

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,

Informatica e Sistemistica

Dottorato di Ricerca in

Ingegneria dei Sistemi e Informatica

XIX ciclo

Tesi di Dottorato

Ontology-Driven Modelling

 and Analyzing of Business Process

Andrea Gualtieri

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,

Informatica e Sistemistica

Dottorato di Ricerca in

Ingegneria dei Sistemi e Informatica

XIX ciclo

Tesi di Dottorato

Ontology-Driven Modelling

 and analyzing of Business Process

Andrea Gualtieri

Coordinatore

Prof. Domenico Talia

Supervisore

Prof. Domenico Saccà

DEIS – DIPARTIMENTO DI ELETTRONICA INFORMATICA E SISTEMISTICA

Settore scientific disciplinare Ing-Inf/05

Everything I can do

in the One who empowers me

(Phil 4,13)

Preface

Business Process Management (BPM) is the approach to manage the execution of

IT-supported business processes from a business expert’s point of view rather than

from a technical perspective [22]. However, currently organizations have still very

incomplete knowledge of and very incomplete and delayed control over their process

spaces. Enterprises have long used Workflow Management Systems (WfMSs) to

describe and support the dynamic behaviour of their business. This contributes to the

dominance of a simplified, workflow-centric view on business processes, i.e. business

processes are reduced to the sequencing of activities. Evidence of this workflow-

minded notion of processes is that languages and tools for modelling business

processes focus on control flow patterns [24]. It is only recently that the weaknesses

of a merely workflow-centric representation were pointed out by van der Aalst and

Pesic [26]. In parallel, there has been substantial work on a more comprehensive and

richer conceptual model of enterprises and their processes in the “enterprise ontology”

research community, see e.g. [4], [27], [28], or recently [29]. However workflow-

centric process representations and work on enterprise ontologies are still largely

unconnected and so workflow-centric process representations are not very suitable for

accessing the business process space at knowledge level, e.g. for the discovery of

processes or process fragments that can serve a particular purpose.

This topic acquires relevance because, with the advent of Service Oriented

Computing, organizations started to expose their business functionality explicitly as

reusable and composable services. Business users are so oriented to reuse existing

business process artifacts during process modeling, so that they are able to adapt the

business processes in a more agile manner. However, as the number of business

processes increases, it is difficult for them to manage the process models by

themselves and to find the required business process information effectively and so

they have a need for a unified view on business processes (both process models and

process instances) in a machine readable form that allows querying their process

spaces by logical expressions corresponding to business semantics.

Current researches [25] envision the use of Semantic technologies to increase the

level of automation in BPM and to overcome the gap between the business experts

and the IT people. Semantic Business Process Management (SBPM) extends the BPM

approach by adopting semantic technologies. In SBPM, business process models are

6

based on process ontologies and make use of other ontologies, such as organizational

ontology and service ontology.

The goal of SBPM is to achieve a support to users involved in the BPM lifecycle.

In the literature there is no uniform view on the number of phases in the BPM

lifecycle. It varies depending on the chosen granularity for identifying the phases. In

[19] two roles in the lifecycle are distinguished: business analysts or business

managers, who create process models and analyze process models from the business

point of view, and IT engineers, who are involved in process implementation and

execution phases. By this approach, four phases are considered:

− Process Modeling: in this phase a business analyst creates an analytical

process model with by specifying the order of tasks in the business process. Business

analysts have normally the possibility to specify some additional information in

natural language for each element in a process model, such as what the tasks in the

process are supposed to do and by whom they are expected to be performed. Process

models created lack of technical information such as binding of IT services and data

formats for each task and so they have a need for transforming to an executable

process model.

− Process Configuration: In the process configuration phase a process model

created in the process modeling phase is transformed and enriched by IT engineers

into a process model which can be executed in a process engine [20]. The executable

process model can only be partly generated from the analytical process model. The

web services or the components that are needed to execute the process model have to

be assigned. The same holds for data formats and data flow. The resulting executable

process model can be deployed into a process engine for execution.

Process Execution: After process deployment, the process engine executes

process instances by navigating through the control flow of the process model. The

process engine delegates automated tasks to web services, IS components and manual

tasks to human workers. In the context of SOA, the process itself should be exposed

as a service and can be invoked by other processes or other clients.

− Process Analysis: Process analysis comprises monitoring of running process

instances and process mining. Process monitoring displays information on the running

process instances, such as e.g. which branches of the control flow of a running

process were taken; where in the control flow the process has halted after a failure;

the current variable values of a process instance, etc. Some BPMSs support also

business-level monitoring, where the business analyst can specify key performance

indicators of the process during process modeling, and then gets them evaluated and

presented in form of dashboards during process execution. The goal of process mining

is to provide information necessary for potential optimization of the process model by

using process mining algorithms [21]. Process mining operates on event logs, which

are produced by the process engine during process instance execution, to analyze a set

of finished process instances. Process mining algorithms deduce from the event logs

how the process is in reality executed. The deduced process model can then be

compared with the deployed process model and thus be used for conformance

checking and optimization purposes. Process mining algorithms can also be used for

performance analysis of processes.

A strategic and a foundational layers define the context for these phases [30]. The

strategy of an organization defines its long-term business goals, and serves as the

7

basis for operational decisions. The foundational layer in the SBPM lifecycle consists

of ontologies which capture generic knowledge about processes, services, etc., along

with domain and organization-specific knowledge.

Fig. 1 Semantic BPM lifecycle

An overall approach to the SBPM should support a strategic view of all this

phases, providing solutions to organize, manage, analyze and reengineer the processes

running in an organization. Unfortunately the degree of automation in BPM is still

unsatisfying and so many aspects of business process are still not supported by a

semantic level. Moreover, a process-oriented organization is not frequently explicit

inside the business context and so BPM need preliminary levels of analysis to capture

the behaviour of the scenario.

