires of InAs have made materials with
a large g-factor and a strong spin-orbit (SO) interaction available.

2.2 Scattering Matrix approach to compute the Joseph-

son current in SNS junctions

As we already seen, the Josephson current is a periodic function of the phase di↵erence
'. However, we need a simple way to compute the Josephson current in more compli-
cated systems. To do this, we remind that the current can be obtained from the ground
state energy Egs(') at zero temperature by the thermodynamic relation :

I(') =
2e

~
dEgs

d'
(2.9)

This equation makes a relation between the equilibrium current and the derivative of
the ground state energy Egs with respect to the phase di↵erence. To apply this relation
we need to know how to obtain Egs from the Bogoliubov- de Gennes equations. The
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Figure 2.1: Sketch of the scattering matrix S.

required formula was derived from the Green’s function expression for Egs (94).Now the
problem is shifted to the evaluation of the spectrum of the system, that we can carry
out through a scattering matrix approach.

To introduce the concept of scattering matrix, let us consider a simple localized
one-dimesional barrier problem. So, we have a positive-energy electron with energy E
which comes from the left to the right and scatters along the barrier V (x). The solution
of Schrödinger’s equation outside the potential barrier are plane waves given by:

 L(x) = aLe
ikx + bLe

�ikx (2.10)

 R(x) = aRe
ikx + bRe

�ikx (2.11)

where L/R stand, respectively, for left and right and idicate the left side of the
barrier and the right one, while k is the particle momentum:

k =

r
2mE

~2 (2.12)

where m is the mass of the particle. The term with coe�cient aL represents the
incoming wave, whereas term with coe�cient bR represents the outgoing wave. bL
stands for the reflecting wave. Since we set the incoming wave moving in the positive
direction (coming from the left), the coe↵cient aR is zero and can be omitted. The
transition overlap of the outgoing waves with the incoming waves is a linear relation
which define the scattering matrix S (see Fig.2.1) as:


bL
bR

�
= S


aL
aR

�
(2.13)

where:
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S =

✓
s11 s12
s21 s22

◆
=

✓
rL tR
tL rR

◆
(2.14)

Here, the coe�cients rL/R and tL/R are, respectively, the reflection and transmission
amplitudes from the left or the right of the barrier V (x). We can say, then, that the
scattering matrix binds the states entering the barrier with the outgoing ones, so that:

(out) = S(in) (2.15)

where (out) represent the outgoing waves and (in) the incoming ones. The scattering
matrix just defined, is unitary. This is a consequence of its relation to the transmission
and reflection coe�cients, of which we know that the sum of the square modules of rL/R
and tL/R is equal to 1.

We note that in the metal also occur scattering processes which involve holes. How-
ever, since there is no process that links the propagation of the hole and the particle, we
can treat the propagation problems separately. What follows is that the hole processes
are symmetrical to those of the particle with E ! �E. Note that the scattering matrix
can also describe multichannel processes, i.e. when scattering can occur at di↵erent en-
ergies. To generalize the matrix S, we have to take into account that rL/R and tL/R are
N ⇥ N matrices, where N is the number of open channels. In the following descrip-
tion and in the entire section we will discuss matrices with only one open channel. In
the next section, instead, we will see an application of multichannel scattering for the
description of a system with harmonic confinement potential.

So, we consider, now, a superconducting-normal (SN) junction and a positive-energy
particle that comes from the left (see Fig.2.2) along the normal region and scatters
through the junction to get to the superconductive region. The spectrum of a super-
conductor, as we have already seen (see Appendix D), has a gap. This, which varies
from metal to metal, takes the place of the potential barrier V (x) seen in the normal
case. The substantial di↵erence is, however, in the fact that the ground state of the
superconductor is formed by Cooper pairs. For this reason, during scattering, particles
can be involved in processes that are much more complex than those exposed so far.
Here, indeed, an incoming positive-energy particle can be reflected (ree) or transmissed
(tee) as a positive-energy particle, or, due to the superconducting metal, can be re-
flected (reh) or transmissed (teh) as a positive-energy hole; these phenomena are called
Andreev scattering processes (55).

The left/right-side wavefunctions take now the form:

 L(x) = ae,Le
iqex + ah,Le

�iqhx + be,Le
�iqex + bh,Le

iqhx

 R(x) = ae,Re
iqex + ah,Re

�iqhx + be,Re
�iqex + bh,Re

iqhx (2.16)

where the indices e/h stands, respectively, for particle and hole and qe/h are the
momenta:
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Figure 2.2: Sketch of a scattering process in an SN junction. Here the red region
indicates the normal metal, while the blue part the superconducting one. The dark
arrow is the incoming positive-energy particle, the light-blue arrows report the particle-
particle processes, while the reds the particole-hole ones. Finally, the importance of the
junction, which provides a potential barrier, is highlighted by the purple line.

qe/h =

r
2m

~2 (✏F ± ↵
p
(E2 ��2)) (2.17)

where ↵ is equal to 1 for the particle and -1 for the hole, � is the superconducting
pairing, E the energy and ✏F the Fermy energy level of the system. In addiction, ae,L is
the coe�cient for the incoming particle, ah,L for the reflected hole, be,L for the reflected
particle, be,R for the transmitted particle, while bh,R for the transmitted hole. Because of
we are considering the particular case of an incoming positive-energy particle, the other
coe�cients are zero. Due the Andreev reflection (55), as we will see in the following,
we can not divide the propagation problem of the particles and the holes (that, instead,
as we have already seen, it is possible in the case of scattering between normal metals).
We can, however, as we have previously done, define the scattering matrix S as:

0

BB@

ae,L
ae,R
ah,L
ah,R

1

CCA = S

0

BB@

be,L
be,R
bh,L
bh,R

1

CCA (2.18)

where S takes now the form:

S =

0

BB@

s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44

1

CCA =

0

BB@

ree,L tee,R reh,L teh,R
tee,L ree,R teh,L reh,R
rhe,L the,R rhh,L thh,R
the,L rhe,R thh,L rhh,R

1

CCA (2.19)

where the reh,L/R, rhe,L/R, teh,L/R and the,L/R are the Andreev reflection and trans-
mission coe�cients. Because of the particle-hole simmetry, S can be represented as a
scattering block for particles (See), a scattering block for holes (See) and two mixed
scattering blocks and written as:
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S =

✓
See Seh

She Shh

◆
(2.20)

where:

Shh (E) = S⇤
ee (�E) (2.21)

She (E) = �S⇤
eh (�E) (2.22)

Now that we have introduced the scattering matrix, let’s see how it can be used to
calculate the Josephson current.

2.2.1 The Andreev bound states and the scattering matrix

First of all, we have to show how to relate the excitation spectrum of Bogoliubov
quasiparticles to the scattering matrix of normal electrons (95). Let us consider an
SNS junction with the normal region confined in L

2 > x > �L
2 and a superconducting

paring �ei'. We already know that the wave function in the normal region takes the
form:

 N(x) = ae/he
ikx + be/he

�ikx (2.23)

while in the superconducting ones:

 SL(x) = ae,Le
iqex + ah,Le

�iqhx + be,Le
�iqex + bh,Le

iqhx

 SR(x) = ae,Re
iqex + ah,Re

�iqhx + be,Re
�iqex + bh,Re

iqhx (2.24)

with k and qe,h defined as in Eq.(2.12) and Eq.(2.17). If we want to compute the
quasiparticle current through a lead of the system we have to calculate the integral:

I =

Z
dy

Z
dx jx = �i

~
m
<
✓
u⇤@u

@x
� v⇤

@v

@x

◆
(2.25)

where j is the current density, m is the quasiparticles mass, while u and v are the
solutions of the wavefunctions (cfr Appendix D). Since, for solutions of propagative
wave, the momenta k and qe,h are real numbers, we can show that the wave functions in
the normal and in the superconductive regions carries the same amount of quasiparticle
current |I|. However, the wave functions do not carry the same amount of charge
current Ic:

I = �ie
~
m
<
✓
u⇤@u

@x
+ v⇤

@v

@x

◆
(2.26)
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This, of course, does not contradict the unitarity of the S-matrix constructed from
these wavefunctions. To simplify the notation, we can introduce the incoming and
outcoming vectors by defining:

ain = (ae,N , ae,R, ah,L, ah,R) (2.27)

bout = (be,N , be,R, bh,L, bh,R) (2.28)

The scattering matrix SN in the normal region takes the block form:

bout =

✓
See 0
0 Shh

◆
ain (2.29)

By using the particle-hole simmetry, we can write Eq.(2.29) as:

bout =

✓
S0(E) 0

0 S⇤
0(�E)

◆
ain (2.30)

where S0 is the scattering matrix defined as in Eq.(2.14). For energies 0 < E < �
there are no propagating modes in the superconducting leads. In this regime the only
possible process is the normal and the Andreev reflection; however, since � ⌧ EF ,
where EF is the Fermi energy of the system, we may ignore normal reflections at the
SN interface: this is called Andreev approximation (55). We can, then, define an
Andreev scattering matrix SA for the scattering on the SN interface (95):

SA = ↵

✓
0 rA
r⇤A 0

◆
(2.31)

where ↵ = e�i arccos(E/�), while rA is:

rA =

✓
ei

'
2 1 0
0 e�i'2 1

◆
(2.32)

Andreev reflection transforms a particle into an hole, without change the mode
index. The transformation is accompanied by a phase shift, which consists of two
parts:

• A phase shift � arccos(E/�) due to the penetration of the wavefunction into the
superconductor.

• A phase shift equal to plus or minus the phase of the pair potential in the super-
conductor (plus for reflection from hole to electron, minus for the reverse process).

For energy E > �, by matching the wavefunctions for x = ±L/2 and doing some
algebric computations, we can define the S matrix of the whole SNS junction as:

S = U�1 (1�M)�1 �
1�M †�SNU (2.33)
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where:

U =

✓
rA 0
0 r⇤A

◆ 1
2

(2.34)

and:

M = ↵SN

✓
0 rA
rA 0

◆
(2.35)

We are now ready to relate the excitation spectrum of the Josephson junction to
the S-matrix of the normal region. First the discrete spectrum. The condition ain =
SASNain for a bound state implies that det1� SASN . By using the folding identity:

det

✓
a b
c d

◆
= det

�
ad� aca�1b

�
(2.36)

where a, b, c and d are square matrices and det a 6= 0, and Eqs.(2.33), we can write:

det [I� rphSh (�✏) rhpSp (✏)] = 0 (2.37)

which determines the discrete spectrum. The density of states of the continuous
spectrum is related to S by the general relation (96):

⇢ =
1

2⇡i

@

@E
ln detS + const (2.38)

where const indicates a '-independent term. Putting together what we have got so
far, we obtain:

@⇢

@'
= � 1

⇡

@2

@'@E
ln det (I� rphSh (�✏) rhpSp (✏) (2.39)

which determines the '-dependence of the continuous spectrum. In the case where
the length of the normal region is smaller than the coherence length, i.e. when L < ⇠, the
continuum states tend to zero and become negligible for calculation purposes. For this
reason, it becomes convenient to work in the short junction limit, where the contribution
of the superconducting zones is brought only by the Adreev matrices. The calculations
made below, as we shall see, are carried out in the short junction limit.

At this point, it becomes important to emphasize that the calculation of the Joseph-
son current, as we set it, is reduced to the calculation of the matrix SN . In the follow-
ing, we will show how to compute the Josephson current in superconducting-normal-
superconducting junctions in presence of a delta-like barrier in the normal region and in
the presence of Rashba spin-orbit and Zeeman interaction, reducing, from time to time,
the problem to the simple calculation of the scattering matrix in the normal region.
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Figure 2.3: Sketch of a SNS junction with a �-like potential barrier in x = 0. Here we
represent the superconducting metal in red and the normal metal in blue.

2.2.2 Josephson current and Andreev bound states in a SNS

junction with a delta potential in x = 0

Now, we show how to compute the Andreev Bound states for T = 0 in an hybrid
SNS one-dimensional system. Our device is composed by a superconductor region for
x < �L

2 , a normal region for |x|  L
2 and another superconductor region for x > L

2 . We
assume that in the normal region there is a scattering center V (x) = V0�(x) at x = 0
and that the system has only one scattering channel (see Fig. 2.3).

Let us start from the equations:

✓
H0 � (x)
�⇤ (x) �H0

◆ 
u(a)
� (x)

v(a)� (x)

!
= ✏

 
u(a)
� (x)

v(a)� (x)

!
(2.40)

where � =", # indicates the spin polarization, u(a)
� (x) and v(a)� (x) are, respectively,

the particle and the hole-like solutions for a fixed spin polarization, a indicates the
region (i.e.superconducting or normal), and H0 is the free-fermion hamiltonian:

H0 = � ~2
2m

d2

dx2
+ V (x)� ✏F (2.41)

a indicates the region which we are considering, �(x) the superconducting pairing
defined as:

�(x) =

8
><

>:

�0ei
�
2 for x < �L

2

0 for |x|  L
2

�0e�i�2 for x > L
2

(2.42)

and ✏F the Fermi energy. We note that V (x) is zero everywhere except for x = 0.
Then, by combining Eqs.(2.40,2.41,2.42), we find the energy relation dispersions and
the solutions for the normal ( �L

2 < x < L
2 ) and the superconducting (|x| � L

2 )
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regions (we have solved and discussed the BdG equations for the continuum model in
Appendix(D)).

The spectrum of this kind of system consists of a finite set of bound states (Andreev
levels) with energy |✏| < �0, and a continuum of states with |✏| > �0. We remind that
the current can be obtained from the ground state energy Egs(') at zero temperature
by the thermodynamic relation

I(') =
2e

~
dEgs

d'
(2.43)

In the short junction limit only the subgap Andreev states contribute to the Josephson
current (in the long-junction limit, one can use the technique developed in Refs.(86; 125)
to exactly account for contributions from all the states, to leading order in the inverse
junction length). Thus, one obtains

I(') =
e

~

0X

n

@En(')

@'
(2.44)

In Eq.(2.44) ”n” labels the Andreev states, the primed sum means that only negative
energy (occupied) Andreev states are considered. Notice that a factor of 2 di↵erence
with the usual relation found in literature because spin degeneracy is lifted here.

The calculation of the Andreev states in a quasi one dimensional system can be
conveniently done using a scattering matrix approach (114; 120) . Let us consider the
short junction limit, that is that the normal region is short compared to the supercon-
ducting coherence length ⇠; in such a case the Josephson current is fully determined by
the Andreev subgap states (114; 120) ;moreover, we assume that for energies below the
superconducting gap �0 at the interface between the normal and the superconducting
regions only intra-channel Andreev scattering takes place where a hole (electron) with
spin � is reflected as an electron (hole) with spin ��.

Now, because we have not spin-flip processes, we can separate the problem and
consider a fixed value of �. To compute the Andreev bound states, we use the scattering
matrix approach described in (52) . We have that in the first superconducting region
(and similarly in the second one):

SA

0

BB@

ae,L
ae,R
ah,L
ah,R

1

CCA =

0

BB@

be,L
be,R
bh,L
bh,R

1

CCA (2.45)

where SA is the Andreev scattering matrix. On considering |✏|  �0, we have that at
the interfaces between normal and superconducting regions only intra-channel Andreev
scattering take place. Assuming one scattering channel, we have that SA can be written
under the Andreev approximation and takes the form:

SA =

✓
0 rph
rhp 0

◆
(2.46)
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where rph and rhp are the Andreev-reflection matrices defined as:

rph = e�i�

✓
e�i'2 0
0 ei

'
2

◆
(2.47)

rhp = e�i�

✓
ei

'
2 0
0 e�i'2

◆
(2.48)

and:

� = arccos

✓
✏

�0

◆
(2.49)

In the normal region, instead, Andreev scattering processes are not allowed. Because
of the absence of the superconducting pairing, the scattering matrix takes the form:

SN

0

BB@

ae,L
ae,R
ah,L
ah,R

1

CCA =

0

BB@

be,L
be,R
bh,L
bh,R

1

CCA (2.50)

where SN is the block-diagonal matrix:

SN =

✓
Sp (✏) 0
0 Sh (✏)

◆
(2.51)

Now, to find the Andreev bound states, we have to solve the equation:

det [I� rphSh (�✏) rhpSp (✏)] = 0 (2.52)

Because of we already known who are rph and rhp, is clear that to solve Eq.(2.52)
we have to compute SN . By separating the problem for particles and holes, we find:

 p,NL = ae,Le
ikp,Nx + be,Le

�ikp,Nx (2.53)

 p,NR = ae,Re
ikp,Nx + be,Re

�ikp,Nx (2.54)

for the particle and

 h,NL = ah,Le
�ikh,Nx + bh,Le

ikh,Nx (2.55)

 h,NR = ah,Re
�ikh,Nx + bh,Re

ikh,Nx (2.56)

for the hole. Let us focus the attention to the particle scattering problem (the
derivation of the hole one is analogous). On imposing that the wave function must be
continuous at x = 0, we find the condition:
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ae,R + be,R � ae,L � be,L = 0 (2.57)

We can not impose any conditions on the derivative of the wave function because of
the delta potential V (x), but we can avoid this problem integrating from �⌘ to ⌘ both
sides of the Schrödinger equation and to the limit for ⌘ ! 0. We obtain the condition:

i
kp,N
2m

(�ae,R + be,R � ae,L + be,L) + V0 (ae,R + be,R) = 0 (2.58)

By comining Eqs.(2.57,2.58), we obtain the scattering matrix:

✓
ae,R
ae,L

◆
= Sp (✏)

✓
be,R
be,L

◆
(2.59)

where:

Sp (✏) =

✓
rp11 tp12
tp21 rp22

◆
=

✓
�i A

1+iA
1

1+iA
1

1+iA �i A
1+iA

◆
(2.60)

and:

A =
mV0

~2kN,p
(2.61)

In the same way, we obtain the hole scattering matrix:

✓
ah,R
ah,L

◆
= Sh (✏)

✓
bh,R
bh,L

◆
(2.62)

where:

Sh (✏) =

✓
rh11 th12
th21 rh22

◆
=

✓
i B
1�iB

1
1�iB

1
1�iB i B

1�iB

◆
(2.63)

and:

B =
mV0

~2kN,h
(2.64)

In the limit of short junction, we can disregard the energy-dependence of the scat-
tering matrix, obtaining that S⇤

h (�✏) = Sp (✏) ⇡ Sp (0) and Eq.(2.52) becomes:

det
⇥
I� rphSp (0) rhpS

⇤
p (0)

⇤
= 0 (2.65)

By multiplying both sides of Eq.(2.65) by detS0 and using the unitary and symmetry
properties of the scattering matrix, we find that the ABSs are simply determined by
the equation:

24



Figure 2.4: Andreev Bound states as a function of '. For each curve we set �0 = 0.2,
kF = m = 1; we obtain the green curve setting V0 = 0.15; instead, in the red curve
V0 = 0.1; finally, the blue curve is obtained putting V0 = 0.2.

det

✓
1� ✏2

�2
0

◆
I� t12t

†
12 sin

2

✓
�

2

◆�
= 0 (2.66)

where t12 is the transmission matrix. In our case (i.e. one scattering channel), the
transmission matrix is the coe�cient 1

1+iA ; then t†12 = t⇤12 and Eq.(2.66) becomes:

1� ✏2

�2
0

� 1

1 + A2 (kF )
sin2

⇣'
2

⌘
= 0 (2.67)

Obtaining:

✏ = ±�0

s

1�
✓

~2k2
F

~2k2
F +m2V 2

0

◆
sin2

⇣'
2

⌘
(2.68)

In Fig. 2.4 we plot Eq.(2.68) as a function of � on varying the amplitude of the
delta potential V0.

This kind of approach,as we will see in the following, can be generalized and applied
to many kind of systems in which the normal region has some impurities or more
scattering channels are allowed. More details about the application of multichannel
scattering matrix to the computation of the ABS and the Josephson current are shown
in Appendix(E).

2.3 Anomalous Josephson E↵ect in Spin-Orbit Nanowires

Now we consider a SNS junction in which the normal region (—x—¡L2)hasRashbaandZeemaninteraction.Moreover,weassumeanharmonicconfiningpotentialintheydirectionsandtheelectronspropagatemotionalongthethexdirection.Thechoiceofanharmonicconfiningpotentialisparticularlyconvenientwhenonewantstoexpressthematrixelementsofthespinorbitinteractioninteraction(53).TheHamiltonianreads :

H =
p2x
2m

+
p2y
2m

+
1

2
m!2y2 +

↵(x)

~ (�xpy � �ypx) + gµBB�y +
i

2
@x↵(x)�y (2.69)
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with ↵(x) = ↵[⇥(x + L
2 ) � ⇥(x � L

2 )], ↵ being the strength of the Rashba spin-orbit
interaction, B is the applied magnetic field. Notice that the last term in Eq.(2.69) is
necessary to preserve the hermicity of the Hamiltonian operator in case of a position-
dependent SOI. Due to the presence of the transverse confinement potential, it is natural
to employ a multi-channel scattering approach to the problem. Indeed in the super-
conducting leads one can define transverse modes, so that the electron wave functions
in the x-direction are characterized by a band and a spin index. Here, we do the short
junction limit, by means of the scattering matrix formalism we calculate the Josephson
current studying how the minimum of the free energy '0 and the direction dependence
of the critical current evolve as a function of the spin-orbit interaction and the applied
magnetic field. We assume no spin-orbit interaction in the leads as we want to focus
on the non-topological phase. Moreover due to a large g factor in the semiconducting
region, a strong Zeeman spin splitting can be recovered, even for weak values of the
magnetic field which, in turn, does not a↵ect the superconductors and is accordingly
neglected in the leads. Orbital e↵ects of the magnetic field do not need to be taken into
account as we consider a magnetic field oriented in the plane of the nanowire.

We look for solutions of the Bogoliubov-de Gennes equations:
✓

H � ✏F �
�† �(H⇤ � ✏F )

◆✓
u(x, y)
v(x, y)

◆
= E

✓
u(x, y)
v(x, y)

◆
(2.70)

where E measures the energy with respect to the Fermi level ✏F , while u(x, y) and v(x, y)
are respectively the electron and hole spinors in the Nambu representation. Notice that
the spin structure is not explicit at this level. We take the pairing potential to be:

�̂ = �(x)

✓
0 �1
1 0

◆
(2.71)

with
�(x) = �0

⇥
⇥(�x� L)e�i'/2 +⇥(x� L)ei'/2

⇤
(2.72)

and we take a symmetric phase di↵erence ' between the two superconductors. ⇥(x)
is the Heaviside step function. The spectrum of Eq.(2.70) consists, as we have already
seen before, of a finite set of bound states, the Andreev levels, with energy |✏| < �0,
and a continuum of states with |✏| > �0.

Again, in the short junction limit, we can compute the Josephson current by starting
from Eq.(2.44). As we did before, we can use a scattering matrix approach; in partic-
ular we start from Eqs.(2.45,2.46), when, now, we have that the Andreev-reflection
coe�cients must take in account a spin-orbit and multichannel interaction. Indeed, we
have:

r̂eh = i e�i�

✓
1̂⌦ �̂ye�i'/2 0

0 1̂⌦ �̂ye+i'/2

◆
(2.73)

and

r̂he = �i e�i�

✓
1̂⌦ �̂ye+i'/2 0

0 1̂⌦ �̂ye�i'/2

◆
(2.74)
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Figure 2.5: Sketch of an SNS junction with magnetic (B) and spin-orbit (↵) interaction
in the normal region (green region of the scheme).

In Eq.(2.74) 1̂ is the identity matrix in the channel space, the �̂y Pauli matrix acts in
the spin space and � = arccos(✏/�). In the normal region Andreev scattering processes
are not allowed, which permit us to write

0

BB@

beL
beR
bhL
bhR

1

CCA =

✓
Se(✏) 0

0 Sh(✏)

◆
0

BB@

aeL
aeR
ahL
ahR

1

CCA (2.75)

Again, by solving the secular equation:

det
h
1̂� r̂ehŜh(�✏)r̂heŜe(✏)

i
= 0 (2.76)

we can find the Andreev bound states. We already know that, in the short-
junction limit one can disregard the energy dependence of the scattering matrix and
take Ŝ⇤

h(�✏) = Ŝe(✏) ' Ŝe(0). Therefore in order to solve Eq.(2.76), we have to calculate
the scattering matrix of the normal region at the Fermi energy.

We want, now, to show how to compute the normal scattering matrix in presence
of Spin-orbit and Zeeman interaction. We address the case of one open channel with
two spin orientations. However, our method is easily generalised to two or more open
channels.

As a first step, we solve the Schroedinger equation within the L-lead (x < �L
2 ) and

the R-lead (x > L
2 ) (assuming no superconductivity), as well as in the central region

SO with spin-orbit interaction (x < |L2 |) (Fig.2.5) . Therefore, we derive the scatter-
ing matrix by matching the solutions at the interfaces between the three regions.The
band structure is strongly influenced by the presence of the spin orbit coupling and,
interestingly enough, depending on the position of the Fermi level, the number of open
channels of the leads and the central region can be di↵erent.

To obtain a reliable approximation for the eigenfunctions and eigenvectors in the
spin-orbit region, we exactly diagonalize the Hamiltonian in the basis of the wave func-
tions {eix�m(y)��}, with {�m(y)} being the eigenfunctions of the harmonic oscillator
and �� the eigenfunctions of �z, by considering a finite number l of transverse modes
{�m(y)}, m 2 {1, ..., l}. The above basis functions are eigenfunctions in the right (R)
and left (L) regions. Such an approximation is indeed expected to provide a good de-
scription of the scattering dynamics of the system at energies small compared to the
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energy of the last transverse mode considered. In our calculation we find that the low
energy properties of our system are well described if we truncate the basis at l = 6.

