
Dottorato di Ricerca in

MATEMATICA E INFORMATICA

CICLO XXXIII

Large-scale ontology-mediated query answering

over OWL 2 RL ontologies

Settore Scientifico Disciplinare: INF/01 Informatica

Coordinatore: Ch.mo Prof. Gianluigi Greco

Supervisore: Prof. Marco Manna

Dottorando: Dott. Alessio Fiorentino

A mia madre, mio padre,

Gianluca e Andrea.

Acknowledgments

First of all, I would like to thank my supervisor Professor Marco Manna. His knowledge

and his passion for research have inspired me throughout the course of this journey, and I

just consider myself honored and lucky to have been one of his students. Among all of the

people I’ve worked with, I would like to thank Professor Simona Perri and Doctor Jessica

Zangari. Their patient guidance in some of my works has been of great help to me. I also

thank Professor Gianluigi Greco, Coordinator of the PhD program in Mathematics and

Computer Science, and Professor Nicola Leone, whose ideas and insights have contributed

to the development of my research activity. Finally, I would like to thank the reviewers of

this thesis work for the valuable suggestions that have certainly improved its contents.

Abstract

Ontology-mediated query answering (OMQA) is an emerging paradigm at the basis of many

semantic-centric applications. In this setting, a conjunctive query has to be evaluated

against a logical theory (knowledge base) consisting of an extensional database paired with

an ontology, which provides a semantic conceptual view of the data. Among the formalisms

that are capable to express such a conceptual layer, the Web Ontology Language OWL is

certainly the most popular one.

Reasoning over OWL is a very expensive task, in general. For that reason, expressive

yet decidable fragments of OWL have been identified. Among them, we focus on OWL 2

RL, which offers a rich variety of semantic constructors, apart from supporting all RDFS

datatypes. Although popular Web resources—such as DBpedia—fall in OWL 2 RL, only

a few systems have been designed and implemented for this fragment. None of them,

however, fully satisfy all the following desiderata: (i) being freely available and regularly

maintained; (ii) supporting SPARQL queries; (iii) properly applying the sameAs property

without adopting the unique name assumption; (iv) dealing with concrete datatypes.

This thesis aims to provide a contribution in this setting. Primarily, we present

DaRLing: an open-source Datalog rewriter for OWL 2 RL ontological reasoning under

SPARQL queries. We describe its architecture, the rewriting strategies it implements,

and the result of an experimental evaluation that demonstrates its practical applicability.

Then, to reduce memory consumption and possibly optimize execution times of Datalog

queries over large databases, we introduce novel techniques to determine an optimal index-

ing schema together with suitable body-orderings for Datalog rules, based on the concept

of optimal evaluation plan. The ASP encoding of a planner for the computation of such

plans is provided and explained in detail. The new approach is then compared with the

standard execution plans implemented in stat-of-the-art Datalog systems over widely used

ontological benchmarks.

v

vi

Sommario

L’ontology-mediated query answering (OMQA) è un paradigma emergente alla base di molte

applicazioni semantiche. In questo contesto, una query congiuntiva deve essere valutata su

una base di conoscenza, i.e., un database estensionale insieme ad un’ontologia, che fornisce

una vista concettuale semantica dei dati. Tra i formalismi in grado di esprimere tale livello

concettuale, il Web Ontology Language OWL rappresenta di certo il più popolare.

In generale, il reasoning su OWL rappresenta un compito molto costoso e per tale moti-

vo ne sono stati identificati alcuni frammenti (profili) decidibili. Tra questi, ci focalizziamo

sul profilo OWL 2 RL che, oltre a supportare tutti gli RDFS datatypes, offre una ricca

varietà di costruttori semantici. Nonostante diverse ontologie del web—come DBpedia—

ricadono in OWL 2 RL, pochi sono i sistemi ideati ed implementati per questo profilo e

nessuno tra questi possiede tutti i seguenti requisiti: (i) accessibilità gratuita e mante-

nimento regolare; (ii) supporto del query answering tramite SPARQL; (iii) applicazione

della proprietà sameAs in assenza dell’assunzione di nome unico (UNA); (iv) trattazione

dei datatype.

Lo scopo di questa tesi è quello di fornire un contributo in questo contesto. In primis

presentiamo DaRLing: un riscrittore Datalog open-source per il reasoning su ontologie

OWL 2 RL e query SPARQL. Ne descriviamo l’architettura, le strategie di riscrittura e i

risultati di una valutazione sperimentale che ne dimostrano l’applicabilità. Poi, allo scopo

di ridurre il consumo di memoria ed ottimizzare i tempi di esecuzione di queries Datalog

su databases di grandi dimensioni, introduciamo una nuova tecnica per determinare uno

schema di indicizzazione insieme ad un ordinamento ottimale per regole Datalog, basata

sul concetto di piano di valutazione ottimale. Forniamo inoltre il codice ASP di un planner

architettato per il calcolo di tali piani. Questo nuovo approccio è infine comparato con i

piani di esecuzione standard implementati nei più moderni sistemi Datalog su benchmark

ontologici di uso comune.

vii

viii

Contents

Abstract v

Sommario vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 17

1.1 Context and state-of-the-art . 17

1.2 Motivation and objectives . 18

1.3 Challenges and contribution . 20

1.4 Structure of the Thesis . 22

I Preliminary notions and notation 24

2 Answer Set Programming 25

2.1 Syntax . 25

2.2 Answer set semantics . 30

2.3 GCO programming paradigm . 36

ix

2.4 Datalog . 39

3 Description Logics and OWL 45

3.1 OWL 2 profiles . 45

3.2 OWL 2 RL . 46

3.3 Ontology-mediated query answering . 50

II DaRLing rewriter 53

4 Rewriting techniques 55

4.1 System overview . 56

4.2 From OWL 2 RL to Datalog . 57

4.3 Handling owl:sameAs via Datalog . 64

5 Experimental evaluation 75

5.1 Set-up . 75

5.2 Quality . 77

5.3 Scalability . 78

5.4 Discussion . 80

III Evaluation planner 82

6 Planning techniques 83

6.1 Admissible plans . 84

6.2 Preferences . 91

7 ASP-based implementation 95

7.1 Data model . 95

7.2 Guessing part . 98

x

7.3 Checking part . 98

7.4 Optimization part . 100

8 Experimental evaluation 103

8.1 Setting . 103

8.2 Planner customization . 105

8.3 Discussion . 107

IV Conclusion 112

9 Related work 113

10 Combining the DaRLing rewriter and the planner 117

11 Discussion and future work 123

Bibliography 127

xi

xii

List of Figures

2-1 Dependency graph of a non stratified program 40

2-2 Dependency graph of program P from Example 2.4.2 42

3-1 The OWL 2 profiles . 46

3-2 OMQA via Datalog rewriting . 52

4-1 DaRLing’s Architecture . 56

4-2 Dependency graph of program PN∼ . 68

4-3 owl:sameAs graph from Example 4.3.3 . 71

6-1 Hypergraph associated to a Datalog rule . 87

8-1 Plots of the average running time and memory usage of i-dlv with and

without planner on LUBM . 108

8-2 Plots of the average running time and memory usage of i-dlv with and

without planner on LUBM-LUTZ . 109

10-1 Plots of the average running time and memory usage of i-dlv with and

without planner on DaRLing’s outputs over LUBM 120

xiii

xiv

List of Tables

1.1 Main tools supporting OMQA over OWL 2 RL ontologies 19

3.1 Axioms of the DLs underlying OWL 2 . 47

4.1 Datalog translation of concept inclusions in normalized form 60

5.1 Average running times of i-dlv executions on the rewritings generated by

DaRLing and Clipper on LUBM, Adolena, Stock Exchange and Vicod̀ı . . . 77

5.2 Costs of the owl:sameAs-cliques materialization on DBpedia 79

5.3 Performance of i-dlv executions on DaRLing rewritings with owl:sameAs

management mode on DBpedia . 80

8.1 Planner performance on LUBM and LUBM-LUTZ 106

8.2 Planner performance on Stock Exchange and Vicod̀ı 107

8.3 Memory peaks and sum of execution times of i-dlv execution (with and

without planner) on LUBM, LUBM-LUTZ, Stock Exchange and Vicod̀ı . . 110

10.1 Planner performance over DaRLing rewritings on LUBM and Stock Exchange119

10.2 Memory peaks and sum of execution times of i-dlv execution (with and

without planner) over DaRLing rewritings on LUBM and Stock Exchange . 121

xv

xvi

Chapter 1

Introduction

In this chapter we introduce the context and describe the main motivations and challenges

that inspired this work. We provide a summary of the contributions and finally outline

the structure of the thesis.

1.1 Context and state-of-the-art

Ontology-mediated query answering (OMQA) is an emerging paradigm at the basis of

many semantic-centric applications [17, 18, 60]. In this setting, a classical data source is

reinterpreted via an ontology, which provides a semantic conceptual view of the data. As a

direct and positive effect, the knowledge provided by the ontology can be used to improve

query answering.

Among the formalisms that are capable to express such a conceptual layer, the Web

Ontology Language (OWL) is certainly the most popular one [67, 70]. But an ontology-

mediated query (OMQ) has also a second component other than the ontology: the actual

query that specifies, in a semantic way and via the ontological vocabulary, which part

of the data one is interested in. The most suitable formalism used to specify a query

that complements an OWL ontology is definitely the SPARQL Protocol and RDF Query

18 CHAPTER 1. INTRODUCTION

Language (SPARQL), representing—as for OWL—a W3C standard [42].

A number of effective practical approaches proposed in the literature perform OMQA

via rewriting the ontology and the query into an equivalent Datalog program. Formally,

given a dataset (ABox) A, an OWL ontology (TBox) T and a SPARQL query q(x), a

Datalog program P is constructed with an output predicate ans of arity |x| such that, for

each |x|-tuple t of domain constants, A ∪ T |= q(t) if and only if the atom ans(t) can be

derived via P .

Over the past decade, several systems implementing rewriting algorithms have been de-

signed, even for the same fragment of OWL. They may differ, in addition to the techniques,

also in the size and time spent to process the rewritings. Among these, concerning the

QL profile, Presto [65] produces Datalog rewritings of polynomial size, whereas QuOnto [2]

and Requiem [62] produce a union of conjunctive queries (i.e., a set of Datalog rules having

predicate ans in the head) of exponential size in the worst case. For both the RL and EL

fragments, we recall Orel [48] and DReW [72]; whereas OwlOntDB [32] and RDFox [59] are

OMQA systems ad-hoc for the RL profile. Concerning more expressive ontologies, Clip-

per [30] and owl2dlv [5] are reasoners for conjunctive query answering over Horn-SHIQ

description logics; Graal [15] and VLog [27] support features such as the skolem and the

restricted (standard) chase for reasoning over existential rules. (A deeper comparison and

discussion about the state-of-the-art tools is reported in Chapter 9.)

1.2 Motivation and objectives

OWL is a very powerful formalism. But its unrestricted usage makes reasoning undecid-

able already in case of very simple tasks such as fact entailment. Hence, expressive yet

decidable fragments have been identified. Among them, we focus here on the one called

OWL 2 RL [57]. From the knowledge representation point of view, OWL 2 RL enables

scalable reasoning without sacrificing too much the expressiveness. Indeed, it supports all

RDFS datatypes and provides a rich variety of semantic constructors, such as: inverseOf,

1.2. MOTIVATION AND OBJECTIVES 19

Tool License Latest release Query language sameAs Datatypes

Clipper Free Dec 2015 SPARQL-BGP under UNA No
DReW Free Mar 2013 SPARQL-BGP No No
Orel Free Feb 2010 ground queries No No

owl2dlv Commercial Jun 2019 SPARQL-BGP under UNA Yes
OwlOntDB - - SPARQL-DLE under UNA No

RDFox Commercial Jun 2021 SPARQL 1.1 Yes Yes

DaRLing Free Oct 2021 SPARQL-BGP Yes Yes

Table 1.1: Main tools supporting OMQA over OWL 2 RL ontologies.

transitiveProperty, reflexiveProperty, equivalentClass, disjointWith, unionOf, minCardinal-

ity, allValuesFrom, someValuesFrom, and sameAs—among others. But the simple fact of

allowing someValuesFrom only in the left-hand-side of an axiom guarantees that conjunc-

tive query answering can be performed in polynomial time in data complexity (when the

OMQ is considered fixed) and in nondeterministic polynomial time in the general case (the

latter being exactly the same computational complexity of evaluating a single conjunctive

query over a relational database).

Although a number of important Web semantic resources—such as DBpedia1 and

FOAF2—trivially fall in OWL 2 RL, only a few systems have been designed and im-

plemented in this setting. None of them, however, fully satisfy all the following desiderata:

(i) being freely available and regularly maintained;

(ii) supporting ontology-mediated query answering;

(iii) properly applying the sameAs OWL property without adopting the unique name

assumption (UNA);

(iv) dealing with concrete datatypes.

1See https://wiki.dbpedia.org/
2See http://www.foaf-project.org/

https://wiki.dbpedia.org/
http://www.foaf-project.org/

20 CHAPTER 1. INTRODUCTION

Table 1.1 reports the main tools supporting or natively implementing ontology-mediated

query answering over knowledge bases that fall in the RL profile of OWL 2, or beyond.

Concerning the query language, apart from Orel, all the tools support SPARQL patterns:

SPARQL 1.1, SPARQL-BGP [42], and SPARQL-DLE [66]. Finally, the row of OwlOntDB

contains some missing value because the system is currently not available. Hence, none of

the existing systems fully meet conditions (i)-(iv) above.

1.3 Challenges and contribution

Driven by the lack of effective tools in this domain, we conceived: (i) the open-source

system3 DaRLing [34] for preforming OMQA via Datalog over the RL profile of OWL;

and (ii) an ASP-based planner [7, 33] for optimizing the evaluation of Datalog queries in

large-scale scenarios, also available online.4

Among the most arduous challenges in the design of DaRLing there is certainly the

management of the sameAs—a property used by many OWL 2 ontologies to declare equal-

ities between resources. As said, the rewriting techniques aim to express inference tasks for

OWL in terms of inference tasks for Datalog. However, as well as most logic programming

approaches, Datalog works under the Unique Name Assumption (UNA), i.e., presumes that

different names represent different objects of the world. Preserving the sameAs semantics

in Datalog programs deriving from rewriting is therefore equivalent to enabling matches

between equivalent but syntactically distinct individuals. In this setting, an expensive work

(both in terms of time and memory consumption) is represented by the materialization of

the sameAs transitive closure, due to the enormous extension size that the latter typically

assume. To accomplish this task, we devised a Datalog encoding that allows to compute

the sameAs-cliques in a “non-explicit” way, that is, avoiding the transitive rule directly

over the sameAs predicate.

3See https://demacs-unical.github.io/DaRLing/.
4See https://www.mat.unical.it/perri/iclp2019.zip.

 https://demacs-unical.github.io/DaRLing/
https://www.mat.unical.it/perri/iclp2019.zip

1.3. CHALLENGES AND CONTRIBUTION 21

Another challenge that motivated this thesis work is performing OMQA via Datalog in

large-scale contexts. Indeed, with the growing availability of large databases, an efficient yet

memory-saving evaluation of queries is arousing a renewed interest among researchers and

industry experts [11]. Typically, classical Datalog reasoners adopt sophisticated internal

policies to speed-up the computation trying to limit the memory consumption. However,

when the amount of data exceeds a certain size, these policies may result inadequate.

In this scenario, to reduce memory consumption and possibly optimize execution times,

we propose novel techniques to determine an optimal indexing schema for the underlying

database together with suitable body-orderings for the Datalog rules.

Our contribution can be therefore summarized as follows:

• We design DaRLing, a freely available Datalog rewriter for OWL 2 RL ontological

reasoning under SPARQL queries.

• We face the problem of rewriting OWL 2 RL ontologies by readjusting and optimizing

a well-known technique [44] used for the normalization of Horn-SHIQ description

logics.

• We implement the problem of managing the sameAs property by efficiently comput-

ing its transitive closure via Datalog, and enabling the matches of elements belonging

to the same equivalence class (sameAs-clique).

• We conduct an experimental evaluation over popular ontological benchmarks widely

used for testing both capabilities and performance of OMQA systems. The results

confirm that: (i) over synthetic OWL 2 RL benchmarks, DaRLing’s output is compa-

rable with the one produced by existing tools in terms of both number of produced

rules and quality of the rewriting; and (ii) over real-world OWL 2 RL knowledge

bases, DaRLing’s rewriting strategy enables scalable query answering even in case

the UNA is not a viable option.

22 CHAPTER 1. INTRODUCTION

• Given a Datalog program P , a database D and some domain properties, we define

the notion of evaluation plan, which consists of an indexing schema for D together

with a suitable body-ordering for each rule of P . Moreover, to target “optimal”

plans among all admissible ones, we identify a number of additional options, the

combination of which induces different preference orderings among all plans.

• We encode the problem of finding an optimal evaluation plan in ASP, by making use

of choice-rules, strong constraints, weak constraints, aggregates and negation.

• We implement optimal plans by adding annotations [23] to the original Datalog pro-

gram P . The annotated program will be the actual input for i-dlv. In this way,

i-dlv execution is forced to follow the plan without the need for any internal change

to the system. Nonetheless, optimal plans are sufficiently general to be implemented

natively also in different Datalog engines that do not benefit from features like an-

notations.

• We design a setting in the context of ontological reasoning to test our evaluation

planner with the aim of minimizing the memory consumption without paying in

efficiency.

• We compare performance in terms of time and memory usage of dlv when the clas-

sical computation is performed, and when the computation is driven by the planner.

The results confirm that our plans improve the computation with a general gain in

both time and space.

1.4 Structure of the Thesis

This document is structured in 4 parts.

• In Part I we provide an overview of all the background needed to understand the next

parts. In Chapter 2 we describe the ASP language and the Guess-Check-Optimize

1.4. STRUCTURE OF THE THESIS 23

(GCO) programming paradigm. We introduce the Datalog language and some of its

extensions that are used as target languages in the translation of OWL ontologies.

In Chapter 3 we present the OWL Web Ontology Language together with the syntax

and semantics of the description logic underpinning its RL profile. Finally, we intro-

duce the OMQA problem and formally define the problem of performing OMQA via

Datalog rewriting.

• Part II represents the main part of the thesis. Here we introduce DaRLing [34], a

freely available Datalog rewriter for OWL 2 RL ontological reasoning under SPARQL

queries. In particular, in Chapter 4 we introduce its architecture and describe

the rewriting strategies it implements together with some implementation details,

whereas in Chapter 5 we show the result of an experimental evaluation that demon-

strates its practical applicability.

• In Part III we formalize the concept of optimal evaluation plan for an efficient eval-

uation of Datalog queries over large databases (Chapter 6). In Chapter 7, the ASP

encoding of a planner for the computation of such plans is provided and explained

in detail. The new approach is then compared with the standard execution plans

implemented in dlv over widely used ontological benchmarks (Chapter 8).

• Part IV is divided into three chapter. In detail, in Chapter 9 we address an in-depth

discussion on related work; in Chapter 10 we include the results of an experimen-

tal evaluation aimed at testing the behavior of the planner when it takes DaRLing

rewritings as input; finally, in Chapter 11 we draw some conclusions and highlight

future work.

Part of the work presented in this thesis appears in [6], [7], [33] and [34].

Part I

Preliminary notions and notation

Chapter 2

Answer Set Programming

Answer Set Programming (ASP) [19, 31, 54] is a declarative programming paradigm ori-

ented towards “difficult” (primarily NP-hard) search problems, based on the answer set

semantics of logic programming [37]. ASP supports the use of nonmonotonic reasoning

in knowledge-representation and is particularly useful in knowledge-intensive applications.

The standard input language for ASP systems is referred to as ASP-Core-2 [21]. The syntax

and semantics of the ASP language are introduced below.

2.1 Syntax

Terms are either constants, variables or arithmetic terms. Constants can be either integers,

strings starting with some lowercase letter or quoted strings. Variables are denoted by

strings starting with some uppercase letter. Arithmetic terms have form −(t), (t + u),

(t− u), (t ∗ u) or (t/u) for terms t and u.

Atoms are either predicate atoms, built-in atoms or aggregate atoms. If t1, . . . , tk are

terms and p is a predicate symbol of arity k ≥ 0, then p(t1, . . . , tk) is a predicate atom. If

a is a predicate atom, then a and not a are called classical literals. A built-in atom has

form t ≷ u, where t and u are terms, and ≷ ∈ {“ < ”, “ ≤ ”, “ > ”, “ ≥ ”, “ = ”, “ 6= ”}. If

26 CHAPTER 2. ANSWER SET PROGRAMMING

l is a classical literal or a built-in atom, then l is called naf-literal.

An aggregate element has form

t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are terms, l1, . . . , ln are naf-literals and n,m ≥ 0. An aggregate atom has

form

#aggr{E} ≷ t

where #aggr ∈ {“# min ”, “# max ”, “#count”, “#sum”} is an aggregate function name,

E is a (possibly infinite) collection of aggregate elements syntactically separated by “;”,

t is a term and ≷ is one of the (in)equality symbols as above. For an aggregate atom a,

expressions a and not a are aggregate literals.

Example 2.1.1. To give an idea of the meaning of the aggregated elements and their use,

consider a predicate name of arity 3 whose arguments represent the identifier, the salary

and the amount of the monthly working hours of the employees of a certain company. Then

consider the following aggregates:

#max{WorkingHours : employee(Id,Salary,WorkingHours)},

#count{Id : employee(Id,Salary,WorkingHours),Salary > 2000}.

It is easy to guess what these elements are meant to describe. The first one represents the

maximum between the number of working hours on all employees, whereas the second one

counts the number of distinct employees whose salary is greater than $2000. �

An ASP rule r is of the form

h1 | · · · | hm ← b1, . . . , bn. (2.1)

2.1. SYNTAX 27

where m ≥ 0, n ≥ 0; h1, . . ., hm are predicate atoms and b1, . . . , bm are literals. The set

H(r) = {h1, . . . , hm} is the head of r, whereas B(r) = {b1, . . . , bn} is called body of r. If

H(r) = ∅ then r is a (strong) constraint; if B(r) = ∅ and |H(r)| = 1 then r is a fact.

A predicate is defined by a rule r if it occurs in H(r). Predicates defined only by

facts are EDB (Extensional DataBase) predicates, the remaining are IDB (Intensional

DataBase) predicates [1]. The set of all facts in P is denoted by Facts(P); the set of

instances of all EDB predicates in P is denoted by EDB(P).