Summary of contributions
The focus of this thesis is fixed on semantic business process management,

aiming to offer an ontology-based support on planning, development and ex post

analysis of Information System (IS) based on heterogeneous components. Starting

from bases existing in literature, novel methodological and ontological instruments

has been defined to represent organizational knowledge ad to support the whole BPM

lifecycle, from preliminary analysis of scenario to an ex post evaluation based on the

logs generated by heterogeneous functional component. Our contributes address

problems that fall into the follow contexts:

Strategic BPM: a process-driven methodology for continuous information system

modeling has been formulated to support the whole information system life-cycle,

from planning to implementation, and from usage to re-engineering. The

methodology is based on UML diagram and it is organized on three model layers, to

8

offer a shared view for business analyst and IT engineer both in the scenario

evaluation and in the functional setting up and development.

Ontological foundation: a framework for an abstract representation of

organizational knowledge has been defined to obtain a semantic model to which

heterogeneous semantic context can be linked. This framework constitutes an

enterprise ontology in which a functional view of organizations is annotated with

respect to a conceptual view of abstract topics, allowing an approach that results more

flexible than traditional ones to model a dynamic context of a real enterprise.

Adopting this framework, independent operations performed by semantically

heterogeneous component can be framed as steps of a unique process.

Business Process Modelling: a novel approach to model processes and their

workflow is obtained by extending flow-oriented standard metamodel with respect to

constructs oriented to define process taxonomies. We implement this metamodel

adopting a formalism based on Disjunctive Logic Programming extended by object-

oriented features to enable knowledge inference on dynamic structures of the process.

Business process configuration and execution: a general purpose solution based

on a Service Oriented Architecture approach has been planned and applied to

semantically integrate heterogeneous tools. By adopting an Enterprise Service Bus we

obtained a physical structure able to offer: (1) on the content level, a ontology-driven

conceptualization of local data, useful to obtain a synchronization on tools operating

to different context; (2) on the dynamic level, a re-organization of local operation logs

with respect to category of process belonging to a enterprise process ontology. A

same approach allows to supply an enterprise knowledge base useful for analysis

purpose.

Business process analysis: starting from the enterprise knowledge base generated

by logs of execution of distributed and independent tool, new level of knowledge are

extracted by adopting process mining and reasoning techniques. In the first case,

process schemas have been extracted, analyzing logs with respect to characteristics of

the procedures, sorts of users and temporal horizon. In the second case, hidden

procedural knowledge has been discovered and taxonomic structures for the execution

pattern classification have been obtained, applying logic reasoning based on

Disjunctive Logic Programming, to the process schemas expressed in terms of logic

rules.

Thesis outline
This thesis is conceptually organized in two parts. Part I, The basics, provides an

introduction to elements that are useful to elaborate SBPM solutions. Part II, The

advances, presents our proposal to address problems previously described. The two

parts are articulated around the following chapter:

Chapter 1 offers a view on knowledge management topics and a survey on

elements and languages for ontology representation focusing on OntoDLP, a

formalism based on Disjunctive Logic Programming extended with object-oriented

features.

Chapter 2 analyzes business process representation issue, offering a state of art of

existing approaches, proposing a conceptualization of relationship between process

and service and describing a standard ontology for process and service.

Chapter 3 illustrates our process-driven methodology for continuous Information

System modelling.

9

Chapter 4 describes ontology-based framework for representing enterprise

functional entities with respect to the organizational knowledge.

Chapter 5 presents a solution for analyzing loosely-structured collaborative

processes based on a SOA approach that supply a knowledge base for process mining

algorithms.

Chapter 6 defines a novel process metamodel and describes its implementation in

OntoDLP to admit reasoning and capture of dynamic knowledge hidden in process

schemas.

Acknowledgments

More than a Ph.D. qualification, the value of this experience is derived from

people that shared this journey with me. Prof Domenico Saccà mapped out a route for

my studies and transferred to me an approach to hold the rudder during the academic

sailing, as well as everyday life storms. Whatever will be the context in which I will

operate, I will always proudly stress in my curriculum that he was my supervisor.

I reserve an acknowledgment to people that trusted me and accepted to deal a

work together with me: first of all prof Nicola Leone and then Massimo Ruffolo, Tina

Dell’Armi, Alfredo Cuzzocrea, Antonella Guzzo, Francesco Folino, Gianlugi Greco

and also profs Alessandro D’Atri and Amihai Motro. Particular thanks go to Luigi

Pontieri, Marco Mastratisi and Stefano Basta for their politeness.

I was not able to publish any work together with further people that proved to be

precious for me: prof Domenico Talia (team leader of the project in which a great part

of this thesis has been developed), Stefania Galizia (who shared with me knowledge

about several topics and awe about the future), my colleague and friend Saverio

Argirò (involved in the definition of logic based process metamodel) and Edoardo

Vencia and Francesco Portus (involved in the implementation of the architecture for

the process mining solution). Thanks to everyone for your contribution to my work

and personal improvement.

A consistent part of my thesis has been carried on during my professional

experience in Exeura srl, a spin off company of the University of Calabria. An

acknowledgment to Exeura president, prof Sergio De Julio, who agreed with my wish

of undertake this experience. Moreover, I would like to mention the people that

supported my work in Exeura: my “snack pal” Ludovico Quercia, Pina Bonavita and

Isabella Di Benedetto, and my Ph.D. adventure mate, Lorenzo Gallucci. Precious

presences during these years were also the ICAR and DEIS employees, especially

Antonio Scudiero, Giovanni Costabile and Patrizia Mancini.

Special thanks go to the following that - out of the academic context - encouraged

me. First of all my mom, who let me lean on her discreet but thoughtful and

enlightening presence, and then my nonna and my uncle Ettore, that are always

participants of my goals. A thought full of gratitude goes to my colleagues in the

editorial staff of the Quotidiano della Calabria (Cristina Vercillo, Tiziana Aceto,

Simona Negrelli, Valerio Giacoia, Adriano Mollo) that allowed me to focus on and

finalize this work. Another thought full of affection goes to the persons that enriched

11

my everyday life, by offering their support and friendship, sharing all events

happened in these years and keeping the key of the strongbox in which my emotions

are preserved.