Therefore, the problem is now reduced to finding the eigenvalues and the eigenfunc-
tion of the corresponding 2l ⇥ 2l-dimensional Hamiltonian matrix H()m,�;m0,�0 . For a
given energy E the allowed i are the solution of

det [H(i)� E] = 0. (2.77)

For each value of the energy we have i (i = 1, .., 4l) solutions, and the generic eigen-
function is:

 so(x, y;E) =
4lX

i=1

bsoi eiix
X

m�

c(i)m,��m(y)�� (2.78)

where the coe�cients c(i)m,� have to be determined numerically (the coe�cients bsoi are
determined by imposing the matching conditions listed below). The number of real {i}
in the SO region may vary according to the value of the Fermi energy. As we will show
later, changing the number of real {i} without a↵ecting the number of propagating
channels in the leads, greatly a↵ects the conductance of the system when it is in the
normal state, and in turn the Josephson current when the leads are superconducting.

We now consider values of the Fermi energy such that one or two channels (each
twice spin degenerate) are propagating in the leads. In order to obtain the total S-
matrix, one has to compute all the reflection and transmission coe�cients, by matching
the wave function in Eq.(2.78) with the one in the leads for any possible choice of
scattering boundary conditions. For instance, let us consider explicitly the case of a
spin-up particle incoming from the left-hand side. In this case the wave functions within
L and R are respectively given by:

 L(x, y;E) = eik1x�1(y)�"+rL1",1"e
�ik1x�1(y)�"+rL1#,1"e

�ik1x�1(y)�#+
X

�=",#;i=2,..,n

dLi,� e
kix�i(y)��

(2.79)

 R(x, y;E) = tRL
1",1"e

ik1x�1(y)�"+tRL
1#,1"e

ik1x�1(y)�#+
X

�=",#;i=2,..,n

dRi,� e
�kix�i(y)�� (2.80)

with k1 = [2m(E � ~!/2)]1/2/~ and ki = [2m(~!(i+ 1/2)� E)]1/2/~ for {i = 2, ..., l}.
The wave function at x = ±L

2 must be continuos, its derivative with respect to x
must be, in general, discontinuous to account the non perfect transparency at the inter-
faces and the SO interaction (cfr. Eq.(2.69)). Projecting the equations corresponding
to the matching conditions onto the basis states �m(y)�� (m = 1, ..., l; � =", #) we
obtain the following set of equations:

Z +1

�1
�⇤
m(y)�

†
�


 L(�

L

2
, y)�  so(�

L

2
, y)

�
dy = 0, (2.81)

Z +1

�1
�⇤
m(y)�

†
�


 R(

L

2
, y)�  so(

L

2
, y)

�
dy = 0. (2.82)
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Z +1
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†
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n
@x so(�

L

2
, y)� @x L(�
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, y)� im

~2 ↵�y so(�
L

2
, y)

o
dy = 0, (2.83)

Z +1

�1
�⇤
m(y)�

†
�

n
@x R(

L

2
, y)� @x so(

L

2
, y) +

im

~2 ↵�y so(
L

2
, y)

o
dy = 0. (2.84)

Therefore, we have a set of 8l equations which we solve numerically to determine the
corresponding S matrix elements. Repeating the calculation for each possible incoming
channel we construct the complete scattering matrix Se as function of the energy E
which we set to EF in the following as we are interested only in on-shell scattering
matrices.

2.3.1 Current anomaly analysis and phase diagrams

Having calculated the scattering matrix of the normal region, we can evaluate the
Andreev spectrum, and eventually the Josephson current. What we obtain is shown
in Fig.2.6: here we plot the current to underline the dependence of the anomaly as
a function of the spin-orbit and Zeeman interaction. Now, by having this results, we
can use them to do some density plot to observe the properties of the anomaly in the
current and to define under what system parameters conditions we can have also an
asimmetry in the maximum and the minimum of the current.

Figure 2.6: Here, we show plots of the Josephson current for several values of the
magnetic field and fixed strength of the spin-orbit interaction. The current is plot-
ted in units of e�/~.We set the Fermi energy to ✏F/E! = 3.5 (i.e. two open
channels),↵ = 0.6l!m/~2 andBgµB/E! =0.25(blue),0.50(red),0.75(black).A scheme of
the studied device is in the inset (93).

In Fig. 2.7 we present a density plot of '0, i.e. the phase at which the free energy
has a minimum, as a function of the Rashba spin-orbit interaction and of the applied
magnetic field. For the sake of the simplicity of the computation, we introduce the
dimensionless quantities ↵0 = ↵l!m/~2 and B0 = gµBB/E!. In this case, while for
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su�ciently large spin orbit interaction and magnetic field '0 can be di↵erent from 0 (or
⇡ when the magnetic field is strong enough to induce a ⇡-transition), the asymmetry is
identically zero.

Figure 2.7: Here, we show a density plot of '0 in the case of one open channel as a
function of the applied magnetic field and the Rashba spin-orbit interaction. On the
axes, we introduce the dimensionless quantities B0 = gµBB/E! and ↵0 = ↵l!m/~2.We
set the Fermi energy ✏F/E! = 1.5, the length of the normal section L = 2l!, the number
of transverse bands l = 4,where E! = ~!/2 and ! =

p
~/m!. Notice that the upper

left part of the plot corresponds to values of '0 close to ⇡ and, hence, not showed for
convenience (93).

After this, now we change the Fermi energy EF to values such that two open chan-
nels, corresponding to four Andreev states, are available. In Fig. 2.8 we show, again, a
density plot of the phase-anomaly in the current as a function of the applied magnetic
field and the spin orbit interaction. In Fig. 2.9 , instead,we show the computed value
of the visibility @ = (I0+ � I0�)/(I0+ + I0�), with I0+ (I0�) the maximum (minimum)
amplitude of the Josephson current in the positive (negative) direction. In analogy to
the previous case we observe that for large enough ↵0 and B0, the value of '0 deviates
substantially from 0 (or ⇡). Most importantly, in contrast to what has been observed
in the previous case, the visibility @ can take values as large as 0.2. Such e↵ect, be-
ing tuned, for instance by varying the magnetic field, may have useful application for
superconducting circuits: for example, circuits with an e�ciency as high as 50% are
required to realize a proper superconducting diode. However, by properly engineering
the interfaces and the materials we expect to achieve a wider tuneability of this value
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up to experimentally relevant scales. Nonetheless, we believe that the present analysis
can be taken as a first example for further studies in this direction.

Figure 2.8: Here, we show a density plot of '0 in the case of two open channels as a
function of the applied magnetic field and the Rashba spin orbit interaction. We set
the Fermi energy ✏F/E! = 3.5, where as the remaining parameters are the same as in
Fig.2.3.1. Notice that in the one-channel case, one obtains a larger deviation of '0 from
0, given the same spin orbit and magnetic-field parameters (93).
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Figure 2.9: Here we show a density plot of @ = (I0+ � I0�)/(I0+ + I0�) as a function
of alpha0 and B0; the choice of parameters is the same of Fig.2.3.1 and we have set the
Fermi energy ✏F/E! = 3.5 (93).
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Chapter 3

Majorana Modes against e↵ects of

disorder in superconducting p�wave

rings

Recent progresses in the fabrication of nanostructures made it possible to engineer hy-
brid devices, in between normal and superconducting rings (NS hybrid rings - NSHRs),
in which superconductivity is induced by e.g. proximity e↵ect only in part of the sys-
tem (139). Realizing NSHRs opens the way to the possibility of exploring a number of
remarkable physical regimes. For instance, one may think of looking at the persistent
current across the ring while varying the lengths of the two regions and keeping the
length of the normal region `N lower than the phase coherence length ⇠. In this way,
one may therefore monitor the crossover between the normal mesoscopic regime towards
the complementary Josephson-junction regime, in which `S � ⇠0 (140). Moreover, it
is also expected to see the predicted crossover between the �0 periodicity if �, which
is appropriate for a mesoscopic normal ring, in which the current flow is mainly sup-
ported by electron transport, to the �⇤

0-periodicity in the Josephson regime, in which
the current flow is mainly due to tunneling of Andreev quasiparticles (88; 140).

The focus of this chapter is, however, the use of hybrid superconducting rings to
obtain informations about the presence and the characteristics of zero-energy Majorana
modes. Indeed, as we will see in detail in the development of the chapter, when we have
an hybrid ring or a SQUID, in which the superconducting metal is in the topological
phase, the spectrum of the system will present an energy level-crossing on varying of
�. The crossing in the spectrum, which occurs when the magnetic flux which pierces
the ring is equal to a certain value � = �0, is a signature of the presence of zero-energy
modes in the system and it is a function of the parameters which characterize the ring
itself. Because of the system we are considering is a ring crossed by a magnetic field, we
can think of verifying the consequences of the level crossing in the persistent current.

As predicted by electromagnetism, when a conductive system is crossed by an elec-
tromagnetic flux, a current I(�) is established in it, as a function of the flux. As we
will see, the current I(�) can be computed di↵erentiating the energy of the fundamen-
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tal state of the system EGS(�), which, when level crossing appears, presents cusps at
� = �0. Once derived, the presence of the cups implies discontinuities in the current
I(�). The jumps of the current represent an experimentally visible way to test the
presence of Majorana Modes in the system. Moreover, to mesure I(�), one can use a
non-invasive tecnique based on magnetomers. As a counter-proof, we will see how in
the case of s-wave systems, in which there cannot be a topological phase, there is no
level crossing and the current does not therefore present any discontinuity.

The system that we are going to study, permits us not only to have informations
about Majorana modes. Indeed, by using a numerical analysis, we can introduce a white
noise in the ring and study the e↵ects of disorder on these modes. Beyond topological
aspects alone, the disordered one-dimensional p-wave superconducting wire has been
actively studied for more than a decade under symmetry classification of D-class due to
its localization-delocalization properties characteristics. One of the highlighting features
of this system is the existence of a delocalised multi-fractal wavefunction at a critical
point and the surrounding ‘Gri�ths phase’. In this phase a proliferation of the low
energy bulk states into the superconducting gap causes the density-of-states to diverge
at zero energy. This critical point indeed separates the topological and trivial phases;
the delocalized state at the critical point provides a channel for the Majorana end mode
in the topological phase to vanish in the trivial phase. By performing an ensemble
statistic on the system, and looking at the discontinuities of the current on varying the
chemical potential µ, we can obtain informations on how Majorana modes are robust
against disorder, creating, once the parameters that characterize the system have been
established on the topological phase, a map of the chemical potential vs the intensity
of the disorder itself. This, as we shall see, will allow us to obtain informations on the
consequences of disorder on the topological phase.

In the following, we will describe how it is possible to obtain the persistent current
and and how to introduce disorder into the system. In particular, we will study the
case of a topological superconductor and a topological-non topological junction and we
will compare the obtained results with the s�wave case. What we will see throught the
analysis is that a few amount of disorder does not a↵ect the topological phase, which
is, indeed, stabilized thanks to the localization e↵ects; while a big amount of disorder
destroys the Majorana modes.

The chapter is divided as follows:

• In Section 3.1 we will deal with the treatment of the persistent current from a
classical to a quantum approach, introducing the Peierls’s substitution in the case
of lattice-modeled Hamiltonian. Moreover we will see how the persistent current
of a system can be obtained through the calculation of the groundstate energy

• In Section 3.2 we introduce the Hamiltonian of the superconducting hybrid ring
starting from the Kitaev model. Then we give the Hamiltonian of the system,
describing its properties, we calculate the persistent current using numerical tech-
niques and present the results obtained in the ”clean” case.
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• In Section 3.3 we will analyze the e↵ects of disorder in the system and on the
topological phase. Then, we describe the trend of the DOS (density of states) of
the states below the system’s gap and how they vary with the increase in disorder,
linking it to the persistent current. By using these results, we get a graph of the
chemical potential versus the intensity of the disorder: this will be a map with
which we can get information on the topological phase of the system as these
parameters change.

3.1 Persistent current

Onnes (89) discovered during an experiment that, piercing a superconductive ring by
a magnetic flux even if the field ceases to act on the system, it continues to flow for an
infinite time lapse. In particular we have,the Lenz law:

�⌃ @B(t)

@t
= RI(t) + L

@I(t)

@t
(3.1)

where B(t) is the magnetic-flux density, ⌃ is the ring area, R is the ring resistance
and I(t) the inducted current. Now, if we set B(t) = 0, we can simply solve the
di↵erential equation for I(t):

I(t) = I(t0) e
�Rt

L (3.2)

which, considering a superconductive material that has R = 0, gives a first result:

I(t) = I(t0) (3.3)

The materials in which the persistent current can be observed are in thermal equi-
librium and in the absence of an external excitation. The observability of persistent
currents in normal metal rings was not trivial to imagine and it was first considered as a
only-superconducting phenomenon since it was first predicted in 1983 by Buttiker (88)
. Subseqently, these persistent currents have been studied experimentally several times
but with conflicting results for the superconductive cases, due in part to the di�culty
of the measurements, but we actually have some interesting results for homogeneous
normal rings (89; 90; 91; 92) . The normal state persistent current that we are going to
study is an equilibrium property of the system. Then we attempt to describe broadly
the theory relevant to mesoscopic persistent currents introducing the Aharonov-Bohm
phase (87) .

Let us consider quantum mechanical charged particles living on a one- dimensional
closed loop. Let us assume that a magnetic flux � pierces the ring, corresponding to a
uniform magnetic field perpendicular to the plane of the ring (see Fig.3.1). To such a
magnetic field is associated a vector potential A, that is point-by-point directed along
the tangent to the ring, and whose strength is given by the relation

A =
�

L
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Figure 3.1: Metallic ring pierced by a magnetic flux � and the induced current I(�).

where L is the length of the ring. Accounting for the additional magnetic flux
amounts, in a continuum quantum mechanical model to trade the momentum p for the
covariant momentum p � eA, in a lattice model to perform the Peierls substitution,
that is, in trading the single electron hopping amplitude

Jj,j+1 ! Je�i ea~ Aj (3.4)

where a is the lattice step and the exponential e�i ea~ Aj is the consequence of the
gauge-invariance imposition and is known as Aharonov-Bohm phase (87) . Focusing on
the lattice model, we see that, on setting ea

~ Aj ! 'j, the microscopic current operator
on ring j ! j + 1 jj is given by:

jj = e
@H

@'j
(3.5)

H being the system Hamiltonian. Therefore, if |GSi denotes the system’s ground-
state, the groundstate persistent current at T = 0 in the case in which 'j is independent
of j in a uniform system will be given by:

I = �e

`

@

@'
hGS|H|GSi = �e

`

@E0[']
@'

(3.6)

with E0['] being the groundstate energy as a function of the applied (dimensionless)
flux '. From a thermodynamic point of view, at temperature T 6= 0, the persistent
current I[' : T ] can be obtained from the free energy (114) F [';T ] as :

I[';T ] = e@'F [';T ] (3.7)

Then, during the discussion of this chapter, we will consider only the case in which the
temperature is T = 0, in which Eq.(3.7) becomes:

F ['; 0] = EGS['] (3.8)

with EGS['] being the total groundstate energy of the system, EGS[']. Therefore, in
terms of the quasiparticle excitation of H[�], {✏n[']}, one obtains:
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I['] = e@'EGS['] = e@'
X

✏n<0

✏n['] (3.9)

with the sum taken, as specified, over negative-energy single-quasiparticle states.
By now, there is a large amount of literature about persistent current in normal

mesoscopic ring addressing a number of issues such as, for instance, the e↵ect of disorder
in the ring with consequent possible halving in the period of the current (133; 134), the
role of the spin degree of freedom (135), the consequences of the electronic interaction,
with and without impurity scattering (136), the presence of spin-orbit interaction (137),
etc. Nevertheless, after the recent measurements presented in Ref.(132), it appears that
the experimental data can be well fitted by employing a simple quantum mechanical
noninteracting model of di↵usive electrons (132). While this corresponds to the length
scale of the ring being much lower than the electronic phase coherence length in the
system, the fact that in semiconducting materials the electronic mean free path is
comparable with the phase coherence length (138) makes it in principle possible to
realize ballistic rings, in which a fully ballistic propagation takes the place of the di↵usive
dynamics of the electrons (139).

3.2 Majorana Bound States and topological phase

transition in a p-wave disordered ring

In this section, we discuss at first in detail the derivation of the exact wavefunction of
sub-gap states in an open Kitaev chain, of finite length `S. While, for finite-`S, we find a
single Dirac fermion level, which can be either empty, or occupied, with a corresponding
finite energy gap EM , as `S ! 1, the states become degenerate in energy at the Fermi
level, and appropriate linear combinations of the corresponding wavefunctions become
localized at the two endpoints of the chain, eventually corresponding to the two zero-
energy Majorana solutions of Kitaev’s model (142). Finally, we will show the e↵ects of
disorder on a one-dimensional p-wave superconducting ring, focusing our attention to
the properties of Majorana Bound States (MBSs) in the persistent current on increasing
disorder. Let us start by describing the ”clean” case, i.e. the system in absence of
disorder.

3.2.1 Exact wavefunctions for sub-gap states for a finite-length

Kitaev chain

Let us consider an homogeneous finite-lenght Kitaev-chain (142) (see Fig.3.2). We can
describe it with the Hamiltonian:

H = �w
`�1X

i=1

n
c†jcj+1 + c†j+1cj

o
+ µ

X̀

i=1

c†jcj +�
`�1X

i=1

n
cjcj+1 + c†j+1c

†
j

o
(3.10)
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Figure 3.2: Sketch of an homogeneous finite-lenght Kitaev chain

where w is the hopping energy from the j � th site to the j + 1-one, µ is the
chemical potential, � is the superconducting pairing and cj and c†j are, respectively,
fermionic annihilation and creation operators . From Eq.(3.10) we can derive the BdG
equation and the energy dispersion relation for the system (see Appendix B). Now,
in order to compute the exact wavefunctions for sub-gap states for the finite-length
Kitaev chain, we start from the dispersion relation in Eqs.(B.10) which, for sub-gap
solutions (|E| < �w) yields the allowed values of the (complex conjugate) particle- and
hole-momenta defined by:

cos(kp) = � wµ

2(w2 ��2)
� i

2

r
�2

w � E2

w2 ��2

cos(kh) = � wµ

2(w2 ��2)
+

i

2

r
�2

w � E2

w2 ��2
(3.11)

Eqs.(3.11) are readily solved by setting kp = ⇡�qR+iqI and kh = (kp)⇤ = ⇡�qR�iqI ,
with

cos(qR) cosh(qI) =
wµ

2(w2 ��2)

sin(qR) sinh(qI) =
1

2

r
�2

w � E2

w2 ��2
(3.12)

As a result, the general formula for a subgap solution will be given by:


uj

vj

�
= (�1)j

(
A(p,+)


u
v

�
e�iqRje�qIj + A(p,�)


u
�v

�
eiqRjeqIj

+ A(h,+)


u⇤

v⇤

�
eiqRje�qIj + A(h,�)


u⇤

�v⇤

�
e�iqRjeqIj

)
(3.13)

with u, v solutions of the algebraic system :

{E + 2w cos(kp) + µ}u� 2i� sin(kp)v = 0

2i� sin(kp)u+ {E � 2w cos(kp)� µ}v = 0 (3.14)
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The actual energy eigenstates are determined as nontrivial solutions such as the one

in Eq.(3.13) satisfying the boundary conditions


u0

v0

�
=


u`+1

v`+1

�
= 0. It is therefore

straightforward to verify that this implies the equation for the energy eigenvalues given
by:

[=m(uv⇤)]2 sinh2[qI(`+ 1)] = [<e(uv⇤)]2 sin2[qR(`+ 1)] (3.15)

Eqs.(3.13,3.14,3.15) can be used to estimate the energy of the sub-gap levels and the
corresponding wavefunction for any value of µ. Indeed, we use them to numerically es-
timate the energy gap and to accordingly infer the overlap scale between the localized
Majorana modes at given values of the system’s parameters. Specifically, one is only
interested in the low-energy physics of a finite-size one-dimensional topological super-
conductor coupled to normal conductors at each of its endpoints, the whole topological
superconductor can be traded for an e↵ective Hamiltonian involving only the low-energy
sup-gap degrees of freedom discussed above, with parameters e↵ectively determined by
the actual system parameters. To illustrate how the procedure works, let us focus onto
the simple case µ = 0, ` even. In this case, kp and kh are simply given by:

kp =
⇡

2
+ i�(E)

kh =
⇡

2
� i�(E) , (3.16)

with:

sinh[�(E)] =
1

2

r
4�2 � E2

w2 ��2
(3.17)

As a result, Eq.(3.13) can now be presented as:
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with:


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and:

# = atan


2w sinh[�(E)]

|E|

�
(3.20)
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It is straightforward, though tedious, to show that the secular equation for the sub-gap
energy eigenvalues is now given by:

(`+ 1)�[E] = ± sinh�1


2w

E
sinh[�(E)]

�
(3.21)

which is solved by setting:

|E| = ✏ = 2�


cosh[�[E]]

cosh[(`+ 1)�[E]]

�
⇡ 2�e�`�[E] ⇡ 2� exp

⇢
�` sinh�1


�p

w2 ��2

��

(3.22)
Therefore, from Eq.(3.22) we readily estimate that the hybridization length scale be-
tween the Majorana modes, `M , is given by:

`M ⇠
⇢
sinh�1


�p

w2 ��2

���1

(3.23)

From Eq.(3.13) we may therefore construct the wavefunctions corresponding to the
positive- and to the negative-energy sub-gap solutions. As a result, one obtains for the
positive- sub-gap energy solution of the BdG equations:
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(3.24)

with:

c =
1

4

s
2 sinh[�[E]]

sinh[⇠[E]� �[E]]
(3.25)

and ⇠[E] = sinh�1
⇥
2w
E sinh[�(E)]

⇤
. Similarly, one obtains for the negative- sub-gap

energy solution of the BdG equations:
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(3.26)

From Eqs.(3.24,3.26), we therefore find that the eigenmodes corresponding to the ±
solutions are respectively given by:
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�+ =
X̀

j=1

{[uj]
⇤
+cj + [vj]

⇤
+c

†
j}

�� =
X̀

j=1

{[uj]
⇤
�cj + [vj]

⇤
�c

†
j} (3.27)

which shows that, as expected, one recovers the relation:

�+ = �†
� ⌘ � (3.28)

By Eqs.(3.27) and truncating the mode expansion of the real space lattice operators by
retaining low-energy modes only, we therefore get:

cj ⇡ [uj]+�+ [vj]
⇤
+�

†

c†j ⇡ [vj]+�+ [uj]
⇤
+�

† (3.29)

Now, one may rewrite the tunneling contribution to the Hamiltonian in Eq.(4.46) as :

H⌧ = �⌧{[c†1d`N + d†1c`N ]e
i
4� + [d†`N c1 + c†`d1]e

� i
4�} (3.30)

where ⌧ is the weak link amplitude.
Using the truncated expansions in Eqs.(3.29) and the explicit form of the wavefunc-

tions evaluated at j = 1, `, one eventually approximates Eq.(3.30) as:

H⌧ = tL{�L[e
i
4�d`N � e�

i
4�d†`N ]}+ itR{�R[e�

i
4�d1 + e

i
4�]d†1} (3.31)

with

�L = e�i⇡4�+ ei
⇡
4�†

�R = �i{e�i⇡4�� ei
⇡
4�†} (3.32)

and tL = tR = ⌥⌧ , with:

u1,+ = �e�i⇡4⌥

v1,+ = �e�i⇡4⌥

u`,+ = �e�i⇡4⌥

v`,+ = e�i⇡4⌥ . (3.33)

Finally, to recover the energy bias between the Dirac modes, we add a term of the form:

H� = 2✏{2�†�� 1} = �2✏i�L�R (3.34)

In general, tL, tR are smooth functions of µ. The dependence of ✏ on µ can be inferred
by, for instance, numerically solving Eq.(3.15), as we did in the main text, to also derive
the dependence of `M on the chemical potential.
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Figure 3.3: Sketch of the one-dimensional p-wave superconducting ring described by
HK in Eq.(3.10) plus H⌧ [�] in Eq.(3.35).

3.2.2 The clean case for a finite-length p�wave superconduct-

ing ring

Let us consider our p-wave superconducting ring interrupted by a weak normal link and
pierced by a magnetic flux �, which induces a persistent current I[�] through the ring
(as we have already show in the previous chapter - see Fig. 3.3). We first start with
the description of what happens in the ”clean case”, i.e. in absence of disorder.

To formally describe the p-wave superconductor we use again the Kitaev’s one-
dimensional lattice model Hamiltonian (142). Indeed, despite its apparent simplicity
and mathematical tractability, the Kitaev model can be regarded as an e↵ective low-
energy description of a quantum wire with a strong spin-orbit coupling and a large
enough Zeeman e↵ect, which turns into a one-dimensional p-wave superconductor by
proximity to a ”standard” s-wave bulk superconductor (98; 99).