A weak constraint has form

:∼ b1, . . . , bn. [w@l, t1, . . . , tm] (2.2)

where b1, . . . , bn (n ≥ 0) are literals, t1, . . . , tm (m ≥ 0) are terms, w and l are terms

standing for a weight and a level.

A query has form q?, where q is a predicate atom.

Definition 2.1.1 (ASP program). An ASP program is a finite set of rules and weak

constraints, possibly complemented by a single query.

Example 2.1.2. The rules

r1 : inClique(V) | outClique(V)← vertex(V).

r2 : ← inClique(V1), inClique(V2), V1 6= V2, not edge(V1, V2).

r3 : :∼ outClique(V). [1@1, V]

represent an ASP program P consisting of a disjunctive rule (r1), a strong constraint (r2)

and a weak constraint (r3). Given as input an undirected graph whose vertex set and edges

are encoded by unary and binary predicates respectively, P detects the maximum cliques

(i.e., sets of vertices of maximum cardinality such that, for each pair of vertices, there is

an edge connecting them). Intuitively r1 guesses if a given vertex belongs or not to the

28 CHAPTER 2. ANSWER SET PROGRAMMING

clique, r2 prunes the solutions in which there exist distinct vertices not connected by any

edge, whereas r3 filters out the cliques with the maximum number of elements (“penalizing”

a clique for each external vertex). �

A program (a rule, a weak constraint, a literal, a term) is said to be ground if it contains

no variables. A variable is global in a rule, weak constraint or query r if it appears outside

of aggregate elements in r.

Definition 2.1.2 (Safety). Let V be a set of variables, a variable v ∈ V is said to be

bound by a set of literals {b1, . . . , bn} if v occurs outside of arithmetic terms in some bi

for 1 ≤ i ≤ n such that bi is

• a (non-negated) predicate atom, or

• a built-in atom t1 = t2 such that each variable of V occurring in one of the terms t1

and t2 is bound by {b1, . . . , bn} \ {bi}, or

• an aggregate atom #aggr{E} = t such that each global variable of V occurring in E

is bound by {b1, . . . , bn} \ {bi}.

We say that the entire set V is bound by {b1, . . . , bn} if each v in V is bound by {b1, . . . , bn}.

A rule r of the form 2.1 (or a weak constraint of the form 2.2) is safe if the following

conditions are satisfied:

(i) the set V of global variables in r is bound by {b1, . . . , bn};

(ii) for each aggregate element E of the form t1, . . . , tk : l1, . . . , lm in r, being W the set

of variables occurring in E, the set W \ V of local variables is bound by {l1, . . . , lm}.

Example 2.1.3. Consider the rule r specified below:

p(X,Y)← q(X), #sum{X,Z : s(X,W), Z = X +W} = Y.

2.1. SYNTAX 29

It is not difficult to see that r is safe. Indeed, the set {X,Y } of global variables is bound

by the body B(r) of r, and the set {W,Z} of local variables of the aggregate atom of r is

bound by {s(X,W), Z = X +W}. Instead the rule

p(X,Y)← q(X), #sum{X,Z : s(X,W), Z −X = W} = Y.

is not safe because the local variable Z is not bound by {s(X,W), Z −X = W}. �

From now on we refer to an ASP program as a program whose all rules and weak

constraints are safe.

2.1.1 Syntactic shortcuts

In the following we illustrate some syntactic shortcuts that will be used in this document.

Anonymous Variables. An anonymous variable in a rule, weak constraint or query is

denoted by “ ” (character underscore) and stands for a fresh variable in the respective

context. Different occurrences of anonymous variables represent distinct variables.

Example 2.1.4. The rule

a(X)← b(Y,X), c(X,Z).

can be equivalently written

a(X)← b(, X), c(X,).

using anonymous variables. �

Choice Rules. A choice rule has form

{a1 : l1,1, . . . , l1,k1 ; . . . ; am : lm,1, . . . , lm,km} ≷ u ← b1, . . . , bn. (2.3)

30 CHAPTER 2. ANSWER SET PROGRAMMING

where, for each i = 1, . . . ,m, ai is a predicate atom, ki ≥ 0 and li,j is a naf-literal for

each 1 ≤ j ≤ ki; moreover, ≷ ∈ {“ < ”, “ ≤ ”, “ > ”, “ ≥ ”, “ = ”, “ 6= ”}, u is a term and

b1, . . . , bn are literals for n ≥ 0. The part ≷ u can optionally be omitted if ≷ stands for

“≥” and u = 0.

For each predicate atom ai = pi(ti,1, . . . , ti,hi), let âi = p̂i(ti,1, . . . , ti,hi), where p̂i is a

fresh predicate symbol that is uniquely associated with pi. A choice rule of the form 2.3 is

a shortcut to the rules:

ai | âi ← b1, . . . , bn, li,1, . . . , li,ki .

for each 1 ≤ i ≤ m along with the single constraint

← b1, . . . , bn, not #count{a1 : l1,1, . . . , l1,k1 ; . . . ; am : lm,1, . . . , lm,km} ≷ u.

Example 2.1.5. The choice rule

{a(X) : b(X)} ≤ 1 ← c(X,Y), d(Y).

stands for:

a(X) | â(X) ← c(X,Y), d(Y), b(X).

← c(X,Y), d(Y), not #count{a(X) : b(X)} ≤ 1.

where â is uniquely associated with a. �

2.2 Answer set semantics

Given a program P , the Herbrand universe of P , denoted by UP , consists of all integers

and ground terms that can be built combining constants and function symbols appearing

in P . The Herbrand base of P , denoted by BP , is the set of all ground predicate atoms

2.2. ANSWER SET SEMANTICS 31

obtainable from the predicates appearing in P by replacing variables with elements from

UP . An interpretation I for P is a subset of BP .

Satisfaction of literals

Classical. Given an interpretation I ⊆ BP , a predicate atom a ∈ BP is true (resp., false)

w.r.t. I if a ∈ I (resp., a /∈ I); not a is true (resp., false) w.r.t. I if a is false (resp., true)

w.r.t. I.

Example 2.2.1. Let I = {a(2), b(1, 2), c(2, 1)} be an interpretation. Literals a(2) and

not a(1) are true w.r.t. I, whereas not b(1, 2) and c(2, 2) are false w.r.t. I. �

Built-in. Let � be a total order relationship defined on UP as follows:

• t � u for integers t and u if t ≤ u;

• t � u for any integer t and any string u;

• t � u for strings t and u if t is lexicographically smaller than or equal to u;

A built-in atom t ≷ u, with t, u ∈ UP , is true w.r.t. an interpretation I ⊆ BP if one of

the following conditions is satisfied: (i) ≷ is “≤” and t � u; (ii) ≷ is “≥” and u � t; (iii)

≷ is “<” and (t � u) ∧ (u � t); (iv) ≷ is “>” and (u � t) ∧ (t � u); (v) ≷ is “=” and

(t � u) ∧ (u � t); (vi) ≷ is “ 6=” and (t � u) ∨ (u � t)). Otherwise, t ≷ u is false w.r.t. I.

Aggregates. For the satisfaction of aggregate literals, we introduce an aggregate function

associated with each aggregate function name, which maps a set T of tuples of terms to a

term, +∞ or −∞ as follows:

#min(T) =


−∞ if |T | = +∞

min{t1 | (t1, . . . , tm) ∈ T} if 0 < |T | < +∞

+∞ if T = ∅;

32 CHAPTER 2. ANSWER SET PROGRAMMING

#max(T) =


−∞ if T = ∅

max{t1 | (t1, . . . , tm) ∈ T} if 0 < |T | < +∞

+∞ if |T | = +∞;

#count(T) = |T |;

#sum(T) =


∑

(t1,...,tm)∈T ;
t1 is an integer

t1 if |{(t1, . . . , tm) ∈ T | t1 ∈ Z \ {0}}| < +∞

0 otherwise.

Notice that aggregate functions #min and #max rely on the total order � on UP for finite

non-empty sets. Moreover, in the case of #aggr(T) = ±∞, we adopt the convention that

−∞ � u and u � +∞ for each u ∈ UP . An interpretation I ⊆ BP maps any collection E

of aggregate elements to the following set, denoted eval(E, I), of tuples of ground terms:

eval(E, I) = {(t1, ..., tm) | t1, ..., tm : l1, ..., ln occurs in E and l1, ..., ln are true w.r.t. I}

A literal a = #aggr(E) ≷ u is true (resp., false) w.r.t. I if #aggr(eval(E, I)) ≷ u is true

(resp., false) according to the corresponding aggregate function and the total order � on

UP (extended with +∞ and −∞ symbols) previously defined; not a is true (resp., false)

w.r.t. I if a is false (resp., true) w.r.t. I.

Example 2.2.2. Let E = {2, 1 : b(1, 2), not c(1); 2, 2 : b(2, 2), not c(2); 2, 1 : c(2)}

be a collection of aggregate elements and I = {b(1, 2), b(2, 2), c(2)} be an interpretation.

We have that eval(E, I) = {(2, 1)} and the literal #sum(E) < 3 is true w.r.t. I since

#sum(eval(E, I)) = #sum({(2, 1)}) = 2. �

Answer Sets

The semantics of ASP is given in terms of answer sets. Given a program P , we say that

a substitution is a map σ from a set of variables V to the Herbrand universe UP . For an

object O (rule, weak constraint, query, literal, aggregate element, etc.), we denote by Oσ

2.2. ANSWER SET SEMANTICS 33

the object obtained by replacing each occurrence of a variable v ∈ V by σ(v) in O. Given a

rule r in P , a substitution from the set of global variables in r is global for r; a substitution

from the set of variables in an aggregate element e is local for e. The instantiation of a

collection E of aggregate elements is the set

⋃
e∈E
{eσ | σ is a local substitution for e}.

A ground instance of a rule, a weak constraint or a query r is obtained by first applying a

global substitution σ to r, and then replacing E with its instantiation, for each aggregate

atom #aggrE ≷ u appearing in rσ. The full instantiation of a program P , denoted

Ground(P), is the set of all ground instances of its rules and weak constraints.

We say that a ground rule

h1| . . . |hm ← b1, . . . , bn.

in Ground(P) is satisfied w.r.t. an interpretation I if some h ∈ {h1, . . . , hm} is true w.r.t.

I when b1, . . . , bn are true w.r.t. I; we say that I is a model of P if every rule in Ground(P)

is satisfied w.r.t. I. The Gelfond-Lifschitz reduct [37] of P w.r.t. I, is the subset P I of all

rules of Ground(P) having all body literals true w.r.t. I. A model M of P is an answer set

for a program P if and only if M is a minimal model (with respect to the subset inclusion

relation ⊆) for PM . The set of all answer sets for P is denoted by AS(P).

Example 2.2.3. Consider the program P from Example 2.1.2 together with the set F of

ground facts:

vertex(1). vertex(2). vertex(3). vertex(4).

edge(1, 2). edge(2, 1). edge(1, 3). edge(3, 1).

edge(2, 3). edge(3, 2). edge(1, 4). edge(4, 1).

34 CHAPTER 2. ANSWER SET PROGRAMMING

which encode the graph G = 〈V,E〉 with V = {1, 2, 3} and E = {{1, 2}, {1, 3}}. The answer

sets of P ∪ F are:

AS0 = F ∪ {outClique(1), outClique(2), outClique(3)},

AS1 = F ∪ {inClique(1), outClique(2), outClique(3)},

AS2 = F ∪ {outClique(1), inClique(2), outClique(3)},

AS3 = F ∪ {outClique(1), outClique(2), inClique(3)},

AS4 = F ∪ {inClique(1), inClique(2), outClique(3)},

AS5 = F ∪ {inClique(1), outClique(2), inClique(3)}.

Note that the correspondence:

AS0 7→ ∅

AS1 7→ {1}

AS2 7→ {2}

AS3 7→ {3}

AS4 7→ {1, 2}

AS5 7→ {1, 3}

is a bijective function between AS(P ∪ F) and the set of all the possible cliques of G. �

Optimal Answer Sets

Consider the function w̃(P, ·) which for any interpretation I of P acts as follows:

w̃(P, I) := {(w@l, t1, . . . , tm) | :∼ b1, . . . , bn. [w@l, t1, . . . , tm] occurs in Ground(P)

2.2. ANSWER SET SEMANTICS 35

and b1, . . . , bn are true w.r.t. I}.

For any integer l, is defined the quantity

W I
l :=


∑

(w@l,t1,...,tm)∈w̃(P,I);
w is an integer

w if |{(w@l, t1, . . . , tm) ∈ w̃(P, I) | w 6= 0}| < +∞

0 otherwise

representing the overall sum of the weights at level l in w̃(P, I) w.r.t. I. Given two answer

sets M,M ′ ∈ AS(P), we say that M dominates M ′ (or, M ′ is dominated by M) if there

is an integer l̄ such that WM
l̄

< WM ′

l̄
and WM

l = WM ′
l for each l > l̄. An answer set

M ∈ AS(P) is optimal if there is no M ′ ∈ AS(P) that dominates M .

Example 2.2.4. Let P and F as in Example 2.1.2 and Example 2.2.3. Then,

w̃(P ∪ F,AS0) = {(1@1, 1), (1@1, 2), (1@1, 3)},

w̃(P ∪ F,AS1) = {(1@1, 2), (1@1, 3)},

w̃(P ∪ F,AS2) = {(1@1, 1), (1@1, 3)},

w̃(P ∪ F,AS3) = {(1@1, 1), (1@1, 2)},

w̃(P ∪ F,AS4) = {(1@1, 3)}, and

w̃(P ∪ F,AS5) = {(1@1, 2)}.

Thus, we get WAS0
1 = 3, WAS1

1 = WAS2
1 = WAS3

1 = 2 and WAS4
1 = WAS5

1 = 1. Therefore,

the optimal answer sets are AS4 and AS5, which not by chance represent the cliques whose

cardinality is 2. �

Queries

A ground query Q = q? of a program P is true if q ∈M for each answer set M ∈ AS(P);

otherwise, Q is false. Given a non-ground query Q = q(t1, . . . , tn)? in a program P, the set

36 CHAPTER 2. ANSWER SET PROGRAMMING

of answers to Q is

Ans(Q,P) = {σ | σ is a substitution for Q such that Qσ is true}.

Note that, if AS(P) = ∅, all ground queries are true and Ans(Q,P) contains all possible

substitutions for Q.

Example 2.2.5. Consider P and F as in Example 2.1.2 and Example 2.2.3, and the

query Q = inClique(X)?. Since there is no vertex that belongs to all the cliques, the set of

answers Ans(Q,P ∪ F) is empty. �

2.3 GCO programming paradigm

Apart from its high expressive power (ASP captures the complexity class ΣP
2 = NPNP),

one of the main reasons for the success of ASP is that it is a full declarative language (the

ordering of literals and rules is not relevant). A large variety of problems can be encoded

using the Guess-Check-Optimize (GCO) methodology [53] in a very compact, readable,

and elegant way. Given a set of facts F that specifies an instance I of a given problem, a

GCO program P of that problem consists of the following three main parts:

• The guessing part G ⊆ P of the program consists of disjunctive rules such that the

answer sets of G∪F represent “solution candidates” for I. G defines the search space

in which rule applications are branching points.

• The (optional) checking part C ⊆ P of the program prunes illegal branches. C consists

of strong constraints that filter the solution candidates in such a way that the answer

sets of G ∪ C ∪ F represent the admissible solutions for the problem instance I.

• The (optional) optimization partO ⊆ P of the program allows to specify the best solu-

tions according to an optimization function by using weak constraints. Indeed, weak

constraints implicitly define an objective function f : AS(G ∪ C ∪ F)→ N mapping

2.3. GCO PROGRAMMING PARADIGM 37

the answer sets of G ∪ C ∪F to natural numbers (see Subsection 2.2). The semantics

of G ∪ C ∪ F ∪ O optimizes f by filtering out those answer sets on which f reaches

the minimum value; this way, the optimal (least cost) solutions are computed.

Each layer of the GCO program P may have further auxiliary predicates, defined by

stratified rules, for local computations.

Example 2.3.1. In this example we show an elegant ASP encoding for the 3-Col problem,

which is known to be a NP-complete problem [61]. Let G = 〈V,E〉 be an undirected graph

whose vertex set is V = {1, . . . , n} and edges are represented by a subset E ⊆ {{i, j} |

i, j ∈ V, i 6= j}. Given a set Col = {r, g, b} of three colors, the 3-Col problem is to decide

whether there exists a 3-Coloring map γ : V → Col such that γ(i) 6= γ(j) if {i, j} ∈ E

(i.e., adjacent vertices have different colors). Suppose that G is represented by a set of facts

F using a unary predicate symbol “vertex” for the elements of V , and a binary predicate

symbol “edge” for the elements of E. Then, the following GCO program, combined with

F , computes all the possible 3-Colorings of that graph.

r1 : color(X, r) | color(X, g) | color(X, b)← vertex(X).

r2 : ← color(X1, C), color(X2, C), edge(X1, X2).

In particular, the rule r1 is the guessing part of the program and expresses that each vertex

must either be colored red, green, or blue: due to minimality of the answer sets, a vertex

cannot be assigned more than one color. The constraint r2 constitutes checking part of the

program and ensures that no pair of adjacent vertices is assigned to the same color. It is

easy to see that there is a one-to-one correspondence between the solutions of 3-Col and

AS(F ∪ {r1, r2}). In other words, G is 3-colorable if and only if F ∪ {r1, r2} has some

answer set. �

Note that 3-Col is not an optimization problem, therefore there is no optimization

part in its ASP encoding. We next see how to use the GCO programming paradigm for

38 CHAPTER 2. ANSWER SET PROGRAMMING

the resolution of the Travel Salesman Problem (TSP), another well-known NP-complete

problem [61, 64], by means of an ASP encoding whose answer sets correspond to the

problem solutions.

Example 2.3.2. Let G = 〈N,A, c〉 be a weighted directed graph, where N is a set of nodes,

A ⊆ N ×N is a set of arcs and c : A→ N+ is a cost function mapping each arc in A to a

positive natural number. Given a node n0 ∈ N , the TSP asks to find a minimum-cost cycle

(closed path) in G starting at n0 and passing through each node of N exactly once. Suppose

again that G is specified by a set of facts F using the unary predicate symbol “node” which

represents the set N , the ternary predicate symbol “arc” representing the arcs in A with

the respective costs specified by c, and the unary predicate symbol “start” representing the

starting node. Then, below is a GCO encoding for the TSP.

r1 : inPath(X,Y,C) | outPath(X,Y,C)← start(X), arc(X,Y,C).

r2 : inPath(X,Y,C) | outPath(X,Y,C)← reached(X), arc(X,Y,C).

r3 : reached(X)← inPath(, X,).

r4 : ← inPath(X,Y,), inPath(X,Y1,), Y 6= Y1.

r5 : ← inPath(X,Y,), inPath(X1, Y,), X 6= X1.

r6 : ← node(X), not reached(X).

r7 : :∼ inPath(X,Y,C). [C@1, X, Y, C]

The guessing part of the program uses the disjunctive rules r1 and r2 for the generations of

all (nondeterministic) paths in G starting at n0, and the rule r3 for the computation of the

reached nodes in any path. The checking part consists of the three strong constraints r4, r5

and r6 which select paths (among all the guessed ones) representing cycles passing through

each node exactly once. Finally, the optimization part consists of the weak constraint r7

which picks cycles with lower cost. Thus, it is easy to see that the answer sets of P ∪ F

are in a one-to-one correspondence with the optimal tours of the input graph. �

2.4. DATALOG 39

2.4 Datalog

In this section we introduce the Datalog language [29] and the notation with which we

indicate some of its extensions. As we will see, some fragments of the Web Ontology

Language OWL can be rewritten in Datalog. Here Datalog programs are seen as a special

case of ASP ones and the fixpoint semantics is provided.

Syntax

A Datalog program is an ASP program not allowing for:

(i) arithmetic terms,

(ii) built-in atoms,

(iii) aggregate atoms,

(iv) negated atoms,

(v) weak constraints, and

(vi) disjunction in the heads of its rules.

The language obtained from Datalog allowing the negation in the body of the rules is

referred as Datalog¬ [36]. In other words, a Datalog¬ program is a set of rules of the form:

α0 ← α1, . . . , αm, not αm+1, . . . , not αn .

where n ≥ m ≥ 0, and each αi is a predicate atom. We define B+(r) = {α1, . . . , αm} (the

positive body) and B−(r) = {not αm+1, . . . , not αn} (the negative body). If B(r) = ∅ then

r is a fact. The set of all the facts of a program P is denoted Facts(P).

The notion of safety is inherited from Section 2.1. In particular, we have that a Datalog¬

rule r is safe if each variable in r occurs at least once in B+(r). In the following, only

40 CHAPTER 2. ANSWER SET PROGRAMMING

a

d

c

e

−

Figure 2-1: Dependency graph of program P from Example 2.4.1.

safe rules are considered, and programs are required to satisfy stratification of negation,

defined next. With a Datalog¬ program P we can associate a labeled graph GP , called

dependency graph, whose nodes are all the IDB predicates (namely, those that appear in

the head of the rules of P\Facts(P)) of P and (b, a) is an arc if predicate a depends on

b (i.e., b appears in the body of a rule where a appears in the head); moreover (b, a) is

labeled with the symbol “−” if the occurrence of b is negated. A Datalog¬ program P is

said to be stratified if no cycle of the dependency graph of P contains a labeled arc. In

other words, P is stratified if the negation is not involved in recursion. We indicate with

Datalog¬s the Datalog extension allowing for stratified negation.

Example 2.4.1. The following program P :

a(X)← b(X,Y), c(Y).

c(X)← d(X).

e(X,Y)← b(Y,X), c(Y).

d(X)← e(X,Y), not a(X).

is not stratified. The dependency graph GP is shown in Figure 2-1 and contains a cycle

with a label. �

2.4. DATALOG 41

Fixpoint semantics

As a fragment of the ASP language, the Datalog semantics is directly inherited from the

ASP semantics described in Section 2.2 using the model-theoretic approach. In the following

we give the semantics of Datalog¬s making use of the operational (fixpoint) approach.

A substitution σ is a mapping from variables to constants; for a set of literals L, let Lσ

be the set obtained from L by replacing each variable X by σ(X). Recall that a strongly

connected component (SCC) of a directed graph G is a maximal subgraph of G in which

there exists an oriented path between each pair of nodes belonging to it. Given a program

P , let C1, . . . , Cn (for some n ≥ 1) be the SCCs of GP , sorted in such a way that for every

p ∈ Ci and p′ ∈ Cj with 1 ≤ i < j ≤ n, there is no path from p′ to p in GP . Let subP (Ci)

denote the subprogram containing all the rules of P whose head predicates belong to Ci.