Contents

Preface ... 5

Acknowledgments... 10

The basics .. 16

1. Basics on ontology .. 17

1.1 From information system to knowledge management system . 17

1.2 Ontology and knowledge representation 18

1.3 Ontology specification languages .. 20

1.4 OntoDLP, a logic formalism for knowledge representation 23

2. Basics on process and service .. 26

2.1 A conceptualization of process and service.............................. 26

2.2 A three level view on process ... 28

2.3 Paradigms for process modelling ... 29

2.3.1 Direct graph vs Block-structured 29

2.3.2 Standards oriented to the process enacting 30

2.4 Ontologies of process and service .. 30

2.4.1 The OWL-S approach ... 30

2.4.2 The WSMF approach.. 31

3. A process-oriented methodology for information system design
and implementation.. 33

3.1 Motivation and approach .. 33

3.2 Related works ... 34

3.3 Scenario analysis and the Business Model 36

3.4 Analysis of function and the Conceptual Model 38

3.5 The implementation model and the development of the

information system .. 40

3.6 The application scenario ... 42

The advances ... 44

4. Ontology for modelling business process knowledge 45

4.1 Information systems and organizational knowledge 45

4.2 The Ontology-Based Framework ... 46

4.2.1 The Top Level Ontology... 47

4.2.2 The COKE Ontologies .. 47

4.3 Future enhancements .. 49

5. Ontology for process oriented Information Systems 50

5.1 Loosely-Structured Cooperative Processes 50

5.2 A framework for supporting and tracking LSCPs 51

5.3 The Enterprise Integration and Tracking level 52

5.3.1 The Enterprise Service Bus... 52

5.3.2 The Enterprise Knowledge Model 55

5.4 Analysing process logs ... 56

5.4.1 The MXML format for process logs. 57

5.4.2 Process Mining solution adopted 58

5.5 From LSCP log to process schemas ... 58

5.5.1 Abstraction-based restructuring of EOp logs................ 59

5.5.2 Applying process mining to restructured logs 63

6. Ontology for modelling business process knowledge 65

6.1 A metamodel for process logic representation 65

6.2 Process representation and reasoning 67

6.3 Implementation and future works ... 70

Conclusions ... 71

References ... 73

List of figures

Fig. 1 Semantic BPM lifecycle ... 7

Fig. 2 Kinds of ontologies, according to semantic detail level 19

Fig. 3 Ontology languages .. 21

Fig. 4 An evaluation framework for knowledge languages .. 23

Fig. 5 Process and service ... 26

Fig. 6 Conceptualization of process and service ... 27

Fig. 7 Process composition using services .. 28

Fig. 8 Three levels of process modelling .. 28

Fig. 9 From a Use Case Diagram to the related Activity Diagram 37

Fig. 10 Modular representation of processes .. 38

Fig. 11 A view and its documentation .. 39

Fig. 12 A control schema .. 40

Fig. 13 An interface schema ... 41

Fig. 14 Conceptual representation of a form ... 42

Fig. 15 The organizational knowledge framework ... 46

Fig. 16 The Human Resource ontology .. 47

Fig. 17 The business process ontology ... 48

Fig. 18 The business object ontology .. 48

Fig. 19 The technical resource ontology ... 49

Fig. 20 Conceptual architecture of the framework .. 51

Fig. 21 Enterprise Application Integration patterns .. 53

Fig. 22 ESB experimentation scenario .. 55

Fig. 23 Workflow schema for the sample HANDLEORDER process 56

Fig. 24 The MXML format: a standard for process logs .. 57

Fig. 25 Simplified representation of an EO log for a test example 60

Fig. 26 A classification hierarchy over project tasks .. 61

Fig. 27 Excerpt of a process log extracted .. 62

Fig. 28 Process model discovered for the log ... 64

Fig. 29 A portion of process metamodel .. 65

Fig. 30 A focus on node constructs .. 66

Fig. 31 An example of process schema .. 67

Part I

The basics

17

1

1
 Basics on ontology

Summary: The traditional information systems are able to process only explicit knowledge

under structured form and use heterogeneous models and techniques for representing

knowledge and manipulate them. Semantic technologies allow to increase the efficiency and

effectiveness of the organizational business processes. In this chapter a survey on elements and

languages for ontology representation is provided. A focus is reserved on OntoDLP, a powerful

formalism based on Disjunctive Logic Programming extended with object-oriented features,

adopted for ontology representation.

1.1 From information system to knowledge management system

Knowledge Management (KM) can really increase the efficiency and

effectiveness of the organizational business processes. KM can contribute to the

creation of value and to the intangible assets and intellectual capital growth within the

enterprises. Therefore efficient KM Systems (KMS) and coherent KM strategies are

needed to support the organizations in managing knowledge created, stored,

distributed and applied within the business process. In particular, specific methods

and instruments for organizational knowledge elicitation and representation are

required for KMS and KM strategies design and implementation.

Many different kinds of organizational knowledge are wide spread within

enterprises under different forms and distributed in several sources (humans and

systems) inside and outside the organization. The classical distinction and generally

accepted classification, due to Polanyi [72], [73] and extended by Nonaka [74], [75]

identifies: “tacit and implicit knowledge”, that is the knowledge resulting from

personal learning processes, present within each organization in terms of its members'

personal knowing; “explicit knowledge”, generally shared and publicly accessible

within the organization through formal storing and processing infrastructures. Explicit

knowledge can also be classified basing on the following forms:”structured”

(available in database), “semi-structured” (available in intranet and internet web sites:

HTML pages, XML documents, etc.) and “unstructured” (available as textual

documents: project documents, procedures, white papers, templates, etc.).