The Kitaev lattice Hamiltonian for a one-dimensional p-wave superconductor is
given by Eq.(3.10) (142). In Eq.(3.10) the operators cj (c

†
j) (j = 1, . . . , `) are single-

fermion annihilation (creation) operators defined on site-j of the one-dimensional chain.
They satisfy the canonical anticommutation relations {cj, c†j0} = �j,j0 , all the other an-
ticommutators being equal to 0. Here, w and � are respectively the normal single-
electron hopping amplitude and the p-wave superconducting pairing, while µ is the
chemical potential. For the sake of simplicity, without any loss of generality, we further
simplify HK by choosing w = � (which does not qualitatively a↵ect the spectrum and
the eigenfunctions with respect to the general case) and µ � 0 (the complementary
situation µ < 0 can be easily recovered by symmetry). Besides its mathematical sim-
plifity, it is also worth noticing that the Hamiltonian in Eq.(3.10) with w = � takes a
precise physical meaning, as it be obtained from the Hamiltonian open quantum Ising
chain via Jordan-Wigner transformation (100).

In Appendix B, we review the main properties of HK for w = �. In particular, we
highlight the appearance of zero-energy Majorana modes localized at the endpoints of
the chain (142). The Majorana modes can then be combined into a zero-energy Dirac
mode, which implies a twofold spectral degeneracy of HK , with degenerate eigenstates
di↵ering from each other by the total fermion parity corresponding to the zero-energy
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Figure 3.4: Sketch of the hybridization of Majorana Modes at the end point of a finite-
lenght Kitaev chain in the topological phase.

mode being populated, or empty. For a finite-length chain (that is, with ` of the same
order as the superconducting coherence length of the p-wave superconductor, ⇠0), the

Majorana modes are hybridized by means of an overlap matrix element that is ⇠ e�
`
⇠ .

In this case, strictly speaking, Majorana modes are not anymore true eigenstates of
HK . Instead, one may rather speak ot two putative Majorana modes that hybridize
into a finite-energy Dirac mode, with corresponding disappearance of the fermion-parity
related degeneracy (Fig.3.4).

In Appendix B we show that, Majorana modes as well as putative Majorana modes
only emerge within the phase in parameter space characterized by 2w

µ > 1. Strictly
speaking, one may dub it ”topological” only when Majorana modes lie exactly at zero
energy. In general, we rather speak of a putative topological phase, with corresponding
putative Majorana modes hybridized into nonzero energy Dirac modes. Instead, neither
Majorana modes, or putative Majorana modes, appear in the spectrum for 2w

µ < 1. To
trade the open Kitaev chain for a one-dimensional p-wave ring, we add to HK a normal
weak link hopping term H⌧ . Defining ⌧ to be the normal hopping amplitude and taking
into account that the applied flux � can be fully loaded on the weak link by means of a
simple canonical transformation of the fermionic operators, the weak link Hamiltonian
H⌧ can be presented as (101)

H⌧ [�] = �⌧{e i
2�c†1c` + e�

i
2�c†`c1} (3.35)

In the following, we will use the full Hamiltonian H[�] = HK +H⌧ [�] to compute
the density of states and the persistent current I[�]. In a ring made with a conven-
tional s-wave superconductor, as well as in a ring made with a p-wave superconductor
in the nontopological phase, I[�] is tipically a periodic function of � with period 2⇡.
At variance, when the p-wave superconductor is within its topological phase, if fermion
parity is conserved, the presence of Majorana modes at the endpoints of the supercon-
ductor (and, therefore, at the two sides of the weak link) typically makes I[�] periodic
with period equal to 4⇡, provided there is a negligible overlap between the Majorana
mode wavefunctions (102); note that, for a finite size ring one should carefully spell out
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whether the 4⇡-periodicity is really due to fermion parity conservation in the presence
of Majorana modes, or is a simple e↵ect of the crossover from a superconducting to a
mesoscopic ring as `  ⇠0 (140). In general, in a one-dimensional p-wave superconduct-
ing ring, one expects a coexistence of a 2⇡- and of a 4⇡-harmonics, due to the existence
of two possible ”channels” for the Majorana modes to hybridize into a Dirac mode:
through the finite-length p-wave superconducting chain, as well as via the weak link.
Both mechanisms are expected to determine a zero-mode level splitting but the relative
sign of the corresponding contribution to the splitting energy can be tuned by acting on
� (see Appendix C for a detailed discussion of this point), thus inducing competition
between the two of them. The presence of the two harmonics and the value of their
relative weight can be readily understood from our equation for the energy eigenvalues
of the putative Majorana fermnions and from the exact condition for recovering a pu-
tative zero-energy level crossing at pertinent values of �, Appendix C. Indeed, from
Eq.(C.21) one expects that EGS[�] and, correspondingly, I[�] are 4⇡-periodic functions
of �, as the applied flux only enters the equation for the energy eigenvalues. As this
picture strongly relies upon assuming fermion parity conservation, which is hard to
recover in a quasistatic dc current measurement, in Ref.(159) it was noted that, since
fermion parity changing processes are expected to take place via relaxation processes
that happen just at the putative Majorana fermion level crossing, one may just get rid
of level crossings by pertinently tuning the system parameters. Formally, we rigorousely
argue it in Appendix C, where we prove that putative Majorana fermion level crossing
takes place at � = �⇤, with �⇤ satisfying the equation:

2w⌧

µ2 � ⌧ 2
cos

✓
�

2

◆
= e�(`�2)�0 ) cos

✓
�

2

◆
=

µ2 � ⌧ 2

2w⌧
e�(`�2)�0 (3.36)

with �0 defined as:

�0 = 2 sinh�1

(s
�2

w

8wµ

)
(3.37)

From Eq.(3.36) we see that a putative Majorana fermion level crossing happens when-
ever the energy gap associated to the Majorana mode-hybridization through the finite
superconducting chain (that is, the term / e�`�0) becomes equal, though opposite in
sign, to the energy gap associated to Majorana modes-hybridization through the weak
link (which is / ⌧). Clearly, as the latter contribution is modulated by cos

�
�
2

�
, the

level crossing can only happen provided the condition
���µ

2�⌧2

2w⌧ e�(`�2)�0
���  1 is met, that

is, either the chain must be long enough (as �0 ⇠ ⇠�1
0 ), or the coupling ⌧ must be

strong enough, or both. Thus, to avoid putative Majorana fermion level crossing one
has to make it impossible to satisfy Eq.(3.36) at any value of �. This strategy was
actually pursued in Ref.(159) by assuming ⌧/w ⌧ 1 and, at the same time, by consid-
ering the ring close to the topological phase transition, at which ⇠0 ! 1 (142) and,
accordingly, the contribution to the putative Majorana modes energy levels arising from
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the hybridization through the superconductor is always larger than the one due to the
hybridization through the weak link. This implies consistent spectral weight for the
4⇡-harmonics, which appears as a modulation of the 2⇡-periodicity in I[�], as a result
of the competition between the ”Kondo-like” Kondo hybridization between the putative
Majorana modes mediated by the weak link (86), and the ”RKKY-like” interaction me-
diated by the finite chain length. At variance, when going across the phase transition,
the putative Majorana modes disappear, thus determining a full disappearance of the
4⇡-harmonics and a purely 2⇡ periodic persistent current.

Now we show the evolution of putative Majorana modes energy ±✏0[�] as a function
of the flux �, in order to show the level crossing when the system lies in the topological
phase and, as a di↵erence, the spectrum of an s-wave ring (see Appendix A for more
details about the properties of this system). In Fig.3.5a), we plot ±✏0[�] for µ

2w = 0,
⌧
2w = 0.15, and for ` = 40. µ = 0 corresponds to a level crossing exactly located
at � = ⇡, as evidenced in Fig.3.5a). By comparison, in Fig.3.5b) we draw a similar
diagram constructed for an s-wave superconducting ring described by the (spinful)
Hamiltonian Hs = Hs�wave +Hs�⌧ , with

Hs�wave = �w
X

�

`�1X

j=1

{c†j,�cj+1,�+c†j+1,�cj,�}�µ
X

�

X̀

j=1

c†j,�cj,�+�
X̀

j=1

{cj,"cj,#+c†j,#c
†
j,"}

(3.38)
and the weak link Hamiltonian given by

Hs�⌧ = �⌧
X

�

{e i
2�c†1,�c`,� + e�

i
2�c†`,�c1,�} (3.39)

Specifically, in Fig.3.5b) we set � = w and ⌧
2w = 0.15. We again see a level modulation

with � but now the levels emerge near by the gap edge and keep well separated from
each other at any values of the applied flux.
Di↵erently from Ref.(159), here we do assume putative Majorana fermion level cross-
ing at a pertinent value of � and, at the same time, we assume absence of fermion
parity conservation, which makes I[�] to be a 2⇡-periodic function of �. According to

Eq.(3.36), we have to assume that
���µ

2�⌧2

2w⌧ e�(`�2)�0
���  1. Indeed, this does not require

any challenging fine-tuning of the system parameters: for instance, it is enough to make
a large enough ring, so to make sure that `/⇠0 � 1. Once this condition is met, either
there are subgap putative Majorana modes states, and their energies cross at � = �⇤,
or there are no putative Majorana modes states at all. Our second assumption, that
is, the absence of fermion parity conservation, is quite a natural consequence of having
a quasistatic processes, as noted above, as the system is likely to always lie within its
thermodynamic groundstate, even when going across putative Majorana fermion level
crossing. Then, while EGS[�] is continuous across putative Majorana fermion level
crossings, its first derivative with respect to �, I[�], is not. Therefore, at each level
crossing, we expect a discontinuous jump in I[�], due to the di↵erent slope of the pu-
tative Majorana mode energies ±✏0[�] when approaching �⇤ from the left and from the
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Figure 3.5: Subgap energy levels as a function of the applied magnetic flux � for: a):
The p-wave superconducting ring with a weak link described by HK in Eq.(3.10) plus
H⌧ in Eq.(3.35) with ⌧

2w = 0.15;
b) The s-wave superconducting ring with a weak link described by Hs�wave in Eq.(3.38)
plus Hs�⌧ in Eq.(3.39) with
� = w and ⌧

2w = 0.15 (104).

right. To illustrate this feature, in Fig.3.6, we plot I[�] vs. � through the ring with
⌧
2w = 0.15, � = w, ` = 40, and µ

2w = 0 (panel a)), and µ
2w = 0.75 (panel b). In both

cases, we see the expected jump in the current. Remarkably, while the discontinuity in
I[�] in Fig.3.6a) takes place exactly at �⇤ = ±⇡, the discontinuity points in Fig.3.6b)
are slightly displaced from ±⇡, according to the result of Appendix C). Note that in
both cases the condition for having subgap putative Majorana modes is satisfied, as it
must be. For comparison, in Fig.3.7, we plot I[�] vs. �, for a s-wave superconducting
ring with ` = 40, � = 0.5(2w), ⌧ = 0.15(2w), and µ = 0 (panel a)), and for a 1pSR
with ` = 40, � = w, ⌧ = 0.15(2w), and µ = 1.25(2w) (panel b): this last choice of
parameters implies no subgap putative Majorana modes). As a result, in both cases
I[�] is a continuous function of �, with no discontinuities within the whole interval
[�2⇡, 2⇡].

An important remark about the discontinuity in I[�] is that in Figs.(3.6,3.7) we have
plotted the exact current I[�] at T = 0 using both parameters that make us fall into the
topological phase, or not, computed from Eq.(3.9) by summing over all the quasiparticle
levels with ✏n < 0. Nevertheless, the discontinuity is clearly determined only by the
change in the slope of the putative Majorana modes energy at the level crossing. Indeed,
all the levels with energy |✏n| > �w, together with their derivatives, are continuous
functions of �, so that they contribute I[�] by a component that is a smooth function of
�. To highlight this point, in Fig.3.8 we plot the energy levels vs. � in a one-dimensional
p-wave ring with ` = 8, � = w, a weak link with ⌧ = 0.25(2w), µ = 0.75(2w) (panel
a)), and µ = 1.25(2w) (panel b)). According to the above discussion, in the level plot
in Fig.3.8a), we see a set of non-crossing levels, whose position smoothly changes with
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Figure 3.6: Persistent current I[�] (arbitrary units) vs. � in a p-wave superconducting
ring with ` = 40, � = w, a weak link of strength ⌧ = 0.15(2w), and with: a): Chemical
potential µ = 0; b) Chemical potential µ = 0.75(2w) (104).
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Figure 3.7: a) Persistent current I[�] (arbitrary units) vs. � in an s-wave supercon-
ducting ring with ` = 40, � = 0.5(2w), a weak link of strength ⌧ = 0.15(2w), and
µ = 0 ;
b) Persistent current I[�] (arbitrary units) vs. � in a p-wave superconducting ring
with ` = 40, � = w, a weak link of strength ⌧ = 0.15(2w), and µ = 1.25(2w) (104).
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Figure 3.8: a) Single-quasiparticle energy levels ✏n[�] in a p-wave superconducting ring
with ` = 8, � = w, a weak link of strength ⌧ = 0.25(2w), and µ = 0.75(2w). The
subgap putative Majorana modes appearing close to zero-energy are highlighted in red
color; b) Single-quasiparticle energy levels ✏n[�] in a p-wave superconducting ring with
` = 8, � = w, a weak link of strength ⌧ = 0.25(2w), and µ = 1.25(2w). Consistently
with the discussion in the main text, no putative Majorana mode-levels appear, in this
case (104).

�, together with the two levels corresponding to the putative Majorana modes nearby
the energy zero, crossing each other at ±�⇤ ⇡ ±⇡. At T = 0, all the negative-energy
quasiparticle levels contribute I[�], by means of terms smoothly depending on � for
the levels far from the Fermi level (highlighted in blue in Fig.3.8a)), by means of a term
discontinuous at � = ±�⇤ for the putative Majorana modes-levels (highlighted in red).
At variance, the plot in Fig.3.8b) shows no subgap putative Majorana modes-levels. In
this case, all the negative-energy quasiparticle levels contribute I[�] by means of smooth
contributions and, as we found by direct calculation, the current is a continuous function
of �, 8� 2 [�2⇡, 2⇡].
The discontinuity of I[�] at � = �⇤ is a readily detectable feature that, under minimal
requirements on the system parameters, can be e↵ectively used to mark the existence of
putative Majorana modes level crossing by just measuring I[�] in a static experiment
and looking at the specific dependence of the current on the applied flux. The remark-
able feature of our approach is that, as we are going to discuss in the following, it can
be straightforwardly extended to study to which extent a putative Majorana modes
level crossing survives in the presence of disorder. Indeed, in analogy to the topological
phase for an infinite open chain, we may define a ”putative topological phase” (PTP),
characterized by a putative Majorana modes level crossing at � = �⇤. Indeed, at
� = �⇤ we recover zero-energy Majorana modes at the ring, exactly like what happens
in an infinite Kitaev chain in its topological phase. In the spirit of our discussion, the
observable signature of the putative topological phase in a finite ring is just given by
a discontinuity in I[�] at � = �⇤. As we are going to discuss in the following, our
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approach can readly be e�ciently implemented to characterize the putative topological
phase also in the case of a disordered one-dimensional p-wave ring.

3.3 The disordered case for a finite-length p�wave

superconducting ring

As we discuss in the previous subsection, for a long enough one-dimensional p-wave
ring and (or) for a strong enough coupling ⌧ at the weak link, there always exists
a special value of the magnetic flux � = �⇤ at which the putative Majorana modes
energy is exactly equal to 0. So, by setting the magnetic flux at � = �⇤, we recover
the zero-energy Majorana modes �1, �2 (as we show in Appendix C).

The applications of the Majorana modes, as we have already discussed in the in-
troduction of this Chapter, can be manifold. However, the experimental environments
is often not possible to describe it through the ”clean case”, because it does not take
into account the fact that it can be realized with impurities of all sorts or structural
defects. But even if we could make an absolutely perfect ring, we should consider the
e↵ects of disorder. If we imagine, indeed, to insert our perfect superconducting ring
in a broader context, it will be easy for us to understand how, even if minimally in-
teracting with the rest of the apparatus, it can be a↵ected by noise-related e↵ects. In
this subsection, we discuss the robustness of the putative Majorana fermion level cross-
ing against disorder in the one-dimesional p-wave ring. It is by now estabilished not
only that the topological phase survives a moderate amount of disorder in a disordered
quantum wire in the presence of a strong spin-orbit coupling and at a large enough
Zeeman e↵ect (107; 108; 109), but also that a limited amount of disorder stabilizes the
topological phase of an open, infinite Kitaev chain (110; 111). Moreover, it was also
stated that moderate disorder does not substantially a↵ect the 4⇡-periodic component
of I[�] in a fermion parity-conserving p-wave superconducting ring with a weak link
(159). Here, instead, if we have a fermion parity non-conserving system, we study how
much the putative Majorana modes level crossing are robust against disorder in the
ring. Specifically, we perform a detailed analysis of the density of states (DOS) to anal-
ize and underline the e↵ects of the Gri�ths’ singularities and of the dependence of the
energy levels on �, with particular emphasis onto the putative Majorana modes in the
presence of disorder. As outlined in the following, we provide numerical evidence that,
at a given disorder strength, either subgap putative Majorana modes energy levels are
still present, and they exhibit a level crossing at a pertinent value of �, or they are
fully washed out by disorder. This leads us to the remakable conclusion that, as long as
putative Majorana modes are not washed out by disorder, looking at the discontinuities
in I[�] is still an e↵ective way to probe their existence, exactly as in the absence of
disroder.

To model the disorder in our superconducting ring, we modify the clean system
Hamiltonian by introducing a random component to the on-site potential, so that, at
a fixed disorder realization, the total Hamiltonian H = HK +H⌧ [�] is modified as:
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HK +H⌧ [�] �! H{V }[�] ⌘ HK +H⌧ [�]�
X̀

j=1

Vjc
†
jcj (3.40)

In general, the {Vj} must be regarded as random variables, described by a probability
distribution P [{Vj}] =

Q`
j=1 p(Vj), with p(V ) being a probability distribution for V

with average V̄ =
R
dV V p(V ) = 0, and with variance �2

V =
R
dV V 2p(V ). In addition,

the Vj at each site have to be regarded as independent random variables, so that we
have:

Vj =

Z Ỳ

j=1

dVj P [{Vj}]Vj = 0

ViVj =

Z Ỳ

j=1

dVj P [{Vj}]ViVj = �2
V �i,j (3.41)

where O[{V }] denotes the ensemble average of a generic functional of {V } with respect
to the probability distribution P [{V }]. As the actual functional form of p(V ) is not
expected to really matter when ensemble-averaging over a large enough number of
realizations of disorder, we choose to use a white noise probability distribution for the
impurity potential, that is, we set:

p(V ) =

(
1

2
p
3W

, for �
p
3W  V 

p
3W

0 , otherwise
(3.42)

which corresponds to setting �2
V = W 2. We now consider how disorder modifies the

single-particle density of states of the ring. In general, for a finite-size system, one
expects that the e↵ects of disorder strongly depend on the ratio between the system
size, in this case `, and the disorder-associated mean free path �. Indeed, a ”weak”
disorder, with � > `, is expected to merely quantitatively a↵ect the density of states,
by, for instance, renormalizing the single quasiparticle gap, the bandwidth. At variance,
in view of the analytical results obtained for an open chain in Ref.(112) within self-
consistent Born approximation, later on numerically confirmed in Ref.(113), we expect
that a moderate disorder just slightly broadens the subgap peaks corresponding to the
putative Majorana modes energy levels and provides a possible slight renormalization of
�⇤, without spoiling the existence of a level crossing at a pertinent value of �. To check
our guess, we numerically computed the exact single quasiparticle density of states
for the Hamiltonian in Eq.(3.40) at fixed {V } with the Vj randomly extracted with
probability density as in Eq.(3.42) at fixed W (i.e., at fixed �V ) for a one-dimesional
p-wave ring whose parameters we list below. Therefore, to pertinently account for
the disorder, we numerically ensemble-average the result over 300 realization of the
disorder. Specifically, we chose the system parameters so that w = �, µ/(2w) = 0.15
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and ⌧/(2w) = 0.25. At these values for the system parameters, the derivation of
Appendix C predicts in the absence of disorder subgap putative Majorana modes with
a level crossing at �⇤ ⇠ ⇡. This is confirmed by the density of states we plot in Fig.3.9a)
and in Fig.3.9c), which is derived by respectively setting � = 0 and � = ⇡ and with a
tiny amount of disorder added to the clean system (�V /w = 0.05), for the only purpose
of regularizing the divergences encountered when E equals one of the Hamiltonian
eigenvalues. In Fig.3.9a) we see the two subgap peaks corresponding to the putative
Majorana modes, symmetrically located with respect to the zero-energy point, which,
in Fig.3.9c) merge into a taller peak at E = 0, a signature of the level crossing at � ⇠ ⇡.
At variance, in Fig.3.9b) and in Fig.3.9d), we plot the DOS with �V /w = 0.3 and all
the other parameters as in the previous case, respectively at � = 0 and at � = ⇡. At a
given value of �V , one may estimate � as � ⇠ (2w/�V )2 (159), which implies that, for
�V = 0.3, one still has � > `. Therefore, we see that, as expected from the discussion
given in Ref.(112; 113) , the main e↵ect of increased disorder are the emergence of
a finite width for the putative Majorana modes and a slight renormalization of the
e↵ective superconducting gap.
A complementary situation sets in at strong disorder, that is, for � ⌧ `. In this limit,
the energy levels of the system become distributed according to the appropriate sym-
metry class of random matrices (114; 115). In particular, since the model Hamiltonian
for the ring breaks both spin rotational invariance and time-reversal symmetry, it falls
into symmetry class D of Altland-Zirnbauer classification (115). The level statistics for
class-D model Hamiltonians is described by the probability distribution of the GEu(`)
esemble and is given by (116; 115; 114):

P [{✏j}]
Y

j

d✏j /
Y

i<j

|✏2i � ✏2j |�
Y

k

[|✏k|↵ e
� ✏2k

�2
V d✏k] (3.43)

with � = 2 and ↵ = 0 and the product taken over positive-energy levels only. On
extracting the single-particle density of states ⇢(✏) from Eq.(3.43), we get, as ✏ ! 0,
⇢(✏) / |✏|↵ (115).

3.3.1 Gri�ths e↵ects in the topological disordered ring

For class-D symmetry systems, as we have already seen, we expect a low-energy uni-
form density of states, with no evidence of low-lying putative Majorana modes. On
increasing its strength, the disorder washes out putative Majorana modes (117): as-
suming that at zero disorder the system lies within its topological phase, one finds
that, for weak disorder, fluctuations in the random potential may open ”nontopological
islands” within the topological background, of typical size `NT ⌧ `. At each interface
between topological and nontopological regions, Majorana modes emerge, which sud-

denly hybridize into ”high-energy Dirac modes”, at typical energy scales ✏NT ⇠ e�
�
⇠0 ,

lying below the gap but still higher than the typical energy associated to the ”true”
putative Majorana modes.
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Figure 3.9: Single-quasiparticle density of states ⇢(E) vs. E for a ring with w = �,
µ/(2w) = 0.15 and ⌧/(2w) = 0.25, at a given value of the flux � and of �V . The
remaining parameters used to generate the plots in the various panels have been set
as outlined below (see main text for a detailed discussion of the results): a) � = 0 ,
�V /w = 0.05; b) � = 0 , �V /w = 0.3; c) � = ⇡ , �V /w = 0.05; d) � = ⇡ , �V /w = 0.3
(104).
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 5.0 2.5 0.0−2.5−5.0  5.0 2.5 0.0−2.5−5.0

Figure 3.10: Single-quasiparticle density of states ⇢(E) vs. E for a ring with w = �,
µ/(2w) = 0.15 and ⌧/(2w) = 0.25, at a given value of the flux � and of �V . The
remaining parameters used to generate the plots in the various panels have been set
as outlined below (see main text for a detailed discussion of the results): a) � = 0 ,
�V /w = 1.5 (the small black arrows highlight the peaks corresponding to the putative
Majorana modes energy levels); b) � = ⇡ , �V /w = 1.5 (104).

On one hand, this implies the ploriferation of subgap, disorder induced states. On
the other hand, low-energies putative Majorana modes are still protected by the very
fact that their energies are quite lower than the energies associated to disorder-induced
states, and such is the corresponding level crossing at �⇤. Summarizing, as �V in-
creases, one legitimately expects that disorder-induced energy levels fill in the subgap
region but also that level repulsion between states with di↵erent energy, encoded in
P [{✏j}] in Eq.(3.43), acts to ”protect” the low-lying putative Majorana modes. This is
clearly evidenced by the density of states plots we provide in Fig.3.10. In particular, in
Fig.3.10a), we plot ⇢(E) vs. E for the same values of the system parameters we used to
generate Fig.3.9, with � = 0 and with �V /w = 1.5, while to draw Fig.3.10b) we have
set � = ⇡. At such a value of �V we estimate that �/` ⇠ 0.1. Accordingly, in both
Fig.3.10a) and Fig.3.10b), we see that disorder-induced levels have largely filled in the
energy gap. Moreover, in Fig.3.10a) the persistence of the two peaks corresponding
to the putative Majorana modes-energy levels is evidenced by the dip in the density
of states at E = 0, due to the finite gap between putative Majorana modes-levels
which cannot be filled in by disorder-induced states. At variance, Fig.3.10b) we see
the persistence of a central sharp peak, corresponding to degenerate putative Majorana
modes-energy levels that ”pile up” on top of each other. The persistence of this central
peak evidences the remarkable result that the putative Majorana fermion level crossing
at � = �⇤ is not spoiled by disorder, even at �V as large as 1.5w.
It is worth stressing, at this point, that, despite the apparent similarity of the plot in
Fig.3.10b) with the density of states derived at not-too-strong disorder for a symmetry
class-D Hamiltonian with an odd number N of rows and columns (118; 119; 120), the
origin of the peak at E = 0 in the two cases is deeply di↵erent. In Ref.(120), the peak
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at E = 0 is a simple consequence of N being odd, which leads to a ”natural” protection
mechanism against disorder. In our case, it arises at an ”accidental” degeneracy between
putative Majorana modes, reached upon tuning � at the degenerate point � = �⇤.
Therefore, in our case there is no ”a priori” reason to expect a protection of the peak
against disorder.