Given i ∈ {1, . . . , n}, the immediate consequence operator of P at stage i, denoted T iP , is

defined as

T iP (I) := {H(r)σ | r ∈ subP (Ci), B
+(r)σ ⊆ I,B−(r)σ ∩ I = ∅}

for each set of ground atoms I. For i ∈ {1, . . . , n}, consider the sequence:

Ai0(I) := I

Aik(I) := Aik−1(I) ∪ T iP (Aik−1(I)) (k = 1, 2, . . .);

and let k̄ := min{k ≥ 0 | Aik(I) ≡ Aik+1(I)}. The least fixpoint of T iP (w.r.t. I) is defined

as

T iP ⇑ I := Aik̄(I).

Let I0 := Facts(P), and Ii := T iP ⇑ Ii−1, for i = 1, . . . , n. The semantics of P is given by

In, in the following denoted TP (P).

Example 2.4.2. Consider a directed graph. Nodes that can not be reached from a source

42 CHAPTER 2. ANSWER SET PROGRAMMING

reachable

unreachable

−

Figure 2-2: Dependency graph of program P from Example 2.4.2.

node are identified by the following program P :

reachable(Y)← source(X), arc(X,Y).

reachable(Y)← reachable(X), arc(X,Y).

unreachable(Y)← source(X), node(Y), not reachable(X,Y).

The dependency graph GP is shown in Figure 2-2. The SCCs of GP are C1 = {reachable}

and C2 = {unreachable}. Given the dataset D

source(1). node(2). node(3). node(4).

arc(1, 2). arc(2, 3). arc(4, 2).

TP (P ∪D) extends D with

reachable(2). (stage 1, application 1)

reachable(3). (stage 1, application 2)

unreachable(4). (stage 2)

�

2.4. DATALOG 43

Finally, we refer as Datalog¬s,6= the extension of Datalog that allows the use of the

stratified negation and built-in atoms. Such an extension represents the target language

in the rewriting of our OWL 2 RL ontologies.

44 CHAPTER 2. ANSWER SET PROGRAMMING

Chapter 3

Description Logics and OWL

Description Logics (DLs) are a family of formal knowledge representation languages used to

describe and reason about the “concepts” of an application domain [14, 20, 46]. Among the

most relevant applications of DLs there is the OWL Web Ontology Language,1 a knowledge

representation language standardised by the World Wide Web Consortium (W3C) and

designed to facilitate the development of Semantic Web applications. The current version

of the OWL specification2 is OWL 2 [38], developed by the W3C OWL Working Group.

The syntactic elements of OWL 2 are almost analogous to those of a DL, with the main

difference that concepts and roles are called classes and properties respectively.

3.1 OWL 2 profiles

Reasoning over OWL 2 is a very expensive task: fact entailment (i.e., checking whether

an individual is an instance of a concept) is already 2NExpTime-hard, while decidability

of conjunctive query answering is even an open problem. To balance expressiveness and

scalability, the W3C identified three tractable profiles3—OWL 2 EL, OWL 2 QL, and OWL

1See http://www.w3.org/TR/owl2-overview/
2See https://www.w3.org/TR/owl2-syntax/
3See http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-profiles/

46 CHAPTER 3. DESCRIPTION LOGICS AND OWL

Table 3: DLV-tractable ontology classes.

Ontology class max predicate arity Data complexity Combined complexity
j-acyclic arbitrary PTIME-complete 2EXPTIME-complete

OWL 2 EL, Horn-SH I Q , EL++ 2 PTIME-complete EXPTIME-complete
datalog, shy arbitrary PTIME-complete EXPTIME-complete

OWL 2 QL, DLP, ELH 2 PTIME-complete NP-complete
linear arbitrary in AC0 PSPACE-complete

OWL 2 QL, DL-LiteR 2 in AC0 NP-complete

DLV-tractable OWL ontologies

DLP
(≈OWL 2 RL)

ELH
(⊂ OWL 2 EL)

DL-LiteR
(OWL 2 QL)

EL++
(OWL 2 EL)

Horn-SHIQ

Figure 1: Relative expressiveness of OWL classes of ontologies.

hhttp://swat.cse.lehigh.edu/onto/univ-bench.owl#i .

hhttp://www.University0.edu/GraduateStudent0i
a ub:GraduateStudent .

(in other word, individual GraduateStudent0
is a GraduateStudent). An OWL 2 RL rea-
soner would produce an empty answer, while
hhttp://www.University0.edu/GraduateStudent0i
should be returned because of the following axioms
which are present in the LUBM TBox:

ta1 : GraduateStudent v Person
ta2 : GraduateStudent v

9takesCourse.GraduateCourse
ta3 : GraduateCourse v Course
ta4 : Student ⌘ Person u 9takesCourse.Course 2

In particular, individual GraduateStudent0 should be
a Student because (i) he is a GraduateStudent, (ii)
every GraduateStudent is a Person who takes a Gra-
duateCourse, (iii) every GraduateCourse is a Course
and (iv) Students are all those Persons who take a
Course. However, GraduateStudent0 will never be-
come a Student for these reasoners because axiom ta2
is completely ignored by any OWL 2 RL reasoner.

Analogously, it turns out that any OWL 2 RL re-
asoner is incomplete even on queries #7, #8, #9 and

2As usual in DLs, A⌘ B is a shortcut form Av B toget-
her with Bv A.

#10 over structurally simple ABoxes. For the remai-
ning queries, instead, since they depend on a portion
of knowledge base involving only axioms without ex-
istential quantification, they can be correctly answe-
red by OWL 2 RL reasoners. More in general, one
may define many additional queries where OWL 2 RL
reasoners are incomplete over LUBM. However, this
is rather difficult to appreciate while using the stan-
dard ABox generator provided with LUBM. Indeed,
it seems that the aim of this generator is testing sys-
tems scalability rather than correctness.

It is worth pointing out, in addition, that most on-
tologies which are commonly used for testing OBQA
systems are out of OWL 2 RL and, hence, they can-
not be safely handled by OWL 2 RL reasoners. This
is the case for instance of Adolena 3, StockExchange 4,
Path5 5, Galen 6 and NPD Fact Page 7. Among well-

3The Adolena (Abilities and Disabilities OntoLogy for
ENhancing Accessibility) ontology (Keet et al., 2008) has
been developed for the South African National Accessibi-
lity Portal. It describes abilities, disabilities and devices.

4StockExchange (Pérez-Urbina et al., 2010) is an onto-
logy of the domain of financial institution within the EU.

5Path5 is a synthetic ontology (Pérez-Urbina et al.,
2010) encoding graph structures, and used to generate an
exponential blow-up of the size of the rewritten queries.

6Galen is an open source medical ontology that is wi-
dely used as stress test for OBQA systems since its TBox
consists of about 50k/60k axioms. For more details, see
https://bioportal.bioontology.org/ontologies/GALEN.

7NPD FactPages is an ontology describing the petro-

The AI System DLV: Ontologies, Reasoning, and More

11

Figure 3-1: The OWL 2 profiles.

2 RL—exhibiting good computational properties: the evaluation of conjunctive queries

over Knowledge Bases falling in these fragments is in PTime in data complexity (where

query and TBox are considered fixed) and in PSpace in combined complexity (nothing

is fixed) [69]. Figure 3-1 shows how the three standard OWL 2 profiles are placed within

the DLs context, and also how they are related to each other. In particular, we have that

EL++ [13], DL-LiteR [65] and DLP [40] are the DLs underpinning OWL 2 EL, OWL 2 QL

and OWL 2 RL, respectively. Table 3.1 reports those axioms that are at the basis of the

OWL 2 profiles, involving just atomic concept and role names. Among these three profiles,

OWL 2 RL is the only one that does not admit the usage of existential quantification in

the right-hand side of axioms.

3.2 OWL 2 RL

In this thesis we focus on OWL 2 RL, which, from the knowledge representation point of

view, enables scalable reasoning without scarifying too much the expressiveness. In the

following we provide the notation related to the DL underlying the OWL 2 RL profile and

its semantics.

3.2. OWL 2 RL 47

Horn-SHIQ EL++ DL-LiteR DLP axioms
(OWL 2 EL) (OWL 2 QL) (≈ OWL 2 RL)

X X X X B v A
X X X B1 uB2 v A
X X X B v ∀R.A
X X X ∃R.B v A
X X X X ∃R.> v A
X X X B v ∃R.A
X X X B v ¬A
X X B v 61R.A

X X X X R v S
X X X R− v S
X X X R ◦R v R

X R ◦ S v P
X X X R v ¬S

Table 3.1: Axioms of the DLs underlying OWL 2: A, B, B1 and B2 are atomic concepts;
R, S and P are role names.

Syntax

Let NC (atomic concepts), NR (role names), and NI (individuals) be mutually disjoint

discrete sets. A role is either r ∈ NR or an inverse role r− with r ∈ NR. We denote by R−

the inverse of a role R defined by R− := r− when R = r and R− := r when R = r−.

Definition 3.2.1. The set of concepts is the smallest set such that:

• >, ⊥, and every atomic concept A ∈ NC is a concept;

• if C and D are concepts and R is a role, then C u D, C t D, ¬C, ∀R.C, ∃R.C,

≥ nR.C and ≤ nR.C, for n ≥ 1, are concepts.

Definition 3.2.2. Subconcept and Superconcept Expressions are recursively defined as

follows:

• > and every atomic concept A ∈ NC is both a Subconcept and a Superconcept Ex-

pression;

48 CHAPTER 3. DESCRIPTION LOGICS AND OWL

• if C and D are Subconcept Expressions and R is a role, then C uD, C tD, ∃R.C

and ≥ 1R.C are Subconcept Expressions;

• if C and D are Superconcept Expressions and R is a role, then C u D, ¬C, ∀R.C,

and ≤ 1R.C are Superconcept Expressions.

An assertion is of the form C(a) or R(a, b), where C is a concept, R is a role, and

a, b ∈ NI . A finite set of assertional axioms is called ABox (assertional box). An expression

C v D, where C, D are concepts, is a concept inclusion (CI). An expression R v S, where

R, S are roles, is a role inclusion (RI). A transitivity axiom is an expression trans(R), where

R is a role. A finite set of CIs, RIs and transitivity axioms is called TBox (terminological

box).

Definition 3.2.3. A knowledge base (KB) is any pair K = (A, T) where A is an ABox

and T is a TBox.

We will generally refer to the elements of an ABox or a TBox by calling them axioms.

Definition 3.2.4 (Polarities). Positive and negative occurrences of a concept C in concepts

are defined as follows:

• C occurs positively in itself;

• C occurs positively (resp., negatively) in ¬D or ≤ nS.D if C occurs negatively (resp.,

positively) in D ;

• C occurs positively (resp., negatively) in ∃R.D, ∀R.D or ≥ nS.D if C occurs posi-

tively (resp., negatively) in D; and

• C occurs positively (resp., negatively) in D1 u D2, D1 t D2 if C occurs positively

(resp., negatively) in D1 or in D2 .

3.2. OWL 2 RL 49

C occurs positively (resp., negatively) in D1 v D2 if C occurs positively (resp., negatively)

in D2, or negatively (resp., positively) in D1; C occurs positively (resp., negatively) in a

TBox T if C occurs positively (resp., negatively) in some axiom of T .

Example 3.2.1. In the TBox

linkedViaTrain v linked

trans(linkedViaTrain)

CommutingArea v ∃linked.Capital

∃linked.Capital v DesirableArea

Capital v DesirableArea

we have the following: Capital occurs both positively (in the third axiom) and negatively

(in the last two axioms), whereas DesirableArea occurs positively and CommutingArea

occurs negatively. �

Definition 3.2.5. We say that a TBox T belongs to the OWL 2 RL profile if the following

conditions are satisfied:

• no concept of the form C tD occurs positively in T ; and

• no concept of the form ¬C, ∀R.C, or ≤ 1R.C occurs negatively in T ;

• for each CI C v D it turns out that C is a Subconcept Expression and D is a

Superconcept Expression;

Example 3.2.2. The TBox of the Example 3.2.1 does not fall in the OWL 2 RL profile.

In fact, in CommutingArea v ∃linked.Capital, the concept ∃linked.Capital is not a

Superconcept Expression. �

50 CHAPTER 3. DESCRIPTION LOGICS AND OWL

Semantics

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I (domain) and a function ·I

which maps every individual to an element of ∆I , every atomic concept A to a subset AI

of ∆I , and every role R to a subset RI of ∆I×∆I such that (x, y) ∈ RI iff (y, x) ∈ (R−)I .

Moreover, for each pair of concepts C and D, each role R, and each n ≥ 1,

• >I = ∆I , ⊥I = ∅,

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI ,

• (∀R.C)I = {x ∈ ∆I | {RI(x, y) | y ∈ ∆I \ CI} = ∅},

• (∃R.C)I = {x ∈ ∆I | {RI(x, y) | y ∈ CI} 6= ∅},

• (≥ nR.C)I = {x ∈ ∆I | |{RI(x, y) | y ∈ CI}| ≥ n},

• (≤ nR.C)I = {x ∈ ∆I | |{RI(x, y) | y ∈ CI}| ≤ n}.

An interpretation I is a model of an assertion A(a) (resp., R(a, b)) if aI ∈ AI (resp.,

(aI , bI) ∈ RI). I is a model of a CI (resp., RI) C v D (resp., R v S) if CI ⊆ DI

(resp., RI ⊆ SI); I is a model of a transitivity axiom trans(R) if RI ◦ RI ⊆ RI , where

RI ◦ RI := {(x, y) ∈ ∆I ×∆I | ∃z ∈ ∆I s.t. (x, z), (z, y) ∈ RI}. An interpretation I is a

model of an ABox A (resp., TBox T) if it is a model of every axiom in A (resp., T); I is

a model of an knowledge base K = (A, T) if I is a model of A and I is a model of T .

3.3 Ontology-mediated query answering

In this section we first introduce ontology-mediated query answering (OMQA)—an ontolog-

ical reasoning service which plays a fundamental role in the development of the Semantic

Web—and then formally define the problem of performing OMQA via Datalog rewriting.

3.3. ONTOLOGY-MEDIATED QUERY ANSWERING 51

OMQA problem

Let NV (variables) be a countably infinite set disjoint from NC , NR, and NI . A DL atom

has form A(x) (concept atom) or R(x, y) (role atom), where A ∈ NC , R = r or R = r−

with r ∈ NR, and x, y ∈ NV ∪NI . A conjunctive query q is an expression of the form:

q(x1, . . . , xm) ≡ ∃(xm+1, . . . , xn).φ(x1, . . . , xm, xm+1, . . . , xn) (3.1)

where 0 ≤ m ≤ n and φ is a non-empty conjunction of concept and role atoms over the

variables x1, . . . , xn, possibly involving individuals in NI . With var(q) and ind(q) we

denote the set of variables and the set of individuals occurring in q, respectively. Given an

interpretation I, a match for I and q is a function π : var(q) ∪ ind(q)→ ∆I such that:

• π(a) = aI for each a ∈ ind(q);

• π(x) ∈ AI for each concept atom A(x) which occurs in φ; and

• (π(x), π(y)) ∈ RI for each role atom R(x, y) which occurs in φ.

With a conjunctive query q of the form 3.1, the answers to q with respect to an interpre-

tation I are defined as the set

q(I) := {(π(x1), . . . , π(xm)) | π is a match for I and q}

of m-tuples obtained by evaluating q against I. The set of certain answers to q over a

knowledge base K is

cert(K,q) :=
⋂

I∈mods(K)

q(I)

where mods(K) denotes the set of all models of K. Finally, ontology-mediated query an-

swering is formally defined as the problem of computing cert(K, q).

52 CHAPTER 3. DESCRIPTION LOGICS AND OWL

Datalog
rewriting

A

P[T ,q]

D[A]

q

T

Figure 3-2: OMQA via Datalog rewriting with a pure approach.

Datalog rewriting

For the DL fragments introduced in Section 3.2, OMQA can be performed via rewriting

the knowledge base and the query into a Datalog¬s, 6= program in which a fresh output

predicate is used to collect all the answers.

We can distinguish different rewriting approaches [3]. In this document we will focus

on the one in which A is independent from T—known as pure approach. From a knowledge

base K = (A, T) and a conjunctive query q, the approach in this rewriting method (shown

in Figure 3-2) is to rewrite:

(i) A into a database D; and

(ii) both T and q into a Datalog¬s, 6= program P with a fresh output predicate ans of

arity m = |var(q)| so that

cert(K, q) = {(a1, . . . , am) | ans(a1, . . . , am) ∈ TP (D ∪ P)}.

In Chapter 9 we discuss in depth about the main existing tools in the literature supporting

OMQA over ontologies falling at least in OWL 2 RL, whose approach is to express inference

tasks for OWL in terms of inference tasks for Datalog.

Part II

DaRLing rewriter

54

Chapter 4

Rewriting techniques

The W3C Web Ontology Language (OWL) is a powerful knowledge representation for-

malism at the basis of many semantic-centric applications. Since its unrestricted usage

makes reasoning undecidable already in case of very simple tasks, expressive yet decidable

fragments have been identified. Among them, we focus on OWL 2 RL, which offers a rich

variety of semantic constructors, apart from supporting all RDFS datatypes. Although

popular Web resources - such as DBpedia - fall in OWL 2 RL, only a few systems have

been designed and implemented for this fragment. None of them, however, fully satisfy

all the following desiderata: (i) being freely available and regularly maintained; (ii) sup-

porting ontology-mediated query answering; (iii) properly applying the sameAs property

without adopting the unique name assumption; (iv) dealing with concrete datatypes. To

fill this gap, we conceived DaRLing [34], a freely available Datalog rewriter for OWL 2 RL

ontological reasoning under SPARQL queries.

In what follows, after providing an overview of the system, we describe the rewriting

strategies that DaRLing implements and how it handles the owl:sameAs property via

Datalog. For the sake of simplicity, we use Datalog to refer to Datalog¬s,6= in this chapter.

56 CHAPTER 4. REWRITING TECHNIQUES

RDF
Dataset

SPARQL
Query

OWL 2 RL
Ontology

Query
Rewriter

Loader
Query

Constructor

Query
Answer

TBox Constructor

Knowledge Base Rewriter

DL Axioms
ConstructorABox Constructor

Writer

Program Constructor

OWL API

Datalog TranslatorNormalizer
Datalog
Engine

Jena API

Datalog Translator

CQ Constructor

Figure 4-1: DaRLing’s Architecture.

4.1 System overview

DaRLing is an open-source Datalog rewriter for OWL 2 RL ontologies available on the

online webpage https://demacs-unical.github.io/DaRLing/.

The rewriter implements the translation techniques described in Section 4.2 and sup-

ports the owl:sameAs management method described in Section 4.3. In addition to the

Datalog rewriting of OWL 2 RL ontologies, DaRLing also supports the Datalog translation

of datasets in RDF/XML or Turtle format and SPARQL queries.

The architecture of DaRLing is synthesized in Figure 4-1. DaRLing uses the OWL

API [43] to load the RL fragment of OWL 2 ontologies and datasets into internal data

structures representing TBoxes and ABoxes, respectively. The system supports the loading

of the datatypes xsd:string and xsd:integer, provided by the OWL 2 datatype map (a list of

the datatypes that can be used in OWL 2 ontologies) for the representation of strings and

integers. A rewrite module is implemented for the translation of a TBox and/or an ABox

into a Datalog program. More in detail, a part of the axioms (those “directly rewritable”)

is passed to the Datalog Translator, whereas the remaining part is first subjected to the

https://demacs-unical.github.io/DaRLing/

4.2. FROM OWL 2 RL TO DATALOG 57

normalization procedure described in Section 4.2.

DaRLing also allows for Datalog translation of SPARQL queries containing Basic Graph

Patterns (BGPs) (i.e., sets of triple patterns forming a graph). SPARQL queries are parsed

using Jena 1—a Java API which can be used to create and manipulate RDF graphs. Then

they are translated into conjunctive Datalog queries.

The system supports different input formats and knowledge bases organized in multiple

files. More in detail:

(i) the ontology (resp., the dataset) can be contained in a single file or in a folder

containing multiple files with one of the extensions .owl or .rdfs (resp., .owl, .rdf or

.ttl);

(ii) one or more queries have to be contained in a file with the .SPARQL extension.

Moreover, DaRLing can produce a suitable rewriting also if some inputs are missing: for

each file (or folder) received as input, a single .asp file containing the respective Datalog

translation is returned as output. For example, in case the ABox is missing, then the

generated program is simply equivalent to the pair TBox plus query.

By default, DaRLing rewrites under UNA, it is however possible to explicitly choose

to enable rewriting with the “owl:sameAs management mode” described in Section 4.3.

4.2 From OWL 2 RL to Datalog

In this section we describe how the TBox underlying an OWL 2 RL ontology is rewritten

into Datalog. Since translating role inclusions and transitive axioms is almost trivial, we

will focus only on the concept inclusions. In particular, the rewriting process takes place

as follows:

(i) a class of axioms for which we provide a direct translation is identified;

1See https://jena.apache.org/

https://jena.apache.org/

58 CHAPTER 4. REWRITING TECHNIQUES

(ii) the remaining part of the axioms is subjected to a normalization procedure (i.e., a

procedure that simplifies their complex nature) before being translated.

Concerning the ABox rewriting, assertions of type A(a) and R(a, b)—where A is an atomic

concept and R is a role—are directly translated into unary and binary Datalog facts,

respectively. Finally, any assertion of type C(a), with C not atomic, is treated as if it

were the pair of axioms AC(a) and AC v C, where AC is a fresh atomic concept uniquely

associated with C.

4.2.1 Direct translation

For the first phase, we need to introduce the concepts of the description logic ELI.

Definition 4.2.1 (ELI-concepts). ELI-concepts are inductively defined as follows:

(i) > and each A ∈ NC is an ELI-concept, and

(ii) if C, D are ELI-concepts and R is a role, then C u D, ∃R.C and ≥ 1R.C are

ELI-concepts.

We show how to directly get the equivalent Datalog rule for an axiom of the form

tmi=1 Ci v unj=1Aj (4.1)

where Ci’s are ELI-concepts and Aj ’s are atomic concepts. Note that, since an axiom of

the form 4.1 is equivalent to the set of axioms Ci v Aj , with 1 ≤ i ≤ m and 1 ≤ j ≤ n, it

is sufficient to show how the translation works on concept inclusions of the form C v A,

where C is an ELI-concept and A is atomic.