The traditional information systems present two basic problems: first they are

able to process only a small portion of the whole organizational knowledge (i.e.

18

explicit knowledge under structured form); second they use heterogeneous models

and techniques for representing knowledge and manipulate them.

A KMS must be able to support the generation, discovery, capture, store,

distribution and application of a wide variety of knowledge (i.e. explicit knowledge

under structured, semi-structured and unstructured forms and individual and social

aspects of implicit knowledge) through related knowledge-based services. Moreover,

a KMS needs capability to interoperate with already existing organizational

information systems. To satisfy these requirements a KMS needs knowledge

representation capabilities, that can be provided by ontology languages, able to allow

the specification of the different organizational knowledge forms and kinds and to

carry out an abstract representation of organizational entity supporting interoperability

among different systems and organizational areas.

1.2 Ontology and knowledge representation

An ontology represents a powerful conceptual enhancement to the knowledge

representation. By allowing a representation of the world conceptualization, it ensure

in fact the formalization and the interchange of knowledge [78]. The “ontology” topic

comes from the field of philosophy that is concerned with the study of being or

existence. The term had been adopted by early Artificial Intelligence (AI) researchers,

who recognized the applicability of the work from mathematical logic [77] and

argued that AI researchers could create new ontologies as computational models that

enable certain kinds of automated reasoning [76]. An discussion about the different

connotations assumed by this term is purposed by [79].

An initial definition has been purposed by Gruber [80] and then modified in [81].

According this definition, an ontology is “explicit specification of a

conceptualization”, which is, in turn, "the objects, concepts, and other entities that are

presumed to exist in some area of interest and the relationships that hold among

them”. While the terms specification and conceptualization have caused much debate,

the essential points of this definition of ontology are:

• an ontology defines (specifies) the concepts, relationships, and other

distinctions that are relevant for modeling a domain.

• the specification takes the form of the definitions of representational

vocabulary (classes, relations, and so forth), which provide meanings for the

vocabulary and formal constraints on its coherent use.

Ontology engineering is concerned with making representational choices that

capture the relevant distinctions of a domain at the highest level of abstraction while

still being as clear as possible about the meanings of terms.

According on semantic detail required it can be opportune to develop different

kinds of ontology:

• Top-level ontologies describe very general concepts like space, time, matter,

object, event, action, etc., which are independent of a particular problem or

domain: it seems therefore reasonable, at least in theory, to have unified top-

level ontologies for large communities of users.

• Domain ontologies and task ontologies describe, respectively, the vocabulary

related to a generic domain (like medicine, or automobiles) or a generic task

19

or activity (like diagnosing or selling), by specializing the terms introduced

in the top-level ontology.

• Application ontologies describe concepts depending both on a particular

domain and task, which are often specializations of both the related

ontologies. These concepts often correspond to roles played by domain

entities while performing a certain activity, like replaceable unit or spare

component.

Fig. 2 Kinds of ontologies, according to semantic detail level

An ontology, which is a particular knowledge base, describing facts assumed to

be always true by a community of users, in virtue of the agreed-upon meaning of the

vocabulary used. A generic knowledge base, instead, may also describe facts and

assertions related to a particular state of affairs or a particular epistemic state. Within

a generic knowledge base, we can distinguish therefore two components: the ontology

(containing state-independent information) and the “core” knowledge base

(containing state-dependent information) [82].

Ontology knowledge can be specified using five components: concepts (which

are usually organized by taxonomies), relations, functions, axioms, and instances.

• Concepts can be abstract or concrete, elementary or composite, real or

fictitious; in short, a concept can be anything about which something is said,

and, therefore, could also be the description of a task, function, action,

strategy, reasoning process, and so on. Concepts are also known as classes,

objects or categories. Instance and class attributes are commonly used in

concept descriptions. The following concept attributes have been identified:

instance attributes, whose value might be different for each instance of the

concept; class attributes, whose value is attached to the concept, that is, its

value will be the same for all instances of the concept; local attributes, same-

name attributes attached to different concepts; global attributes, ones in

which the domain is not specified and can be applied to any concept in the

ontology.

20

• Relations are an interaction between concepts of the domain and attributes.

Ontologies include binary and n-ary relations. Taxonomies are particularly

kinds of binary relations used to organize ontological knowledge with respect

to generalization and specialization through which simple and multiple

inheritance could be applied.

• Functions are a special kind of relation where the value of the last argument

is unique for a list of values of the n–1 preceding arguments.

• Axioms model sentences that are always true and can be used for several

purposes, such as constraining information, verifying correctness, or

deducting new information. Axioms are also known as assertions.

• Instances represent elements in the domain attached to a specific concept.

Facts represent a relation that holds between elements, and claims represent

assertions of a fact made by an instance. All these terms are used to represent

elements in the domain.

1.3 Ontology specification languages

In the past years, a set of languages have been used for implementing ontologies.

One of most significant is Ontolingua [84], a language based on KIF [85] and on

the Frame Ontology (FO), and it is the ontology-building language used by the

Ontolingua Server. KIF (Knowledge Interchange Format) was developed to solve the

problem of heterogeneity of languages for knowledge representation. It provides for

the definition of objects, functions and relations. KIF has declarative semantics and it

is based on first-order predicate calculus, with a prefix notation. It also provides for

the representation of meta-knowledge and non-monotonic reasoning rules. The FO,

built on top of KIF, is a knowledge representation ontology that allows an ontology to

be specified following the paradigm of frames, providing terms such as class,

instance, subclass-of, instance-of, etc. The FO does not allow to express axioms;

therefore, Ontolingua allows to include KIF expressions inside of definitions based on

the FO.

Another example of traditional ontology language is FLogic [86] - an acronym

for Frame Logic. FLogic integrates frame-based languages and first-order predicate

calculus. It accounts in a clean and declarative fashion for most of the structural

aspects of object-oriented and frame-based languages, such as object identity,

complex objects, inheritance, polymorphic types, query methods, encapsulation, and

others. In a sense, FLogic stands in the same relationship to the object-oriented

paradigm as classical predicate calculus stands to relational programming. It has a

model-theoretic semantics and a sound and complete resolution-based proof theory.