3.3.2 Consequences on the physics of Majorana modes

To investigate the fate of putative Majorana modes and of putative Majorana fermion
level crossing at strong disorder, in Fig.3.10 we show ⇢(E) vs. E for w = �, for
µ/(2w) = 0.15 and ⌧/(2w) = 0.25, and for �V /w = 4.0. We note a number of re-
markable features, that are directly related to the onset of the probability distribution
in Eq.(3.43) as a description of the energy level statistics for the system (115). First
of all, we see that there is no detectable di↵erence between the plots at � = 0 and
at � = ⇡. Indeed, the insensitivity of the DOS to the applied phase can be regarded
as a specific manifestation of the insensitivity to the boundary conditions (such as the
one imposed by the applied flux � on the single-quasiparticle wavefunction) of the en-
ergy levels corresponding to localized states (121; 122). Therefore, this result leads us
to the conclusion that all the states filling in the gap at strong disorder are disorder
induced states, while strongly �-sensitive putative Majorana modes have been com-
pletely washed out. To further ground our conclusion, in Fig.3.12a), we plot the first
quasiparticle energy levels ✏n[�] vs. � at �V /w = 2.2 (see the corresponding caption
for details about the numerical values of the other parameters). We cleary see a set of
disorder-induced states (drawn in red in the figure) which exhibit a weak dependence
on � and are situated symmetrically with respect the 0-energy level, consistently with
the survival of particle-hole symmetry against disorder. The states closest to the Fermi
level (depicted in blue in the figure) are, instead, to be clearly identified with putative
Majorana modes. They take a strong dependence on � and cross with each other at
pertinent values of �. At variance, in Fig.3.12b), we draw a similar plot, but realized
for a single disorder realization with �V /w = 4.2. The much larger amount of disorder
has now determined the full disappearance of putative Majorana modes (123): there
are no blue states, but only red impurity states, basically independent of � (a clear
signal of strong localization of these states).
The remarkable peak centered at ✏ = 0 in the plots at strong disorder in Fig.3.10
corresponds to Gri�ths’ singular behavior in the density of states cuto↵ at the finite
level spacing �0 ⇠ 2⇡w/` (120). Indeed, on increasing �V , the disorder washes out the
putative Majorana modes via the Gri�ths e↵ect (the proliferation of topological-non
topological islands in the system) taking place in the finite wire (117; 113). When the
nontopological regions start to proliferate, the increasing probability of hybridization
between putative Majorana modes and zero-modes located at the interfaces between
topological and nontopological regions eventually washes out the putative Majorana
modes themselves, together with the degenerate point at � = �⇤, driving the system
outside of the putative topological phase (117; 113).

54



ρ(  )E ρ(  )E

E/wE/w

a) b)

 2.5 0.0  5.0−2.5−5.0 −5.0 −2.5  0.0  2.5  5.0

Figure 3.11: Single-quasiparticle density of states ⇢(E) vs. E for a ring with w = �,
µ/(2w) = 0.15 and ⌧/(2w) = 0.25, at a given value of the flux � and of �V . The
remaining parameters used to generate the plots in the various panels have been set
as outlined below (see main text for a detailed discussion of the results): a) � = 0 ,
�V /w = 4.0 ;
b) � = ⇡ , �V /w = 4, 0 (104).
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Figure 3.12: a) Sub-gap energy levels ✏n[�] computed for one realization of the disorder
potential in a p-wave superconducting ring with ` = 40, � = w, a weak link of strength
⌧/(2w) = 0.25, µ/(2w) = 0.75, and �V /w = 2.2. The subgap putative Majorana modes
appearing close to zero-energy are highlighted in blue color;
b) Sub-gap energy levels ✏n[�] computed for one realization of the disorder potential in a
p-wave superconducting ring with ` = 40,� = w, a weak link of strength ⌧/(2w) = 0.25,
µ/(2w) = 0.75, and �V /w = 4.2. No subgap putative Majorana modes appear in this
case (104).
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In the subsection dedicated to the ”clean case”, we have shown that, in the absence
of disorder, if the one-dimensional superconducting ring lies at any time within its
thermodynamic groundstate, a level crossing at � = �⇤ between putative Majorana
fermion energies is uniquely associated to discontinuities I[�] when going across �⇤.
Now, we want to show how this correspondance readily generalizes to a disordered one-
dimensional superconducting ring, which eventually allows us to use the individuation of
the discontinuities in I[�] as an e↵ective mean to map out the whole putative topological
phase in the disorder strength-chemical potential plane.

In the presence of disorder, physical quantities must first be computed at fixed dis-
order by using the Hamiltonian H{V }[�] in Eq.(3.40). Then, the final result must be
ensemble-averaged over all possible realizations of disorder. Numerically diagonalizing
H{V } for di↵erent {V } leads to slightly di↵erent energy levels for the putative Majo-
rana modes. Thus, in order to repeat the analysis of the clean case for a disordered
one-dimensional superconducting ring, we must rather refer to the ensemble averaged
density of states at fixed �V as a function of �, ⇢(E). To do so, we numerically construct
⇢(E), by collecting the eigenvalues generated via an exact Hamiltonian diagonalization
procedure into bins defined in the E-� plane and eventually averaging over the disorder,
thus generating three-dimensional plots of ⇢(E) as a function of both E and of � for E
ranging throughout the interval [�EC , EC ], with the half-bandwidth EC = 2w+ µ and
� 2 [�2⇡, 2⇡]. Specifically, we ensemble averaged over a uniformly-distributed disorder,
with p(V ) given in Eq.(3.42) and �V /w = 0.2 (Fig.3.13a), �V /w = 0.8 (Fig.3.13b). In
Fig.3.13, despite the presence of disorder, we clearly see the subgap putative Majorana
modes, which are characterized by their strong dependence on � (to be contrasted with
the observations that all the other levels displayed in the figure are basically indepen-
dent of �) and, more importantly, that there are evident level crossings, evidenced by
the sharp peaks - a consequence of the two putative Majorana modes density pile-up at
those points-. The level crossings are not washed out by disorder, which implies that, in
a sense that we are going to clarify in the following, there is still a sort of discontinuity
in I[�] at � = �⇤. Another important observation is that, though, on increasing the
disorder, part of the spectral weight is transferred from putative Majorana modes to
disorder-induced Gri�ths states that fill in the gap (as can be clearly seen by compar-
ing Fig.3.13a) and Fig.3.13b) with each other), the level crossings survive and clearly
evidenced by the peaks in Fig.3.13b).
By contrast, in Fig.3.14, we plot ⇢(E) with the same parameters as we chose in Fig.3.13,
but with �V /w = 6.0. We see that the spectral is largely broadened throughout the
interval [�EC , EC ], there is no dependence of the energies on � and, at the same time,
the subgap putative Majorana modes have disappeared. This confirms that a strong
enough disorder is actually e↵ective in washing out the subgap putative Majorana
modes.
To generalize to a disordered one-dimensional superconducting ring the correspondence
between putative Majorana fermion level crossings and discontinuities in I[�], we start
by dividing the region of interest in the �V � µ planes into square bins and by defining
at the center of each bin a function F [�V , µ] which, at the start, is everywhere equal
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Figure 3.13: a) Density of states ⇢(E) for a disordered ring described by the Hamiltonian
in Eq.(3.40) with � = w, µ/(2w) = 1.2, ⌧/(2w) = 0.25, ` = 40, obtained by ensemble-
averaging over 100 realization of the disorder with �V /w = 0.2. The subgap putative
Majorana modes close to the Fermi level are clearly displayed;
b) Density of states ⇢(E) for a disordered ring described by the Hamiltonian in Eq.(3.40)
with � = w, µ/(2w) = 1.2, ⌧/(2w) = 0.25, ` = 40, obtained by ensemble-averaging
over 100 realization of the disorder with �V /w = 0.8. The subgap putative Majorana
modes are less resolved, but there are clear peaks at the level crossings, due to the
pile-up of the density of states of the two putative Majorana modes (104).
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Figure 3.14: Density of states ⇢(E) for a disordered ring described by the Hamiltonian
in Eq.(3.40) with � = w, µ/(2w) = 1.2, ⌧/(2w) = 0.25, ` = 40, obtained by ensemble-
averaging over 100 realization of the disorder with �V /w = 6.0. The spectral density
is broadened throughout the interval [�EC , EC ], there is a negligible dependence on �,
and the subgap putative Majorana modes have disappeared (104).

to 0. Then, at each bin (�V,i, µj), we extract a realization {V } of the disorder {V }
with probability having �V = �V,i and exactly diagonalize the Hamiltonian H{V };µj [�],
which is given by Eq.(3.40) with µ = µj. Then, we use the result to compute the
corresponding persistent current, I{V }[�]. Therefore, we check whether I{V }[�] exhibits
a discontinuity at a value � = �⇤ ⇠ ⇡, or not. If yes, we increment F [�V,i, µj] by 1,
otherwise, we leave it unchanged. After summing, at each bin, over N = 300 random
realizations of the disorder, we normalize F [�V,i, µj] to f [�V,i, µj] by simply dividing
F [�V,i, µj] by N , so that 0  f [�V,i, µj]  1, 8i, j. We draw our result in Fig.3.15,
where we show a color-scale plot of f [�V , µ] computed for a ring with ` = 60, w = �,
and ⌧/(2w) = 0.25. In detail, we constructed the plot by increasing both �V /w and
µ/w by step of 0.05 and by accordingly defining yjr bins in the �V � µ-plane. As
stated above, at each bin, we ensemble-averaged over 300 disorder realization. The
region marked in full red corresponds to f = 1, that is, to a current which is singular
at �⇤ for any realization of the disorder. Conversely, the white portion of the graph
corresponds to f = 0, that is, to a current that is a continuous function of � for
any realization of the disorder (see Fig.3.15 for a graphic summary of the color code).
Clearly, points in the red region are characterized by putative Majorana modes that
undergo a level crossing at � = �⇤, that is, we may identify the red region with the
putative topological phase in the presence of disorder. By converse, points in the white
region are characterized by the absence of putative Majorana modes. The shaded
region, where the color varies from red to white, defines the transition region at which
the putative topological phase disappears and the putative Majorana modes are washed
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out of the spectrum. By analogy, we would expect a sharp transition line, such as the
one separaring the topological from the nontopological phases of the infinite Kitaev
chain, drawn in Refs.(110; 111) by using transfer matrix method. Nevertheless, we
do obtain a broad transition region, rather than a sharp phase boundary, because,
or each disorder realization we exactly diagonalize a well-defined Hamiltonian, which
either presents putative Majorana modes with a finite-� level crossing, or not. Near
the phase tranistion, when averaging over N di↵erent realization of the disorder, there
can be a nonzero probability that some realizations wash out putative Majorana modes
at values of the system parameters where putative Majorana modes are present in the
large majority of cases or, conversely, that putative Majorana modes appear at points
in parameter space where they are absent in the large majority of cases. To be more
precise, when the system lies within the putative topological phase, strong fluctuations
in the mean value of the impurity potential on a single realization of disorder may drive
it outside of the putative topological phase, and vice versa.

As a result, close to the point of disappearance of the putative topological phase,
we expect that, on ensemble averaging over disorder, the percentage of single disorder
realizations respectively leading to a discontinuous, or to a continuous, current will be
both di↵erent from zero (incidentally, we note that this is quite a common feature of
finite system undergoing a Gri�th phase transition (113)). At variance, far from the
transition there is no ambiguity in that either I[�] is discontinuous, or continuous for
any realization of disorder, just as we can see from the plot of f [�V , µ] in Fig.3.15.
Eventually, to map out the (broad) phase boundary of the putative topological phase
in the disorder strength-chemical potential plane, we start from within the putative
topological phase at zero disorder strength. Then, we move along the horizontal axis
at fixed µ by probing the existence of the discontinuity in I[�] at increasing �V : for
0  µ/w < 2 and for �V = 0, we typically obtain f [0, µ] = 1. Consistently with the
above discussion, at some µ-dependent ”lower critical” value of �V , �µ;l, we start to
obtain f [�V ;l, µ] < 1. This signals the start of the transition region when going across
which the putative topological phase disappears. On further increasing �V , we typically
reach an ”upper critical” value, �µ;u, such that f [�V ;µ] = 0 for �V > �µ;u. Therefore,
�µ;l and �µ;r determine the transition region at a given µ as the set of points (�V , µ)
such that �µ;l < �V < �µ;u. Repeating the procedure along constant-µ lines, we mapped
out the full color scale plot of f [�V , µ] in Fig.3.15.

Besides the broadening related to the Gri�th mechanism, Fig.3.15 shows a remark-
able analogy with the phase diagram for a long Kitaev chain with open boundary
conditions reported in Fig.1 of Ref.(110). In particular, the two diagrams share the
remarkable feature of a reentrant topological phase at not-too-large values of �V , that
is, a small amount of disorder appears to favor, rather than suppressing, the topological
phase. In our specific finite-size ring, we interpret the reentrant phase as an e↵ect of
the disorder-induced renormalization of the chemical potential which, at nonzero �V ,
pushes the phase transition to values of µ higher than the zero-disorder critical value
µc = 2w, or lower than �µc = �2w. As discussed above, the finite width of the transi-
tion region has to be regarded as a consequence of the Gri�ths mechanism in a finite
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Figure 3.15: Color-scale plot of f [�V , µ] in the �V � µ plane. The color code is sum-
marized at the right-hand side of the plot. The shaded region, where the color varies
from red to white , defines the transition region at which the putative topological phase
disappears and the putative Majorana modes are washed out of the spectrum (104).
The red line is a sketch of the variation of the center of mass of the transition region
as a function of µ: in the ` ! 1 limit and after averaging over a large number of
realizations of disorder, it is expected to coincide with the solid black line of Fig.1 of
Ref.(110).

system (113): in the `! 1 limit and after averaging over a large number of realizations
of disorder, the transition region is nevertheless expected to shrink to a sharp phase
boundary, coinciding with the solid black line of Fig.1 of Ref.(110).
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Chapter 4

Transfer matrix approach to

investigate signatures of Majorana

Modes in the persistent current of a

p�wave superconducting hybrid

ring

In the previous chapter we have investigated and analyzed the presence of Majorana
modes in a p�wave superconducting hybrid ring. We have seen how through the jumps
of the persistent current I[�], in the absence of fermionic parity conservation, it is
possible to obtain a signature of the presence of Majorana Modes in the system and
how these can be measured in a completely non-invasive way (105). Again, we have
seen, through analytic techniques and numerical processing, how robust they are against
the e↵ects of disorder induced into the system. The discussion ended with the building
of a phase diagram in which the presence or the absence of the topological phase in the
system was highlighted with the variation of the chemical potential µ and the intensity
of disorder �. We stress that in the previous discussion we used a numerical approach
and we calculated the persistent current of the system by simply exactly diagonalizing
the Hamiltonian of the system.

Apparently, it is therefore important to be able to compute I[�] in a given NSHR
in the cases of interest. Nevertheless, even after a number of simplifications like consid-
ering a ballistic system (which allows for resorting to a noninteracting electronic model
Hamiltonian for the normal region), using a non self-consistent model for the super-
conducting region, such as BTK model for a s-wave superconductor in the continuum
formulation (151), or its corresponding lattice version for a s-wave (152), or for a p-wave
superconductor (142), computing I[�] is typically still quite a challenging task. Indeed,
the ”standard” approach to the problem consists in computing the current as

I[�] = e@�F [�;T ] (4.1)
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with F [�;T ] being the system’s free energy at applied flux � and temperature T . At
T = 0 Eq.(4.1) yields:

I[�] = e@�EGS[�] = e@�
X

n

En (4.2)

where the sum is taken over energies of the occupied single-quasiparticle states. To
compute these energies, one has to solve the secular equation for the energy eigenval-
ues at nonzero � with periodic boundary conditions over the whole ring. In general,
the resulting set of equations looks quite formidable and hard to deal with, which re-
quires resorting to various approximations, such as retaining only the low-energy part
of the spectrum (141), or employing various approximations for the single-quasiparticle
energies as a function of � in various regions of the spectrum (140).

In this chapter we present a technique that, under very general assumptions such
as the ones listed above, allows for exactly expressing I[�] as a single integral of a
pertinently construced function of the system’s parameters. At T = 0, our approach is
based on first writing Eqs.(4.2) in terms of a single integral over an appropriate path
in the complex energy plane, and on eventually deforming the integration path to the
imaginary axis. In this respect, our approach can be regarded as an adapted version of
the technique developed in (153; 154; 155) to compute the dc Josephson current across
an SNS-junction. Besides providing an exact formula allowing to easily compute I[�]
by numerically integrating a known function at fixed �, in the large-ring limit, our
technique is also suitable for a systematic expansion in inverse powers of the system’s
length, which is the counterpart for a NSHR of the expansion in inverse powers of
the length of a long SNS junction discussed in (155) for a singe-channel system and
generalized in (156) to the multi-channel case. In this limit the formula for I[�] is
greatly simplified, which does even allow for working out analytic closed-form formulas
for the current in a number of cases of interest.

It is, however, worth stressing that, at least in the formulation we provide in this
chapter, our approach does not account for a number of features that can be in principle
important in NSHRs, such as quantum phase slips (157), electronic interaction e↵ects
(136), disorder (133; 134), etc.

The chapter is structured as follows:

• In Section 4.1 we introduce the analytic computation of the persistent current for
a normal mesoscopic ring based on the solution of the Heisenberg equation; here
we will introduce a model Hamiltonian for this system and compute the current
for a normal homogeneous ring and we will emphasize the di�culties related to
the generalization to more complicated cases.

• In Section 4.2 we introduce our model system, the concept of transfer matrix and
the integration technique on the complex plane, showing how the calculation of
the system resolvent can be traced, at zero temperature, to the calculation of
the residues of an integral suitably constructed using the transfer matrix of the
system.
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• In Section 4.3 we show step by step how to calculate the persistent current by
using the technique explained in the previous section, and how to exploit the
transfer matrix factorization properties for this purpose. Moreover, here we show
the signatures of the persistent current in the presence of topological phase.

• In Section 4.4 we analyze the large-ring limit, showing how it is possible, in some
cases, using this kind of approximation to facilitate the calculation of the current.
Moreover, here we will discuss our technique in the case of non-zero temperature.

4.1 Standard approach to the persistent current in

normal mesoscopic rings

Although small mesoscopic systems have been under intensive study for quite a long
time, they have usually been analyzed by making contacts with metallic leads. As a
result, one has to apply a finite voltage bias, in order to recover a nonzero current
across the system. The experiments by Lévy et al. (1990) (90) and by Chandrasekhar
et al. (1991) (91) were carried out in such a way that the metallic rings remained
isolated. A slowly varying magnetic field was applied and a magnetic response was
measured. In this situation it became possible to observe persistent currents in quite
dirty samples in which the elastic mean free path l was much shorter than the circum-
ference L of the ring: in this case, we talk about a mesoscopic systems in a ballistic
regime. In particular, the scale of such systems lies between the size of a a molecule
and the micrometres (µm). The lower limit can also be defined as being the size of
individual atoms, then at the micrometer level are bulk materials. As is the case for
macroscopic physics, mescoscopic objects contain a large number of atoms. The rel-
evance of mesoscpic system is related to the quantum interference that proved to be
so crucial to the localizzation problem. Although the conductors may contain internal
defects, disorder does not destroy the coherence of the wave functions and quantum
e↵ects can become very important, leading to completely new physical phenomena: for
example, at the macroscopic level the conductance of a wire increases continuously with
its diameter. Another particular behaviour of mesoscopic systems is the presence of a
persistent current in normal rings. Indeed, materials that have a resistance can not
have a current that persists in time; however the electron mean free path in a metal
is of the same order of the length of the mescoscopic ring. This allows to consider a
normal ring as if we had no resistance.

Then, the persistent current is a phenomenon that appears also in normal materials
as long as we are in the mesoscopic scale.

At first we must introduce the lattice-model formalism, so as to contextualize our
work. We start to define an electrons chain of finite length ` described by the hamilto-
nian:

63



Figure 4.1: Sketch of a normal one-dimensional ring

H = �
X̀

j=1

wj

⇣
c†jcj+1 + c†j+1cj

⌘
�
X̀

j=1

µj

✓
c†jcj �

1

2

◆
(4.3)

where wj is the hopping amplitude, µj is the chemical potential and cj and c†j
are respectively creation and annihilation operators on the j-site. Starting by this
hamiltonian, we can make a ring (Fig.4.1) by introducing periodic boundary conditions
to the wave function equations and consider the presence of the magnetic flux through
the Aharonov-Bohm phase by studying the new hamiltonian:

H = �
X̀

j=1

w
⇣
e�i'c†jcj+1 + ei'c†j+1cj

⌘
�
X̀

j=1

µjc
†
jcj (4.4)

where ' is the magnetic flux.
In the following subsections we will describe the persistent current in a mesoscopic

normal ring, linking the trend of the persistent current to a particular shape of the
ground state energy level and introducing the study of large-` rings, comparing the
obtained results.

In order to describe a quantum ring, as we said before, we introduce the periodic
boundary condition to the wave functions:

u`+1 = u1 (4.5)

which physically is like saying that the chain is closed on itself.
To find an expression for the persistent current, we need to achieve the ground energy

value, to improve the formalism of Eq.(3.6). To do this, we can solve the eigenvalues
equation for an electron defining an appropriate eigenmode �E with a related energy
E, so that:

�E =
X̀

j=1

u⇤
jcj (4.6)

In order to solve the eigenvalues equation in a discrete system, we improve a lattice
time-independent Shrödinger equation, calculating the commutation relation between
the hamiltonian in Eq.(4.4) and the eigenmode �E:
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E�E = [H,�E]
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�
�
X̀

j=1

µu⇤
jcj (4.7)

Doing this, we obtain the equation:

Euj = �w
�
ei'uj�1 + e�i'uj+1

�
�
X̀

j=1

µuj (4.8)

using that w⇤ = w and µ⇤ = µ and supplemented with the boundary condition
u`+1 = u1. In order to simplify and complete the calculation, we redefine the eigenstates
performing the canonical transformation:

uj ! eij'uj

in Eq.(4.8), paying attention to the value of the j-site, gaining:

Euje
ij' = �w

�
ei'ei(j�1)'uj�1 + e�i'ei(j+1)'uj+1

�
�
X̀

j=1

µuje
ij' (4.9)

that becomes:

Euj = �w (uj�1 + uj+1)�
X̀

j=1

µuj (4.10)

supplemented now with the boundary condition

u`+1 = u1e
i`' (4.11)

Note that the phase-factor e±i' is absorbed by the boundary conditions just ex-
pressed. Now, inasmuch as the energy in the momentum space is equal to the energy
in the coordinate space, we can switch the eigenvectors uj, that has a dependence by
the site j, in uk, that depend now by momentum k, in: uj = eijkuk. We obtain:

Eeijkuk = �w
�
uke

i(j�1)k + uke
i(j+1)k

�
�
X̀

j=1

µeijkuk (4.12)

which becomes:
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Euk = �w
�
uke

�ik + uke
ik
�
�
X̀

j=1

µuk (4.13)

Now, in order to consider not trivial solutions, we have that the energy E (k) takes
the form:

E(k) = �2w cos (k)� µ (4.14)

We can take now advantage of the periodicity conditions to find the allowed values
of the momentum k:

k = kn =
2⇡n

`
+ ' (4.15)

noting the presence of the quantized flux '; if we replace this expression in Eq.(4.14),
we obtain:

En(k) = ✏n = �2w cos (kn)� µ (4.16)

where n 2 N , that we can write underling the magnetic flux dependence as follows:

En(') = ✏n = �2w cos

✓
2⇡n

`
+ '

◆
� µ (4.17)

From the spectrum we note that the energy levels of the electrons on the ring are a
periodic function which depends from the magnetic flux ' (Fig.1).

Now, we can calculate the persistent current of the n-energy state, doing just a
partial derivative:

In(') = e
@

@'
En(') =

4⇡we

`
sin

✓
2⇡n

`
+ '

◆
(4.18)

that we can write as

In(') = e
@

@'
En(') = Ĩn sin

✓
2⇡n

`
+ '

◆
(4.19)

where Ĩn = 4⇡we
` is called current amplitude.