Algorithm 1 shows a recursive algorithm for generating literals starting from an ELI-

concept C. Intuitively, for each conjunction uCi (possibly consisting of a single clause),

we have a variable common to each clause Ci. For every clause Ci of the form ∃R.D or

≥ 1R.D we introduce a fresh variable obtained by adding i to the subscript of the variable

4.2. FROM OWL 2 RL TO DATALOG 59

shared by the conjunction to which Ci belongs. The translation of an axiom C v A (as

Algorithm 1: translateELI
Input: ELI-concept C, String Var, int clause, Set<Literal> bodyLiterals
Output: Addition of Datalog literals to bodyLiterals
if C is atomic then

bodyLiterals.add(C(Var));
else if C ≡ uCi then

foreach i do
translateELI(Ci, Var, i, bodyLiterals);

end

else if C ≡ ∃R.D ∨ C ≡ ≥ 1R.D then
String newVar = Varclause;
if R is an inverse role then

bodyLiterals.add(R−(newVar,Var)) ;
else

bodyLiterals.add(R(Var,newVar))
translateELI(D, newVar, 1, bodyLiterals);

above) is a rule whose head is the literal A(X) and whose body literals are obtained by

invoking Algorithm 1 on C with Var = X and clause = 1.

Example 4.2.1. The concept inclusion ∃r.(∃s.(CuD)) u ≥ 1t.(Eu∃u−.F) v A translates

directly to the following Datalog rule:

A(X)← r(X,X1), s(X1, X1,1), C(X1,1), D(X1,1),

t(X,X2), E(X2), u(X2,1, X2), F (X2,1).

In more detail, the variable shared by clauses r.(∃s.(C uD)) and ≥ 1t.(E u ∃u−.F) is X.

The recursive call on these two clauses generates the body literals {r(X,X1), s(X1, X1,1),

C(X1,1), D(X1,1)} and {t(X,X2), E(X2), u(X2,1, X2), F (X2,1)} respectively. �

60 CHAPTER 4. REWRITING TECHNIQUES

Concept Inclusion (CI) Equivalent Datalog Rule

A1 u · · · uAn v ⊥ ⊥ ← A1(X), . . . , An(X).
A1 u · · · uAn v A A(X) ← A1(X), . . . , An(X).
A1 u · · · uAn v ∀R.A A(Y) ← R(X,Y), A1(X), . . . , An(X).
A1 u · · · uAn v ≤ 1R.A sameAs(Y1, Y2) ← A1(X), . . . , An(X),

R(X,Y1), R(X,Y2), A(Y1), A(Y2), Y1 6= Y2.

Table 4.1: Translation of normal concept inclusions in normalized form.

4.2.2 Normalization procedure

For the second phase of the rewriting process, we transform the remaining axioms of the

TBox (those not directly translatable) into a form from which the Datalog translation is

immediate.

Definition 4.2.2 (Normal form). We say that a TBox T is in normalized form if each

concept inclusion axiom in T has form

uAi v C

where uAi is a finite conjunction of atomic concepts and C is a concept of the form ⊥, A,

∀R.A or ≤ 1R.A, with A atomic.

Table 4.1 shows how the Datalog translation of a TBox in normalized form takes place;

in particular, A,A1, . . . , An are atomic concepts, and R(X,Y) = r(Y,X) if R = r−.

We bring our axioms to a normalized form by readapting and optimizing a normal-

ization procedure described by Kazakov [44, 45], which is applicable to any Horn-SHIQ

TBox and preserves the logical consequences of the ontological axioms.

If on the one hand normalization allows us to easily translate a given ontology into

Datalog, on the other, it could significantly increase the number of axioms. In what follows

we describe, with the help of some examples, a version of the normalization procedure ad-

hoc for OWL 2 RL. We also show how we enhance that procedure in order to avoid, where

4.2. FROM OWL 2 RL TO DATALOG 61

possible, an unnecessary growth of the number of axioms.

Normalization aims at reducing the complex structure of axioms by introducing fresh

concept names for substructures and substituting them. Intuitively, the transformation

works as follows: let C be a complex concept containing D as a sub-expression; then, a

fresh concept name AD is introduced and constrained to extensionally coincide with D.

This enables us to exchange all occurrences of D in C by AD.

Formally, given a OWL 2 RL TBox T , for every (sub-)concept C in T we introduce a

fresh atomic concept AC and define a function st(C) by:

st(A) = A (A atomic); st(⊥) = ⊥; st(>) = >;

st(¬C) = ¬AC ; st(C uD) = AC uAD; st(C tD) = AC tAD;

st(∀R.C) = ∀R.AC ; st(∃R.C) = ∃R.AC ; st(≥ nR.C) =≥ nR.AC ;

st(≤ nR.C) =≤ nR.AC .

The result of applying structural transformation to T is an ontology T ′ that contains all

role inclusions and transitivity axioms in T in addition to the following axioms:

• AC v st(C) for every C occurring positively in T

• st(C) v AC for every C occurring negatively in T

• AC v AD for every concept inclusion C v D ∈ T

Example 4.2.2. The axiom ∃r.(B u C) v ∀s−.D will be transformed into:

(R.1) A∀s−.D v ∀s−.AD (R.2) AD v D (R.3) ∃r.(ABuC) v A∃r.(BuC)

(R.4) AB uAC v ABuC (R.5) B v AB (R.6) C v AC

(R.7) A∃r.(BuC) v A∀s−.D

where (R.1)-(R.2) derive from the positive occurrences of the concepts ∀s−.D and D,

62 CHAPTER 4. REWRITING TECHNIQUES

whereas (R.3)-(R.6) derive from the negative occurrences of ∃r.(B u C), B u C, B and

C, respectively. �

By applying structural transformation to T , we obtain a TBox T ′ containing only concept

inclusions of the form A1 v A2, A v st(C+) and st(C−) v A, where C+ occurs positively

and C− occurs negatively in T . Since T belongs to OWL 2 RL, C+ can only be of the

form >, A, ¬C, C uD, ∀R.C or ≤ 1R.C, whereas C− can only be of the form >, A, C uD,

C tD, ∃R.C or ≥ 1R.C. Therefore, axioms in T ′ which do not appear in normalized form

are transformed as follows:

(t1) A v st(¬C) = ¬AC =⇒ A uAC v ⊥;

(t2) A v st(C uD) = AC uAD =⇒ A v AC , A v AD;

(t3) AC tAD = st(C tD) v A =⇒ AC v A, AD v A;

(t4) ∃R.AC = st(∃R.C) v A =⇒ AC v ∀R−.A;

(t5) ≥ 1R.AC = st(≥ 1R.C) v A =⇒ AC v ∀R−.A.

Example 4.2.3. The axiom (R.3) of the Example 4.2.2 is not in normalized form and will

be replaced with the axiom ABuC v ∀r−.A∃r.(BuC). �

The rewriting process takes a huge advantage from the fact that many axioms (those

described in 4.2.1) are not subject to the normalization procedure. We further enhance

that procedure by providing that:

(i) no fresh concept is introduced for >, ⊥ and all the atomic concepts in the TBox;

(ii) axioms already in normalized form are not subjected to the normalization process.

The following examples show how our rewriting technique significantly reduces the

number of rewritten axioms (and consequently the number of Datalog rules that derive

from them) compared with the standard Kazakov normalization.

4.2. FROM OWL 2 RL TO DATALOG 63

Example 4.2.4. With the concept inclusion of Example 4.2.2, through the application of

the structural transformation we produce, in addition to (R.3) and (R.7), only the two

axioms:

(R′.1) A∀s−.D v ∀s−.D (R′.2) B u C v ABuC .

Then (R.3) is replaced as in Example 4.2.3. Eventually, a concept inclusion already in

normalized form like A u B v ∀r.C, for which the standard normalization would generate

6 further axioms, is not subjected to the normalization procedure. �

Example 4.2.5. The application of the standard Kazakov normalization over the concept

inclusion

∃r.(∃s.(C uD)) u ≥ 1t.(E u ∃u−.F) v A

from Example 4.2.1, would give rise to the 13 axioms in normalized form reported below,

and as many Datalog rules in the rewriting.

(1) A∃r.(∃s.(CuD)) u ≥1t.(Eu∃u−.F) v AA (2) AC uAD v ACuD

(3) A∃r.(∃s.(CuD)) u A≥1t.(Eu∃u−.F) v A∃r.(∃s.(CuD)) u ≥1t.(Eu∃u−.F)

(4) A(∃s.(CuD)) v ∀r−.A∃r.(∃s.(CuD)) (5) A(Eu∃u−.F) v ∀t−.A≥1t.(Eu∃u−.F)

(6) A(CuD)) v ∀s−.A∃s.(CuD) (7) AF v ∀u.A∃u−.F (8) AE uA∃u−.F v AEu∃u−.F

(9) E v AE (10) F v AF (11) C v AC (12) D v AD (13) AA v A.

The translation algorithm implemented in DaRLing instead produces a single Datalog rule

for the axiom above (compare Example 4.2.1).

The following result is a direct consequence of Proposition 1 and Lemma 2 present

in [44] and of the fact that the DL underpinning the OWL 2 RL profile constitutes a

fragment of Horn-SHIQ. It ensures that the normalization procedure described in this

section preserves the logical implications of a OWL 2 RL ontology and can be performed

64 CHAPTER 4. REWRITING TECHNIQUES

in polynomial time.

Proposition 4.2.1. Let T be an OWL 2 RL TBox and T ′ be the TBox obtained by

applying the structural transformation to T . Then the TBox T ′′ obtained by applying the

transformation laws (t1)−(t5) to T ′ preserves (non)entailment of axioms over the signature

of T (i.e., axioms containing no new symbols).

Finally, the correctness of the rewriting technique derives from Proposition 4.2.1 and

the equivalence between the axioms (in normalized form) and the rules shown in Table 4.1,

according to the rule-based semantics specified in [57](Section 4.3).

4.3 Handling owl:sameAs via Datalog

The owl:sameAs is a property which is used by many OWL 2 ontologies to declare

equalities between resources. Hereinafter we will use (teletype) sameAs to denote the

DL role related to the owl:sameAs property, whereas (italics) sameAs will refer to the

respective Datalog binary predicate name in the rewritings.

The assertion sameAs(a, b) states that the individuals a and b are synonyms, i.e., a

can be replaced with b without affecting the meaning of the ontology. Note that the

equivalence between two resources is not solely derivable from explicit assertions occurring

in the ABox, it can be in fact derived continuously during materialisation. Suffice it to

observe, for example, how the rewriting procedure of the TBox can generate rules whose

head contains the sameAs predicate (compare Table 4.1, last line).

Example 4.3.1. Consider an OWL 2 RL knowledge base containing (in the ABox) the

following axioms:

(≤ 1R.C)(a), R(a, b), R(a, c), C(b) and C(c);

where R is a role, C is an atomic concept, and a, b and c are three syntactically different

4.3. HANDLING OWL:SAMEAS VIA DATALOG 65

individuals. The assertion (≤ 1R.C)(a) states that, with respect to the role R, the individual

a can be related to at most one individual who is an instance of the concept C. Therefore,

necessarily (unless the knowledge base is inconsistent) the individuals b and c must be

equivalent, that is, they must belong to the same owl:sameAs-clique. According to the

translation methods described in the previous section, this assertion is in fact processed as

it were the following pair of axioms:

D v ≤ 1R.C and D(a),

where D is a fresh atomic concept uniquely associated with the concept ≤ 1R.C. In this

way the following Datalog rule is obtained:

sameAs(Y1, Y2) ← D(X), R(X,Y1), R(X,Y2), C(Y1), C(Y2), Y1 6= Y2.

and the fact sameAs(b, c) will be derived from the materialization of the rewriting. �

As we will see in the course of this section, other knowledge relating to equivalence

between individuals is obtained during materialization in order to compute the reflexive,

symmetric and transitive closure of the sameAs predicate.

Similarly to logic programming approaches, Datalog works under the Unique Name

Assumption (UNA), i.e., it presumes that different names represent different objects of the

world. With the following example we highlight the need of handling the owl:sameAs

property in order to enable—in the equivalent Datalog program which derives from a given

OWL 2 RL ontology—the match of equivalent constants for each join between variables in

the body of a rule.

Example 4.3.2. Let us consider an ontology featuring the rule

DogOwner(X)← hasPet(X,Y), Dog(Y).

66 CHAPTER 4. REWRITING TECHNIQUES

together with the following set of facts:

hasPet(“Peter”, “Brian”). Dog(“BrianGriffin”). sameAs(“Brian”, “BrianGriffin”).

Note how, despite that sameAs(“Brian”,“BrianGriffin”) has the purpose of making the

constants “Brian” and “BrianGriffin” interchangeable, the fact DogOwner(“Peter”) is not

derived as it should. �

In the rest of this section we describe how we handle the rewriting of Web ontologies

containing the owl:sameAs property. In particular, in order to preserve the owl:sameAs

semantics in rewriting we must take into account that:

(i) owl:sameAs is an equivalence relation and it is therefore necessary to identify its

equivalence classes (the owl:sameAs-cliques); and

(ii) individuals belonging to the same owl:sameAs-clique must match in joins between

variables.

4.3.1 Cliques detection

To implement item (i) above, the idea is to simulate the reflexivity, the symmetry and

the transitivity of the owl:sameAs through a fresh binary predicate which connects all

the elements of a owl:sameAs-clique to a representative (the lexicographic minimum) of

that clique. To this end, given N ≥ 0, we add the following block of rules to our Datalog

program:

sameAs(X,Y)← sameAs(Y,X). (1)

noStart(X1) ← sameAs(X0, X1), X0 < X1. (2.1)

noStart(X2) ← sameAs(X0, X1), sameAs(X1, X2), X0 < X2. (2.2)

...
...

4.3. HANDLING OWL:SAMEAS VIA DATALOG 67

noStart(XN) ← sameAs(X0, X1), . . . , sameAs(XN−1, XN), X0 < XN . (2.N)

sameComp(X,Y)← sameAs(X,Y), not noStart(X), X < Y. (3)

sameComp(X,Z)← sameComp(X,Y), sameAs(Y, Z), X < Y, X < Z. (4)

sameComp(X,X)← sameComp(X,Y). (5)

Here, rule (1) is the symmetric closure of the sameAs predicate, representing the pairs

of equivalent individuals. Rules (2.1)-(2.N) map into the unary predicate noStart all

individuals that are greater than another individual at a distance less than or equal to N

with respect to the sameAs predicate. Note that by N = 0 we mean that rules (2.1)-(2.N)

are not considered and noStart is not populated. Given a constant c that is not part of

the extension of noStart, rules (3) and (4) compute the pairs (c, d) where c < d and d can

be reached from c via the sameAs transitive closure. Since the minimum constant cmin of

every owl:sameAs-clique C can not populate the noStart predicate, it turns out that a

fact sameComp(cmin, d) is generated for each individual d of C. Eventually, rule (5) is the

reflexive closure of sameComp with respect to its first argument.

Let PN∼ be the Datalog program consisting of the rules (1)-(5) above, with N ≥ 0.

Then, for each owl:sameAs-clique C whose lexicographical minimum is denoted cmin, the

following result ensures that PN∼ materializes the set {sameComp(cmin, c) | c ∈ C} over

C, for each N ≥ 0. As we will see, the value of N determines the size of the extension

of the sameComp predicate. In particular, as the size of N increases, such an extension

decreases. On the other hand, it is also true that the choice of a too large value of N could

result in a waste in terms of time for the materialization of the cliques.

Theorem 4.3.1. Let S be a set of ground facts over the binary predicate sameAs and S̄

be the smallest superset of S such that

(i) sameAs(c, c) ∈ S̄ for each constant c occurring in S;

(ii) sameAs(c, d) ∈ S̄ if sameAs(d, c) ∈ S̄; and

68 CHAPTER 4. REWRITING TECHNIQUES

sameAs

noStart sameComp
−

Figure 4-2: Dependency graph of program PN∼ .

(iii) sameAs(c, e) ∈ S̄ if sameAs(c, d) ∈ S̄ and sameAs(d, e) ∈ S̄.

Then, for each sameAs(c, d) ∈ S̄ with c 6= d, there exists an individual c̃ such that both

sameComp(c̃, c) and sameComp(c̃, d) belong to the (unique) answer set TP (PN∼ ∪ S) of

PN∼ ∪ S, for any N ≥ 0.

Proof. Figure 4-2 reports the dependency graph GPN
∼

of PN∼ . The strongly connected com-

ponent of GPN
∼

are C1 = {sameAs}, C2 = {noStart} and C3 = {sameComp}. According

to the fixpoint semantics given in Section 2.4, the answer set of PN∼ over S is TP (PN∼ ∪S).

In particular, TP (PN∼ ∪ S) = I3 = T 3
PN
∼
⇑ I2, where

I0 = S;

I1 = T 1
PN
∼
⇑ I0 = I0 ∪ {sameAs(d, c) | sameAs(c, d) ∈ I0}; and

I2 = T 2
PN
∼
⇑ I1 = I1 ∪ {noStart(c) | ∃0 ≤ n ≤ N and c0, . . . , cn−1 s.t. c0 < c,

sameAs(c0, c1) ∈ I1, . . . , sameAs(cn−1, c) ∈ I1}

Let sameAs(c, d) ∈ S̄ with c 6= d, C be the clique to which c and d belong, and cmin ∈ C

be the lexicographical minimum of C.

Case cmin ∈ {c, d}. Without any loss of generality, assume that cmin = c.

4.3. HANDLING OWL:SAMEAS VIA DATALOG 69

• If sameAs(c, d) ∈ I1, since noStart(c) = noStart(cmin) /∈ I2—otherwise there would

be an element in C less than cmin—the fact sameComp(cmin, d) derives directly from

rule (3) of PN∼ .

• If sameAs(c, d) /∈ I1 instead, there exist 0 < k ≤ N and c1, . . . , ck ∈ C such that

sameAs(c, c1) ∈ I1, . . . , sameAs(ck, d) ∈ I1. Therefore, the fact sameComp(cmin, c1)

derives—for a similar argument of that of the previous point—from rule (3), whereas

sameComp(cmin, c2), . . . , sameComp(cmin, ck) and finally sameComp(cmin, d) are ob-

tained by repeatedly applying rule (4).

In both scenarios, once sameComp(cmin, d) is derived, the fact sameComp(cmin, c) derives

from rule (5).

Case cmin /∈ {c, d}. We prove that sameComp(cmin, c) ∈ TP (PN∼ ∪ S), the other case

(i.e., sameComp(cmin, d) ∈ TP (PN∼ ∪ S)) is specular.

• If sameAs(cmin, c) ∈ I1 there is nothing to prove.

• If sameAs(cmin, c) /∈ I1, there exist 0 < k ≤ N and c1, . . . , ck ∈ C such that

sameAs(cmin, c1) ∈ I1, . . . , sameAs(ck, c) ∈ I1. Hence, the fact sameComp(cmin, d)

derives from rule (3) and repeatedly applying rule (4) as above.

We have therefore proved that, regardless of the value assumed by N , for each pair of

individuals c and d belonging to a owl:sameAs-clique C, there exists an individual c̃

(the lexicographical minimum of C) such that both sameComp(c̃, c) and sameComp(c̃, d)

belong to TP (PN∼ ∪ S).

Even though rules (1)-(5) ensure, for any N ≥ 0, that each element of a owl:sameAs-

clique is linked to the minimum of that clique by means of the sameComp predicate, many

sameComp(c, d) facts could arise, where c is not the minimum of any clique. The purpose

of rules (2.1)-(2.N) is precisely to avoid the generation of these extra facts as much as

possible.

70 CHAPTER 4. REWRITING TECHNIQUES

Example 4.3.3. Consider a lexicographically ordered set of 5 individuals i1 < · · · < i5

together with the set F of facts:

sameAs(i1, i4). sameAs(i2, i5). sameAs(i3, i4). sameAs(i4, i5).

Figure 4-3 shows a graph representing F , and also how individuals i1, . . . , i5 belong to the

same owl:sameAs-clique. The application of rules (1)-(5) over F , by varying N , produces

the following facts about the predicate sameComp:

sameComp(i1, i1). sameComp(i1, i2). sameComp(i1, i3). (N ≥ 1);

sameComp(i1, i4). sameComp(i1, i5).

sameComp(i2, i2). sameComp(i2, i3). sameComp(i2, i4). (N = 1, 2);

sameComp(i2, i5).

sameComp(i3, i3). sameComp(i3, i4). sameComp(i3, i5). (N ≥ 3).

Among the derived facts, the only necessary are those corresponding at the “N ≥ 1” label.

Those are the ones that connect the individual i1 (the least one) to the rest of the clique’s

individuals, and they are in fact derived for each value N ≥ 1. It is possible to see how as

N varies, in addition to the above facts, other extra facts about predicate sameComp are

materialized. In this case, the minimum size extension of predicate sameComp is reached

for the first time in N = 3. �

As we will see later, the sameComp predicate is used whenever any join variable occurs

in a rule or query in order to enable matches between individuals belonging to the same

clique, therefore it is very important to keep its growth under control. It is easy to foresee

that the larger N is chosen the more the extension size of sameComp is reduced (due

4.3. HANDLING OWL:SAMEAS VIA DATALOG 71

i4 i3i1

i5 i2

Figure 4-3: owl:sameAs graph from Example 4.3.3.

to the growing size of the extension of noStart), but at the expense of a possible greater

consumption of time due to the computation of the paths in the generation of noStart

instances. The choice of N must therefore be weighted, according to the application domain

at hand, in such a way that ideally, both the time and the extension size of sameComp are

minimized. More detailed considerations are reported in Chapter 5 where we considered

different values of N for the real-world domain of DBpedia and experimentally identified

N = 2 as the best compromise in the trade-off between time and space.

4.3.2 Preserving owl:sameAs semantics in joins

In the following we specify how we rewrite any rule in which appears at least a join variable.

For each rule r, let Jr (the join variables of r) be the set of the variables occurring more

than once in the body of r, and 2Jr be the power set of Jr. For X ∈ Jr we denote with

#r
X the number of occurrences of the variable X in the body of r. For each V ∈ 2Jr we

produce a new rule rV obtained from r as follows: for any X ∈ V and 1 ≤ i ≤ #r
X , we

substitute the i-th occurrence of X with a fresh variable Xi and add a new body literal

sameComp(X,Xi).

Example 4.3.4. For instance, with the rule in Example 4.3.2 we have that Jr = {Y } and

72 CHAPTER 4. REWRITING TECHNIQUES

we get

DogOwner(X)← hasPet(X,Y1), Dog(Y2), sameComp(Y, Y1), sameComp(Y, Y2).

as additional rule of the program. �

Intuitively, since in general the sameAs (and consequently sameComp) predicate does

not involve all the constants of a program, any possible combination in which some

join variables enables matches between constants syntactically different but linked by the

owl:sameAs relationship has to be considered.