Applications of FLogic go from object-oriented and deductive databases to

ontologies, and it can be combined with other specialized logics (HiLog, Transaction

Logic), to improve the reasoning with information in the ontologies.

LOOM [87] is a high-level programming language and environment intended for

use in constructing expert systems and other intelligent application programs. While

the other languages are based on frame (Ontolingua) or first-order predicate calculus

(KIF), LOOM adopts adescription logic approach to ontology modelling, achieving a

tight integration between rule-based and frame-based paradigms. LOOM supports a

21

“description” language for modeling objects and relationships, and an “assertion”

language for specifying constraints on concepts and relations, and to assert facts about

individuals. Procedural programming is supported through pattern-directed methods,

while production-based and classification-based inference capabilities support a

powerful deductive reasoning (in the form of an inference engine: the classifier).

Definitions written using this approach try to exploit the existence of a powerful

classifier in the language, specifying concepts by using a set of restrictions on them.

Most recently, the interchange of ontologies across the web and the cooperation

among heterogeneous agents placed on it is the main reason for the development of a

new set of ontology specification languages, based on web standards such as XML

[93]or RDF [94]and RDF-Schema [95].

Fig. 3 Ontology languages

Many languages has been created in the context of web standards using: XOL

[92], DARPA Agent Markup Language (DAML) [88], Ontology Interchange

Language (OIL) [89], DAML+OIL [90], Simple HTML Ontology Extensions (SHOE)

[91].

OWL [99] instead is the ontology language for the Semantic Web, developed by

the World Wide Web Consortium (W3C) Web Ontology Working Group. OWL takes

the basic fact-stating ability of RDF and the class- and property-structuring

capabilities of RDF Schema and extends them. OWL can declare classes, and

organise these classes in a subsumption (“subclass”) hierarchy, as can RDF Schema.

OWL classes can be specified as logical combinations (intersections, unions, or

complements) of other classes, or as enumerations of specified objects, going beyond

the capabilities of RDFS. OWL can also declare properties, organize these properties

into a “subproperty” hierarchy, and provide domains and ranges for these properties,

again as in RDFS. OWL can express which objects (also called “individuals”) belong

to which classes, and what the property values are of specific individuals.

Equivalence statements can be made on classes and on properties, disjointness

statements can be made on classes, and equality and inequality can be asserted

22

between individuals. However, the major extension over RDFS is the ability in OWL

to provide restrictions on how properties behave that are local to a class. OWL can

define classes where a particular property is restricted so that all the values for the

property in instances of the class must belong to a certain class (or datatype); at least

one value must come from a certain class (or datatype); there must be at least certain

specific values; and there must be at least or at most a certain number of distinct

values.

OWL provides three increasingly expressive sublanguages designed for use by

specific communities of implementers and users:

• OWL Lite supports those users primarily needing a classification hierarchy

and simple constraints. For example, while it supports cardinality constraints,

it only permits cardinality values of 0 or 1. It should be simpler to provide

tool support for OWL Lite than its more expressive relatives, and OWL Lite

provides a quick migration path for thesauri and other taxonomies. Owl Lite

also has a lower formal complexity than OWL DL.

• OWL DL supports those users who want the maximum expressiveness while

retaining computational completeness (all conclusions are guaranteed to be

computable) and decidability (all computations will finish in finite time).

OWL DL includes all OWL language constructs, but they can be used only

under certain restrictions (for example, while a class may be a subclass of

many classes, a class cannot be an instance of another class). OWL DL is so

named due to its correspondence with description logics.

• OWL Full is meant for obtain maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees. For example, in OWL

Full a class can be treated simultaneously as a collection of individuals and

as an individual in its own right. OWL Full allows an ontology to augment

the meaning of the pre-defined (RDF or OWL) vocabulary. It is unlikely that

any reasoning software will be able to support complete reasoning for every

feature of OWL Full.

A framework for comparing the expressiveness and inference mechanisms of the

ontology formalisms is provided by [83] in which inference mechanisms are

considered to evaluate how the static structures represented in the domain knowledge

can be used to carry out a reasoning process.

23

Fig. 4 An evaluation framework for knowledge languages

1.4 OntoDLP, a logic formalism for knowledge representation

OntoDLP is an extension of Disjunctive Logic Programming (DLP) by object-

oriented features. In the feld of logic-based Artificial Intelligence, DLP is widely

recognized as a valuable tool for knowledge representation, commonsense reasoning

and incomplete-knowledge modelling [64,65,66,67,68,69,70,71]. OntoDLP combines

the expressive and deductive power of DLP (capture the complexity class ∑
2

P) with

the facilities of the object-oriented paradigm for a natural and effective real-world

knowledge representation and reasoning. In particular, the language includes, besides

the concept of relations, the object-oriented notions of classes, objects (class

instances), object-identity, complex-objects, (multiple) inheritance, and the concept of

modular programming by mean of reasoning modules. In the following, an overview

of the language is given by informally describing its most significant features and by

giving language use examples for the representation of some of the main concepts

related to the workflow domain. Classes can be declared in OntoDLP by using the

keyword class followed by the class name and by a comma separated list of attributes.

Each attribute is a couple (attribute-name : attribute-type). The attribute-type is either

a user-defined class, or a built-in class (in order to deal with concrete data types,

OntoDLP makes available two built-in classes string and integer). For instance, a

generic process can be represented by declaring the class process with an attribute of

type string as follows:

class process(name:string).

Objects, that is class instances, are declared by asserting new facts. An instance

for the class process, can be declared as follows:

#1:process(name:"Web sale order").