We have pointed up that the energy, once we fix the ring length `, the chemical
potential µ and the hopping amplitude w, is a periodic function of the flux '. If we
consider the occupied levels, we can observe that generally the energy of the electrons
on the left increases until it crosses the Fermi energy level (that, in our specific case,
in which we scaled the energy with the chemical potential µ, is the abscissa axis),
while that of the electrons on the right decreases going down to the Fermi energy level.
Indeed, if we call ⌫ the positive integer for which the energy function cross the x axis
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and �⌫ the negative integer for which the energy function cross the x axis, we can
write:

0 = �2w cos

✓
2⇡⌫

`
+ '

◆
� µ

0 = �2w cos

✓
2⇡⌫

`
� '

◆
� µ (4.20)

that are equals to each other when ' = 0, while, when the potential is di↵erent from
zero, the energy grows in the first equation and decreases in the second one. However,
by increasing the potential, we observe that the translation reaches a level such that
the energy function becomes the same but with the opposite sign, and we can note the
opposite phenomenon compared to the previous: the right electrons go up to the Fermi
energy level and the left ones go down. This invertion (Fig.2) starts when ' = ⇡

` , or,
better, when � = ⇡. In particular, we can see it considering the �⌫ + 1 site, that,
during the rise of ', return on the Fermi level; we have that:

�2w cos

✓
2⇡⌫

`
+ '

◆
� µ = �2w cos

✓
2⇡⌫ + 1

`
� '

◆
� µ

2⇡⌫

`
+ ' =

2⇡⌫ + 1

`
� '

2' =
2⇡

`
(4.21)

that means that ' = ⇡
` , as observed.

Now, we want to evaluate the ground energy of the system, and then the persistent
current. To do this, we can express the ground state energy at T = 0K as a sum over
n of the single quasi-particle energy levels discussed before. We obtain that:

EG(') =
X

n

En(') (4.22)

where n 2 { `
2⇡

�
�⇡

2 � '
�
, `
2⇡

�
⇡
2 � '

�
} is an integer. We can now plot the ground

energy EG(') as function of ' (Fig.3) obtaining a particular shape of the function that
highlights the presence of level crossing.

Moreover, by doing a partial derivative on the ground state energy function, we can
calculate the persistent current at T = 0K:

I(') = e
@

@'
EG(') =

X

n

In(') (4.23)

that can be plotted vs ', obtaining a periodic and discontinuous function (Fig. 4.2
b.), due to the cusps that appear in the energy level crossing (Fig. 4.2 a.).

We will see in the next subsection that this particular trend of the persistent-current
function appears also in more complex systems.
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Figure 4.2: a.) Ground-state energy EGS(�) for an homogeneous normal mesoscopic
ring as a function of �; b.) Persistent current I(�) for an homogeneous normal meso-
scopic ring as a function of �.

This approach underlines the relation between the levels dynamic and the particular
shape of the persistent current, in particular we have shown how the phase factor in-
troduced in the hopping amplitude becomes crucial on the determination of the ground
energy state. This result was proposed by Maiti (89) and experimentally proofs in
di↵erent works (90; 91; 92).

However this approach result inadequate to describe more complex systems because
of the di�culty related to the Schrödinger equation solution. For this reason, we will
introduce in the next subsection another formalism, with which is easier obtain I(')
for non-homogeneous systems and superconducting devices.

4.2 The transfer matrix and the complex-plane in-

tegral for non-homogeneous SN rings

In this section we focus our attention to the definition, the computation and the appli-
catin of the transfer matrix in order to build an integral formula for the calculation of
the persistent current in non-homogeneous superconducting-normal rings.

Let us start with the definition of the transfer matrix. Suppose we have a junction
between two wires. The scattering matrix binds the wave functions that enter the
junction to those that come out; instead the transfer matrix, which we will indicate
with M , binds the wavefunctions to the right of the junction to those to the left. More
precisely, if we indicate with {aL, aR} the incoming wave functions, where L stay for
“left” and R stay for “right” , and with {bL, bR} the outcoming wavefunctions, we
already know that we can define the scattering matrix S as:


bL
bR

�
= S


aL
aR

�
(4.24)
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Figure 4.3: Sketch of the transfer matrix M.

while, the transfer matrix M connects the wavefunctions on the left of the barrier with
the right ones (see Fig. 4.3); we can define it as:


bR
aR

�
= M


bL
aL

�
(4.25)

The transfer matrix of a non-homogeneous ring, for example, can be expressed as a
product of relative transfer matrices to the individual blocks that make up the system.
To prove this, we suppose to have a chain with two junctions and an electron that
moves along it. Assume that the scattering occurs from the left to the right and that
each junction can be considered as a potential barrier on which the electron scatters
entering to the left and exiting from the right. After the first scattering, the incoming
wave to the left is a wave coming out to the right from the previous junction; in
particular we have that bR ! aL and aR ! bL; we conclude that the transfer matrix
of these two scatterings, which transfer the electron from the left to the right of each
junction, compose the transfer matrix total system. This property is valid for any
number finished joints. This property will be used below to write the transfer matrix
of a moving electron along a non-homogeneous rings.

As a consequence of the conservation of the number of particles, the scattering
matrix is unitary, while, in general, the transfer matrix does not satisfy this request.

It is possible to correlate the scattering matrix to the transfer matrix. This allows
us to give physical meaning to the matrix elements that make M. We then write the
scattering matrix in terms of transmission and reflection coe�cients:

S =


R̂ T̂ 0

T̂ R̂ 0

�
(4.26)

and the transfer matrix as:
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M =


m̂1 m̂2

m̂3 m̂4

�
(4.27)

Writing the system of equations for aR, aL, bR and bL in terms of S and M, we have
that:


bL
bR

�
=


R̂ T̂ 0

T̂ R̂ 0

� 
aL
aR

�
(4.28)

and that:


bR
aR

�
=


m̂1 m̂2

m̂3 m̂4

� 
bL
aL

�
(4.29)

We write the equations (4.28) in terms of bL e bR:

bL = R̂aL + ˆT 0aR (4.30)

bR = T̂ aL + R̂ 0aR (4.31)

and the equations (4.29) in terms of bR and aR:

bR = m̂1bL + m̂2aL (4.32)

aR = m̂3bL + m̂4aL (4.33)

By solving the system in terms of the coe�cients of the transfer matrix, we get that:

m̂1 = T̂ � R̂0T̂ 0�1R̂ =
⇣
T̂ †
⌘�1

m̂2 = R̂0T̂ 0�1

m̂3 = T̂ 0�1R̂0

m̂4 = T̂ 0�1 (4.34)

where T̂ and T̂ 0 are transmission coe�cients, while R̂ and R̂0 are reflection coe�cients
of S.

As it has been defined, the transfer matrix can be block-factored, that is, it is
possible to consider a non-homogeneous system as a sequence of homogeneous regions
separated by interfaces. Indeed, the TM for a one-dimensional system comes out to be
simply the ordered product of the matrices corresponding to the homogeneous regions
and of the ones corresponding to the interfaces, taken in the appropriate sequence.
From this respect, the matrices corresponding to each homogeneous region and to each
interface are sort of ”building blocks” of the global transfer matrix .

As we shall see, this important property of the transfer matrix will allow us, in the
following sections, to focus only on the equations at the interface of the various systems.
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4.2.1 The complex-plane integral

Let us take as a general device a one dimensional ring made by two superconducing
homogeneous chains (p-wave or s-wave), each one characterized by di↵erent parameters.

Our approach to the persistent current through mesoscopic normal/superconducting
rings is based on the transfer-matrix (TM) approach, which can be regareded as a perti-
nently modified version of the technique used in (155; 156) to computing the Josephson
current across an SNS hybrid junction. In its essence, it consists in a simple and com-
pact formula to express the groundstate energy of a system at a finite chemical potential.
For the sake of the presentation, in order to illustrate its main features, in this section
we review the main steps leading to our final formula for the groundstate energy in
the case of a normal, mesoscopic ring. Nevertheless, as we discuss in the following, the
generalization to NSHRs containing one, or more, superconducting sections is quite a
straightforward generalization of the derivation we provide in this section. To treat the
p-wave and the s-wave case on the same footing we choose to perform our derivation
within a lattice one-dimensional model Hamiltonian, which, in the superconducting re-
gion, corresponds to Kitaev’s Hamiltonian in the p-wave case (142), and to the lattice
one-dimensional Hamiltonian of Ref.(152) in the s-wave case.

To derive the main formula for the groundstate energy, let us consider as a reference
model a normal segment consisting of two ”asymptotic” regions for j < j1 and for
j > j2 and assume that within the asymptotic regions there is no potential scattering
and/or interfaces, so that the fermions freely propagate in a chemical potential µ.
This corresponds to assuming an asyptotic lattice Hamiltonian of the form Has =
�J

P
j{c

†
jcj+1+c†j+1cj}�µ

P
j c

†
jcj, with cj being the single-fermion lattice annihilation

operator for spinlòess fermions. As a result, the wavefunction at energy E takes the
asymptotic form

uj ⇠ A<
+e

ikj + A<
�e

�ikj , (j < j1)

uj ⇠ A>
+e

ikj + A>
�e

�ikj , (j > j2) (4.35)

with

E = �2J cos(k)� µ (4.36)

Now, by definition the transfer matrix between sites ja < j1 and jb > j2, M[E; ja, jb],
relates the solution at j = ja to the solution at j = jb, that is

ujb = Ã+e
ikja + Ã�e

�ikja , (4.37)

with


Ã+

Ã�

�
= M[E; ja, jb]


A<

+

A<
�

�
(4.38)
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A ring of length ` is defined by imposing periodic boundary conditions (PBCs) on the
solution in Eq.(4.35). Going through Eq.(4.37), this is accounted for by means of the
secular equation

M[E; j, j + `]


A<

+

A<
�

�
=


A<

+

A<
�

�
(4.39)

Looking for non trivial solutions for Eq.(4.39), we find the secular equation for E:

det{M[E; `]� I} = 0 (4.40)

Besides consituting an alternative way of presenting the eigenvalue equation for a single
particle on the ring, Eq.(4.40) also provides an e�cient way to compute the groundstate
energy of the system, EGS, defined as the sum of all the negative (if measured with
respect to the chemical potential) single-particle energy eigenvalues, that is

EGS =
X

E<0

E (4.41)

Indeed, single-particle energy eigenvalues are just the zeroes of det{M[E; `]� I} lying
at the negative part of the real axis, if one regards det{M[E; `]�I} as a function of the
complex variable E. To sum over all of them, we adapt the approach of Refs.(155; 156),
namely, we first of all note that the energy eigenvalues are the poles of the function
 [E; `], defined as

 [E; `] =
@Edet{M[E; `]� I}
det{M[E; `]� I} = @E ln det{M[E; `]� I} (4.42)

We therefore introduce the integration path � depicted in Fig.4.4 and conpute EGS as

EGS =
1

2⇡i

I

�

dE E [E; `] = � 1

2⇡i

I

�

dE ln det{M[E; `]� I} (4.43)

Now, we deform the integration path as illustrated in Fig.4.4, so to eventually compute
the integral over the imaginary axis as

EGS = � 1

2⇡

Z 1

�1
d! ln det{M[i!; `]� I} (4.44)

Eq.(4.44) is the hearth of our work: when used to compute the groundstate energy
for a ring pierced by a magnetic flux �, once derived with respect to � it gives the
(zero-temperature) persistent current as

I[�] = e@�EGS[�] = � e

2⇡

Z 1

�1
d! @� ln det{M[i!; `;�]� I} (4.45)

In the following we will use Eq.(4.45) to compute the persistent current in the various
systems we discuss in this work. I[�] is expected to be a periodic function of �: as a
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Re(E)

Im(E)

Re(E)
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a) b) c)

Figure 4.4: Sequence of deformations in the integration path � eventually allowing to
express I[�] as an integral over the imaginary axis:
a) The path � obtained as the union of small circles, each one surrounding one, and
only one, negative (with respect to the Fermi level) energy eigenvalue;
b) The integral over � can be deformed to an integral over just one closed path, sur-
rounding all the negative energy eigenvalues;
c) The integral over the red-dashed arc is assumed to be equal to 0 in the infinite-radius
limit. Only the integral over the imaginary axis (to which the solid-blue line can be
continously deformed) is left. (105)

general remark , let us point out that, in the following, we shall measure the flux � in
units of ~/(2e)), so that a period �⇤

0 corresponds to a 2⇡-periodicity, while a period �0

corresponds to a 4⇡-periodicity.
Now, we just have to introduce the various models that we want to study and

calculate, for each of them, the persistent current. To model a hybrid one-dimensional
ring, we resort to a lattice model Hamiltonian with position-dependent parameters.
Using a lattice model Hamiltonian allows, on one hand, to easily introduce p-wave
pairing both in real space and in momentum space, on the other hand, it provides a
natural mean to reglarize divergences which would arise in the continuum model when
summing over the energies of the occupied levels to compute EGS[�] (and, therefore,
I[�]). To highlight special features of p-wave NSHRs, in the following, when possible,
we systematically compare the results obtained in p-wave systems to the ones obtained
in s-wave systems. Therefore, in this section we present and discuss in detail the lattice
model Hamiltonian modelling both cases, eventually deriving the transfer matrix which
we shall eventually use in the following to compute the persistent currents.

4.2.2 The p-wave-normal case

In the p-wave case, referring to the one-dimensional Kitaev Hamiltonian (142) for a
spinless p-wave superconductor, calling 1 and 2 the two regions, we assume that the
normal hopping amplitude, the pairing gap and the chemical potential are respectively
given by w1,�1, µ1 and by w2,�2, µ2. Moreover, we assume that regions 1 and 2 are
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Figure 4.5: Sketch of the system described by the model Hamiltonian in Eq.(4.46).

coupled at their endpoints via a normal hopping term, with hopping amplitude ⌧ (see
Fig.4.5). In a ring configuration, we also assume that a magnetic flux � pierces the
ring. By means of an appropriate canonical redefinition of the lattice fermion operators,
it is possible to account for the applied magnetic flux in terms of a phase factor e±i�4 ,
symmetrically ”loaded” on the two hopping term between the two regions. As a result,
we eventually present the model Hamiltonian as:

H = �w1

`1�1X

j=1

{c†jcj+1 + c†j+1cj}� µ1

`1X

j=1

c†jcj +�1

`1�1X

j=1

{cjcj+1 + c†j+1c
†
j}

� w2

`2�1X

j=1

{d†jdj+1 + d†j+1dj}� µ2

`2X

j=1

d†jdj +�2

`2�1X

j=1

{djdj+1 + d†j+1d
†
j}

� ⌧{[c†1d`2 + d†1c`1 ]e
i
4� + [d†`2c1 + c†`1d1]e

� i
4�} (4.46)

In Eq.(4.46) we have set the lengths of the two arms of the ring respectively at `1
and at `2 and used cj, c

†
j to denote the lattice annihilation/creation operators at site j

within region 1, and dj, d
†
j to denote the lattice annihilation/creation operators at site

j within region 2, with standard anticommutation relations {dj, d†j0} = {cj, c†j0} = �j,j0 ,
all the other anticommutators being equal to 0. Once the parameters are taken in
the appropriate limit, the model Hamiltonian in Eq.(4.46) is suitable to describing a
number of systems of physical interest, such as a p-wave superconducting ring inter-
rupted by a weak link (158), a hybrid p-wave-normal metal ring, a half-topological,
half-non-topological superconducting ring (159). Moreover, as we discuss in the fol-
lowing, the limit of a long-superconducting section, the superconducting-normal hybrid
ring is mapped onto the e↵ective model for a Josephson junction made with topological
superconductors [(160; 125)].

In the following, we will be mostly focusing onto the �2 ! 0 limit. To construct the
transfer matrix in this case, we start from the Bogoliubov-de Gennes (BdG) equations
for the single-quasiparticle wavefunction at a given energy E. To do so, we consider a
generic energy eigenmode �E which, in terms of the single-fermion lattice operators on
the ring, is given by
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�E =
`1X

j=1

{[u(1)
j ]⇤cj + [v(1)j ]⇤c†j}+

`2X

j=1

{[u(2)
j ]⇤dj + [v(2)j ]⇤d†j} (4.47)

with

"
u(1)
j

v(1)j

#
and

"
u(2)
j

v(2)j

#
being the single-quasiparticle wavefunction in region-1 and

in region-2. On imposing the canonical commutation relation

[�E, H] = E�E (4.48)

we therefore obtain the BdG equations for the wavefunctions. Within the homogeneous
regions, these are given by

Eu(1)
j = �w1{u(1)

j+1 + u(1)
j�1}� µ1u

(1)
j +�1{v(1)j+1 � v(1)j�1}

Ev(1)j = w1{v(1)j+1 + v(1)j�1}+ µ1v
(1)
j ��1{u(1)

j+1 � u(1)
j�1} (4.49)

for 1 < j < `1, and

Eu(2)
j = �w2{u(2)

j+1 + u(2)
j�1}� µ2u

(2)
j +�2{v(2)j+1 � v(2)j�1}

Ev(2)j = w2{v(2)j+1 + v(2)j�1}+ µ2v
(2)
j ��2{u(2)

j+1 � u(2)
j�1} (4.50)

for 1 < j < `2. At the interfaces between the two regions, instead, the BdG equations
yield:
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According to Eqs.(4.49,4.50), within the homogeneous regions, we write the wavefunc-
tions as superpositions of the solutions of the homogeneous BdG equations, that is, we
set


uj

vj

�
=


u(1)

v(1)

�
eik1j (4.52)
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in region 1, with 1  j  `1, and


uj

vj

�
=


u(2)

v(2)

�
eik2j (4.53)

in region 2, with 1  j  `2. At a given energy E, the amplitudes


u(a)

v(a)

�
(a = 1, 2)

are determined by solving the equations

0 = {E + 2wa cos(ka) + µa}u(a) � 2i�a sin(ka)v
(a)

0 = 2i�a sin(ka)u
(a) + {E � 2wa cos(ka)� µa}v(a) (4.54)

with k1, k2 determined by the dispersion relations

E2 = [2w1 cos(k1) + µ1]
2 + 4�2

1 sin
2(k1) = [2w2 cos(k2) + µ2]

2 + 4�2
2 sin

2(k2) (4.55)

Solving Eq.(4.55) at a given energy, we define the particle-like momenta k(a)
p and the

hole-like momenta k(a)
h , as

cos(k(a)
p ) = � waµa

2(w2
a ��2

a)
� 1

2

s
E2 � [�(a)

w ]2

w2
a ��2
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cos(k(a)
h ) = � waµa

2(w2
a ��2

a)
+

1

2

s
E2 � [�(a)

w ]2

w2
a ��2

a

(4.56)

with

�(a)
w = �a

s

4� µ2
a

w2
a ��2

a

(4.57)

Note that Eqs.(4.56) do in principle hold also for |E| < �w, though with complex values

for the momenta. At given k(a)
p , k(a)

h , one determines the wavefunctions (u(a)
p , v(a)p ) and

(u(a)
h , v(a)h ), defined as solutions of Eqs.(4.54) with ka respectively equal to kp and kh.

Taking the most general linear combinations of wavefunctions at the same energy, one
finds that a generic wavefunction at energy E within region-a (=1,2) takes the form

"
u(a)
j

v(a)j

#
= A(a)

(p,+)

"
u(a)
p

v(a)p

#
eik

(a)
p j + A(a)

(p,�)

"
u(a)
p
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#
e�ik
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p j + (4.58)

+ A(a)
(h,+)

"
u(a)
h

v(a)h

#
e�ik

(a)
h j + A(a)

(h,�)

"
u(a)
h

�v(a)h

#
eik

(a)
h j (4.59)
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The transfer matrix is fully determined once one recovers the relations between the
amplitudes A(a)

(p,+), A
(a)
(p,�), A

(a)
(h,+), A

(a)
(h,�) in the two regions. These are determined by the

interface conditions obtained from Eqs.(4.51). In a compact notation, these are given
by

⌃a[�] · [⌥(a)(E)] ·

2

66664

A(a)
(p,+)

A(a)
(p,�)

A(a)
(h,+)

A(a)
(h,�)

3

77775
= ⌦b[�] · [⌥(b)(E)] ·Tb(E; `b) ·

2

66664

A(b)
(p,+)

A(b)
(p,�)

A(b)
(h,+)

A(b)
(h,�)

3

77775
(4.60)

with b = 2(1) if a = 1(2), and the matrix ⌃a[�] defined as

⌃a[�] =

2

664

⌧e
i
4� 0 0 0

0 ⌧e�
i
4� 0 0

0 0 wa �a

0 0 �a wa

3

775 , (4.61)

the matrix [⌥(a)(E)] defined as

[⌥(a)(E)] =

2

6664

eik
(a)
p u(a)

p e�ik
(a)
p u(a)

p e�ik
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p u(a)

p u(a)
h u(a)

h
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3

7775
(4.62)

the matrix ⌦a[�] given by

⌦a[�] =

2

664

wa ��a 0 0
��a wa 0 0

0 0 ⌧e�
i
4� 0

0 0 0 ⌧e
i
4�

3

775 (4.63)

and, finally, the transfer matrix for a homogeneous region of length ` being given by

Ta(E; `) =

2

66664

eik
(a)
p ` 0 0 0

0 e�ik
(a)
p ` 0 0

0 0 e�ik
(a)
h ` 0

0 0 0 eik
(a)
h `

3

77775
(4.64)

As a result, the transfer matrix for the full ring takes the form

Mp�wave[E;�; `1; `2] = [⌥(2)(E)]�1 · ⌃�1
2 [�] · ⌦1[�] · [⌥(1)(E)] ·T1(E; `1) ·

· [⌥(1)(E)]�1⌃�1
1 [�] · ⌦2[�] · [⌥(2)(E)] ·T2(E; `2) (4.65)
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Eq.(4.65) is the key ingrediend we need to compute the persistent current in the various
regimes of interest. We now derive the analog of Eq.(4.65) in the case of a ring made
of s-wave superconducting regions.

4.2.3 The s-wave-normal case

In the case of a system made of two s-wave superconducting regions with parameters
respectively given by w1,�1, µ1 and by w2,�2, µ2, and connected to each other with
hopping amplitude ⌧ , the corresponding (spinful) Hamiltonian is given by

H = �w1

X

�

`1�1X

j=1

{c†j,�cj+1,� + c†j+1,�cj,�}� µ1

X

�

`1X
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c†j,�cj,� +�1

`1X

j=1

{cj,"cj,# + c†j,#c
†
j,"}

� w2

X

�

`2�1X

j=1

{d†j,�dj+1,� + d†j+1,�dj,�}� µ2

X

�

`2X

j=1

d†j,�dj,� +�2

`2X

j=1

{dj,"dj,# + d†j,#d
†
j,"}

�
X

�

⌧{[c†1,�d`2,� + d†1,�c`1,�]e
i
4� + [d†`2,�c1,� + c†`1,�d1,�]e

� i
4�} (4.66)

Going through the same steps as in the p-wave case, we eventually find that the transfer
matrix of the ring is now given by

Ms�wave[E;�; `1; `2] = [⌥̃(2)(E)]�1 · ⌃̃�1
2 [�] · ⌦̃1[�] · [⌥̃(1)(E)] ·T1(E; `1) ·

· [⌥̃(1)(E)]�1 · ⌃̃�1
1 [�] · ⌦̃2[�] · [⌥̃(2)(E)] ·T2(E; `2) (4.67)

The ⌃̃a[�], ⌦̃a[�] matrices in Eq.(4.67) are simply obtained by setting �a to 0 respec-
tively in Eq.(4.61) and in Eq.(4.63). The matrix [⌥̃(a)(E)] is given by

[⌥̃(a)(E)] =

2

6664

eik
(a)
p u(a)

p e�ik
(a)
p u(a)

p e�ik
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h u(a)

h eik
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v(a)p v(a)p v(a)h v(a)h

3

7775
(4.68)

with u(a), v(a) determined as nontrivial solutions of the algebraic system

0 = {E + 2wa cos(ka) + µa}u(a) ��av
(a)

0 = ��au
(a) + {E � 2wa cos(ka)� µa}v(a) (4.69)

for k1, k2 solving the equation:

E2 = [2w1 cos(k1) + µ1]
2 +�2

1 = [2w2 cos(k2) + µ2]
2 +�2

2 (4.70)
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Figure 4.6: Graphical representation of the factorizability of the transfer matrix: for the
speficic system depicted in figure, the transfer matrix is given byM = T2·M1·T1·M2·T2

(from right to left).

and k(a)
p , k(a)

h defined by

cos[k(a)
p ] = � µa

2wa
�

s
E2 ��2

a

4w2
a

cos[k(a)
h ] = � µa

2wa
+

s
E2 ��2

a

4w2
a

(4.71)

Besides the di↵erences in the form of the matrices appearing in Eqs.(4.65,4.67), an
important point to stress is that both matrices are block-factorizable (see Fig.46 for a
graphical representation of the factorizability of the matrix).

4.3 Persistent current and signatures of topological

phase transition and Majorana modes

In this section we compute the persistent current in a number of cases of interest. For
the sake of the discussion, it is worth comparing the results obtained in p-wave systems
with the ones obtained in s-wave systems. Therefore, in the following we perform
the calculation in both cases, by using Eq.(4.45), with the transfer matrix computed
according to Eq.(4.65) (p-wave case), or to Eq.(4.67) (s-wave case). To keep in touch
with the results of Ref.(159), we begin with the calculation of the current in the case
of a superconducting ring interrupted by a weak link though, at variance with the
discussion of (159), we will not assume fermion parity conservation. As stated above,
for comparison, we also compute the current in the case of a ring made with an s-wave
superconductor.