We eventually observe that, in most cases, only a few join variables occur in programs

deriving from web ontologies. However, in order to prevent a potentially exponential

growth of the program, we rewrite rules that have 3 or more join variables by projecting

the sameComp predicate on each argument in which such a variable appears.

Example 4.3.5. Consider the rule r as follows:

GGFather(W)← Alive(W), fatherOf(W,X), fatherOf(X,Y), fatherOf(Y, Z).

We have that Jr = {W,X, Y }. In this case, the 3 rules below are produced to make

sameComp reflexive with respect to all the individuals that populate argument in which

appear a join variable.

sameComp(X,X)← Alive(X).

sameComp(X,X)← fatherOf(X,).

sameComp(X,X)← fatherOf(, X).

Then, the rule

GGFather(W)← Alive(W1), fatherOf(W2, X1), fatherOf(X2, Y1), fatherOf(Y2, Z),

4.3. HANDLING OWL:SAMEAS VIA DATALOG 73

sameComp(W,W1), sameComp(W,W2), sameComp(X,X1),

sameComp(X,X2), sameComp(Y, Y1), sameComp(Y, Y2).

is added to the Datalog ontology, instead of the 8 rules we would have obtained considering

the power set 2Jr of Jr. �

By doing this we avoid all the possible combinations of the variables and we get a single

new rule that binds the predicate sameComp to all the join variables simultaneously.

Further attempts have been made to manage owl:sameAs via Datalog (starting from

the most naive one in which the reflexive, symmetrical and transitive closure is performed

over the sameAs predicate directly, passing through more refined techniques in which

the transitive closure relies on a fresh predicate name) but none of them was found to

be applicable in practice. This reinforces our approach and highlights how important is

handling owl:sameAs in an optimal way.

74 CHAPTER 4. REWRITING TECHNIQUES

Chapter 5

Experimental evaluation

To demonstrate the practical applicability of DaRLing, we designed and conducted an

experimental evaluation based on the following working hypotheses:

(i) over synthetic OWL 2 RL benchmarks, DaRLing’s output is comparable with the one

produced by existing tools in terms of both number of produced rules and quality of

the rewriting (the latter measured via execution time fixed the Datalog engine);

(ii) over real-world OWL 2 RL knowledge bases, DaRLing’s rewriting strategy enables

scalable query answering even in case the UNA is not a viable option, i.e., in cases

where there is an implicit or explicit use of the owl:sameAs relation and the UNA

cannot be adopted.

5.1 Set-up

Since DaRLing is a rewriter which does not rely on any Datalog engine, according to

Table 1.1 and Chapter 9, the only tool that can be fairly tested against DaRLing is the

part of Clipper providing the Datalog rewriting of an OMQ, hereinafter called Clipper-Rew.

Moreover, since these rewriters are independent from the evaluation phase, for the purpose

of our testing, the choice of the Datalog engine is immaterial. In our case, we simply opted

76 CHAPTER 5. EXPERIMENTAL EVALUATION

for i-dlv1 [4, 23], an Answer Set Programming instantiator and full-fledged state-of-the-

art Datalog reasoner. Indeed, the system when fed with a disjunction-free and stratified

under negation program is able to fully evaluate it and compute its perfect model. As

benchmarks, we relied on LUBM,2 Adolena, Stock Exchange, Vicod̀ı3 and DBpedia [12].

LUBM (Lehigh University BenchMark) [41] consists of a university domain OWL 2

ontology along with customizable and repeatable synthetic data and a set of 14 SPARQL

queries. Queries 2, 6, 9 and 14 involve constants, while the other queries are constant-free.

We restricted to the fragment falling in RL and considered its 14 canonical queries.

Adolena, Stock Exchange and Vicod̀ı have been derived from a well-established bench-

mark [51]. They are expressed in DL-LiteR and provided with 5 queries each. Adolena

(Abilities and Disabilities OntoLogy for ENhancing Accessibility) has been developed for

the South African National Accessibility Portal. Stock Exchange and Vicod̀ı are two real

world ontologies widely used in literature for the evaluation of query rewriting systems [56].

Stock Exchange is an ontology of the domain of financial institution within the EU, while

Vicod̀ı is an ontology of European history. For LUBM we adopted 6 datasets, wherease

for each of Adolena, Stock Exchange and Vicod̀ı, we used 5 datasets, downloaded from

https://www.mat.unical.it/dlve.

Differently from the other aforementioned benchmarks, that are synthetic and assume

the UNA, DBpedia is a real-world knowledge base requiring a proper handling of the

owl:sameAs property. More in detail, DBpedia is a well-known KB falling in OWL 2 RL

and created with the aim of sharing on the Web the multilingual knowledge collected by

Wikimedia projects in a machine-readable format. The dataset has been extracted from

the latest stable release of the whole DBpedia dataset. The considered part consists of

the English edition of Wikipedia and is composed by about half a billion RDF triples. We

inherited a set of 10 queries from an application conceived to query DBpedia in natural

1See https://github.com/DeMaCS-UNICAL/I-DLV
2See http://swat.cse.lehigh.edu/projects/lubm/
3See http://www.vicodi.org

https://www.mat.unical.it/dlve
https://github.com/DeMaCS-UNICAL/I-DLV
http://swat.cse.lehigh.edu/projects/lubm/
http://www.vicodi.org

5.2. QUALITY 77

C-Rew DaRL C-Rew DaRL

ABox

TBox 5.30 4.75 - -

q1 13.85 15.43 0.80 1.10

q2 14.04 14.36 4.37 3.28

q3 13.67 13.69 0.79 1.10

q4 16.32 16.87 3.51 3.41

q5 13.21 14.55 2.19 4.17

q6 15.33 14.71 1.72 2.13

q7 14.38 14.38 1.13 1.19

q8 15.15 14.99 2.26 2.38

q9 15.02 15.53 2.56 2.71

q10 14.17 13.84 1.09 0.93

q11 12.94 13.43 0.07 0.13

q12 13.10 12.87 0.05 0.05

q13 13.32 13.92 2.86 4.35

q14 14.79 15.45 1.54 1.54

Materialize Query-Driven

1. LUBM

28.33

ABox
TBox 11.13 11.28 - -
q1 0.36 0.47 6.14 6.1
q2 1.03 0.58 6.72 6.63
q3 47.75 46.2 57.08 56.58
q4 1.13 0.89 6.82 6.83
q5 51.94 49.68 61.08 58.95

ABox
TBox 3.80 3.30 - -
q1 0.05 0.04 0.16 0.16
q2 0.81 0.85 3.47 2.93
q3 28.51 29.37 31.14 30.01
q4 7.68 7.77 10.62 9.7
q5 265.72 258.36 270.85 257.1

ABox
TBox 9.65 9.89 - -
q1 7.63 7.36 0.13 0.05
q2 12.55 12.69 11.37 11.31
q3 9.50 9.33 3.19 3.37
q4 11.18 11.33 3.69 3.47
q5 11.13 11.44 3.69 3.51

7.75

2. Adolena
4.78

3. Stock Exchange
1.13

4. Vicodì

Table 5.1: Experiments over all datasets per each query of LUBM, Adolena, Stock Ex-
change and Vicod̀ı. C-Rew stands for Clipper-Rew, DaRL for DaRLing.

language [50]. All tests were performed on a machine having two 2.8GHz AMD Opteron

6320 processors and 128 GB of RAM. All rewritings for each benchmark and executables

are available at https://demacs-unical.github.io/DaRLing.

5.2 Quality

In this former set of experiments, we first generated Clipper-Rew and DaRLing rewritings

for all queries of LUBM, Adolena, Stock Exchange and Vicod̀ı; then, over these rewrit-

ings and for all considered datasets, we executed i-dlv under two different scenarios: in

the scenario materialize the system is forced to materialize the whole ontology and then

https://demacs-unical.github.io/DaRLing

78 CHAPTER 5. EXPERIMENTAL EVALUATION

prompted to answer to each query individually; in the scenario query-driven the system

still runs each query one by one, but performs a more efficient evaluation tailored on the

query at hand by enabling the magic sets technique [10].

Table 5.1 reports average running times in seconds of i-dlv executions over all datasets

on LUBM, Adolena, Stock Exchange and Vicod̀ı, respectively. In particular, for better

highlighting differences in performance, for each execution we extracted from total time

the static and fixed times spent on ABox loading and on TBox materialization over the

ABox. These fixed times are reported in the table as ABox and TBox, respectively. Notice

that TBox materializing times are not reported in case of scenario query-driven as there

no materialization is done. Results show that in most cases performance achieved by i-

dlv when using DaRLing outputs is comparable w.r.t. Clipper-Rew. Some worsening is

observable especially on LUBM queries 5 and 13. This is reasonable since Clipper-Rew

requires to take into account the query at hand for properly translating the query and the

TBox, thus generating an output optimized on the basis of the query. DaRLing instead

follows a different principle as it is designed to produce general and query-independent

TBox rewritings without specific query-oriented enhancements. On Adolena and Stock

Exchange, i-dlv times with DaRLing rewritings are generally, slightly better than with

Clipper-Rew. Regarding Vicod̀ı, i-dlv performance are practically the same since Clipper-

Rew and DaRLing produced almost identical rewritings. This is mainly because Vicod̀ı

TBox, when rewritten by both DaRLing and Clipper-Rew into Datalog, consists of linear

rules, i.e., rules having only an atom in body; thus, when the presence of joins is limited

both approaches result almost equivalent.

5.3 Scalability

We also experimented on DBpedia with two types of rewritings of 10 DBpedia queries

generated via DaRLing. In particular, we first measured the costs, in terms of both time

and space, of materializing the sameComp predicate by varying the value of N (see Sec-

5.3. SCALABILITY 79

Parameter N = 0 N = 1 N = 2 N = 3 N = 4

Time (seconds) 5, 033 2, 673 864 26, 355 timeout
#sameComp 523M 342M 103M 77M -
Memory (GB) 35 23 7 5 -

Table 5.2: Costs of the sameComp materialization on DBpedia (time limit set to 10 hours).

tion 4.3). To this end, we generated via i-dlv the materialization of the whole TBox under

the UNA and filtered out the tuples of the sameAs predicate. The resulting dataset has

been paired with rules (1)-(5) by considering different values of N . Table 5.2 reports the

values of the following three parameters by varying N : the time (in seconds) needed for

materializing the sameComp predicate, the extension size of the sameComp predicate and

the memory consumption in GB.

Ideally, the optimal value of N should be the one minimizing both the time and the

space (the memory consumption or, equivalently, the extension size of sameComp). As it

is evident from Table 5.2, such a unique value does not exist. Indeed, the minimum value

of time is reached for N = 2, whereas the minimum value of space is reached for N = 3.

Between the two values, the best compromise seems to be offered by N = 2, since a small

blow-up in terms of space is highly reward in terms of time saving.

We thus decided to focus on N = 2 and to evaluate, per each of the 10 queries,

performance when i-dlv is provided with DaRLing rewritings generated for this value of N .

Results are reported in Table 5.3. We restricted experiments to DaRLing as we purposely

want to investigate scalability of DaRLing under the non-UNA. In addition, comparisons

with other tools (cfr. Table 1.1) would result unfair since to our knowledge, DaRLing

is the only open-source project empowered with an ad-hoc handling of the owl:sameAs

property. As in quality-measuring experiments, we considered both the materialize and

query-driven scenarios. We reported execution times in seconds. ABox and TBox times, as

in the above results, represent times spent on ABox loading and on TBox materialization

over the ABox, respectively. Columns report for each query running times from which

80 CHAPTER 5. EXPERIMENTAL EVALUATION

Materialize Query-Driven

ABox

TBox 4,048 -

q1 27.86 1,574

q2 44.14 1,576

q3 46.17 3,453

q4 46.58 6,192

q5 77.29 1,636

q6 43.94 1,544

q7 1.05 1,416

q8 19.50 1,419

q9 0.01 1,496

q10 0.11 1,377

3,209

Table 5.3: Experiments on DBpedia for N = 2. Times are in seconds.

ABox and TBox times have been subtracted. In the materialize scenario, we observe that

in general, once the TBox is materialized, the system is able to compute query answers in at

most 1.3 minutes. A greater effort is paid if instead of materializing the TBox, the system

is requested to perform a query-driven computation. Notably, the total time needed to

answer the hardest query (namely q4 in the query-driven scenario) is 36% of the time spent

for materializing just the sameComp predicate for N = 3 (see Table 5.2). This behaviour

reinforces the choice of N = 2 as the best value for this domain. Concerning memory, in

both scenarios and for each query, the memory peak is around 62 GB (including loading

and materialization).

5.4 Discussion

To demonstrate the practical applicability of DaRLing, we have designed and conducted

an experimental evaluation based on two working hypotheses, which have been both con-

firmed. The first release of DaRLing demonstrates to produce over synthetic OWL 2 RL

benchmarks more general rewritings equivalent or sightly differing from the ones gener-

ated by Clipper-Rew, the closer open-source competitor of DaRLing. DaRLing’s output is

5.4. DISCUSSION 81

comparable with the one produced by Clipper-Rew in terms of both number of produced

rules and, as evidenced by the results in Table 5.1, quality—in term of execution time—of

the rewriting. As additional feature, DaRLing can be used for transparently handling the

owl:sameAs property independently from the Datalog reasoner at hand albeit requiring

extra work due to the intrinsic need of computing the transitive closure. Such costs are

strictly dependent from the ontology at hand; our experimentation in an unfriendly setting

of a large ontology such as DBpedia proved a (not taken for granted [58]) applicability of

the approach. The system allows to select the value of N in the non-UNA rewriting mode.

As shown by the results in Table 5.2, the value N = 2 is optimal for the knowledge base in

question, but it may not be optimal for other domains. In general, the optimal value of

N depends on the structure of the data but also on the ontology from which the implicit

knowledge of the owl:sameAs property can be obtained. To derive the optimal value of

N , an ad-hoc experimentation is therefore necessary for the knowledge base taken into con-

sideration. In most large-scale applications, where the knowledge base does not undergo

large variations over time, the optimal value of N can remain unchanged even for very

long periods of time. It will therefore be sufficient to experiment and update this value at

intervals of length depending on the variation of the data and the ontology. Precisely to

accommodate these scenarios, it is among our future plans to make the choice of this value

for N automatic based on the knowledge base at hand.

Part III

Evaluation planner

Chapter 6

Planning techniques

The development of rewriting techniques—through which query answering on OWL is re-

duced to the evaluation of queries on Datalog programs—has meant that Datalog reasoning

has become a topic of fundamental importance for the Semantic Web. Furthermore, with

the more and more growing demand for semantic Web services over large datasets, an ef-

ficient evaluation of Datalog queries is arousing a renewed interest among researchers and

industry experts.

Classical Datalog reasoners typically adopt sophisticated internal policies to speed-up

the computation trying to limit the memory consumption. However, when the amount

of data exceeds a certain size, these policies may result inadequate. This happens, for in-

stance, for the full-fledged Datalog system i-dlv [23, 24]—originally conceived as grounding

engine in dlv2 [8]. i-dlv historically uses strategies for join orderings and indexing that

are applied rule-by-rule at runtime and that are based on local statistics over data that

become available during the computation. As a result, for databases up to a few millions

tuples, these strategies ensure fast evaluation at the expense of a reasonable amount of

extra memory. Conversely, for databases with billions of tuples, both the time and the

space used for implementing these strategies are too high.

This is the case of reasoning tasks over large-scale domains, such as those emerging

84 CHAPTER 6. PLANNING TECHNIQUES

in industrial-level applications fostered by the advances in Industry 4.0, the Internet of

Things, and Big Data[16]. When dealing with high volumes of data, in fact, performing

heavy operations (such as loading or indexing) multiple times should be definitely avoided;

thus, traditional ASP systems based on one-shot executions are rather unsuited. Recently,

to cope with large-scale scenarios, i-dlv has been optimized and partially re-engineered by

implementing novel techniques and heuristics to reduce memory consumption and possibly

optimize execution times. This process also gave rise to dlv2-server [49, 50], an extension

of the system with a server-like modality, which is able to keep the main process alive and

to receive and process user’s requests on demand.

In this chapter we present one of the key approaches that is at the basis of the afore-

mentioned improvements: the precomputation via Answer Set Programming (ASP) of an

evaluation plan [7, 33] for a given Datalog program. The idea underlying the new tech-

nique is to precompute a global indexing schema for the underlying database associated

with suitable body-orderings for all the program rules. As far as we know, this is the

first state-of-the-art work whose approach is to compute a plan for evaluating a Datalog

program in a pre-processing phase.

After a formal definition of an evaluation plan, we introduce the notion of strategy and

then we specify the concept of optimal evaluation plan with respect to a certain strategy.

6.1 Admissible plans

Let P be a set of Datalog rules with non-empty body and let D be a database, namely a

set of Datalog facts. We indicate with pred(P ∪D) the set of all predicates occurring in

P ∪ D and with rel(p) the set {α ∈ D : pred(α) = p} of the elements of D sharing the

predicate name p. We write p[i] to indicate the i-th argument of the predicate p.

In the following, after formalizing the standard notions of ordering of a rule and indexing

schema of a Datalog program, we introduce the novel notion of evaluation plan along with

6.1. ADMISSIBLE PLANS 85

some preliminary definitions.

Definition 6.1.1. Let r be a rule in P and B(r) be the set of the atoms appearing in the

body of r. Let Fa be a (possibly empty) subset of atoms in B(r) and Fp be a subset of

{1, · · · , |B(r)|}. A position assignment pr on r is a one-to-one map

pr : Fa → Fp.

A pair (α, p) such that pr(α) = p is called a fixed position w.r.t. pr. An ordering on r is

a bijective function

pos(r, ·) : B(r)→ {1, · · · , |B(r)|}.

Having fixed a position assignment pr on r, we define a pr-ordering on r as an ordering

on r such that pos(r, α) = pr(α) for each α ∈ Fa.

The definition above presents a body ordering as a rearrangement of the literals in the

body, but notably, allows for having a certain number of atoms in the body in some fixed

positions. This is because, according to the knowledge of the domain at hand, if one is

aware that a particular choice for the orderings is convenient, the planner can be driven so

that only plans complying with this choice are identified.

Definition 6.1.2. Let U := {p[i] : p ∈ pred(P ∪D), 1 ≤ i ≤ a(p)}, where a(p) represents

the arity of the predicate p. An indexing schema S over P ∪D is a subset of U . Given a

subset I ⊆ U , we say that S fixes I if I ⊆ S.

In other words, an indexing schema is a subset of the arguments of all predicates in

pred(P ∪D). Furthermore, similarly to the definition of ordering that may allow for fixed

positions, we give the possibility to fix also a set of indices.

Example 6.1.1. As a running example in this section, we consider the following Datalog

rule r :

h(X,Z,W)← a(X,Z), b(V,W), c(Z), d(V), e(Y,Z).

86 CHAPTER 6. PLANNING TECHNIQUES

Consider the position assignment pr which fixes the atom b(V,W) in first position. A

possible pr-ordering may be:

pos(r, a(X,Z)) = 3, pos(r, b(V,W)) = 1, pos(r, c(Z)) = 5,

pos(r, d(V)) = 2, pos(r, e(Y, Z)) = 4.

By means of such ordering the body atoms of r are rearranged as follows:

h(X,Z,W)← b(V,W), d(V), a(X,Z), e(Y,Z), c(Z).

The set S := {a[2], c[1], d[1], e[2]} is an example of indexing schema over the predicates

appearing in r. �

With a rule r ∈ P we can associate a hypergraph H(r) = (V,E) whose vertex set V is

the set of all terms appearing in B(r) and the edges in E are the term sets of each atom

in B(r). Given a rule r of P , a connected component of r is a set of atoms in B(r) that

define a connected component in H(r).

Example 6.1.2. Figure 6-1 shows the hypergraph H(r) associated to r from Example 6.1.1.

In particular V = {X,Y, Z, V,W} and E = {{X,Z}, {V,W}, {Z}, {V }, {Y, Z}}. The con-

nected components of r are C1 = {a(X,Z), c(Z), e(Y, Z)} and C2 = {b(V,W), d(V)}. �

We introduce now the notions of separation between two connected components and

well ordering of a component of a rule.

Definition 6.1.3. Let r be a rule of P and pos(r, ·) be an ordering on r. Two connected

components C1 and C2 of r are separated w.r.t. pos(r, ·) if

max{pos(r, α) : α ∈ C1} < min{pos(r, β) : β ∈ C2}

or vice versa.

6.1. ADMISSIBLE PLANS 87

X Z

Y

V W

Figure 6-1: Hypergraph H(r) associated to r from Example 6.1.1.

An argument of an atom appearing in the body of a rule r, is said to be bound, w.r.t.

an ordering on r, if it is either a constant or a variable appearing in a previous atom, and

is said to be indexBound, w.r.t. an ordering on r and an indexing schema S, if it is bound

and it belongs to the schema S. The definition below provides the notion of well ordering

of a connected component in a rule.

Definition 6.1.4. Let r be a rule of P , S be an indexing schema and pos(r, ·) be an

ordering on r. A connected component C of r is well-ordered w.r.t. S and pos(r, ·) if,

assuming m = min{pos(r, α) : α ∈ C}, for each β ∈ C with pos(r, β) = j and j > m, it

holds that:

(i) β has at least an argument which is indexBound, and

(ii) either all the arguments of β are bound or there is no other atom in a later position

(in the same component) that, placed in place of β, would have all the arguments

bound.

Example 6.1.3. Let’s consider the rule r with the ordering pos(r, ·) and the indexing

schema S as in our running example. The two connected components of r are clearly

separated w.r.t. pos(r, ·). The indexBound arguments w.r.t. pos(r, ·) and S are c[1], d[1]

88 CHAPTER 6. PLANNING TECHNIQUES

and e[2]. It can be easily seen that the connected component C2 is well-ordered w.r.t. S and

pos(r, ·). The same cannot be said for the component C1; in fact, not all the arguments of

the atom e(Y,Z) are bound and the atom c(Z), positioned in place of e(Y,Z), would have

all the arguments bound. �

The notion of separation among connected components is needed for identifying, within

rule bodies, clusters of literals that do not share variables. The idea is that the ordering

computed by the planner should keep separated these clusters in order to avoid, as much as

possible, the computation of Cartesian products during the instantiation; at the same time,

literals within the clusters are properly rearranged in order to comply with the selected

indexing schema, thus avoiding the creation of further indices.