24

The string \Web sale order" values the attribute name; while #1 is the object-

identifier (oid) of this instance (each instance is equipped by a unique oid). Classes

can be organized in a taxonomy by using the isa relation. For example, a

common_node is a node characterized by a possible asynchronously activation. This

class specialization can be represented in OntoDLP, declaring class common node as

an extension of class node with a new attribute asynchronous:

class common_node isa {node}

(asynchronous:string).

Instances of the class common node are declared as usual, by asserting new facts:

#2:common_node(name:"Password required", asynchronous:"true").

#3:common_node(name:"Registration required",asynchronously:"false").

Like in common object-oriented languages with inheritance, each instance of a

sub-class becomes, automatically, an instance of all super classes (isa relation induces

an inclusion relation between classes). In the example, “Passwor required” and

“Registration required" are instances of both node and common node. Moreover, sub-

classes inherit attributes from all super-classes. In the example, thecommon node

class inherits attribute name of class node and declares a new local attribute named

asynchronous.

The language provides a built-in most general class named Object that is the class

of all individuals and is a superclass of all OntoDLP classes. Also multiple

inheritance is supported. Attribute inheritance in OntoDLP follows the strategy

adopted in the COMPLEX language, for a formal description refer to [63].

The possibility to specify user-de¯ ned classes as attribute types allows for

complex objects or nested classes, i.e. objects made of other objects. For example, the

class transition, besides the name of type string, is characterized by two attributes of

the user-defined type node.

class transition(name:string,from:node,to:node).

The following declaration of class create timer includes, besides timer name and

duedate, an attribute of type action, namely, action to execute.

class action(name:string).

class create_timer isa {action}

(timer_name:string,duedate:integer,action_to_execute:action).

Note that this declaration is “recursive” (both action and create timer are of type

action). An instance of class create timer can be specified as follows:

#4:create_timer(name:"Sell timer creation", timer_name:"Sell timer",

duedate:30,action_to_execute:#5).

where the oid #5 identifies a selling action:

#5:action(name:"Sell").

Instance arguments can be valued both specifying object identifiers and by using

a nested class predicate (complex term) which works like a function. For example, the

action to execute is specified by a complex term in the following declaration:

#6:create_timer(name:"Auction timer creation",timer_name:"Auction

timer",duedate:60,action_to_execute:action(name:"Auction").

25

Relations represent relationships among objects. Base relations are declared like

classes and tuples are specified (as usual) asserting a set of facts (but tuples are not

equipped with an oid). For instance, the base relation contains, and a tuple asserting

that the process identified by oid #1 contains the common node identified by oid #2,

can be declared as follows:

relation contains(process:process,node:node).

contains(#1,#2).

Classes and base relations are, from a data-base point of view, the extensional

part of the OntoDLP language. Conversely, derived relation are the intensional

(deductive) part of the language and are specified by using reasoning modules.

Reasoning modules, like DLP programs, are composed of logic rules and

integrity constraints. OntoDLP reasoning modules allow one to exploit the full power

of DLP. As an example, consider the following module, encoding the path search

problem between two nodes in a process schema.

relation path(from:node, to:node).

module(path){

path(from:X,to:Y) :- T:transition(from:X,to:Y).

path(from:X,to:Y) :- T:transition(from:X,to,Z), path(from:Z,to:Y).}

The OntoDLP language is supported by OntoDLV, a system based on Answer Set

Programming (ASP) for the specification and reasoning on enterprise ontologies

[100]. OntoDLV supports a powerful interoperability mechanism with OWL,

allowing the user to retrieve information also from OWL Ontologies and to exploit

this information in OntoDLP ontologies and queries. The system is already used in a

number of real world applications including agent-based systems, information

extraction, and text classification applications.

2

2
 Basics on process and service

Summary: Process models can be used for planning, simulation and automatic execution of

business processes, e.g. in Workflow Management Systems and Process Brokers. In this

context the process and the service representation issue are intersected. An analysis of

expressiveness of existing solutions is required because of the lack of standard for process and

service modelling. To obtain this goal, a conceptualization of topics is provided and correlated

to existing ontological approaches existing for Semantic Business Process Managemen.

2.1 A conceptualization of process and service

A process is defined as a “a set of one or more linked subprocess or activities

which collectively realize a business objective or policy goal, normally within the

context of an organizational structure defining functional roles and relationships”

[50]. An activity is a description of a piece of work that forms one logical step within

a process; it may be a manual activity, which does not support computer automation,

or a automated activity. In the same context, a workflow is defined as “the automation

of a business process, in whole or part, during which documents, information or tasks

are passed from one participant to another for action, according to a set of procedural

rules”. By the process point of view, focus is on the goal partitioning, on the sequence

and synchronization of task, on the human and technological resource assignments.

A service, instead, can be considered as a set of method exposed and enriched by

an interaction syntax and usage semantic description. A web service is a particular

web-available, self-describing software component, that is able to execute a specific

task eventually establishing an interaction with other web services.

Fig. 5 Process and service

27

We assume that a process element (e.g. a process or a subprocess) P is:

P: <I, F, S,O>

where:

I is the input set to the process;

F is the function describing the process;

S is the current state of the process execution;

O is the output set of the process.

It is possible to adopt either a structured or an atomic function to describe the

process. A structured function is based on a process schema to model the process

execution pattern. An atomic function is either an elementary function or an abstract

function: an elementary function describes a one-step process, i.e. an activity, while

an abstract function offers a summarizing view on a process that should be composed

by more tasks.

As a consequence we can consider a service as a composition of one or more

service element S, each one is a particular kind of process defined as follow:

S: <I, Fab, Si, O>

where:

I is the input set to the service;

Fab is the abstract function describing the service background;

Si is the current internal state of the service enactment;

O is the output set of the service.

Fig. 6 Conceptualization of process and service

When a service receives a claim it enact an internal procedure to process the input

and generate the expected output. A user who gains access to a service ignores what is

the pattern of execution of the process that constitutes a background of the method

that he invokes. The matching between exposed service (or method) and user process

(or subprocess) is based on the correspondence between the input, the output and the

abstract function describing a process (or a subprocess) as well as a service.