4.3.1 Persistent current across a superconducting ring inter-

rupted by a weak link

A p-wave superconducting ring interrupted by a weak link can be physically realized
at a semiconducting quantum wire with a sizeable spin-orbit coupling (e.g., an InAs

79



Figure 4.7: Sketch of the superconducting ring interrupted by a weak link as intro-
duced and discussed in (159). A semiconducting ring (depicted as a solid black line) is
deposited on top of a bulk superconducting ring, interrupted by a tiny insulating layer
(light blu sector). The superconductor induces superconductivity within the semincon-
ducting wire by proximity e↵ect. All the current circulating across the system takes
place due to tunneling e↵ect within the semiconducting wire.

wire) deposited onto a bulk superconducting ring pierced by a magnetic flux �. The
combined e↵ect of spin-orbit coupling, Zeeman spin splitting and proximity-induced
superconductivity from the bulk superconductor underneath has been shown to make
the wire e↵ectively behave as a one-dimensional superconductor (143; 144). As for what
concerns a concrete proposal of an experimental realization of the system we discuss
here, we refer to Refs.(159; 150). Specifically, we assume that the weak link is actually
realized as a physical interruption of the superconducting ring with, for instance, a
tiny insulating layer, which cuts the current within the superconductor, thus allowing
the persistent current to only flow across the semiconducting nanowire. Indeed, among
other advantages, this geometry allows for recovering as only detectable current the one
flowing through the semiconducting wire, which is what we are eventually interested
in. In Fig.4.7 we provide a sketch of the system we are considering here, that is, a
homogeneous ring interrupted by a weak link. The corresponding model Hamiltonian
can be recovered from Eq.(4.46) in p-wave case and from Eq.(A.1) in the s-wave case,
by setting to zero the length of one of the two regions. In the former case, it is given
by

Hp�w = �w
`�1X

j=1

{c†jcj+1 + c†j+1cj}� µ
X̀

j=1

c†jcj +�1

`�1X

j=1

{cjcj+1 + c†j+1c
†
j}

� ⌧{c†1c`e
i
2� + c†`c1e

� i
2�} (4.72)

while in the latter case it can be presented as
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The transfer matrix derived from Eqs.(4.72,4.73) can therefore be simply expressed in
terms of the ones we provide in section 4.2.3 by simply setting one of the two lengths
(say `2) to 0. We therefore obtain

Mp�w[E; `;�] = [⌥(E)]�1 · ⌃�1[2�] · ⌦[2�] · [⌥(E)] ·T[E; `] (4.74)

and, similarly

Ms�w[E; `;�] = [⌥̃(E)]�1 · ⌃̃�1[2�] · ⌦̃[2�] · [⌥̃(E)] ·T[E; `] (4.75)

To compute the current, let us start with the ring described by the TM in Eq.(4.74).
In Fig. 4.8, we plot I[�] vs. � for the values of the parameters reported in the caption,
particularly for a chemical potential µ = 0. At zero chemical potential, the p-wave
superconductor lies well within the topological region, with two MFs �L, �R localized at
its endpoints. This allows us to provide a simple interpretation of the curves we draw
in Fig. 4.8 at di↵erent values of the length ` of the superconductor. The key parameter
here is the ”hybridization length” `M between �L and �R, which we estimate according
to the derivation of Appendix C. At µ = 0 and for the values of the parameters we used,
from Eq.(3.23) we obtain `M ⇠ 5. Therefore, when considering the largest ring (` = 40),
we may safely neglect the overlap between �L and �R across the superconducting region
and accordingly describe the low-energy excitations of the system by approximating
the fermion operators in the tunneling term of the total Hamiltonian (second row of
Eq.(4.72)) by means of the truncated mode expansion in Eq.(3.29). As a result, we
obtain the e↵ective low-energy Hamiltonian Hp;Eff for the ring, given by

Hp;Eff ⇡ �✏0 cos

✓
�

2

◆�
2�†�� 1

 
(4.76)

with ✏0 / ⌧ and the Dirac fermion operator � related to �L, �R by means of Eqs.(3.32).
We now use Eq.(4.76) as a main reference to discuss the behavior of the current for
large-`. Indeed, while one should, in principle, consider the contributions arising from
all the populated single-quasiparticle states at any energy (which is exactly done in the
calculation we performed based on our TM approach), based upon arguments similar
to the ones provided in Refs.(155; 156), in the large-` limit we expect that the result
for I[�] can be safely recovered by taking into account only low-energy states of the
system. Before spelling this point out, let us also stress that, within our formalism,
we do not assume Fermion parity conservation (which can be thought of in terms of
a nonnegligible single-electron tunneling rate between the ring and e.g. a backgate
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Figure 4.8: Plot of the persistent current I[�] vs. � (in units of �0) for the p-wave
mesoscopic ring with a weak link described by Eq.(4.72). The parameters are chosen
so that µ = 0, � = 0.2 and ⌧ = 0.5 (in units of w), while ` = 4 (red curve), ` = 4 (full
red curve), ` = 8 (dashed green curve), ` = 40 (dot-dashed blue curve). The estimated
Majorana hybridization length in this case is `M ⇡ 5.

used to tune from the outside the chemical potential of the system. While, within
our formalism, one might in principle account for fermion parity conservation, as well,
by implementing some pertinent adapted version of the approach presented in (162),
we will not address this point in this work.) Now, let us first of all note that, for
�⇡ < � < ⇡, Eq.(4.76) tells us that the ground state has the �-level populated. As
� crosses ⇡, there is a crossing between the filled- and the empty-� state which, in
the absence of constraints on fermion parity conservation, makes the system ”jump”
from the populated to the empty �-fermion state, with the corresponding jump in the
current evidenced at � = ⇡ in the blue curve of Fig. 4.8 corresponding to ` = 40. By
symmetry � ! ��, an analogous jump is observed at � = �⇡. The total current is
periodic, with period equal to 2⇡, due to the sequential level crossings at � = 2⇡k+ ⇡,
with integer k (144).
At variance, as ` = 4, the hybridization between the Majorana modes across the topo-
logical superconductor is no longer negligeable. As a result, at low energy the system is
described by an e↵ective Hamiltonian such as the one in Eq.(3.34), with a modulation
with � of the energy splitting between the empty- and the filled-state, which never
closes (avoided level crossing). In this case, the persistent current is only supported by
Cooper pair tunneling across the weak link, which restores a 4⇡-periodicity in � (144).
Again, this is consistent with our plot in Fig. 4.8 for ` = 4, with the intermediate case
` = 8 lying in between the two ”asymptotic”cases. As a further check, we report in
Fig.4.3.1 the plots of I[�] generated by keeping w = 1,� = 0.2, ⌧ = 0.5 and varying
µ, with ` = 16 (Fig. 4.9 a) and ` = 40 (Fig. 4.9 b) (note that `M ⇠ 5, as estimated
above). From the plots we draw for µ = 0.0, 0.9, 1.5, we see that, incresing µ toward
the critical value µ = 2 at which the topological phase transition takes place (142),
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Figure 4.9: Plot of the persistent current I[�] vs. � (in units of �0) for the p-wave
mesoscopic ring with a weak link described by Eq.(4.72). The parameters are chosen
so that � = 0.2 and ⌧ = 0.5 (in units of w). The curves are plotted for various values
of µ at fixed `. Specifically:
a) ` = 16, µ = 0.0 (full red curve), µ = 0.9 (dashed green curve), µ = 1.5 (dot-dashed
blue curve);
b) ` = 40, µ = 0.0 (full red curve), µ = 0.9 (dashed green curve), µ = 1.5 (dot-dashed
blue curve).

e↵ectively corresponds to increasing `M . This is expected from the results of Appendix
C, where we show that the hybridization between �L and �R scales as e�`/`M . Thus,
again our results appear to be consistent with the low-energy dynamics of our system
as inferred from Appendix C and from the discussion reported in (144).
By contrast, we now discuss the current across an s-wave ring. Despite the lack of
low-energy Majorana fermion modes in such a system, the crossover in the periodicity
of I[�] from 4⇡ to 2⇡ is known to take place as the length `S of the superconducting
region crosses over from values lower than the coherence length ⇠0 to values higher than
⇠0 (141). Such a crossover corresponds to a crossover in the ”physical nature” of I[�]:
from a 4⇡-persistent current in a mesoscopic, e↵ectively normal, system to a 2⇡-periodic
current, analogous to the Josephson supercurrent in an SNS-junction (141; 140). In Fig.
4.10, we plot the exact results for I[�] obtained using our TM-approach for the system
parameters w = 1,� = 0.2, µ = 0, ⌧ = 0.5 and for various values of `. In our specific
case, having as model Hamiltonian the one in Eq.(4.73), as we are setting to 1 the
lattice step, an acceptable estimate for ⇠0 is ⇠0 ⇠ 2w/�. For the numerical values of
the parameters we chose to generate Fig. 4.10, this implies ⇠0 ⇠ 10. Such an estimate
is definitely consistent with our results: on increasing ` from ` = 4 to ` = 40, we
ultimately see a crossover in the periodicity of I[�] definitely similar to the one we
found for the p-wave superconducting ring with a weal link, though without the jumps
in the current due to the �-fermion level crossings. To conclude this section, let us
stress once more that our technique does provide us with the exact result for I[�] at
a generic value of the system parameters, whether the superconductor is p-wave, or
s-wave, etc. To recover the final result one just needs to construct the appropriate TM
and to numerically compute a single integral for various values of �. Using the standard
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Figure 4.10: Plot of the persistent current I[�] vs. � (in units of �0) for the s-wave
mesoscopic ring with a weak link described by Eq.(4.73). The parameters are chosen
so that � = 0.2 and ⌧ = 0.5 (in units of w). The curves are plotted for various values
of ` at µ = 0. Specifically: ` = 4 (full red curve), ` = 16 (dashed green curve), ` = 40
(dot-dashed blue curve). The crossover from a 4⇡ periodicity for ` < ⇠0 ⇠ 10 (see text)
to a 2⇡-periodicity for ` > ⇠0 is apparent.

approach, based on the solution of the secular equations for the allowed values of the
momenta at fixed �, and eventually taking the derivative with respect to � to obtain the
current is, in general, much less straightforward and, typically, exact results cannot be
provided and di↵erent approximations must be implemented to attack di↵erent regimes
such as the short-ring, or the long-ring limit (see, for instance, Ref.(140) for a careful
and valuable discussion about this point). At variance, as we are showing here, our
approach applies to any speficic case, with potentially no limitations at all. To discuss
a further application of our technique, we now consider a hybrid ring, made by a p-
wave superconducting segment of length `S and a normal segment of length `N : this
can be regarded as a generalization of the ring with a weak link we discuss above with
no imposed constraints on `N which, as we are going to discuss, opens the way to a
number of interesting physical e↵ects.

4.3.2 Persistent current across a hybrid N-S ring

In this section we discuss the persistent current across a hybrid ring, composed of a
superconducting segment of length `S and of a normal segment of length `N . Such
a system can be regarded as a generalization of the ring interrupted by a weak link
discussed in [(159)], in which one induced superconductivity by proximity only in a
part of the ring, leaving a finite normal region of length `N . In Fig.4.11 we provide a
sketch of the system we discuss here. Again, for comparison, we consider both cases of a
p-wave and of an s-wave superconducting region. The corresponding model Hamiltonian
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Figure 4.11: Sketch of the hybrid N-S ring with the two regions (red and blue, respec-
tively) separated by two a weak links. A possible practical realization of such a system
is the same as discussed before for the superconducting ring interrupted by a weak link.

can then be obtained from H in Eq.(4.46) by setting `1 ! `S, `2 ! `N , �1 ! �,�2 = 0
and from H in Eq.(A.1), taken in the same limit. To spell out the behavior of I[�]
in the various regimes of interest, let us first focuse onto the p-wave case. Specifically,
we compute I[�] at given ⌧ and � for w1 = w2 ⌘ w and for various values of `S =
`N ⌘ `. To further simplify the calculation we restricted ourselves to the particle-hole
symmetric case, µ = 0. Remarkably, on one hand, all the assumption are e↵ective
in simplifying the calculations of the transfer matrix, on the other hand, they do not
particularly a↵ect the important physical content of the final result. In Fig. 4.12a),
we plot I[�] vs. � for ` = 4, 16, 40, with the values for the system’s parameters
chosen as in the caption. The behaviour of I[�] depends on the system size in relation
to the length scales determined by the system parameters. At µ = 0 the p-wave
superconductor lies within its topological phase, with corresponding localized Majorana
modes emerging at its edges. In this case, the important length scale is the Majorana
hybridization length `M . When `  `M , the two MFs are hybridized into a Dirac mode
�. Since in this case the energy splitting between the empty- and the filled-�-state
is modulated with �, but never closes, the persistent current is only supported by
Cooper pair tunneling across the weak link and, therefore, it is periodic, with period
equal to 4⇡ (144). On increasing `, when ` > `M , the hybridization between the
Majorana modes becomes negligible and, accordingly, in the absence of fermion parity
conservation, I[�] becomes 2⇡-periodic, with jumps at � = ⇡ + 2⇡k. In addition to
the periodicity, also the shape of I[�] depends on `. This is due to the Kondo-like
hybridization between the MFs and the excitation modes within the normal region of
the ring, which takes place when ` � ⇠K,M , with the Kondo-Majorana hybridization
(KMH) length ⇠K,M ⇠ [(2w)2/⌧ 2] (161). At the onset of KMH, I[�] is expected to
cross from a discontinuous sinusoidal dependence on � to a sawtooth-like shape (161).
Physically, this can be understood by recalling that, as ` becomes large, the systematic
cancellation of contributions from high-energy states makes only low-energy states in
the normal region next to the Fermi level contribute to I[�]. The physical processes at
the SN-interfaces that determine these states can be inferred from Fig.4.12, where, as
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a) b)

Figure 4.12: Plot of I[�] vs. � for a hybrid normal - superconducting ring. a) Plot of
I[�] vs. � for a hybrid normal-p-wave superconducting ring for w1 = w2 = 1, � = 0.2,
⌧ = 0.5, µ = 0, which corresponds to `M ⇡ 6, ⇠K,M ⇡ 16, for `S = `N = 4 (solid red
curve), `S = `N = 16 (dashed green curve), `S = `N = 40 (dot-dashed blue curve).
The crossover to a sawtooth behaviour is evident for ` = 40; b). Plot of [�] vs. �
for a hybrid normal-s-wave superconducting ring for w1 = w2 = 1, � = 0.2, ⌧ = 0.5,
for `S = `N = 4 (solid red curve), `S = `N = 16 (dashed green curve), `S = `N = 40
(dot-dashed blue curve). There is no crossover in the functional form of I[�], but a
mere scaling of I[�] that is ⇠ `�1

N .

a function of `S, we plot the scattering coe�cients across the superconducting regions
corresponding to normal reflection at the SN-interfaces and to normal transmission
across the superconducting region, as well as the coe�cients corresponding to Andreev
reflection (AR) at the interfaces and to ”crossed Andreev reflection” (CAR) across
the superconducting region (163; 158). As it clearly appears from Fig.4.12, as soon
as `S > `M , all the coe�cients drop to 0 but the one corresponding to AR, which
saturates to 1. This evidences that, as ` > `S, AR is the only physical process that
takes place at low energy, which implies the sawtooth behavior in I[�] evidenced in
Fig. 4.12a). By comparison, in Fig. 4.12b), we plot I[�] vs. � for the same values
of the various parameters as in Fig.4.12a), but for an s-wave superconductor. Here we
see that, on increasing `. the current still shows the crossover from a 4⇡-periodic curve
to a 2⇡-periodic curve, but that the absence of low-energy Majorana modes eventually
hybridizing with the modes in the normal region as ` � ⇠K,M yields no crossover in the
functional form of I[�] from a sinusoidal to a sawtooth behaviour. The only relevant
additional feature that takes place on varying ` is, indeed, the expected scaling of I[�]
⇠ `�1 (see discussion in the next section). Thus, the crossover in the functional form
of I[�] can actually be regarded as a direct evidence for the existence of low-energy
Majorana modes at the endpoints of the topological superconductor in the p-wave
hybrid ring.

In drawing Fig4.13, we hold `N = `S fixed at 40 (with � and w chosen so that
`M ⇠ 6), as well as the chemical potential within the normal region µN = 0. At vari-
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ance, we vary the chemical potential within the superconducing region µS starting from
µS = 0 till µS/w ⇠ 1.95 (after which the loss of numerical precision appears not to
give us reliable results). As highlighted by Kitaev (142), as µS/w = 2 the p-wave su-
perconductor undergoes a (topological) quantum phase transition, characterized by the
disappearance (for µS/w > 2) of the localized MFs at the endpoints of the superconduc-
tor. On approaching the phase transition from within the topological region, the closer
the system is to the quantum critical point, the larger is the e↵ective `M . While the
actual numerical estimate of `M as a function of e.g. µS/w at fixed � can in principle
be provided From Eq.(3.15) of Appendix C, here we just focus on the consistency of
our exact results with the expectation one gets from the above discussion. Indeed, the
estimated KMH-length for the system used to derive I[�] in Fig.4.13a) is ⇠K,M ⇡ 16
(see the discussion at the caption of Fig.4.11a), which is drawn at the same values of w
and ⌧). As in Fig. 4.13a) we plot I[�] for `S = `N = 40, we see full KMH in the normal
region for µN = 0, as evidenced by the sawtooth behavior of the current and by the
corresponding 2⇡-periodicity in �. On increasing µS towards the critical value corre-
sponding to the topological quantum phase transition, the nonnegligible hybridization
between the MFs across the superconduting region is expected to compete with KMH
and eventually to suppress it (Indeed, this can be regarded as a ”Majorana analog”
of the competition between Kondo e↵ect and RKKY-interaction in the two-impurity
Kondo model (164; 165; 166; 167), just as the KMH can be regarded as the Majorana
analog of the onset of the Kondo cloud in a Kondo system (161)). Consistently with the
expectation, we see that, on increasing µS, the sawtooth is smoothed (with a sizeable
reduction in the critical current) and clearly evolves back towards a restoration of the
4⇡-periodicity that characterizes the regime `S  `M (see discussion above). For com-
parison, in Fig.4.13b) we draw similar plots generated in the s-wave case. No particular
changes in the functional form the current appear, except the reduction in the value of
the current at a given �. In our view, this result do actually enforce the reliability of
a persistent current measurement as a tool to detect the presence of Majorana modes
at the endpoints of a p-wave superconductor in the topological phase.
Besides the possibility of exactly computing the current in a number of di↵erent physical
systems by simply evaluating the integral in Eq.(4.45) for di↵erent values of �, our
approach also provide a remarkable tool to write, for large enough systems, I[�] in
a power series of the inverse system size which, as we are going to discuss in the
following, greatly simplifies the various calculations, by even allowing for providing
explicit analytic results for the current, in some simple cases.

4.4 The large-ring limit and the finite temperature

case

As the ring size goes large, one may recast the integral formula for I[�], Eq.(4.45),
in an expansion in inverse powers of the length that gets large. As we discuss in the
following, this leads to a number of remarkable simplifications in the calculation of the
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Figure 4.13: Plot of the normal and Andreev reflection coe�cients at the SN-interface
and of the normal transmission and CAR coe�cients for the p-wave superconductor-
normal hybrid ring discussed in section discussed in section 4.3.2 as a function of `S.
To generate the plot we have chosen the system’s parameters so that w1 = w2 = 1,
� = 0.2, ⌧ = 0.5, which corresponds to `M ⇡ 6. The various curves correspond to the
coe�cients as
- Full blue curve: Andreev reflection coe�cient at the SN-interface;
- Dashed blue curve: Normal reflection coe�cient at the SN-interface;
- Full red curve: Normal transmission across the superconducting region;
- Dashed red curve: Crossed Andreev reflection across the superconducting region.
Apparently, for `S > `M all the processes are suppressed, except the Andreev reflection
at the SN-interface, with the corresponding coe�cient saturating to 1.
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current, similar to the ones implemented in Refs.(155; 156), even leading, in some cases,
to closed a closed-form analytic formula for I[�] vs. � at given system parameters. In
the following, we discuss a few examples of calculation of the persistent current in the
large-size limit, also showing how a number of known results can be easily recovered
within our formalism, once the appropriate limit is taken.

4.4.1 The limit of long superconducting region

The limit of long superconducting region is defined by sending `2 ! 1 in the system
described by the model Hamiltonian in Eq.(4.46) (p-wave case), or by the Hamiltonian
in Eq.(A.1) (s-wave case), after setting �1 = 0, so that region-1 is normal, and by
keeping `1 finite. In this limit one expects to recover the results for a the Josephson
current across an SNS-hybrid junction. To show that this is, Indeed, the case, we start
by rewriting det{Mp�wave[E;�; `1; `2]� I} as

det{Mp�wave[E;�; `1; `2]� I} = c det{T�1
2 (E; `2)� [⌥(2)(E)]�1 · ⌃�1

2 [�] · ⌦1[�] ·
·[⌥(1)(E)] ·T1(E; `1) · [⌥(1)(E)]�1 · ⌃�1

1 [�] · ⌦2[�] · [⌥(2)(E)] (4.77)

with c being an over-all factor independent of � and, similarly, by rewriting det{Ms�wave[E;�; `1; `2]�
I} as

det{Ms�wave[E;�; `1; `2]� I} = c0 det{T�1
2 (E; `2)� [⌥̃(2)(E)]�1 · ⌃̃�1

2 [�] · ⌦̃1[�] ·
·[⌥̃(1)(E)] ·T1(E; `1) · [⌥̃(1)(E)]�1 · ⌃̃�1

1 [�] · ⌦̃2[�] · [⌥̃(2)(E)]} (4.78)

with, again, c0 being a constant independent of �. As a next step, we define the matrix
Mp as

Mp = [⌥(2)(E)]�1·⌃�1
2 [�]·⌦1[�]·[⌥(1)(E)]·T1(E; `1)·[⌥(1)(E)]�1·⌃�1

1 [�]·⌦2[�]·[⌥(2)(E)]
(4.79)

for the p-wave hybrid ring, and

Ms = [⌥̃(2)(E)]�1·⌃̃�1
2 [�]·⌦̃1[�]·[⌥̃(1)(E)]·T1(E; `1)·[⌥̃(1)(E)]�1·⌃̃�1

1 [�]·⌦̃2[�]·[⌥̃(2)(E)]
(4.80)

for the s-wave hybrid ring. From Eqs.(4.79,4.80), we see that the current in the p-wave
and the s-wave hybrid ring, Ip,s[�], can respectively be written as

Ip,s[�] = � 1

2⇡i

Z

�

d✏@� ln[ p,s[✏;�]] = � 1

4⇡i

Z

�

d✏@�

(
ln[T�1

2 (✏; `2)�Mp,s]�[ln[T�1
2 (✏; `2)�Mp,s]]

⇤

)

(4.81)
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where we have used the reality of the persistent current to go through the last step in
Eq.(4.81). In order to systematically take the `2 ! 1-limit, we recall that one has
eventually to deform the integrals over � in Eq.(4.81) into integrals over the imaginary
axis, which corresponds to ✏ ! i!. Along the imaginary axis, from the dispersion
relations for particle- and hole-like excitations within the superconducting region, one
obtains that the corresponding momenta are defined by

cos[k(2)
p ] = � µ2w2

2(w2
2 ��2

2)
� i

2

s
!2 +�2

w

w2
2 ��2

2

cos[k(2)
h ] = � µ2w2

2(w2
2 ��2

2)
+

i

2

s
!2 +�2

w

w2
2 ��2

2

(4.82)

in the p-wave case, and

cos[k(2)
p ] = � µ2

2w2
� i

2

s
!2 +�2

2

w2
2

cos[k(2)
h ] = � µ2

2w2
+

i

2

s
!2 +�2

2

w2
(4.83)

in the s-wave case. To solve Eqs.(4.82) we therefore set

k(2)
p =

⇡

2
+ qp , k(2)

h =
⇡

2
+ q⇤p (4.84)

with

sin[qp] =
µ2w2

2(w2
2 ��2

2)
+

i

2

s
!2 +�2

w

w2
2 ��2

2

(4.85)

while, to solve Eqs.(4.83), we set

k(2)
p =

⇡

2
+ qs , k(2)

h =
⇡

2
+ q⇤s (4.86)

with

sin[qs] =
µ2

2w2
+

i

2

s
!2 +�2

2

w2
(4.87)

From the explicit formula for T�1
2;(p,s)(E ! i!; `2) along the imaginary axis in the p-wave

and in the s-wave case, respectively given by
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T
�1
2;(p,s)(E ! i!; `2) =

2

66664

i�`2eiq
(2)
p,s`2 0 0 0

0 i`2e�iq
(2)
p,s`2 0 0

0 0 i`2e�i[q
(2)
p,s]⇤`2 0

0 0 0 i�`2ei[q
(2)
p,s]⇤`2

3

77775
(4.88)

we may readily compute the integrals in Eq.(4.81) in the limit `2 ! 1, obtaining

Ip,s[�] =
1

2⇡

Z 1

�1
d! @� lnGp,s(✏! i!) (4.89)

with Gp,s(✏) = M(p,s);(2,2)(✏)M(p,s);(4,4)(✏) � M(p,s);(2,4)(✏)M(p,s);(4,2)(✏) and assuming (as
done in (155; 156)) that

• All the poles of G(✏) lie over the real axis;

• G(✏) is real if ✏ lies over the real axis (and does not cohincide with a pole of G),

Eq.(4.89) yields the dc-Josephson current in the infinite-`2 limit, in which the ring
can be regarded as an idealized model for an SNS-junction. In the specific case of s-
wave superconductors, Eq.(4.85) has been derived in (155) for a single-channel junction
starting from the S-matrix approach to e↵ectively one-dimensional SNS-junctions (153),
and generalized in (156) to a multi-channel junction. Indeed, a comparison between
Eq.(4.89) and Eqs.(7,9) of Ref.(155) also clarifies the identification between Mp,s in
Eqs.(4.79,4.80) and the transfer matrix for the whole SNS-junction, as introduced and
discussed in (155) for the s-wave case. After resorting to the e↵ective SNS-junction
model, at a second stage one may implement the technique developed in (155; 156) to
write I[�] in a systematic expansion in inverse powers of `1. Basically, one considers
that, because one has

T1(E ! i!; `2) =

2

66664

i`1e�iq
(1)
n `1 0 0 0

0 i�`1eiq
(1)
n `1 0 0

0 0 i�`1e�i[q
(1)
n ]⇤`1 0

0 0 0 i`1ei[q
(1)
n ]⇤`1

3

77775
(4.90)

with

sin[qn] =
µ1

2w1
+

i

2

!

w1
, (4.91)

then, only low-|!| regions do e↵ectively contribute to the integral in Eq.(4.89). As a
result, one may first of all approximate qn ⇡ q̄ + i�(!), with
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sin(q̄) =
µ1

2w1

�(!) =
!