Next, we provide the admissibility property which, in turn, characterizes the evaluation

plans.

Definition 6.1.5. Given a rule r ∈ P and an indexing schema S, we say that an ordering

pos(r, ·) is admissible w.r.t. S if the connected components of r are mutually separated

(w.r.t. pos(r, ·)) and well-ordered (w.r.t. pos(r, ·) and S).

We define below an evaluation plan for a Datalog program.

Definition 6.1.6. Let {pr ; r ∈ P} be a given set of position assignments, and I be a given

subset of {p[i] : p ∈ pred(P ∪D), 1 ≤ i ≤ a(p)}. An evaluation plan E of P consists of an

indexing schema S that fixes I together with a pr-ordering for each r ∈ P being admissible

w.r.t. S. We say that P enjoys an efficient evaluation if it is associated to an evaluation

plan.

Example 6.1.4. In our running example, the ordering pos(r, ·) is not admissible w.r.t.

the schema S. Thus, S and pos(r, ·) do not represent an evaluation plan of the program

P = {r}. However, an evaluation plan of P could be obtained by exchanging the assignments

of the atoms c(Z) and e(Y,Z) in pos(r, ·). It would be appropriate to note that, in the latter

case, we would obtain a further evaluation plan by excluding the argument a[2] from the

6.1. ADMISSIBLE PLANS 89

indexing schema (and thus saving an index). Starting from this consideration, we introduce

the concepts of preference and evaluation strategy in the next section. �

With the next example we motivate the notion of evaluation plan given in this section.

As announced, our goal is to plan an efficient instantiation of a Datalog program (i.e.,

the construction of the TP model by means of the fixpoint operator) by fixing a schema

of indices and an ordering of each rule without knowing any statistics of the atoms that

occur in the program, thus also avoiding the costs of calculating and keeping these statistics

updated at runtime. Therefore, the purpose is to simulate the behavior of the most modern

grounding systems [22, 35, 52, 63], relying exclusively on structural information on the

input program.

The proposed theoretical construction aims to reduce the cost of instantiating the rules

of a program in terms of the number of comparisons between tuples that populate pairs

of adjacent predicates (with respect to a given ordering). In particular, we rely on the

following simplifications:

1. The presence of an index in a position p[i] in which occurs a bound variable X allows

direct access (with unit cost) to the collection of tuples that populate p with respect

to the i-th position. In other words, given a constant c that occurs in a previous

atom in a position where the variable X appears, we get access at unit cost to the

first constants tuple of p in which c occurs in position i, without the need to scan (at

worst) the entire extension of p.

2. On the basis of the previous consideration, if all the arguments of an atom are

indexBound, the cost of accessing its tuples will be unitary throughout the entire

instantiation process.

3. The presence of an index on a non-bound position does not bring any benefit to the

grounding process, but instead involves a waste of time and memory necessary to

create a useless index.

90 CHAPTER 6. PLANNING TECHNIQUES

4. Each Cartesian product (i.e., a pair of atoms in adjacent positions belonging to two

distinct connected components) involves the scanning and therefore the comparison

between all the tuples that populate the atoms that make up such a product. Fur-

thermore, considering that the number of tuples satisfying the match of the atoms

in a component is less than or equal to the product of their extensions, avoiding

the instantiation of a Cartesian product in the middle of a component reduces the

number of comparisons.

5. The absence of indexBound arguments in an atom involves a comparison of each

tuple of its extension and each tuple of constants satisfying the preceding atoms.

6. The cost (in terms of memory consumption) of creating an index on an argument of

an atom is proportional to the number of constants that occur in that argument.

Example 6.1.5. Consider the program P consisting of the following rules:

r1 : h(X,Y)← a(X), b(Y), c(X).

r2 : k(Y,X)← c(X), d(Y,X), e(X).

r3 : j(X)← c(X), f(X).

together with the database D:

a(1). . . . a(10). b(1). . . . b(1000). c(6). . . . b(15).

d(1, 1). . . . d(1, 10).

...

d(100, 1). . . . d(100, 10).

e(10). . . . e(19). f(1). . . . f(10).

Consider first an ordering of the rules that reflects the way they are written, and suppose

6.2. PREFERENCES 91

S = ∅. In that case, according to the assumptions 1-6, we get that:

• During the instantiation of rule r1, 104 comparisons are made from the products of

atoms a(X) and b(Y). The resultant 104 pairs of constants are then compared with

each of the 10 facts related to the extension of c. For a total of 105 operations.

• Concerning r2, the product between c(X) and d(Y,X) generates 5× 102 pairs within

104 comparison operations. Such a pairs are then compared with the 10 facts related

to the predicate e. For a total of 1.45× 104 operations needed to instantiate r2.

• Finally, instantiating r3 involves 102 operations.

We now separate the only pair of connected components present in P by reversing the

order of the atoms b(Y) and c(X) in r1. In that case, since the join between a(X) and

c(X) is satisfied only by 5 individuals, the number of operations performed to instantiate

r1 is reduced to 95 + 5× 103.

Consider now the indexing schema S = {c[1], d[2], e[1], f [1]} in order to meet condition

(i) of Definition 6.1.4. Since for each individual who populates a the cost of checking

whether the same individual populates c is equal to 1, the number of operations required to

instantiate r1 is further reduced to 5 + 5× 103. Concerning r2 and r3, you need 5 + 5× 100

and 10 operations respectively.

Reversing the order of the atoms d(Y,X) and e(X) in r2, we finally get an evaluation

plan for P . The number of operations to instantiate r2 is further reduced to 9 + 102.

Overall, we go from a total of about 105 to about 5 × 103 operations to instantiate the

entire program P . �

6.2 Preferences

In order to choose, among the various evaluation plans of a program P , those that mini-

mize the memory consumption necessary for the construction of the indexing schema, we

introduce the concept of preferences.

92 CHAPTER 6. PLANNING TECHNIQUES

Let P be a Datalog program, EP be the set of all the evaluation plans of P and

w : EP → N be a function that we call cost function on EP . Given two evaluation plans

E1, E2 ∈ EP , we say that E1 is preferable to E2 w.r.t. the cost function w if w(E1) < w(E2),

while we say that E1 is equivalent to E2 w.r.t. w if w(E1) = w(E2).

We define an evaluation strategy for P as a finite sequence Σ = (w1, . . . , wk) of distinct

of cost functions on EP . We say that E1 ∈ EP is preferable to E2 ∈ EP w.r.t. the strategy

Σ = (w1, . . . , wk) if either:

• E1 is preferable to E2 w.r.t. w1, or

• there exists j ∈ {2, . . . , k} such that E1 is equivalent to E2 w.r.t. wi for each i =

1, . . . , j − 1, and E1 is preferable to E2 w.r.t. wj .

According to the notion of preference of an evaluation plan over another w.r.t. a strategy,

we can now introduce the definition of “optimal” plans w.r.t. that strategy.

Definition 6.2.1. Let EP be the set of all the evaluation plans for a Datalog program P

and Σ be an evaluation strategy for P . An evaluation plan E0 is said to be optimal w.r.t.

Σ if it is either preferable or equivalent to each E ∈ EP w.r.t. Σ.

Intuitively, finding the optimal evaluation plans against a strategy Σ = (w1, . . . , wk)

means finding those that minimize the cost function w1, then, among these, finding those

that minimize the function w2, and so on.

We report next four functions used for defining our evaluation strategies. From now

on when we talk about the functions w1, w2, w3 and w4 we will refer to the following:

• w1(E) :=
∑

p[i]∈S c(p, i), where c(p, i) is the cost of building an index over p[i] in

the indexing schema S. Note that we presuppose the knowledge of c(p, i) values.

Such costs can be estimated via heuristics or actually computed, depending on the

application domain at hand. As said in the introduction, the novel approach is

based on the natural assumption that, when dealing with very large databases, some

6.2. PREFERENCES 93

information and statistics about the user domain are known in advance since they

do not vary as fast as the actual data. Apart from primary keys and foreign keys,

which in OMQA are related to the ontological schema, some statistics on the data

can be also taken into account. This is the case, for example, of the estimation of the

selectivity of an attribute, which gives an indication of the average number of times

that a constant (or individual) occurs in the relation in correspondence of the given

attribute (note that, the special case of estimation of the selection equal to 1 indicates

that the given attribute is actually a key). This value can be taken into account for

estimating the size (and thus, the cost) of an index for the given attribute.

• w2(E) is defined as the sum of the positions of atoms involved in recursion. We prefer

that atoms involved in recursion are placed as soon as possible. The extension of

such atoms might considerably grow and change during computation; placing them

before other atoms in the body could avoid the creation of expensive indices.

• w3(E) is the number of indices set on arguments that are not primary keys. In other

words we prefer indices set on arguments representing primary keys.

• w4(E) :=
∑

r∈P
∑

α∈B(r)[maxArity−u(α, r)]∗pos(r, α), where maxArity represents

the maximum arity of the atoms appearing in P and u(α, r) is the number of unbound

arguments of the atom α in the rule r. We prefer that atoms having large number

of unbound arguments (that is, those that minimize the first factor in the above

summation) are placed as soon as possible as they possibly will lead to have new

completely bound atoms to be placed in successive positions.

Example 6.2.1. Consider the program P and the set D as in Example 6.1.5. According

to assumption 6, it is clear that the evaluation plan described in the example is not optimal

with respect to the cost function w1. It is easy to verify that, unless reordering the connected

components of rule r1, the only optimal evaluation plan foresees that the rules are ordered

94 CHAPTER 6. PLANNING TECHNIQUES

as follows:

r1 : h(X,Y)← a(X), c(X), b(Y).

r2 : k(Y,X)← e(X), c(X), d(Y,X).

r3 : j(X)← f(X), c(X).

with S = {c[1], d[2]}. �

In the next chapter we provide an ASP based implementation for the computation of

the optimal evaluation plans with respect to a given strategy.

Chapter 7

ASP-based implementation

In the following we describe the ASP code devised in order to compute optimal evaluation

plans. For the sake of simplicity, as the program is rather long and involved, we report

here only some key parts; the full ASP code is available online.1

The program is based on the classical GCO paradigm (see Section 2.3) and combines:

(i) choice and disjunctive rules to guess an indexing schema S over P ∪D and, for each

rule r in P , an ordering pos(r, ·);

(ii) strong constraints to guarantee, for each rule r, the admissibility of pos(r, ·) w.r.t. S;

(iii) weak constraints to find out the optimal evaluation plans of P w.r.t. the chosen

strategy.

7.1 Data model

The planner consists of an ASP program taking as input a set of facts representing P and

the database D; each rule of P is represented by means of facts of the form:

rule(Rule,Description,NumberOfBodyAtoms).

1See https://www.mat.unical.it/perri/iclp2019.zip.

https://www.mat.unical.it/perri/iclp2019.zip

96 CHAPTER 7. ASP-BASED IMPLEMENTATION

headAtom(Rule,Atom,Predicate).

bodyAtom(Rule,Atom,Predicate).

sameVariable(Rule,Atom1, Arg1, Atom2, Arg2).

constant(Rule,Atom,Arg).

Facts over the predicate rule associate each rule r to an identifier and provide the number

of its body atoms. Furthermore, the second argument of such predicates is the string

representing the Datalog rule itself. Atoms in the body and in the head of each rule r

are represented by bodyAtom and headAtom predicates respectively. In particular, given

an atom in the body or head of a given rule, the arguments of these ternary predicates

represent, respectively, the rule identifier, the string by which the atom is represented in

the rule and the predicate name of the atom. The predicate sameVariable provides the

common variables related to every pair of atoms appearing in r, whereas constant states

that a constant term occurs in the argument of an atom of r. An example of the basic

input concepts described above is the following:

Example 7.1.1. The following program P :

h1(X)← a(X,Y), b(Y).

h2(Y)← a(Y,X).

is represented by means of the facts:

rule(0, “h1(X)← a(X,Y), b(Y).”, 2).

headAtom(0, “h1(X)”, “h1/1”).

bodyAtom(0, “a(X,Y)”, “a/2”).

bodyAtom(0, “b(Y)”, “b/1”).

7.1. DATA MODEL 97

sameVariable(0, “h1(X)”, 1, “a(X,Y)”, 1).

sameVariable(0, “a(X,Y)”, 2, “b(Y)”, 1).

rule(1, “h2(Y)← a(Y,X).”, 1).

headAtom(1, “h2(Y)”, “h2/1”).

bodyAtom(1, “a(Y,X)”, “a/2”).

sameVariable(1, “h2(Y)”, 1, “a(Y,X)”, 1).

�

The database D is represented by means of facts over predicate relation, whereas the

costs of building indices over arguments are given by facts over predicate index.

relation(Predicate,Arity).

index(Predicate,Arg, Cost).

Furthermore, the planner allows for having a certain number of atoms in the body in

some previously fixed positions and a set of indices fixed in S. This is because, according

to the knowledge of the domain at hand, if one is aware that a particular choice for the

orderings and the indexing policy is convenient, the planner can be driven so that only

plans complying with this choice are identified. The planner can also exploit the presence

of arguments representing primary keys for predicates in P ∪ D. Such information, if

available, can be given in input to the ASP planner by means of facts of the form:

fixedPosition(Rule,Atom,Pos).

fixedIndex(Predicate,Arg).

key(Predicate,Arg).

98 CHAPTER 7. ASP-BASED IMPLEMENTATION

7.2 Guessing part

The guessing part generates the solution search space, which in this case is represented by

the Cartesian product between the set of all the possible indexing schemes and the set of

all the possible ordering of the program rules.

The following choice rule (see Section 2) guesses a subset of the arguments of all predi-

cates, namely an indexing schema S, over P ∪D. Notably, the arguments to be indexed are

chosen among a restricted set of arguments, called indexable, in order to keep the search

space smaller. For instance, arguments that are not involved in joins are not indexable.

{setIndex(Predicate,Arg)} ← indexable(Predicate,Arg).

Beside this choice rule, the guess part contains also the following rule for guessing a

body-ordering for each rule r in P . In particular, the choice guesses a position in the body

for each atom whose position has not been previously fixed (fixedAtomRule). Clearly, only

positions not already occupied by another body atom in the same rule (fixedPositionRule)

are guessable. Predicates fixedAtomRule and fixedPositionRule are computed according to

the predicate fixedPosition described above.

{pos(A,R, P) : position(P), P ≥ 1, P ≤ Size, not fixedPositionRule(R,P)} = 1

← rule(R,Size), bodyAtom(R,A,), not fixedAtomRule(R,A).

7.3 Checking part

This part discards, by means of strong constraints, solutions that do not satisfy the condi-

tions to be considered admissible evaluation plans. According to the definitions provided

in Section 6.1, conditions that have to be necessarily satisfied are the following:

1. The connected components of each rule of P must be kept separate. According to

7.3. CHECKING PART 99

Definition 6.1.3, this is ensured by the following constraint.

← pos(A1, Rule, P1), pos(A2, Rule, P2), sameComponent(Rule,A1, A2),

pos(A3, Rule, P3), not sameComponent(Rule,A1, A3), P1 < P3, P3 < P2.

2. According to the first point of Definition 6.1.4, to guarantee that each connected

component is well-ordered, each atom, except those in the first position of each com-

ponent, must have at least an argument indexBound. This condition is guaranteed

by the constraint below, where predicates firstPosition and indexBound suggest, re-

spectively, the first positions of the components in each rule, and the indexBound

arguments of each atom in a rule.

← pos(Atom,Rule, Pos), firstPosition(Rule, F irstPos),

Pos > FirstPos, #count{Arg : indexBound(Arg,Atom,Rule)} = 0.

3. The second condition of Definition 6.1.4 is modeled by means of the following con-

straint. Here the predicate atomVars indicates the number of variables occurring in

every atom.

← pos(A,Rule, P), not boundAtom(A,Rule, P), pos(A1, Rule, P1),

not boundAtom(A1, Rule, P1), P1 > P, P2 > P1, boundAtom(A2, Rule, P2),

atomVars(A2, Rule,N), #count{Arg : sameVariable(Rule,A2, Arg,A,)} = N.

The checking part contains also an additional constraint encoding the following basic check

for guaranteeing the correctness of the plans. In particular, this basic check ensures that

100 CHAPTER 7. ASP-BASED IMPLEMENTATION

two different atoms do not occupy the same position in any rule:

← pos(Atom1, Rule, Pos), pos(Atom2, Rule, Pos), Atom1 6= Atom2.

7.4 Optimization part

Finally, in this section we describe the part for identifying the optimal evaluation plan

according to the evaluation strategy that one decides to apply. Remember that a strategy

is a finite combination of cost functions. Currently, the planner is equipped with the four

cost functions described in Section 6.2, each of which is represented by a specific weak

constraint. Note that, weak constraints allow for expressing preferences possibly having

different importance levels. The planner allows to fix these priority levels according to the

chosen strategy by providing in input facts which indicate that the cost function wN has

priority level P .

priorityCostFunction(N,P).

For instance, suppose we want to represent the strategy Σ = (w1, w3, w2), then we need

the following input facts to indicate that the cost function w1 has priority level 3, w3 has

priority level 2 and w2 has priority level 1. Note that in this case the cost function w4 is

not activated.

priorityCostFunction(1, 3).

priorityCostFunction(3, 2).

priorityCostFunction(2, 1).

This means that the planner is customizable. Indeed, depending on the knowledge of

the domain at hand, one can choose to adapt the strategy to his own needs simply by

7.4. OPTIMIZATION PART 101

exchanging the priority levels of the cost functions among those already present in the

planner, or even by integrating new cost functions (with the addition of new constraints

in the encoding). In the following we illustrate the weak constraints representing the cost

functions defined in Section 6.2.

1. The rule below aims to minimize index occupation. To this end, we presuppose the

knowledge of the costs (or their estimation) of building indices over arguments and

we represent them by facts of form index (Predicate,Arg, Cost).

:∼ setIndex(Predicate,Arg), index(Predicate,Arg, Cost),

priorityCostFunction(1, P). [Cost@P, Predicate,Arg, Cost]

2. We prefer that atoms involved in recursion are placed as soon as possible. The

weak constraint makes uses of the auxiliary predicate recursivePredicate providing

information about which predicates of the program are recursive. We do not report

its definition for the sake of readability.

:∼ pos(Atom,Rule, Pos), bodyAtom(Rule,Atom,Predicate),

recursivePredicate(Predicate), priorityCostFunction(2, P).

[Pos@P, Rule, Pos]

3. Indices set on arguments representing primary keys are possibly preferred:

:∼ setIndex(Predicate,Arg), not key(Predicate,Arg),

priorityCostFunction(3, P). [1@P, Predicate,Arg]

4. Atoms having large number of unbound arguments should be placed as soon as

possible in the body. Also in this case we make use of an auxiliary predicate: num-

102 CHAPTER 7. ASP-BASED IMPLEMENTATION

BoundArgs provides the number of bound arguments of an atom in a rule.

:∼ numBoundArgs(Atom,Rule, Pos,B), maxArity(N),

bodyAtom(Rule,Atom,Predicate), relation(Predicate,Arity),

priorityCostFunction(4, P). [(N −Arity +B) ∗ Pos@P, Rule, Pos]

Chapter 8

Experimental evaluation

Hereafter we report the results of an experimental activity carried out to assess the ef-

fectiveness of the ASP-based evaluation planner. Our experimental analysis relies on four

benchmarks: LUBM, LUBM-LUTZ, Stock Exchange and Vicod̀ı. In particular, LUBM,

Stock Exchange and Vicod̀ı are the same used in the experimentation of the DaRLing

system, and their description is present in Chapter 5. LUBM-LUTZ [55] is a variant of

LUBM which consists of an OWL 2 ontology and 11 queries (both different from those of

LUBM) along with a modified version of the LUBM official generator allowing to set the

level of incompleteness in the database.

8.1 Setting

The original LUBM ontology and the official 14 queries have been translated into Datalog

via the Clipper system. 1 The official LUBM generator has been adopted to generate four

databases of increasing sizes: LUBM-500, LUBM-1,000, LUBM-2,000 and LUBM-4,000,

where the number associated to each database name indicates the number of universities

1The choice of Clipper as the system used for the rewriting of ontologies and queries depends on the
fact that the experimental phase on the planner precedes the design of the DaRLing system. Furthermore,
the ontologies used for the tests fall within the Horn-SHIQ description logic, therefore to use Darling it
would have been necessary to eliminate the rules that do not fall within the RL fragment of OWL 2.

104 CHAPTER 8. EXPERIMENTAL EVALUATION

composing it. The number of facts in the databases ranges from about 67,000,000 to about

half a billion facts. As done for LUBM, the ontology and the queries of LUBM-LUTZ have

been translated into Datalog via the Clipper system. All queries are without constants.

We generated five databases of increasing sizes and having an incompleteness percentage

of 10%: LUTZ-500, LUTZ-1,000, LUTZ-2,000, LUTZ-4,000 and LUTZ-8,000. Again, the

number associated to each database name indicates the number of universities composing

it. For each of Stock Exchange and Vicod̀ı, we selected 5 queries featuring constants and we

used the SyGENiA generator [39] to produce five databases having from 1, 000 to 40, 000

tuples and a number of individuals varying from 100 to 4, 000. These are the maximum

sizes that can be generated using SyGENiA.

Experiments on LUBM-LUTZ have been performed on a Dell Linux server with an

Intel Xeon Gold 6140 CPU composed of 8 physical CPUs clocked at 2.30 GHz, with

297GB of RAM. Experiments on LUBM, Vicod̀ı and Stock Exchange have been performed

on a NUMA Linux machine equipped with two 2.8 GHz AMD Opteron 6320 processors and

128GB RAM. Unlimited time and memory were granted to running processes. Benchmarks

and executables used for the experiments are available at https://www.mat.unical.it/perri/

iclp2019.zip.

Two different executions have been compared:

(i) a classical execution of i-dlv which, given as input the so generated encodings,

chooses body orderings and indexing strategies with its default policies; and

(ii) an execution driven by the planner in which i-dlv is forced to follow the precomputed

evaluation plan that decided body orderings and indices in order to reduce memory

consumption. These constraints have been defined via annotations, that represent

specific means to express preferences over its internal computational process [23].

https://www.mat.unical.it/perri/iclp2019.zip
https://www.mat.unical.it/perri/iclp2019.zip

8.2. PLANNER CUSTOMIZATION 105

8.2 Planner customization

In the context of OMQA, where the objective is to answer a query, the rewritten Dat-

alog program typically benefits from the application of the so-called Magic Sets tech-

nique [9]. This produces a new equivalent program containing extra intensional predicates

that could have very small extensions during the computation. These predicates, in a

setting where memory consumption should be limited, could be moved towards the end of

the body so that it is more likely saving space for needed indices. Hence, to instantiate

our planner, we consider this additional domain information and use facts of the form

fixedPosition(Rule,Atom,Pos) to specify it. It is worth remarking that in i-dlv this cus-

tomization has an impact only in case of queries featuring constants since magic atoms

are not generated for queries without constants. Furthermore, for all attributes involved

in extensional relations, we provide, via facts of the form index(Predicate,Arg, Cost), an

estimation of the size of an index for that attribute. In particular, in our experiments,

to have available this information we generate and analyze a “small” database for each

benchmark.