28

Fig. 7 Process composition using services

2.2 A three level view on process

Process management phases require both definition and analysis of process

models. A large number of formalisms and approaches have been already proposed to

support the design of processes [57] [58]. A cornerstone for characterizing a

formalism is the specific metamodel adopted, which is an high level and platform-

independent definition of the workflow items which are admitted. Many workflow

systems refer an explicit metamodel, others have an implicit one, imposed by the

offered features.

Fig. 8 Three levels of process modelling

Essential requirements in a metamodel are an unambiguous semantics and the

capability to express the main elements of a workflow, e.g., according with [59]:

decomposition of process in activities; definition of control-flow rules among

29

activities; assignment of activities to execution entities; annotation of input and output

elements to each activity.

The implementation of a metamodel item is demanded to specific languages,

allowing to define process schemas, each of them establishing a pattern of execution.

The process schema has to be adapted to its changing environment, reflecting, e.g,

new customers requirements and re-engineered business procedures. Therefore,

process schema evolution, i.e., the modification of the process model over time,

should be supported. Process schema evolution may include the creation of new

execution pattern and the modification or deletion of existing ones.

Every time that a process execution runs, a process instance is generated, and a

process log is recorded. Respect on process schema, an instance impose a value

attribution to the variables defined and so in instances alternative patterns that in a

process schema are connected to the analysis of local conditions are going to

disappear. By analyzing a great number of instance logs it is possible to modify an

existing process schema or to generate a new one [17].

2.3 Paradigms for process modelling

A standard formalism to represent processes and workflows does not exist in

literature. Several works have proposed a large variety of methods and approaches to

represent dynamic knowledge. Two significantly different paradigms are defined to

provide a formal model for expressing executable processes [49]: one of these adopt

an explicit graph representation model, the other one is oriented to a block structure

analogous to programming languages. Each ones utilizes activities as the basic

components of process definition. In each, activities are always part of some

particular process. Each has instance-relevant data which can be referred to in routing

logic and expressions. Another formalism, based on the use of Petri Nets models,

provides a consistent framework to derive interesting results about structural

properties of workflow [53].

2.3.1 Direct graph vs Block-structured

The first formal model, adopted by XPDL standard provided by the Workflow

Management Coalition (WfMC) [50], is conceived of as a graph-structured language

with additional concepts to handle blocks. Scoping issues are relevant at the package

and process levels. Process definitions cannot be nested but they should be defined

introducing a particular activity that is a process invoice. Routing is handled by

specification of transitions between activities. The activities in a process can be

thought of as the nodes of a directed graph, with the transitions being the edges.

Conditions associated with the transitions determine at execution time which activity

or activities should be executed next

The second formal model, adopted by the BPML standard [51] and afterwards by

BPEL [52] is a block-structured programming approach, allowing recursive blocks

but restricting process definitions and declarations to the top level. Within a block

graph-structured flow concepts are supported to a limited extent, constrained by

inheritance from previous generation workflow software (only acyclic graphs, hence

30

no loops; some constraints on going across block boundaries; a complicated semantics

for determining whether an activity actually happens).

Translation of blocked-structured flow control (routing) into a graph structure

presents no fundamental difficulties. The reverse is more problematic. This can be

facilitated by imposing a set of restrictions on the graph structure that guarantee it to

be “well-structured”.

2.3.2 Standards oriented to the process enacting

Connected to the Business Process Execution Language (BPEL) a whole family

of formalisms has been developed. In particular, BPEL extension like BPEL4WS are

oriented to the web services orchestration: in this way every activity of the process

can be demanded to a specific web service able to execute it. Another evolution of

BPEL is BPELJ, a formalism that enables Java and BPEL to cooperate by allowing

sections of Java code, called Java snippets, to be included in BPEL process

definitions. Snippets are expressions or small blocks of Java code that can be used for

things such as: loop conditions, branching conditions, variable initialization, web

service message preparation, logic of business functions.

Also JBoss community provides a formalism to integrate process definition

elements and java code. The Java Process Definition Language allows a process

definition as a combination of a declaratively specified process graph and, optionally,

a set of related java classes [54]. The java classes can then be made available to the

jBPM runtime environment, that is the workflow engine integrated or linked by all the

open source tools based on JBoss platform. Just for this reason, jBPM is one of the

most adopted solution to implement workflow execution. Moreover, JPDL structure

allows grouping of nodes based on the super-state construct. From this point of view,

JPDL is a promising solution to capture logs of workflow execution provided by a

wide number of open source tools and organize them in hierarchies based on

properties of super-states.

2.4 Ontologies of process and service

Since process and service concepts are so strictly connected, an ontology-based

approach to the BPM is to combine to the Semantic Web Service (SWS) technology

for providing suitable knowledge representation techniques. Applying ontology to a

service oriented architecture can help to identify the binding information of business

process and service, increase the reusability of existing business processes and

services, and accelerate the development of application. In last years, many

approaches have been proposed to support the development of Semantic Web Ser-

vice frameworks [61]. OWL-S purposes a view of process and service closed to the

ones formalized in 2.1. WSMF introduces a level to describe business logic of

services orchestration.

2.4.1 The OWL-S approach

OWL-S (previously DAML-S [55]) consists of a set of ontologies designed for

describing and reasoning over service descriptions. OWL-S combines the expressivity

31

of description logics (in this case OWL language) and the pragmatism found in the

emerging Web Services Standards, to describe services that can be expressed

semantically, and yet grounded within a well defined data typing formalism. It

consists of three main upper ontologies: the Profile, Process Model and Grounding.