2w1
, (4.92)

then, in integrating Eq.(4.89), one may rescale ! ! !`1 and eventually set the rescaled
! at 0 in all the contributions to the argument of the integral in which ! appears divided
by `1 as !/`1. Going along this procedure, one may compute the leading contribution to
the current (O(`�1

1 )) by trading the original model Hamiltonian for a reduced boundary
model, such as the one presented in Ref.(152) for the s-wave superconductors and the
one used in Ref.(161) for the p-wave superconductor, which allows for recovering simple,
closed-form analytical formulas for I[�].

4.4.2 The limit of long normal region

We have shown how our approach gives back the known result for the dc Josephson
current across an SNS-junction in the limit of a long superconducting region. We
now discuss the complementary limit of a long normal region, with `S less than, or
comparable to, the coherence length of the superconducting region ⇠0. We first discuss
the general formula and then consider the case of a hybrid s-wave superconducting ring
as a specific example. In order to address the large-`N -limit, let us first of all rewrite
det{Mp�wave (s�wave)[E;�; `1; `2]� I} as

det{Mp�wave (s�wave)[E;�; `1; `2]� I} = cp,s det{T1(E; `1)�Kp,s[E;�; `2]} (4.93)

with cp,s being constants independent of �, and

Kp[E;�; `2] = [⌥(1)(E)]�1 · ⌦�1
1 [�] · ⌃2[�] · [⌥(2)(E)] ·T�1

2 (E; `2) ·
·[⌥̃(2)(E)]�1 · ⌦�1

2 [�] · ⌃1[�] · [⌥(1)(E)]

Ks[E;�; `2] = [⌥̃(1)(E)]�1 · ⌦̃�1
1 [�] · ⌃̃2[�] · [⌥̃(2)(E)] ·T�1

2 (E; `2) ·
·[⌥̃(2)(E)]�1 · ⌦̃�1

2 [�] · ⌃̃1[�] · [⌥̃(1)(E)] (4.94)

Eqs.(4.94) correspond to the standard identification we have employed so far, that is,
region-1 has to be identified with the normal region and region-2 with the (either p-
wave, or s-wave) superconducting region. Therefore, `1 = `N . Now, in order to recover
the large-`N -limit, we stricly follow the derivation of Refs.(155; 156), that is, once we
have deformed the integration path to the imaginary axis, we assume that only low-
!(= �iE) regions do e↵ectively contribute the integral in Eq.(4.45). This allows us
first of all to approximate the inverse dispersion relation within the normal region as

kp,h ⇡ kF ± i�(!) , (4.95)
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with �2w1 cos(kF ) = µ1 and �(!) = !
2w . On substituting Eqs.(4.95) into Eqs(4.94), we

may eventually rewrite Eq.(4.45) as

Ip,s[�] = �2ew1

2⇡ `1
@�

Z 1

0

dz

z
ln{⌅p,s[z;�; `2]} , (4.96)

with

⌅p,s[z;�; `2] = det

8
>><

>>:

2

664

z 0 0 0
0 z�1 0 0
0 0 z 0
0 0 0 z�1

3

775�

2

664

e�ikF `1 0 0 0
0 eikF `1 0 0
0 0 eikF `1 0
0 0 0 e�ikF `1

3

775 ·Kp,s[E = 0;�; `2]

9
>>=

>>;

(4.97)
To illustrate the e↵ectiveness of our simplified Eqs.(4.96,4.97) we now discuss the ap-
plication to the case of a hybrid s-wave superconducting ring. For simplicity, we make
the assumptions w1 = w2 ⌘ w and µ1 = 0. As a result, using Eqs.(4.96,4.97), we obtain
the simplified expression for the current

I[�] = �2ew1

2⇡ `1
@�

Z 1

0

dz

z

⇢
@�a[�; `1](z3 + z) + @�b[�; `2]z2

z4 + 1 + a[�; `2](z3 + z) + b[�; `2]z2

�
, (4.98)

with a[�; `2], b[�; `2] being long, though straightforward to derive, functions of the
matrix elements of Ks[E = 0;�; `2]. Eventually, by means of simple manipulations
Eq.(4.98) can be expressed as a closed-form formula only of the four roots zj[�; `2]
(j = 1, . . . , 4) of the polynomial equation z4+1+a[�; `2](z3+z)+ b[�; `2]z2 = 0, which
take the generic form

zj[�; `2] = �a[�; `2]

4
+ uj

p
8 + a2[�; `2]� 4b[�; `2]

4

+ vj
1

2

s
�2 +

a2[�; `2
4

� b[�; `2] + uj
a3[�; `2] + 8a[�; `2]� 4a[�; `2]b[�; `2]

2
p
8� a2[�; `2]� 4b[�; `2]b[�; `2]

,(4.99)

with uj, vj = ±1. Taking into account that
Q4

j=1 zj[�; `2] = 1, one eventually obtains
from Eq.(4.98)

I[�] = �2ew1

4⇡`1
@�{

4X

j=1

ln2[zj[�; `2]]} . (4.100)

Just as in the case of a long SNS-junction (155; 156), Eq.(4.100) only involves data
at the Fermi level. This is an additional example of the remarkable simplifications to
which our approach leads, in the large ring limit.
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Figure 4.15: Sequence of deformations in the integration path �̃ eventually allowing to
express I[�;T ] as a sum over the fermionic Matsubara frequencies !m = 2⇡T

�
m+ 1

2

�
:

a) The path �̃ obtained as the union of small circles, each one surrounding one, and
only one, energy eigenvalue;
b) The integral over �̃ can be deformed to an integral over the union of the two closed
path run through counterclockwisely;
c) The integral over the two closed path in b) is equal to the integral over a closed
path surrounding the poles of the Fermi function (i!m, displayed as blue full circles
in the figure), run through clockwisely. The corresponding over-all - sign is eventually
cancelled by the -1 at the residue of the Fermi function at i!m.

4.4.3 Finite-temperature results

It is not di�cult to generalize our derivation to a system at temperature T finite,
though much lower than the critical temperature for the superconducting part of the
ring. Indeed, at finite T , Eq.(4.45) generalizes to Eq.(4.1), with

F [�;T ] =
X

E

Ef(E) , (4.101)

and f(E) = [1+eE/T ]�1 being the Fermi distribution function (having set the Boltzmann
constant k = 1. Now, the integration path � in Eq.(4.43) must be replaced with the
integration path �̃ obtained as the union of small circles �n, each one surrounding once
one, and only one, energy eigenvalue. As illustrated in Fig.4.15, �̃ can be deformed
to a path obtained as the union of small circles, each one surrounding once on, and
only one, pole of the Fermi function, that is, a fermionic Matsubara frequency times
the imaginary unit i, i!m = 2⇡T i

�
m+ 1

2

�
. As a result, the finite-T current can be

presented as

I[�;T ] = �eT
X

!m

@�{det[M[i!m;�]� I]} , (4.102)

that is the appropiate generalization of Eq.(4.45) to the finite-T case.
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Chapter 5

Discussion and Conclusions

To conclude, we summarize the main results we got in our thesis work.
In the first chapter we provide an introduction of our work.
In the second chapter we used the scattering matrix to calculate the Anomalous

Josephson current in an SNS junction with spin-orbit and electromagnetic interaction.
Here the interest lies in the non-topological (or trivial) phase of the superconductor.
We have seen how in the case in which the Fermi energy is such as to allow only one
propagative channel, we can find the anomaly of the current (i.e. the minimu of the
current is shifted from 0 or ⇡), but the current turns out to be still symmetrical with
regard to the maximum I0+ and the minimum I0+. These results are summarized in
Fig.2.7, where it was shown, on varying ↵0 and b0, how the anomaly '0 shifts. As for
the visibility @, instead, it remains mostly constant, excluding numerical computation
errors, despite the variation of the spin-orbit interaction and of the strenght of the
applied magnetic field. Instead, if we allow more propagation channels, i.e. we ade-
quately modify the Fermi energy of the system, we can see that is not only presents
the anomaly '0 , but also that the visibility @ varies considerably, up to a value of
20%. The diagram in Fig.2.8 show our results for the anomaly in a two-open channel
analysis, while Fig. 2.9 shows the variation of @ in terms of ↵0 and b0. Such e↵ect,
being tuned, for instance by varying the magnetic field, may have useful application for
superconducting circuits: for example, circuits with an e�ciency as high as 50% are
required to realize a proper superconducting diode. In the hope to building quantum
processors using Josephson junctions (21; 22; 23; 24) and the quantum computer just
launched by Google (26), the possibilities for implementation are becoming increasingly
tempting and likely. However, by properly engineering the interfaces and the materials
we expect to achieve a wider tuneability of this value up to experimentally relevant
scales. Nonetheless, we believe that the present analysis can be taken as a first example
for further studies in this direction.

In the third chapter, we analytically found that a p-wave superconducting ring
obtained by closing a Kitaev chain with a weak link displays, under very general con-
ditions, two low-energy putative Majorana fermion states which, at a generic value of
the applied flux � pearcing the ring, hybridize into a Dirac fermion of energy ✏0[�].
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We then proved that, at a certain value of � = �⇤, ✏0[�⇤] = 0. At � = �⇤ the system
exhibits two actual zero-energy Majorana modes with exactly the same properties as
the Majorana modes located at the boundaries of an infinite Kitaev chain. We then
investigated the modifications to this scenario implied by disorder. We found numeri-
cal evidence that, while a small amount of disorder is not su�cient to either wash out
the putative Majorana modes, or the level crossing � = �⇤ (though it can in prin-
ciple slightly renormalize �⇤), a strong disorder can get rid of the putative Majorana
modes, thus suppressing the putative topological phase characterized by the presence of
the subgap putative Majorana modes. Then, we extend the discussion on the relation
between disorder and disappearance of putative Majorana modes, eventually showing
how to map out the whole putative topological phase in the chemical potential-disorder
plane by looking at the discontinuity of the persistent current I[�] at � = �⇤. Fig.3.15
summarizes the key results of this subsection: on one hand, it can be regarded as a
theoretical derivation of the region, in the �V �µ plane, in which it is possible to make
two zero-energy Majorana modes emerge at the quantum ring by pertinently acting on
the applied flux. On the other hand, the way we derived it suggests a practical tool
to map it out in an experiment: to check whether, at a given values of the system pa-
rameters, zero-energy Majorana modes are recovered in the disordered one-dimensional
superconducting ring, it is enough to probe the dependence of I[�] on � and to check
whether, at some flux � = �⇤ (with �⇤ typically being ⇠ ⇡ for a not-too-short chain),
I[�] shows a discontinuous behavior, with a finite jump when going across �⇤. A key
point of this technique is that I[�] can in principle be probed by means of a noninvasive
magnetometer, without need for contacting the system as we have to do in a transport
experiment attempting to probe Majorana modes (124), thus potentially introducing
a number of potential sources of noise in the system. Moreover, we recall that the
techniques so far proposed to map out the phase diagram of a disordered Kitaev-like
chain, mostly rely on looking at the eigenvalues of the transfer matrix of the whole
chain (110; 111): an approach rigorous and e↵ective from the mathematical point of
view, but quite unlikely to be experimentally employed. At variance, it should not be
extremely di�cult to implement in practice the technique we propose, as we outline
above. From the physical point of view, our numerical findings prove that zero en-
ergy Majorana modes emerging in a quantum ring at � = �⇤ are quite robust against
disorder.

In Chapter 4, we present a technique to exactly compute the zero-temperature
persistent current across a hybrid NS-mesoscopic ring pierced by a magntic flux � as
a single integral of a known function of the system’s parameters. Our approach makes
use of the properties of the transfer matrix of the ring, which allows us to circumvent
technical di�culties associated to the secular equation for the energy eigenvalues of the
system. A straightforward generalization of the zero-temperature formalism allows us
to also compute the current in a ring at a temperature T finite, though much lower
than the superconducting gap. While in general one may readily numerical compute
the integral/sum yielding the current at a given value of the flux �, a remarkable
simplification takes place in the limit of a large ring size, where resorting to a systematic
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expansion in inverse powers of the ring length allows for deriving the current in analytic
closed-form formulas, applicable to a number of cases of physical interest.

In summary, this thesis has analyzed some phenomena inherent to currents in one-
dimensional superconducting systems. We have seen how, both in the topological phase
and in the trivial phase, it is possible to observe a huge amount of phenomena. The
anomalies, the discontinuities, can become relevant not only for the study of the physics
of the collective excitations of the system, but also provide useful tools for the physics
of high energies for the study of particles not yet observed (Majorana fermions) and
provide, also , to engineers, useful tools for the realization of increasingly precise, small
and powerful electronic components. The road is still long and there are so many things
still to be studied. For example, referring to the first Chapter, it is possible to continue
to study the e↵ects of asymmetry and anomaly in Josephson currents to build diodes
and transistors for quantum processors. Furthermore, through di↵erent symmetries
(such as that of the ring presented in Chapters 3 and 4 it is possible to study anions,
but also the mathematical properties of the Majorana modes, creating interferometers
and logic gates in the perspective of quantum computation. These are few prospects
for the use of these systems, but let us not forget the basic research that can be carried
out to measure the Majorana modes: indeed, to date, there is no universally accepted
experimental measure of these zero-energy excitations. The systems we o↵er would
therefore provide a starting point towards the experimental demonstration.
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Appendix A

The s-wave case in the tight binding

model

The tight-binding model that we are going to show in the following is appropriate to
be used for studying narrow band behaviors arising from electronic correlation e↵ects.
As we will see, this kind of modelization can be useful to describe more complicated
superconductors’s symmetries (like the p-wave pairing symmetry). In the following, we
consider a one-dimensional finite chain with an s and p�wave superconducting pairing.
From the model Hamiltonians, we will derive the BdG equations and the energy relation
dispersions. Let us start by considering an homogeneous s�wave wire; here we assume
that the kinetic hopping trought sites and the chemical potential are do not change
along the chain. Moreover we assume an homogeneous and real distribution for the
superconducting pairing, i.e. �j = �, 8j with � 2 R, and define `. We obtain the
model Hamiltonian for a finite-lenght s-wave superconductor:

H = �
`�1X

j=1

X

�

{w[c†j,�cj+1,� + c†j+1,�cj,�]}�
X̀

j=1

µc†j,�cj,�

+
X̀

j=1

{�[cj,"cj,# + c†j,#c
†
j,"]} (A.1)

where w is the kinetic energy hopping from the j�th site to the j±1�th one, which,
as the all parameters of Eq.(A.1), is assumed to be homogeneous along the all chain, � is
the superconducting paring and µ is the chemical potential. To find the energy spectrum
of this system, we have to solve the Heisenberg equation [�E,�, H] = E�E,�,where �E,�

is the most generic eingenmode of our Hamiltonian and is a function of the energy E
and the spin polarization �. In this case, we can write it as follows:

�E,� =
X̀

j=1

{[uE,�(j)]
⇤cj,� + [vE,�(j)]

⇤c†j,�̄} (A.2)
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On imposing the canonical commutation relation [�E,�, H] = E�E,�, we derive the
Bogoliubov-de Gennes equations for the wavefunction (uE,�(j), vE,�(j)) in the form :

EuE,�(j) = �w{uE,�(j + 1) + uE,�(j � 1)}� µuE,�(j) + ��jvE,�(j)

EvE,�(j) = w{vE,�(j + 1) + vE,�(j � 1)}+ µvE,�(j) + ��juE,�(j) (A.3)

We note that an homogeneous system described by a lattice model has translational
invariance symetry; therefore, we can look for solutions of the form:


uE,�(j)
vE,�(j)

�
=


uE

�vE

�
eikj (A.4)

with:

[E + 2w cos(k) + µ]uE,� ��vE,� = 0

��uE,� + [E � 2w cos(k)� µ]vE,� = 0 (A.5)

Therefore, nontrivial solutions for uE,�, vE,� are only found provided that:

E2 � [2w cos(k) + µ]2 ��2 = 0 (A.6)

Now, at a given value of the energy ✏, we may ask the question of which values of
the momentum k are consistent with Eq.(A.6). Specifically, in view of the following
developments of our calculations, we will set |✏| � �. By solving Eq.(A.6) for the
momenta, we can find:

cos(kp) = � µ

2w
�

p
��2 + ✏2

2w

cos(kh) = � µ

2w
+

p
��2 + ✏2

2w
(A.7)

where kp identifies the quasi-particle momentum and kh the quasi-hole one. We therefore
find the following four independent solutions:


uj

vj

�

(↵,±);�

=


e↵

1
2 ⇠(✏)

�e�↵ 1
2 ⇠(✏)

�
e±ik↵ (A.8)

where we have defined:

⇠(✏) = atan

p
��2 + ✏2

✏

�
(A.9)

and ↵ = 1 if we consider the particle-like solutions and ↵ = �1 is we consider the
hole-like solutions.
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Appendix B

The p-wave case in the tight

binding model

In this section we analyze the case of an open superconducting p-wave chain with ` sites,
reviewing the derivation of the Bogolioubov-de Gennes equations and the energy spec-
trum . To formally describe the p-wave superconductor we use Kitaev’s one-dimensional
lattice model Hamiltonian (142). Indeed, despite its apparent simplicity and mathemat-
ical tractability, the Kitaev model can be regarded as an e↵ective low-energy description
of a quantum wire with a strong spin-orbit coupling and a large enough Zeeman e↵ect,
which turns into a one-dimensional p-wave superconductor by proximity to a ”standard”
s-wave bulk superconductor.(98; 99). Our starting Hamiltonian is:

H = �w
`�1X

j=1

{c†jcj+1 + c†j+1cj}� µ
X̀

j=1

c†jcj +�
`�1X

j=1

{cjcj+1 + c†j+1c
†
j} (B.1)

In Eq.(B.1) the operator cj (c
†
j) (j = 1, . . . , `) are single-fermion annihilation (cre-

ation) operators defined on site-j of the one-dimensional chain. They satisfy the canon-
ical anticommutation relations {cj, c†j0} = �j,j0 , all the other anticommutators being
equal to 0. Here w is the normal single-electron hopping amplitude, � is the p-wave
superconducting pairing and µ is the chemical potential.

Now, we want to look for and analyze the exitation spetrum by setting the condition
w = � , which does not qualitatively a↵ect the spectrum and the eigenfunctions with
respect to the general case, and µ � 0. Besides its mathematical simplifity, it is also
worth noticing that the Hamiltonian in Eq.(B.1) with w = � takes a precise physical
meaning, as it be obtained from the Hamiltonian open quantum Ising chain via Jordan-
Wigner transformation (100). Technically, we diagonalize the Hamiltonian, with open
boundary conditions on the single-mode wavefunction. Again, we consider the generic
eigenmode of H with energy E :
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�E =
X̀

j=1

{[uj]
⇤cj + [vj]

⇤c†j} (B.2)

with the wavefunctions uj, vj solving the appropriate Bogoliubov-de Gennes (BdG)
equations obtained from the canonical commutation relation [�E, H] = E�E. These,
are given by :

Euj = �w{uj+1 + uj�1}� µuj + w{vj+1 � vj�1}
Evj = �w{uj+1 � uj�1}+ w{vj+1 + vj�1}+ µvj (B.3)

for 1 < j < `. At variance, at the endpoints (j = 1, `), the equations take the form :

Eu1 = �wu2 + wv2 � µu1

Ev1 = �wu2 + wv2 + µv1 , (B.4)

and:

Eu` = �wu`�1 � wv`�1 � µu`

Ev` = wu`�1 + wv`�1 + µv` (B.5)

Requiring that Eqs.(B.3) are satisfied, the solution for 1 < j < ` takes the form :


uj

vj

�
= eikj


uk

vk

�
(B.6)

Imposing the wavefunctions in Eqs.(B.6) to be a solution of Eqs.(B.3), we obtain the
system of equations in momentum space:

Euk = �[2w cos(k) + µ]uk + 2iw sin(k)vk
Evk = �2iw sin(k)uk + [2w cos(k) + µ]vk (B.7)

supplemented with the open boundary conditions:

u0 + v0 = u`+1 � v`+1 = 0 (B.8)

Assuming the chemical potential be positive, i.e. µ > 0, from Eqs.(B.7), we obtain the
dispersion relation:

E = ±✏(k) = ±

s

(2w � µ)2 + 8wµ cos2
✓
k

2

◆
(B.9)
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Having defined the actual gap �w as �w = |2w�µ|, Eq.(B.9) can be inverted, yielding
the momentum of an excitation with energy ✏ as :

cos

✓
k

2

◆
= ±

s
✏2 ��2

w

8wµ
(B.10)

Solutions with energy |✏| > �w correspond to real value of momentum k. These can be
readily written in a compact form; we define ✓ such that:

cos(✓) = �2w cos(k) + µ

✏k

sin(✓) =
2w sin(k)

✏k
(B.11)

Imposing the boundary conditions in Eq.(B.8), we can find the positive-energy solutions:


uj

vj

�

+

=

r
2

`


cos

�
✓
2

�
sin

�
kj + ✓

2

�

� sin
�
✓
2

�
cos

�
kj + ✓

2

�
�

(B.12)

while the corresponding negative-energy solutions are recovered by acting with ⌧x on
the solution in Eq.(B.12), that is:


uj

vj

�

�
= ⌧x


uj

vj

�

+

=

r
2

`


� sin

�
✓
2

�
cos

�
kj + ✓

2

�

cos
�
✓
2

�
sin

�
kj + ✓

2

�
�

(B.13)

The secular equation for the allowed values of k is determined by the boundary condition
at j = `+ 1. It is given by:

sin[k(`+ 1) + ] = 0 (B.14)

Now we consider the case with |✏| < w to find the sub-gap solutions. We can recover
them for comples values of the momenta k, which are fixed by the condition :

cos

✓
k

2

◆
= ±i

s
�2

w � ✏2

8wµ
(B.15)

To solve Eq.(B.15), we now define the momentum for particle-like excitations as kp =
⇡ � i� and for hole-like excitations as kh = ⇡ + i�, with :

� = 2 sinh�1

(s
�2

w � ✏2

8wµ

)
(B.16)

As a result, the most general sub-gap eigenfunction with energy ✏ > 0 is given by


uj

vj

�
= c (�1)j


cosh

�
⇠
2

�
{↵ej� + �e�j�}

sinh
�
⇠
2

�
{↵ej� � �e�j�}

�
(B.17)
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with ⇠ defined through the equations :

cosh(⇠) =
2w cosh(�)� µ

✏

sinh(⇠) =
2w sinh(�)

✏
(B.18)

and the coe�cients ↵ and � determined by the boundary conditions in Eqs.(B.8).
Clearly, a state with energy ✏ > 0 comes together with the particle-hole conjugated
one, with energy �✏ (142). In imposing the boundary conditions in Eqs.(B.8), we find

that ↵e
⇠
2 + �e�

⇠
2 = 0 and, more importantly, that the allowed value of ✏ must satisfy

the condition:

sinh[⇠ � (`+ 1)�] = 0 ) ⇠(✏) = (`+ 1)�(✏) (B.19)

Eq.(B.19) is a transcendent equation, whose solution can in general only be derived
numerically. Yet, a simple approximate formula for the energy can be derived in the
long chain limit, where we may assume that the energy is small enough to enable one
to neglect the dependence of � on ✏ and, therefore, to make the approximation:

�(✏) ⇡ �0 = 2 sinh�1

(s
�2

w

8wµ

)
(B.20)

By using this result, we get:

✏ ⇠ {2we� � µ}e�⇠ ⇡ {2we�0 � µ}e�(`+1)�0 (B.21)

In general, even without knowing the explicit solution,we can identify the boundary of
the phase characterized by the low-lying modes by noting that, in order for Eq.(B.19)
to be satisfied, ⇠(✏) must be real, which implies that e�⇠(✏) > 0. Therefore, we note
that:

e�⇠(✏) =
2we��(✏) � µ

✏
(B.22)

which implies that ⇠(✏) is real if, and only if:

2w

µ
> e�(✏) =

p
(2w + µ)2 � ✏2 +

p
(2w � µ)2 � ✏2p

(2w + µ)2 � ✏2 �
p
(2w � µ)2 � ✏2

� 1 (B.23)