In our experiments, we considered different planner customizations depending on the

domain at hand. In particular, for LUBM, Vicod̀ı and Stock Exchange, consisting mainly

of queries featuring constants, we adopted the strategy Σ1 = (w2, w4). The idea underlying

this choice is that, in such domains, i-dlv can benefit from the Magic Sets technique and

fixing the positions of magic atoms as described above is already sufficient to drive the

planner. On LUBM-LUTZ, having instead constant-free queries, we adopted the strategy

Σ2 = (w1, w2, w3, w4); indeed, since Magic Sets are not active, no fixed positions can be

provided and a richer strategy is necessary for avoiding an almost blind plan computation.

106 CHAPTER 8. EXPERIMENTAL EVALUATION

Query
No Planner Planner

Saved Memory Saved Time
Time Memory Time Memory Planning Time

LUBM

q01 1,949.24 17.27 1,526.94 17.67 0.01 -0.4 422.3
q02 2,292.53 19.22 1,121.70 17.27 0.14 2.0 1,170.8
q03 1,643.14 17.89 1,026.31 17.27 0.01 0.6 616.8
q04 2,250.26 37.21 1,241.08 33.28 0.30 3.9 1,009.2
q05 1,303.48 28.28 1,087.97 17.27 0.17 11.0 215.5
q06 1,485.75 23.74 1,383.24 21.12 0.05 2.6 102.5
q07 1,284.16 25.94 1,124.31 21.23 0.18 4.7 159.9
q08 1,349.36 32.47 1,162.35 22.49 0.32 10.0 187.0
q09 1,464.82 23.74 1,326.15 21.32 0.22 2.4 138.7
q10 1,271.19 24.94 1,101.55 20.84 0.14 4.1 169.6
q11 1,016.69 17.27 1,014.10 17.27 0.01 0.0 2.6
q12 1,275.24 27.13 1,115.07 18.68 0.20 8.4 160.2
q13 1,281.30 30.06 1,129.73 18.66 0.17 11.4 151.6
q14 1,122.83 17.27 1,080.39 17.27 0.00 0.0 42.4

Saved Memory Average: 4.34 Maximum: 11.40 Improvements: 13/14
Saved Time Average: 324.94 Maximum: 1,170.83 Improvements: 14/14

LUBM-LUTZ

q01 353.88 8.17 328.94 8.15 0.00 0.0 24.9
q02 237.25 6.19 232.24 6.20 0.04 0.0 5.0
q03 268.90 6.63 274.70 6.20 0.26 0.4 -5.8
q04 249.86 6.67 240.43 6.63 0.02 0.0 9.4
q05 246.67 6.21 240.60 6.21 0.08 0.0 6.1
q06 273.83 6.88 258.81 6.63 0.28 0.2 15.0
q07 219.15 6.20 218.20 6.20 0.05 0.0 0.9
q08 293.97 7.59 284.52 6.80 0.11 0.8 9.5
q09 260.12 6.80 247.42 6.20 0.01 0.6 12.7
q10 289.85 7.19 283.63 7.22 0.04 0.0 6.2
q11 288.08 7.14 280.95 6.44 0.07 0.7 7.1

Saved Memory Average: 0.26 Maximum: 0.79 Improvements: 11/11
Saved Time Average: 8.28 Maximum: 24.94 Improvements: 10/11

Table 8.1: Planner performance in terms of average running time and memory usage of
i-dlv with and without planner, computed over all considered databases per each query
of LUBM and LUBM-LUTZ. Memory is in GB, Time in seconds.

8.3. DISCUSSION 107

Query
No Planner Planner

Saved Memory Saved Time
Time Memory Time Memory Planning Time

Stock Exchange

q01 0.83 11.98 0.83 12.16 0.00 -0.2 0.0
q02 1.10 23.48 1.15 21.10 0.02 2.4 -0.1
q03 2.06 39.64 2.41 36.60 0.03 3.0 -0.4
q04 1.31 29.04 1.32 25.28 0.04 3.8 0.0
q05 2.35 46.40 2.44 41.34 0.09 5.1 -0.1

Saved Memory Average: 2.81 Maximum: 5.06 Improvements: 4/5
Saved Time Average: -0.10 Maximum: 0.00 Improvements: 2/5

Vicod̀ı

q01 0.83 9.88 0.83 9.96 0.01 -0.1 0.0
q02 0.93 20.56 0.83 12.02 0.01 8.5 0.1
q03 0.82 11.38 0.78 10.72 0.02 0.7 0.0
q04 0.70 12.88 0.70 13.84 0.02 -1.0 0.0
q05 0.78 12.54 0.78 13.10 0.08 -0.6 0.0

Saved Memory Average: 1.52 Maximum: 8.54 Improvements: 2/5
Saved Time Average: 0.03 Maximum: 0.11 Improvements: 5/5

Table 8.2: Planner performance in terms of average running time and memory usage of
i-dlv with and without planner, computed over all considered databases per each query
of Stock Exchange and Vicod̀ı. Memory is in MB, Time in seconds.

8.3 Discussion

The results of our experiments are reported in Table 8.1, Table 8.2 and in Figure 8-1 and

8-2.

Table 8.1 and Table 8.2 show performance in terms of average running time and memory

usage of i-dlv (with and without planner) computed over all considered databases per each

benchmark query. Columns 2 and 3 refer to the classical computation, while columns 4 and

5 to the computation driven by the planner. In the 6th column, we reported the time spent

to compute the optimal plan, in the 7th column, the memory saving per query computed as

difference of the corresponding fields in columns 3 and 5. Similarly, the 8th column reports

the time saving per query computed as difference of the corresponding fields in columns

2 and 4. The table reports also some aggregated data per benchmark. In particular, it

shows information on the average/maximum saved memory/time, as well as the number

108 CHAPTER 8. EXPERIMENTAL EVALUATION

q11 q14 q10 q12 q13 q7 q5 q8 q9 q6 q3 q1 q4 q2
1000

1500

2000

2500

T
im

e
(s

) Planner

No Planner

q1 q11 q14 q3 q2 q6 q9 q10 q7 q12 q5 q13 q8 q4
1

2

3

4
·104

M
em

o
ry

(M
B

)

Planner

No Planner

Figure 8-1: Plots of the average running time and memory usage of i-dlv (with and without
planner) over all considered databases per each query of LUBM. Queries are ordered by
increasing values w.r.t. the No-Planner execution.

of queries where an improvement in terms of saved memory (resp. saved time) has been

obtained. In addition, to provide a clearer picture of the behavior of the two versions of

i-dlv, we reported in Figures 8-1 and 8-2 plots of the average running time and memory

usage over all considered databases for the largest benchmarks: LUBM and LUBM-LUTZ.

As it can be seen, we obtained a significant saving of memory on LUBM where, for

instance, the planner allows to save 11.4 GB on query q13 (about 40% less) w.r.t. the

no-planner version, and a gain both in terms of memory and time over almost all queries.

Only on query q01 we experimented a small worsening on memory. In general, no signif-

icant increase of computation time is observable and, in several cases, the planner-driven

approach leads also to improvements in terms of time. This can be explained considering

that indices selected by the planner, being on the overall less memory expensive, are more

efficiently computable.

Concerning LUBM-LUTZ, we first note that the benefits appear less evident. This is

due to the nature of the queries in the benchmark which are constant-free and require

a different (less informed) customization, as described in Section 8.2. Nonetheless, the

8.3. DISCUSSION 109

q7 q2 q5 q4 q9 q3 q6 q11 q10 q8 q1
200

250

300

350

T
im

e
(s

) Planner

No Planner

q2 q7 q5 q3 q4 q9 q6 q11 q10 q8 q1

7000

8000

M
em

o
ry

(M
B

)

Planner

No Planner

Figure 8-2: Plots of the average running time and memory usage of i-dlv (with and
without planner) over all considered databases per each query of LUBM-LUTZ. Queries
are ordered by increasing values w.r.t. the No-Planner execution.

execution of i-dlv driven by the planner performs generally better (both in time and

memory) of the standard execution. On the queries q08, q09 and q11 we have a memory

saving of 9-10% w.r.t. the no-planner version; moreover, we observe no worsening in

memory consumption and only one case in which there is a negligible worsening in time.

As for Stock Exchange and Vicod̀ı, although these are not data intensive domains,

i-dlv can benefit by the planner as well. Indeed, worsenings in terms of memory range

from 1% to 7% in a few queries which are somehow expected when measuring memory of

the order of megabytes.

Further aggregated data and statistics on the results are given in Table 8.3. This

shows, for both the tested versions of i-dlv and for each benchmark, the maximum peak

of memory and the total sum of execution times computed over all databases and queries,

along with the corresponding profits. In all benchmarks, the peak of memory when the

planner is used is less than the one obtained using the standard version of i-dlv. Regarding

times, although we experimented a small worsening for Stock Exchange (6.5%), we observe

a general improvement which is greater than 20% in our large-scale benchmark.

Overall, we can claim that the proposed approach promotes considerable memory sav-

110 CHAPTER 8. EXPERIMENTAL EVALUATION

Domain
Peak of Memory Sum of Times

No Planner Planner Profit (%) No Planner Planner Profit (%)

LUBM 81,439.90 72,733.30 10.7% 83,960.48 65,763.48 21.7%
LUBM-LUTZ 21,701.70 21,634.20 0.3% 14,907.74 14,452.21 3.1%
Stock Exchange 77.40 68.90 11.0% 38.25 40.72 -6.5%
Vicod̀ı 38.50 26.60 30.9% 20.32 19.58 3.7%

Table 8.3: Statistics on LUBM, LUBM-LUTZ, Stock Exchange and Vicod̀ı: the maximum
peak of memory and the total sum of execution times computed over all databases and
queries, along with the corresponding profits. Time is in seconds, memory is in MB.

ings, especially in data-intensive benchmarks. The computation of a low memory con-

sumption indexing schema also favors a saving in terms of execution time. Having an

overall view of the ontology allows in fact to choose ordering in which only the indices

necessary for the binding of the variables are created, thus avoiding the cost of creating

unused indices.

However, there are some queries on which a noteworthy memory saving is not observ-

able. This behavior can be explained by the fact that the standard i-dlv approach builds

indices and reorders the rule bodies based on data statistics that are updated at runtime,

each time a rule generates new instances of its head predicate. Our approach is based

on the assumption that, on a large scale, the selectivities of predicate arguments do not

vary greatly during materialization. However, it is clear that if the selectivity of an IDB

predicate grows a lot, the cost of its indexing is unpredictable in a preprocessing phase.

In fact, it would be necessary to estimate in advance the selectivity of the arguments of

each IDB predicate at the end of the materialization. Although formulas could be used to

estimate the variations in selectivity every time a rule is processed—i.e., every time the

immediate consequence operator produces a non empty set of new facts on that rule—it

would in any case be undecidable to establish in advance the number of times a rule will

be processed in case of recursion.

This problem is already partially addressed by the planner through a cost function with

which ordering is preferred in which the recursive predicates are placed as soon as possible.

8.3. DISCUSSION 111

This reduces the likelihood of indexing these predicates and therefore to lose control in the

case of large variations on them. However, in order to optimally use this planner feature

and give it the right level of priority, a thorough knowledge of the data and the ontology

in question is required.

Part IV

Conclusion

Chapter 9

Related work

A number of effective practical approaches proposed in the literature perform ontology-

mediated query answering via rewriting the ontology and the query into an equivalent

Datalog program. Over the past decade, several rewriting algorithms have been proposed

and systems performing query answering via rewriting have been designed, even for the

same fragment of OWL. They may differ, apart from the rewriting techniques, also from

the size and time spent to produce the rewritings, and their quality (measured in terms of

time and space in the evaluation against popular benchmarks).

Concerning the existing tools supporting query answering against (at least) OWL 2 RL

ontologies, in the following we mention, in chronological order, all those whose approach is

to express inference tasks for OWL in terms of inference tasks for Datalog. We highlight

the differences with our rewriter and explain why Clipper-Rew is the only system that can

be fairly tested with.

• Orel [48] is a reasoning system which subsumes both the EL and the RL profile of the

OWL 2 ontology language and its approach is based on a bottom-up materialisation of

consequences in a database. In particular, ontological information are stored as facts,

whereas logical ramifications are governed by “meta-rules” that resemble the rules

of a deduction calculus. However, Orel supports neither SPARQL nor conjunctive

114 CHAPTER 9. RELATED WORK

queries.

• OwlOntDB [32] works under the unique name assumption (UNA) to translate OWL

2 RL ontologies into Datalog programs, but it is no longer available.

• DReW [72] is a query answering system which supports OWL 2 RL and OWL 2

EL (modulo datatypes). It uses dlv as underlying Datalog engine and has not been

conceived to generate ontology rewritings.

• RDFox [59] is a main-memory RDF store supporting Datalog reasoning with an

efficient handling of owl:sameAs and SPARQL. After the initial development at

University of Oxford, the system is now available commercially from Oxford Semantic

Technologies, a spin-out of the University backed by Samsung Ventures and Oxford

Sciences Innovation.

• Clipper [30] is a reasoner for conjunctive query answering over Horn-SHIQ ontology.

Being more oriented to DL languages rather than OWL ontologies, Clipper lacks the

support of the datatypes constructs and manages the owl:sameAs property under

the UNA. It can also be used to generate ontology rewritings only.

• owl2dlv [5] is a commercial system, builts on the ASP reasoner dlv2-server [50],

for evaluating SPARQL queries over very large OWL 2 knowledge bases whose asso-

ciated DL falls within Horn-SHIQ. As well as Clipper, owl2dlv works under the

UNA, but it cannot be used to generate ontology rewritings only.

According to Table 1.1, among the aforementioned systems, only RDFox properly applies

owl:sameAs without UNA, whereas datatypes are supported by OwlOntDB, RDFox and

owl2dlv. RDFox is a materialization based reasoner that adopts a rewriting with a single

predicate representing each RDF/RDFS triple. This system handles the owl:sameAs by

choosing a representative resource for each owl:sameAs-clique and then replacing all

resources with their representative. This type of approach, unlike ours, requires the rules

115

to be updated whenever a owl:sameAs triple is derived during materialization. Then

rewriting cannot be applied as preprocessing. It also seems that—apart from DaRLing—

the management of the implicit knowledge of the sameAs deriving from some axioms of the

TBox and some assertions of the ABox is not dealt with by any state-of-the-art system.

Furthermore, compared to DaRLing: Orel is a reasoning system that supports neither

SPARQL nor conjunctive queries; OwlOntDB is no longer available; DReW is a query

answering system (based on the first generation of dlv) which has not been conceived to

generate ontology rewritings only; RDFox is a commercial query answering system (based

on its own reasoner) the trial version of which is not freely provided for testing even in

academic contexts; owl2dlv is a commercial system (based on the second generation of

dlv) which cannot be used to generate ontology rewritings only and also it cannot be

tested due to Samsung’s restrictions.

DaRLing is an OMQ rewriter which produces a standard Datalog program that can be

evaluated by any Datalog reasoner. Clipper is a query answering system (based on the first

generation of dlv) which can also be used to generate ontology rewritings only. Hence,

the only tool that can be tested against DaRLing is the is the part of Clipper providing

the Datalog rewriting of an OMQ (Clipper-Rew).

Moreover, we would like to stress out that DaRLing is not based on i-dlv (the grounder

of dlv2), but we simply used i-dlv to evaluate the output of DaRLing. Note also that

dlv2 is much faster than dlv, hence any comparison between DaRLing+ i-dlv and DReW

or Clipper would be unfair.

Concerning the OWL 2 QL profile, Presto [65] produces Datalog rewritings of polyno-

mial size, whereas QuOnto [2] and Requiem [62] produce a union of conjunctive queries

(i.e., a set of Datalog rules all having predicate ans in their head) of exponential size in

the worst case.

Rewriting techniques are also used for other semantic services besides the OMQA.

Among these, MASTRO [26] and Ontop [25] are open-source tools for Ontology-Based

116 CHAPTER 9. RELATED WORK

Data Access (OBDA) [71] in which the ontology lies in the QL fragment of OWL 2. Ontop

has its roots in MASTRO and is implemented through a query rewriting technique which

avoids materializing triples. Kontchakov et al. [47] address the OBDA problem over both

OWL 2 QL and OWL 2 EL with a combined approach, which embeds the information

provided by the ontology into the data and uses query rewriting to eliminate spurious

answers. Eventually, Stefanoni et al. [68] propose an approach which produces Datalog

rewritings of polynomial size for performing OBDA over OWL 2 EL.

Among the systems dedicated to ontological query answering in the context of existen-

tial rules there are also Graal [15], dlv∃ [51] and VLog [27]. These systems are not ad-hoc

for OWL 2 RL and typically capture more expressive ontologies and then support features

such as the skolem and the restricted (standard) chase for reasoning over existential rules.

Finally, Carral et al. [28] propose a combined approach for query answering over the DL

Horn-ALCHOIQ.

Regarding the approach presented in Part III of the thesis, not much progress has been

made in that area before. The proposed framework is in fact completely new and does not

exist, as far as we know, any tool computing plans for evaluating Datalog programs in a

pre-processing phase.

Chapter 10

Combining the DaRLing rewriter

and the planner

Although the two systems presented in Part II and III are designed and tested indepen-

dently of each other, they can both be placed in the context of the OMQA over large-scale

OWL 2 ontologies. Part of our future plans is certainly the design of a single system which,

once the knowledge base has been translated into Datalog, allows us to take advantage of

a planning in the evaluation of the rewritten programs. In this regard, as a first step

towards merging the two systems, we conducted an experimental evaluation aimed at test-

ing the behavior of the planner when it takes DaRLing rewritings as input. This chapter

describes the set-up of this experimental activity in detail and the results are illustrated

and discussed.

For these experiments we have chosen the intersection of the benchmarks used in Chap-

ters 5 and 8: LUBM (the fragment falling into the OWL 2 RL profile), Stock Exchange

and Vicod̀ı. Datasets and queries are the same as those used in Chapter 8, and the cus-

tomization policy applied to the planner for the three benchmarks is the same as described

in Section 8.2. Ontologies and queries have been translated into Datalog via the DaRLing

system.

118 CHAPTER 10. COMBINING THE DARLING REWRITER AND THE PLANNER

As in Chapter 8 we performed two different executions: (i) a classical execution of

i-dlv, and (ii) an execution in which i-dlv is forced—by means of annotations—to follow

the evaluation plan precomputed by the planner. The experiments have been performed

on a NUMA Linux machine equipped with two 2.8 GHz AMD Opteron 6320 processors

and 128GB RAM.

The results of our experiments are summarized in Table 10.1, Figure 10-1 and Ta-

ble 10.2. Note that only results related to the tests on LUBM and Stock Exchange are

reported. In fact, on Vicod̀ı, it emerged that the annotated programs resulting from the

application of the planner on the DaRLing rewritings are identical to those resulting from

the application of the planner on the Clipper rewritings with respect to all the queries. In

other words, the planner’s output is the same on DaRLing’s and Clipper’s rewritings for

Vicod̀ı. For this reason it makes no sense to repeat the experiments for this benchmark,

and we can take the results obtained in Table 8.2 for good.

We reported in Table 10.1 i-dlv performance in terms of average running time and

memory usage computed over all considered databases and per each query of LUBM and

Stock Exchange. Columns 2 and 3 refer to the classical i-dlv execution, whereas columns 4

and 5 to the execution where i-dlv is forced to follow the planner’s output via annotations.

In the 6th column, we reported the time spent to compute the optimal plan, and in the

7th and 8th column, respectively the memory and time savings computed as difference of

the corresponding fields. The table reports also some aggregated data per benchmark: the

average/maximum saved memory/time and the number of queries where an improvement in

terms of saved memory/time has been obtained. Beyond that, Figure 10-1 shows the plots

of the average running time and memory usage over all considered databases for LUBM

(the largest benchmark). Finally, in Table 10.2 are given the maximum peak of memory

and the sum of execution times computed over all databases and queries—along with the

corresponding profits—for both the tested versions of i-dlv and for both benchmarks.

As it can be seen, we obtained a significant saving of time on LUBM where the planner

119

Query
No Planner Planner

Saved Memory Saved Time
Time Memory Time Memory Planning Time

LUBM

q01 1,846.45 17.68 1,243.83 17.68 0.01 0.0 602.8
q02 1,864.95 18.17 1,244.68 18.17 0.03 0.0 620.2
q03 1,523.14 17.27 1,113.97 17.27 0.01 0.0 409.2
q04 1,154.64 17.26 1,045.16 17.26 0.00 0.0 109.5
q05 1,754.23 17.26 1,141.29 17.27 0.01 0.0 612.9
q06 1,612.32 17.29 1,141.52 17.27 0.00 0.0 470.8
q07 1,260.88 17.26 1,112.82 17.27 0.00 0.0 148.1
q08 1,264.76 17.27 1,112.33 17.26 0.03 0.0 152.4
q09 1,906.18 19.76 1,336.55 19.76 0.02 0.0 569.6
q10 1,100.80 17.27 1,103.97 17.26 0.01 0.0 -3.2
q11 1,077.63 17.28 1,076.80 17.26 0.01 0.0 0.8
q12 1,085.58 17.27 1,083.54 17.27 0.00 0.0 2.0
q13 1,197.43 17.59 1,159.96 17.59 0.01 0.0 37.5
q14 1,143.86 17.27 1,142.67 17.26 0.00 0.0 1.2

Saved Memory Average: 0.01 Maximum: 0.02 Improvements: 9/14
Saved Time Average: 266.71 Maximum: 620.23 Improvements: 13/14

Stock Exchange

q01 0.64 10.03 0.78 12.24 0.00 -2.2 -0.1
q02 0.97 22.78 0.93 22.24 0.01 0.5 0.0
q03 1.65 41.06 1.59 40.68 0.00 0.3 0.1
q04 1.17 29.22 1.17 29.94 0.03 -0.7 0.0
q05 3.26 46.52 4.11 30.93 0.09 15.6 -0.9

Saved Memory Average: 2.70 Maximum: 15.59 Improvements: 3/5
Saved Time Average: -0.18 Maximum: 0.06 Improvements: 3/5

Table 10.1: Planner performance over DaRLing’s rewritings in terms of average running
time and memory usage of i-dlv with and without planner, computed over all considered
databases per each query of LUBM and Stock Exchange. Time is in seconds, memory is
in GB for LUBM and in MB for Stock Exchange.