Therefore, the phase characterized by the presence of low-lying sub-gap modes close to
the Fermi level (which evolves into the topological phase with Majorana exciations at
the boundary of the chain as ` ! 1) is defined by the condition 2w

µ > 1 (142) , even
in the case of a finite-length chain.
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Appendix C

p-wave chain with closed boundary

conditions

Previously, we focused our study on one-dimensional chains with open boundary con-
ditions. Now, we take in account the case in which our system has periodic boundary
conditions and it is pierced by a magnetic flux �. In particular, we want to analyze a
p-wave superconducting ring linked by a weak link ⌧ . By using the BdG formalism, we
derive the energy eigenvalues and the corresponding eigenmodes of the model described
by the Hamiltonian, by considering, as we did in the previous section, w = �. As we
will see, by tuning the flux � to the special value �⇤ (which is a function of parameters
of the ring), we can find zero-energy modes in the spectrum of this system. Let us start
from the Hamiltonian:

H = �w
`�1X

j=1

{c†jcj+1 + c†j+1cj}� µ
X̀

j=1

c†jcj

+ �
`�1X

j=1

{cjcj+1 + c†j+1c
†
j}+�⌧{e i

2�c†1c` + e�
i
2�c†`c1} (C.1)

To find the BdG equations, when 1 < j < `, we can do the same computations did
in the previous section, obtaining the results of Eq.(B.3) with the same energy-relation
disperion. But when j = 1 and j = ` the case, di↵erently as the previous one, is more
tricky. Indeed, at variance, at j = 1, we get:

Eu1 = �wu2 � ⌧e�
i
2�u` � µu1 + wv2

Ev1 = �wu2 + wv2 + ⌧e
i
2�v` + µv1 (C.2)

while at j = `, we obtain:
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Eu` = �wu`�1 � ⌧e
i
2�u1 � µu` � wv`�1

Ev` = wu`�1 + wv`�1 + ⌧e�
i
2�v1 + µv` (C.3)

In order for the conditions in Eqs.(C.2,C.3) to be satisfied, one has to modify the
ansatz in Eq.(B.6). For the sake of clarity, in the following we shall use ū1, v̄1 and
ū`, v̄` to respectively denote the wavefunctions at j = 1 and at j = `. Therefore, using
Eqs.(C.2,C.3), we obtain:

"
(E + µ) ⌧e�

i
2�

⌧e
i
2� (E + µ)

# 
ū1

ū`

�
= �w


(u2 � v2)

(u`�1 + v`�1)

�
(C.4)

and :

"
(E � µ) �⌧e i

2�

�⌧e� i
2� (E � µ)

# 
v̄1
v̄`

�
= �w


(u2 � v2)

�(u`�1 + v`�1)

�
(C.5)

On inverting Eqs.(C.4), we get:


ū1

ū`

�
= �

⇢
w

(E + µ)2 � ⌧ 2

� "
{(E + µ)(u2 � v2)� ⌧e�

i
2�(u`�1 + v`�1)}

{�⌧e i
2�(u2 � v2) + (E + µ)(u`�1 + v`�1)}

#
(C.6)

while, on inverting Eqs.(C.5), one rather gets


v̄1
v̄`

�
= �

⇢
w

(E � µ)2 � ⌧ 2

� "
{(E � µ)(u2 � v2)� ⌧e

i
2�(u`�1 + v`�1)}

{⌧e� i
2�(u2 � v2)� (E � µ)(u`�1 + v`�1)}

#
(C.7)

Now, setting j = 2, `� 1, we get the BdG equations:

Eu2 = �w{u3 + ū1}� µu2 + w{v3 � v̄1}
Ev2 = �w{u3 � ū1}+ w{v3 + v̄1}+ µv2 , (C.8)

and :

Eu`�1 = �w{u`�2 + ū`}� µu`�1 + w{v̄` � v`�2}
Ev`�1 = �w{ū` � u`�2}+ w{v̄` + v`�2}+ µv`�1 (C.9)

From Eqs.(C.8,C.9) we see that, in order for the solution in Eq.(C.18) to hold for
1 < j < `, we must have:
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ū1 + v̄1 = u1 + v1
ū` � v̄` = u` � v` (C.10)

where, now, u1, v1 (u`, v`) denote the wavefunction uj, vj evaluated at j = 1 (j = `).
By combining these equations, we can extrapolate the consistency conditions:

ū1 + v̄1 = �w

⇢
E + µ

(E + µ)2 � ⌧ 2
+

E � µ

(E � µ)2 � ⌧ 2

�
(u2 � v2) +

= ⌧w

(
e�

i
2�

(E + µ)2 � ⌧ 2
+

e
i
2�

(E � µ)2 � ⌧ 2

)
(u`�1 + v`�1)

ū` � v̄` = �w

⇢
E + µ

(E + µ)2 � ⌧ 2
+

E � µ

(E � µ)2 � ⌧ 2

�
(u`�1 + v`�1) +

= ⌧w

(
e

i
2�

(E + µ)2 � ⌧ 2
+

e�
i
2�

(E � µ)2 � ⌧ 2

)
(u2 � v2) (C.11)

Now, we make the ansatz that a generic solution of energy ✏ takes the form :


uj

vj

�

+

= c


cos

�
✓
2

�
{aeikj + be�ikj}

�i sin
�
✓
2

�
{aeikj � be�ikj}

�
(C.12)

with c being an appropriate normalization constant. Moreover, to simplify the notation,
we introduce:

A(E) = w

⇢
E + µ

(E + µ)2 � ⌧ 2
+

E � µ

(E � µ)2 � ⌧ 2

�

B(E;�) = ⌧w

(
e�

i
2�

(E + µ)2 � ⌧ 2
+

e
i
2�

(E � µ)2 � ⌧ 2

)
. (C.13)

Therefore, we obtain the system of algebraic equations for a and b given by :

{eik�i ✓2 +A(E)e2ik+i ✓2 � B[E;�]eik(`�1)�i ✓2}a+ {e�ik+i ✓2 +

A(E)e�2ik�i ✓2 � B[E;�]e�ik(`�1)+i ✓2}b = 0

{eik`+i ✓2 +A(E)eik(`�1)�i ✓2 � B⇤[E;�]e2ik+i ✓2}a+ {e�ik`�i ✓2 +

A(E)e�ik(`�1)+i ✓2 � B⇤[E;�]e�2ik�i ✓2}b = 0 (C.14)

On requiring Eqs.(C.14) to provide nontrivial solutions for a and b, we readily obtain
the secular equation for the allowed values of the energy |✏| > �w in the form :
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� sin[k(`� 1) + ✓]� (A2(✏)� |B[✏;�]|2) sin[k(`� 3)� ✓]

�2A(✏) sin[k(`� 2)] + 2<eB[✏;�] sin[k + ✓] = 0 (C.15)

Now, we consider the equation for sub-gap energies, i.e. |✏| < w. These correspond
to complex values of k satisfying :

cos

✓
k

2

◆
= ±i

s
�2

w � ✏2

8wµ
(C.16)

To solve Eq.(C.16), we now define the momentum for particle-like excitations as kp =
⇡ � i� and for hole-like excitations as kh = ⇡ + i�, with :

� = 2 sinh�1

(s
�2

w � ✏2

8wµ

)
(C.17)

As a result, we find that the positive-energy wavefunction is given by:


uj

vj

�
= c (�1)j


cosh

�
⇠
2

�
{↵ej� + �e�j�}

sinh
�
⇠
2

�
{↵ej� � �e�j�}

�
(C.18)

with ⇠ defined through the equations

cosh(⇠) =
2w cosh(�)� µ

✏

sinh(⇠) =
2w sinh(�)

✏
(C.19)

and the coe�cients ↵ and � determined by the appropriate boundary conditions for
the allowed wavefunctions. We therefore trade Eqs.(C.11) for the following system in
the unknowns ↵, �:

{e�+
⇠
2 � e2��

⇠
2A(E)� e(`�1)�+ ⇠

2B(E;�)}↵ +

{e��� ⇠
2 � e�2�+ ⇠

2A(E)� e�(`�1)�� ⇠
2B(E;�)}� = 0

{e`��
⇠
2 � e(`�1)�+ ⇠

2A(E)� e2��
⇠
2B⇤(E;�)}↵ +

{e�`�+ ⇠
2 � e�(`�1)�� ⇠

2A(E)� e�2�+ ⇠
2B⇤(E;�)}� = 0 (C.20)

The system in Eq.(C.20) admits a nontrivial solution for ↵ and � only provided that
the following secular equation for the energy eigenvalue ✏ is satisfied

� sinh[(`� 1)� � ⇠] + 2A(✏) sinh[(`� 2)�] + 2<e(B(✏;�)) sinh[� � ⇠]�
{A2(✏)� |B(✏;�)|2} sinh[(`� 3)� + ⇠] = 0 (C.21)
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Figure C.1: Junction of two finite lenght Kitaev chains

Clearly, Eqs.(C.20,C.21) are consistent with the solution for ⌧ = 0. Indeed, as ⌧ = 0

(open chain limit), one obtains that (apart for a constant) ↵ = e�
⇠
2 and � = �e

⇠
2 . Also,

we obtain that B(E;�) = 0 and, as a result, Eqs.(C.20) take the form :

{e�+
⇠
2 � e2��

⇠
2A(✏)}↵ + {e��� ⇠

2 � e�2�+ ⇠
2A(✏)}� = 0

{e`��
⇠
2 � e(`�1)�+ ⇠

2A(✏)}↵ + {e�`�+ ⇠
2 � e�(`�1)�� ⇠

2A(✏)}� = 0 (C.22)

Using the explicit expression for A(✏), Eqs.(C.22) yield:

↵e�+
⇠
2 + �e��� ⇠

2 �


w

✏+ µ
+

w

✏� µ

�
{↵e2��

⇠
2 + �e�2�+ ⇠

2} = 0

↵e`��
⇠
2 + �e�`�+ ⇠

2 �


w

✏+ µ
+

w

✏� µ

�
{↵e(`�1)�+ ⇠

2 + �e�(`�1)�� ⇠
2} = 0 (C.23)

that is :

u1 + v1 +


w

✏+ µ
+

w

✏� µ

�
{u2 � v2} = 0

v` � v` +


w

✏+ µ
+

w

✏� µ

�
{u`�1 + v`�1} = 0 (C.24)

We now see that Eqs.(C.24) respectively imply u0 + v0 = 0, and u`+1 � v`+1 = 0, which
are the appropriate equations for ⌧ = 0 (open chain limit). Of course, in general we
have to solve Eq.(C.15,C.21) to observe the functional dependence of the energy ✏ on
the flux �. This, how we will see in the following, allows us to obtain a signature of
the presence of Majorana Modes in the system.

C.0.1 SS p-wave junctions in the lattice model

Now we are going to study the case of a junction of two homogeneous Kitaev chain.Our
model Hamiltoninan is:
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H1 = �
X

j<0

⇣
w1

⇣
c†jcj+1 + c†j+1cj

⌘
� µ1c

†
jcj +�1

⇣
cjaj+1 + c†j+1c

†
j

⌘⌘

for the left chain and, similarly the hamiltoninan:

H2 = �
X

j<0

⇣
w2

⇣
d†jdj+1 + d†j+1dj

⌘
� µ2d

†
jdj +�2

⇣
djaj+1 + d†j+1d

†
j

⌘⌘

for the right chain. As regards the wave functions , we impose the conditions :

uj =

(
u(1)
j for j  0

u(2)
j for j � 1

vj =

(
v(1)j for j  0

v(2)j for j � 1

The eingenvalues equations obteined in previous equations can be rewritten for the
first chain (j < 0):

cj : 0 = �w1

⇣
u(1)
j�1 + u(1)

j+1

⌘
��1

⇣
v(1)j�1 � v(1)j+1

⌘
� µ1u

(1)
j � Eu(1)

j

c†j : 0 = +w1

⇣
v(1)j+1 + v(1)j�1

⌘
+�1

⇣
u(1)
j+1 � u(1)

j�1

⌘
+ µ1v

(1)
j � Ev(1)j (C.25)

and, in the same way, for the second (j > 1):

dj : 0 = �w2

⇣
u(2)
j�1 + u(2)

j+1

⌘
��2

⇣
v(2)j�1 � v(2)j+1

⌘
� µ2u

(2)
j � Eu(2)

j

d†j : 0 = w2

⇣
v(2)j+1 + v(2)j�1

⌘
+�2

⇣
u(2)
j+1 � u(2)

j�1

⌘
+ µ2v

(2)
j � Ev(2)j (C.26)

As it regards instead the cases in which j = 0 and j = 1, we must consider the
following junction conditions

cj : 0 = �w1u
(1)
�1 � w”u(2)

1 ��1v
(1)
�1 + �”v(2)1 � µ1u

(1)
0 � Eu(1)

0

c†j : 0 = w1v
(1)
�1 + w”v(2)1 ��1u

(1)
�1 + �”u(2)

1 + µ1v
(1)
0 � Ev(1)0 (C.27)

for j = 0 and

dj : 0 = �w”u(1)
0 � w2u

(2)
2 � �”v(1)0 +�2v

(2)
2 � µ2u

(2)
1 � Eu(2)

1

d†j : 0 = w”v(1)0 + J2v
(2)
2 ��2u

(2)
2 + �”u(1)

0 + µ2v
(2)
1 � Ev(2)1 (C.28)

for j = 1. To simplify Eq. (C.27,C.28) we can extend the solutions u(1)
j , v(1)j to site

j = 1 and, in the same way, u(2)
j , v(2)j to site j = 0 as illustrated in the figure.
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Figure C.2: Junction and ghost sites

In this way, using Eq. (C.25,C.26), we obtain:

cj : 0 = �w1

⇣
u(1)
�1 + u(1)

1

⌘
��1

⇣
v(1)�1 � v(1)1

⌘
� µ1u

(1)
0 � Eu(1)

0

c†j : 0 = w1

⇣
v(1)1 + v(1)�1

⌘
+�1

⇣
u(1)
1 � u(1)

�1

⌘
+ µ1v

(1)
0 � Ev(1)0 (C.29)

for j = 0 in the first chain, and:

dj : 0 = �w2

⇣
u(2)
0 + u(2)

2

⌘
��2

⇣
v(2)0 � v(2)2

⌘
� µ2u

(2)
1 � Eu(2)

1

d†j : 0 = w2

⇣
v(2)2 + v(2)0

⌘
+�2

⇣
u(2)
2 � u(2)

0

⌘
+ µ2v

(2)
1 � Ev(2)1 (C.30)

for j = 1. Now we subtract the results obteind in Eq. (C.29,C.30) to Eq. (C.27,C.28)
to achieve:

cj : 0 = w1u
(1)
1 ��1v

(1)
1 � w”u(2)

1 + �”v(2)1

c†j : 0 = w1v
(1)
1 ��1u

(1)
1 � w”v(2)1 + �”u(2)

1 (C.31)

for the first chain, and:

dj : 0 = w2u
(2)
0 ��2v

(2)
0 � w”u(1)

0 + �”v(1)0

d†j : 0 = w2v
(2)
0 ��2u

(2)
0 � w”v(1)0 + �”u(1)

0 (C.32)

for the second chain.
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Appendix D

Continuum model for

superconductors

In this section, we want to analyze the case of an s-wave one-dimensional superconductor
in a continuum space description, deriving the energy spectrum and the Bogolioubov-
de Gennes equations. Di↵erently from the lattice modellization, the continuum model
is reasonable to describe weak-coupling superconductors, especially when they have a
wide-band metallic normal state. Let us consider an homongeoneus real superconduct-
ing pairing, then �(x, y) = �; our model Hamiltonian is:

H =

Z
dx

X

�

 †
�(x)H↵ �(x) +�

Z
dx

⇣
 †
"(x) 

†
#(x) +  "(x) #(x)

⌘

where m the mass of the quasi-particles, ✏F the Fermi energy, � =", # the spin po-
larization,  †

�(x) and  �(x), respectively, creation and annihilation fermionic operators
which satisfy the anticommutators:

�
 †
�(x), �0(y)

 
= �(x� y)���0 (D.1)

and the others are equal to zero. To obtain the eigenvalues of this Hamiltonian,
we have to sole the Heisenberg commutator [�n,�, H] = E�n,�, where �n,� is the most
generic eigenmode which diagonalize the Hamiltonian as:

Heff =
X

�,n

✏n�
†
n,��n,� (D.2)

To obtain the Bogolioubov-de Gennes equations, we first of all write:
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 "(x) =
X

n

⇣
�n"un(x)� �†

n#v
⇤
n(x)

⌘
(D.3)

 #(x) =
X

n

⇣
�n#un(x) + �

†
n"v

⇤
n(x)

⌘
(D.4)

 †
"(x) =

X

n

⇣
�†
n"u

⇤
n(x)� �n#vn(x)

⌘
(D.5)

 †
#(x) =

X

n

⇣
�†
n#u

⇤
n(x) + �n"vn(x)

⌘
(D.6)

Then, we compute the commutators [ �(x), H] and [ †
�(x), H] and compare them

with:

[�E,�, Heff ] = ✏n�E,� (D.7)

[�†
E,�, Heff ] = �✏n�†

E,� (D.8)

Doing this, we obtain the BdG equations:

✏nun(x) = H↵un(x) +�vn(x) (D.9)

✏nvn(x) = �H⇤
↵vn(x) +�un(x) (D.10)

Now, we note that in the presence of an s-wave potential, both spin polarization have
the same BdG equations; moreover Eqs.(D.10) are satisfied 8n; for this reason, for the
sake of simplicity, we can neglect the dependence on n (i.e. un(x) ! u(x),vn(x) ! v(x)
and ✏n ! E). If we consider a complex superconducting pairing, Eqs.(D.10) must be
written as:

Eu(x) = H↵u(x) +�v(x) (D.11)

Ev(x) = �H⇤
↵v(x) +�

⇤u(x) (D.12)

Now, to find E, we have to look for non trivial solutions of Eqs.(D.10) . To do this,
let assume that :

✓
u(x)
v(x)

◆
=

✓
uk

vk

◆
eikx (D.13)

this help us to find the energy relation dispersion:

E = ±

s✓
~2k2

2m
+ ✏F

◆2

��2 (D.14)
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Eq.(D.14) show us an important consequence of the superconductivity in a material.
First of all, the energy relation dispersion is characterized by a gap of lenght 2�;
moreover, we can obsere the presence of the particle-hole symmetry. From the energy
relation dispersion, we can easly find that:

k = ±
r

2m

~2 (✏F ±
p
(E2 ��2)) (D.15)

which permit us to define, respectively, the quasi-particle and the quasi-hole mo-
menta as:

qp =

r
2m

~2 (✏F +
p
(E2 ��2)) (D.16)

qh =

r
2m

~2 (✏F �
p
(E2 ��2)) (D.17)

Now we fix the energy |✏| � �. From Eqs.(D.10,D.17) we find the explicit expression
for uk and vk:

uk =

s
1

2

✓
1 + a

⇠q
E

◆
=

r
�

2E
e

1
2 arccos(iE�) (D.18)

vk =

s
1

2

✓
1� a

⇠q
E

◆
=

r
�

2E
e�

1
2 arccos(iE�) (D.19)

where ⇠q =
~2
2mq2a � ✏F and a = 1 if we consider qp and a = �1 if we consider qh.

If we consider, instead, values of energy lower then the superconducting gap, i.e.
|✏| < �, we find that the momenta in Eqs.(D.17) becomes complex functions. Indeed,
we have:

qp =

r
2m

~2 (✏F + i
p
(�✏2 +�2)) (D.20)

qh =

r
2m

~2 (✏F � i
p
(�✏2 +�2)) (D.21)

Note that now qp = q⇤h, then we can define in this case qp ⌘ q and qh ⌘ q⇤. Once we
have discussed the case of homogeneous p-wave and s-wave one-dimensional systems,
we want now to show how to obtain the BdG equations in the case of wire junctions.
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Appendix E

Two channels scattering matrix of a

normal region with V (x) = V0�(x)

In the following, we ask how to compute the Andreev Bound States in a SNS junction
in the case in which we have an harmonic potential along the wire. Because of the
presence of this harmonic potential, we have compute the scattering matrix S of a
process in which more energy channels are possible. Indeed, in this case, we have to
consider that the harmonic potential contributes to the total energy of the system and
we have to add this contribute to the free energy spectrum.

To focus on, let us consider the Hamiltonian:

H0 = � ~2
2m

d2

dx2
� ~2

2m

d2

dy2
+

1

2
m!2y2 + V (x, y)� EF (E.1)

where V (x, y) is a potential barrier defined as:

V (x, y) = V0�(x) (E.2)

! the frequency of the harmonic oscillator, m the mass and EF the Fermi energy.
To build the scattering matrix of this system, let us consider, for the sake of simplic-

ity, the case in which only two propagating channels are allowed (i.e. the total particle
energy bigger than the Fermy energy plus the oscillator contribute with n=2). The
most generic wave functions for the left and the right side of the barrier take the form:

(
 L(x, y) =

aL,1p
v1
�1(y)eik1x +

bL,1p
v1
�1(y)e�ik1x + aL,2p

v2
�2(y)eik2x +

bL,2p
v2
�2(y)e�ik2x for x  0

 R(x, y) =
aR,1p
v1
�1(y)eik1x +

bR,1p
v1
�1(y)e�ik1x + aR,2p

v2
�2(y)eik2x +

bR,2p
v2
�2(y)e�ik2x for x > 0

(E.3)
where v1 and v2 are the velocities, respectively, in the first and in the second scat-

tering channel, and k1 and k2 are the momenta for a free particle propagating along a
normal metal. �1/2(y) are the wave function contributions which have dependence from
y. The energy in the first channel is given by E1 = ✏0 +E, where ✏0 is the contribution
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of the first mode of the quantum oscillator along y, while E is the energy contribution
of the free-motion along x. In the same way, we can define the energy of the second
scattering channel as: E2 = ✏1 +E, where ✏1 is the contribution of the second mode of
the quantum oscillator along y. Velocities and momenta are function of the energies.

To compute the scattering matrix, we impose the continuity of the wave function in
x = 0 as follows:

Z
dy�⇤

1(y) { L(x = 0, y)�  R(x = 0, y)} = 0 (E.4)
Z

dy�⇤
2(y) { L(x = 0, y)�  R(x = 0, y)} = 0 (E.5)

Where Z
dy�⇤

m(y)�n(y) = �m,n (E.6)

By inserting Eq.(E.3) in Eqs.(E.4,E.5), we find the conditions:

aL,1p
v1

+
bL,1p
v1

� aR,1p
v1

� bR,1p
v1

= 0 (E.7)

aL,2p
v2

+
bL,2p
v2

� aR,2p
v2

� bR,2p
v2

= 0 (E.8)

which we can simply write as:

aL,1 + bL,1 � aR,1 � bR,1 = 0 (E.9)

aL,2 + bL,2 � aR,2 � bR,2 = 0 (E.10)

To have an equation for the derivative of the wave function, we use the trick of the
integration of the Schroedinger equation from �✏ to ✏, and then send ✏! 0, and to the
bracket with the wave functions �1/2(y). We obtain:

Z
dy�⇤

1(y)

⇢
~2 

0
L(x = 0, y)�  0

R(x = 0, y)

2m
+ V0 L(0, y)

�
= 0 (E.11)

Z
dy�⇤

2(y)

⇢
~2 

0
L(x = 0, y)�  0

R(x = 0, y)

2m
+ V0 L(0, y)

�
= 0 (E.12)

This set of equations give us the conditions:

ik1~2
2m

p
v1

(aL,1 � bL,1 � aR,1 + bR,1) +
V0p
v1

(aL,1 + bL,1) = 0 (E.13)

ik2~2
2m

p
v2

(aL,2 � bL,2 � aR,2 + bR,2) +
V0p
v2

(aL,2 + bL,2) = 0 (E.14)
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Figure E.1: Sketch of the scattering matrix S.

which we can write in the compact form:

(aL,1 � bL,1 � aR,1 + bR,1) + V1 (aL,1 + bL,1) = 0 (E.15)

(aL,2 � bL,2 � aR,2 + bR,2) + V2 (aL,2 + bL,2) = 0 (E.16)

where

V1 =

✓
k1~2
m

◆�1

V0 (E.17)

V2 =

✓
k2~2
m

◆�1

V0 (E.18)

From Eqs.(E.8,E) we obtain the system:

0

BB@

1 �1 0 0
�1 + iV1

2 �1 0 0
0 0 1 �1
0 0 �1 + iV2

2 �1

1

CCA

0

BB@

aL,1
bR,1

aL,2
bR,2

1

CCA =

0

BB@

�1 1 0 0
�1� iV1

2 �1 0 0
0 0 �1 1
0 0 �1� iV2

2 �1

1

CCA

0

BB@

bL,1
aR,1

bL,2
aR,2

1

CCA

(E.19)
which permit us to write the scattering matrix (Fig. E.1):

Se

0

BB@

aL,1
bR,1

aL,2
bR,2

1

CCA =

0

BB@

bL,1
aR,1

bL,2
aR,2

1

CCA (E.20)
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with

Se =

0

BB@

�i V1
1+iV1

1
1+iV1

0 0
1

1+iV1
�i V1

1+iV1
0 0

0 0 �i V2
1+iV2

1
1+iV2

0 0 1
1+iV2

�i V2
1+iV2

1

CCA (E.21)

Now, having the scattering matrix, we can compute the Andreev Bound States by
using the secular equation Eq.(2.65) and following the steps shown in Section 1.2.2.
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