120 CHAPTER 10. COMBINING THE DARLING REWRITER AND THE PLANNER

q11 q12 q10 q14 q4 q13 q7 q8 q3 q6 q5 q1 q2 q9
1000

1200

1400

1600

1800

2000

T
im

e
(s

) Planner

No Planner

q7 q5 q4 q14 q3 q12 q8 q10 q11 q6 q13 q1 q2 q9
1.7

1.8

1.9

2

2.1
·104

M
em

o
ry

(M
B

)

Planner

No Planner

Figure 10-1: Plots of the average running time and memory usage of i-dlv (with and
without planner) over all considered databases per each query of LUBM. Queries are
ordered by increasing values w.r.t. the No-Planner execution.

saves an average of 266.71 seconds (about 4 and a half minutes) per query compared to

the no-planner version. The greatest saving in terms of time is on query 2 where there is a

saving of 620.2 seconds (about 10 minutes and 33% less). Although there is no worsening

on any query in terms of memory, there are no notable improvements either. This trend

could be due to the narrowing of the benchmarck to its OWL 2 RL version. In fact, as

just noted in Chapter 8, planner performance improve as memory consumption increases

with respect to i-dlv standard execution and, as it is easy to see, in this fragment the

overall memory consumption has been drastically reduced (the memory peak on the RL

fragment of LUBM is 40 gigabytes against the 80 gigabytes recorded in its full version).

Despite this, execution times turn out to be better on almost all queries and, as shown in

Figure 10-1, this improvement tends to grow as standard execution times increase.

Concerning Stock Exchange, although this is not a data intensive domain, i-dlv can

benefit by the planner as well. Indeed, in query 5 there is a saving of 15.6 megabytes of

memory, whereas a worsening is recorded only in queries 1 and 4 (of 2.2 and 0.6 megabytes,

respectively).

121

Domain
Peak of Memory Sum of Times

No Planner Planner Profit (%) No Planner Planner Profit (%)

LUBM 43,217.70 43,211.30 0.0% 79,172.20 64,236.37 18.9%
Stock Exchange 76.20 73.30 3.8% 39.19 40.27 -2.7%

Table 10.2: Statistics on LUBM and Stock Exchange: the maximum peak of memory and
the total sum of execution times computed over all databases and queries, along with the
corresponding profits. Time is in seconds, memory is in MB.

Finally, Table 10.2 shows that the peak of memory when the planner is used is lower

(about 3,8%) than the one obtained using the standard version of i-dlv for Stock Exchange,

and it is slightly lower also for LUBM. Regarding times, although we experimented a small

worsening for Stock Exchange (2.7%), we observe a 18.9% improvement in our large-scale

benchmark.

122 CHAPTER 10. COMBINING THE DARLING REWRITER AND THE PLANNER

Chapter 11

Discussion and future work

In this thesis we addressed the OMQA problem over OWL 2 RL ontologies in large-scale

scenarios via Datalog rewriting.

Primarily, we presented DaRLing,1 a Datalog-based rewriter for OWL 2 RL ontologi-

cal reasoning under SPARQL queries. To demonstrate its practical applicability, we have

designed and conducted an experimental evaluation based on two working hypotheses,

which have been confirmed. The first release of DaRLing demonstrates to produce more

general rewritings equivalent or sightly differing from the ones generated by Clipper, the

closer open-source competitor of DaRLing. As additional feature, DaRLing can be used

for transparently handling the owl:sameAs property independently from the Datalog

reasoner at hand albeit requiring extra work due to the intrinsic need of computing the

transitive closure. Such costs are strictly dependent from the ontology at hand; our ex-

perimentation in an unfriendly setting of a large ontology such as DBpedia proved a not

taken for granted applicability of the approach.

Then, we introduced a planner2 for the evaluation of Datalog programs. The planner

has been conceived to be applied to OMQA contexts, where often, in case of large databases,

1https://demacs-unical.github.io/DaRLing/
2https://www.mat.unical.it/perri/iclp2019.zip

 https://demacs-unical.github.io/DaRLing/
https://www.mat.unical.it/perri/iclp2019.zip

124 CHAPTER 11. DISCUSSION AND FUTURE WORK

standard approaches are not convenient/applicable due to memory consumption. It relies

on an ASP program that computes the plan, intended as an indexing schema for the

database together with a body-ordering for each rule in the program. The computed plan

minimizes the overall cost (in term of memory consumption) of indices; moreover, the usage

of the plan with the dlv system allows to further reduce memory usage since some expensive

internal optimizations of dlv can be disabled. Results of the experiments conducted

on popular ontological benchmarks confirm the effectiveness of the approach. In case of

reasoners with a server-like behavior, such as dlv2-server and owl2dlv, evaluation plans

play an extremely important role, and the advantage of precomputing an evaluation plan

is even more evident. Indeed, when the ontology is known in advance, it is possible to

determine “offline” the optimal plan, and therefore further improve the reasoning phase

with respect to both time and memory.

With reference to point (i) of the desiderata expressed in Chapter 1 (i.e., that con-

cerning the regular maintenance of our OWL 2 RL system), among our future plans is

the development of a freely available customizable DaRLing-based SPARQL endpoint for

OWL 2 RL ontological reasoning complying with the W3C Recommendations. To this

end, the next steps are:

(i) extending the rewriting to enable the meta-reasoning, namely SPARQL queries where

variables may range also over the given schema;

(ii) handling owl:sameAs also over concept and role names;

(iii) enriching the set of supported datatypes;

(iv) extending the notion of evaluation plan to Datalog¬s, 6=;

(v) designing a system that integrates both systems—rewriter and planner—to automate

rewriting of the ontologies and planning of evaluation of the rewritings over large

databases.

125

In this regard, we already started a first experimental phase in order to get an idea

of how the planner behaves on DaRLing’s outputs. The results obtained in Chapter 10

confirm a good overall behavior of the planner on the DaRLing rewritings and suggest a

combined use of the two systems especially in large-scale scenarios (those for which the

planner was conceived).

126 CHAPTER 11. DISCUSSION AND FUTURE WORK

Bibliography

[1] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison-

Wesley. 27

[2] Acciarri, A., Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., Palmieri, M.,

and Rosati, R. (2005). Quonto: Querying ontologies. In Veloso, M. M. and Kambham-

pati, S., editors, Proceedings of AAAI’05, pages 1670–1671. AAAI Press / The MIT

Press. 18, 115

[3] Ahmetaj, S. (2020). Rewriting approaches for ontology-mediated query answering.

Künstliche Intell., 34(4):523–526. 52

[4] Allocca, C., Alviano, M., Calimeri, F., Costabile, R., Fiorentino, A., Fuscà, D., Ger-

mano, S., Laboccetta, G., Leone, N., Manna, M., Perri, S., Reale, K., Ricca, F., Veltri,

P., and Zangari, J. (2018). Reasoning over ontologies with DLV. In Proceedings of

IC3K’18, volume 1222 of Communications in Computer and Information Science, pages

114–136. Springer. 76

[5] Allocca, C., Calimeri, F., Civili, C., Costabile, R., Cuteri, B., Fiorentino, A., Fuscà,

D., Germano, S., Laboccetta, G., Manna, M., Perri, S., Reale, K., Ricca, F., Veltri,

P., and Zangari, J. (2019a). Large-scale reasoning on expressive horn ontologies. In

Proceedings of Datalog 2.0, volume 2368 of CEUR Workshop Proceedings, pages 10–21.

CEUR-WS.org. 18, 114

128 BIBLIOGRAPHY

[6] Allocca, C., Calimeri, F., Costabile, R., Fiorentino, A., Leone, N., Manna, M., Perri,

S., and Zangari, J. (2019b). An asp-based approach for optimizing DLV evaluation. In

Proceedings of the 34th Italian Conference on Computational Logic, Trieste, Italy, June

19-21, 2019, volume 2396 of CEUR Workshop Proceedings. CEUR-WS.org. 23

[7] Allocca, C., Costabile, R., Fiorentino, A., Perri, S., and Zangari, J. (2019c). Memory-

saving evaluation plans for datalog. In Proceedings of JELIA’19, volume 11468 of Lecture

Notes in Computer Science, pages 453–461. Springer. 20, 23, 84

[8] Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F., Veltri,

P., and Zangari, J. (2017). The ASP system DLV2. In Proceedings of LPNMR’17,

volume 10377 of LNCS, pages 215–221. 83

[9] Alviano, M., Faber, W., Greco, G., and Leone, N. (2012). Magic sets for disjunctive

datalog programs. Artificial Intelligence, 187:156–192. 105

[10] Alviano, M., Leone, N., Veltri, P., and Zangari, J. (2019). Enhancing magic sets with

an application to ontological reasoning. Theory and Practice of Logic Programming,

19(5-6):654–670. 78

[11] Alviano, M. and Manna, M. (2020). Large-scale ontological reasoning via datalog.

CoRR, abs/2003.09698. 21

[12] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. G. (2007).

DBpedia: A nucleus for a web of open data. In Proceedings of ISWC’07, volume 4825

of LNCS, pages 722–735. Springer. 76

[13] Baader, F., Brandt, S., and Lutz, C. (2005). Pushing the EL envelope. In Proceedings

of IJCAI’05, pages 364–369. Professional Book Center. 46

[14] Baader, F., Horrocks, I., and Sattler, U. (2008). Description logics. In Handbook

BIBLIOGRAPHY 129

of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pages

135–179. Elsevier. 45

[15] Baget, J., Leclère, M., Mugnier, M., Rocher, S., and Sipieter, C. (2015). Graal: A

toolkit for query answering with existential rules. In Proceedings of RuleML’15, volume

9202 of LNCS, pages 328–344. Springer. 18, 116

[16] Bernstein, A., Hendler, J. A., and Noy, N. F. (2016). A new look at the semantic web.

Commun. ACM, 59(9):35–37. 84

[17] Bienvenu, M. (2016). Ontology-mediated query answering: Harnessing knowledge to

get more from data. In Proceedings of IJCAI’16, pages 4058–4061. IJCAI/AAAI Press.

17

[18] Bienvenu, M. (2020). A short survey on inconsistency handling in ontology-mediated

query answering. Künstliche Intell., 34(4):443–451. 17

[19] Bonatti, P. A., Calimeri, F., Leone, N., and Ricca, F. (2010). Answer set programming.

In 25 Years GULP, volume 6125 of Lecture Notes in Computer Science, pages 159–182.

Springer. 25

[20] Borgida, A. (2018). Description logics. In Encyclopedia of Database Systems (2nd

ed.). Springer. 45

[21] Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,

N., Maratea, M., Ricca, F., and Schaub, T. (2020). Asp-core-2 input language format.

Theory and Practice of Logic Programming, 20(2):294–309. 25

[22] Calimeri, F., Fuscà, D., Perri, S., and Zangari, J. (2016). I-DLV: The new intelligent

grounder of DLV. In Proceedings of AI*IA’16, volume 10037 of LNCS, pages 192–207.

Springer. 89

130 BIBLIOGRAPHY

[23] Calimeri, F., Fuscà, D., Perri, S., and Zangari, J. (2017). I-DLV: the new intelligent

grounder of DLV. Intelligenza Artificiale, 11(1):5–20. 22, 76, 83, 104

[24] Calimeri, F., Perri, S., and Zangari, J. (2019). Optimizing answer set computation via

heuristic-based decomposition. Theory and Practice of Logic Programming, 19(4):603–

628. 83

[25] Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,

Rodriguez-Muro, M., and Xiao, G. (2017). Ontop: Answering SPARQL queries over

relational databases. Semantic Web, 8(3):471–487. 115

[26] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-

Muro, M., Rosati, R., Ruzzi, M., and Savo, D. F. (2011). The MASTRO system for

ontology-based data access. Semantic Web, 2(1):43–53. 115

[27] Carral, D., Dragoste, I., González, L., Jacobs, C. J. H., Krötzsch, M., and Urbani, J.

(2019). Vlog: A rule engine for knowledge graphs. In Proceedings of ISWC’19, volume

11779 of LNCS, pages 19–35. Springer. 18, 116

[28] Carral, D., Dragoste, I., and Krötzsch, M. (2018). The combined approach to query

answering in Horn-ALCHOIQ. In Proceedings of KR’18, pages 339–348. AAAI Press.

116

[29] Ceri, S., Gottlob, G., and Tanca, L. (1989). What you always wanted to know about

datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng., 1(1):146–166. 39

[30] Eiter, T., Ortiz, M., Simkus, M., Tran, T., and Xiao, G. (2012). Query rewriting for

Horn-SHIQ plus rules. In Proceedings of AAAI’12. AAAI Press. 18, 114

[31] Faber, W., Leone, N., and Ricca, F. (2008). Answer set programming. In Wiley

Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc. 25

BIBLIOGRAPHY 131

[32] Faruqui, R. U. and MacCaull, W. (2012). O wl O nt DB: A scalable reasoning system

for OWL 2 RL ontologies with large aboxes. In Proceedings of FHIES’12, volume 7789

of LNCS, pages 105–123. Springer. 18, 114

[33] Fiorentino, A., Leone, N., Manna, M., Perri, S., and Zangari, J. (2019). Precom-

puting datalog evaluation plans in large-scale scenarios. Theory and Practice of Logic

Programming, 19(5-6):1073–1089. 20, 23, 84

[34] Fiorentino, A., Zangari, J., and Manna, M. (2020). Darling: A datalog rewriter for

OWL 2 RL ontological reasoning under SPARQL queries. Theory and Practice of Logic

Programming, 20(6):958–973. 20, 23, 55

[35] Gebser, M., Schaub, T., and Thiele, S. (2007). Gringo : A new grounder for answer

set programming. In Proocedings of LPNMR’07, pages 266–271. 89

[36] Gelfond, M. and Lifschitz, V. (1990). Logic programs with classical negation. In ICLP

1990, pages 579–597. MIT Press. 39

[37] Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and dis-

junctive databases. New Generation Computing, 9(3/4):365–386. 25, 33

[38] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., and Sattler,

U. (2008). OWL 2: The next step for OWL. Journal of Web Semantics, 6(4):309–322.

45

[39] Grau, B. C., Motik, B., Stoilos, G., and Horrocks, I. (2012). Completeness guarantees

for incomplete ontology reasoners: Theory and practice. Journal of Artificial Intelligence

Research, 43:419–476. 104

[40] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic pro-

grams: combining logic programs with description logic. In Proceedings of WWW’03,

pages 48–57. ACM. 46

132 BIBLIOGRAPHY

[41] Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: A benchmark for OWL knowledge

base systems. Journal of Web Semantics, 3(2-3):158–182. 76

[42] Harris, S. and Seaborne, A. (2018). SPARQL 1.1 Query Language. W3C Recommen-

dation. World Wide Web Consortium. 18, 20

[43] Horridge, M. and Bechhofer, S. (2009). The OWL API: A java API for working

with OWL 2 ontologies. In Proceedings of OWLED’09, volume 529 of CEUR Workshop

Proceedings. CEUR-WS.org. 56

[44] Kazakov, Y. (2009a). Consequence-driven reasoning for horn SHIQ ontologies. In

Proceedings of IJCAI’09, pages 2040–2045. 21, 60, 63

[45] Kazakov, Y. (2009b). Consequence-driven reasoning for horn SHIQ ontologies. In

Proceedings of DL’09. 60

[46] Knorr, M. and Hitzler, P. (2014). Description logics. In Computational Logic, volume 9

of Handbook of the History of Logic, pages 659–678. Elsevier. 45

[47] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Zakharyaschev, M. (2011). The

combined approach to ontology-based data access. In Proceedings of IJCAI’11, pages

2656–2661. IJCAI/AAAI. 116

[48] Krötzsch, M., Mehdi, A., and Rudolph, S. (2010). Orel: Database-driven reasoning for

OWL 2 profiles. In Proceedings of DL’10, volume 573 of CEUR Workshop Proceedings.

CEUR-WS.org. 18, 113

[49] Leone, N., Allocca, C., Alviano, M., Calimeri, F., Civili, C., Costabile, R., Cuteri, B.,

Fiorentino, A., Fuscà, D., Germano, S., Laboccetta, G., Manna, M., Perri, S., Reale,

K., Ricca, F., Veltri, P., and Zangari, J. (2019a). Large scale DLV: preliminary results.

In Proceedings of CILC’19. 84

BIBLIOGRAPHY 133

[50] Leone, N., Allocca, C., Alviano, M., Calimeri, F., Civili, C., Costabile, R., Fiorentino,

A., Fuscà, D., Germano, S., Laboccetta, G., Cuteri, B., Manna, M., Perri, S., Reale, K.,

Ricca, F., Veltri, P., and Zangari, J. (2019b). Enhancing DLV for large-scale reasoning.

In Proceedings of LPNMR’19, volume 11481 of LNCS, pages 312–325. Springer. 77, 84,

114

[51] Leone, N., Manna, M., Terracina, G., and Veltri, P. (2019c). Fast query answering

over existential rules. ACM Transactions on Computational Logic, 20(2):12:1–12:48. 76,

116

[52] Leone, N., Perri, S., and Scarcello, F. (2001). Improving ASP instantiators by join-

ordering methods. In Proceedings of LPNMR’01, volume 2173 of Lecture Notes in Com-

puter Science, pages 280–294. Springer. 89

[53] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scarcello, F.

(2006). The DLV system for knowledge representation and reasoning. ACM Transactions

on Computational Logic, 7(3):499–562. 36

[54] Lifschitz, V. (1999). Action languages, answer sets, and planning. In The Logic

Programming Paradigm, Artificial Intelligence, pages 357–373. Springer. 25

[55] Lutz, C., Seylan, I., Toman, D., and Wolter, F. (2013). The combined approach to

OBDA: taming role hierarchies using filters. In Proceedings of ISWC’13, volume 8218

of LNCS, pages 314–330. Springer. 103

[56] Mora, J. and Corcho, Ó. (2013). Towards a systematic benchmarking of ontology-

based query rewriting systems. In Proceedings of ISWC’13, volume 8219 of LNCS,

pages 376–391. Springer. 76

[57] Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., and Lutz, C. (2012).

OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation.

World Wide Web Consortium. 18, 64

134 BIBLIOGRAPHY

[58] Motik, B., Nenov, Y., Piro, R. E. F., and Horrocks, I. (2015). Handling owl: sameas

via rewriting. In Proceedings of AAAI’15, pages 231–237. AAAI Press. 81

[59] Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and Banerjee, J. (2015). Rdfox:

A highly-scalable RDF store. In Proceedings of ISWC’15, volume 9367 of LNCS, pages

3–20. Springer. 18, 114

[60] Ortiz, M. (2013). Ontology based query answering: The story so far. In Proceedings

of AMW’13, volume 1087 of CEUR Workshop Proceedings. CEUR-WS.org. 17

[61] Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley. 37, 38

[62] Pérez-Urbina, H., Motik, B., and Horrocks, I. (2010). Tractable query answering and

rewriting under description logic constraints. Journal of Applied Logic, 8(2):186–209.

18, 115

[63] Perri, S., Scarcello, F., Catalano, G., and Leone, N. (2007). Enhancing DLV instan-

tiator by backjumping techniques. Annals of Mathematics and Artificial Intelligence,

51(2-4):195–228. 89

[64] Rich, E. (2008). Automata, computability and complexity: theory and applications.

Pearson Prentice Hall Upper Saddle River. 38

[65] Rosati, R. and Almatelli, A. (2010). Improving query answering over DL-Lite ontolo-

gies. In Proceedings of KR’10. AAAI Press. 18, 46, 115

[66] Sirin, E. and Parsia, B. (2007). SPARQL-DL: SPARQL query for OWL-DL. In

Proceedings of OWLED’07, volume 258 of CEUR Workshop Proceedings. CEUR-WS.org.

20

[67] Smith, M. K., Welty, C., and McGuinness, D. L. (2004). OWL Web Ontology Language

Guide. W3C Recommendation. World Wide Web Consortium. 17

BIBLIOGRAPHY 135

[68] Stefanoni, G., Motik, B., and Horrocks, I. (2012). Small datalog query rewritings for

EL. In Proceedings of DL’12, volume 846 of CEUR Workshop Proceedings. 116

[69] Stefanoni, G., Motik, B., Krötzsch, M., and Rudolph, S. (2014). The complexity of

answering conjunctive and navigational queries over OWL 2 EL knowledge bases. J.

Artif. Intell. Res., 51:645–705. 46

[70] W3C OWL Working Group (2012). OWL 2 Web Ontology Language Document

Overview (Second Edition). W3C Recommendation. World Wide Web Consortium. 17

[71] Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., and

Zakharyaschev, M. (2018). Ontology-based data access: A survey. In Proceedings of

IJCAI’18, pages 5511–5519. ijcai.org. 116

[72] Xiao, G., Eiter, T., and Heymans, S. (2012). The drew system for nonmonotonic

dl-programs. In Proceedings of CSWS’12, pages 383–390. Springer. 18, 114

	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and state-of-the-art
	1.2 Motivation and objectives
	1.3 Challenges and contribution
	1.4 Structure of the Thesis

	I Preliminary notions and notation
	2 Answer Set Programming
	2.1 Syntax
	2.2 Answer set semantics
	2.3 GCO programming paradigm
	2.4 Datalog

	3 Description Logics and OWL
	3.1 OWL 2 profiles
	3.2 OWL 2 RL
	3.3 Ontology-mediated query answering

	II DaRLing rewriter
	4 Rewriting techniques
	4.1 System overview
	4.2 From OWL 2 RL to Datalog
	4.3 Handling owl:sameAs via Datalog

	5 Experimental evaluation
	5.1 Set-up
	5.2 Quality
	5.3 Scalability
	5.4 Discussion

	III Evaluation planner
	6 Planning techniques
	6.1 Admissible plans
	6.2 Preferences

	7 ASP-based implementation
	7.1 Data model
	7.2 Guessing part
	7.3 Checking part
	7.4 Optimization part

	8 Experimental evaluation
	8.1 Setting
	8.2 Planner customization
	8.3 Discussion

	IV Conclusion
	9 Related work
	10 Combining the DaRLing rewriter and the planner
	11 Discussion and future work
	Bibliography

		2021-11-05T17:26:23+0000
	Manna Marco

		2022-03-07T09:17:12+0100
	Gianluigi Greco