The Profile is used to describe services for the purposes of discovery; service

descriptions (and queries) are constructed from a description of functional properties

(i.e. inputs, outputs, preconditions, and effects - IOPEs), and non-functional

properties (human oriented properties such as service name, etc, and parameters for

defining additional meta data about the service itself, such as concept type or quality

of service). In addition, the profile class can be subclassed and specialized, thus

supporting the creation of profile taxonomies which subsequently describe different

classes of services.

OWL-S Process models describe the composition or orchestration of one or more

services in terms of their constituent processes. This is used both for reasoning about

possible compositions (such as validating a possible composition, determining if a

model is executable given a specific context, etc) and controlling the enactment/

invocation of a service. Three process classes have been defined: the composite,

simple and atomic process. The atomic process is a single, black-box process

description with exposed IOPEs. Inputs and outputs relate to data channels, where

data flows between processes. Preconditions specify facts of the world that must be

asserted in order for an agent to execute a service. Effects characterize facts that

become asserted given a successful execution of the service, such as the physical side-

effects that the execution the service has on the physical world. Simple processes

provide a means of describing service or process abstractions – such elements have no

specific binding to a physical service, and thus have to be realized by an atomic

process (e.g. through service discovery and dynamic binding at run-time), or

expanded into a composite process. Composite processes are hierarchically defined

workflows, consisting of atomic, simple and other composite processes. These

process workflows are constructed using a number of different composition

constructs, including: Sequence, Unordered, Choice, If-then-else, Iterate, Repeat-

until, Repeat-while, Split, and Split+join. The profile and process models provide

semantic frameworks whereby services can be discovered and invoked, based upon

conceptual descriptions defined within Semantic Web (i.e. OWL) ontologies.

The grounding provides a pragmatic binding between this concept space and the

physical data/machine/port space, thus facilitating service execution. The process

model is mapped to a WSDL description of the service, through a thin grounding.

Each atomic process is mapped to a WSDL operation, and the OWL-S properties used

to represent inputs and outputs are grounded in terms of XML data types. Additional

properties pertaining to the binding of the service are also provided (i.e. the IP address

of the machine hosting the service, and the ports used to expose the service).

2.4.2 The WSMF approach

The Web Service Modelling Framework (WSMF) provides a model for

describing the various aspects related to Web services. Its main goal is to fully enable

e-commerce by applying Semantic Web technology to Web services. WSMF is the

product of research on modelling of reusable knowledge components [56]. WSMF is

based on two complementary principles: a strong de-coupling of the various

32

components that realize an e-commerce application; and a strong mediation service

enabling Web services to communicate in a scalable manner. Mediation is applied at

several levels: mediation of data structures; mediation of business logics; mediation of

message exchange protocols; and mediation of dynamic service invocation. WSMF

consists of four main elements: ontologies that provide the terminology used by other

elements; goal repositories that define the problems that should be solved by Web

services; Web services descriptions that define various aspects of a Web service; and

mediators which bypass interoperability problems. WSMF implementation has been

assigned to two main projects: Semantic Web enabled Web Services (SWWS) [60];

and WSMO (Web Service Modelling Ontology) [28]. SWWS will provide a

description framework, a discovery framework and a mediation platform for Web

Services, according to a conceptual architecture. WSMO will refine WSMF and

develop a formal service ontology and language for SWS. WSMO service ontology

includes definitions for goals, mediators and web services. A web service consists of a

capability and an interface. The underlying representation language for WSMO is F-

logic. The rationale for the choice of F-logic is that it is a full first order logic

language that provides second order syntax while staying in the first order logic

semantics, and has a minimal model semantics. The main characterizing feature of the

WSMO architecture is that the goal, web service and ontology components are linked

by four types of mediators as follows:

• OO mediators link ontologies to ontologies,

• WW mediators link web services to web services,

• WG mediators link web services to goals, and finally,

• GG mediators link goals to goals.

Since within WSMO all interoperability aspects are concentrated in mediators the

provision of different classes of mediators based on the types of components

connected facilitates a clean separation of the different mediation functionalities

required when creating WSMO based applications.

3

3
 A process-oriented methodology for information

system design and implementation

Summary: In this chapter a novel process-driven methodology for continuous information

system modelling is presented. Our approach supports the whole information system life-cycle,

from planning to implementation, and from usage to re-engineering. The methodology includes

two different phases. First, we produce a scenario analysis adopting a Process-to-Function

approach to capture interactions among organization, information and processes; then, we

produce a requirement analysis adopting a Function-for-Process and package-oriented

approach. Finally, we deduce an ex-post scenario analysis by applying process mining

techniques on repositories of process execution traces. The whole methodology is supported by

UML diagrams organized in a Business Model, a Conceptual Model, and an Implementation

Model..

3.1 Motivation and approach

As information systems become complex, the need for a highly-structured and

flexible methodology becomes mandatory, since traditional approaches [10] result to

be ineffective when applied to non-conventional cases such as the modeling of

advanced inter-organizational scenarios. Inspired from these considerations, in this

chapter we propose an innovative process-driven methodology for continuous

information system modeling, which encloses a number of aspects of the information

system life-cycle, from planning to implementation, and from usage to re-engineering.

Our methodology [103] is basically based on software planning and development,

and it can be considered as a reasonable alternative to traditional proposals based on

the Waterfall Model [18]. Similarly to lightweight and agile software development

patterns [1], this methodology adopts iterative procedures, and it is characterized by

short recurrent steps that are target-oriented and suitable to support an adaptive

evolution of the whole information system modeling phase.

In our methodology, software planning and development is modeled via

specifying two phases, directly connected to the concepts of process and function.

This resembles the well-known Feature-Driven Development approach [11], which

proposes a planning and implementation incremental procedure oriented to handle

34

homogeneous groups of functions. Our methodology integrates this approach with an

analysis of processes that constitute the scenario in which functions execute.

Software planning and development tasks are composed by two macro-phases. In

the first phase, we produce a scenario analysis adopting a Process-to-Function (P2F)

approach, where we capture interactions among organization, information and

processes. Specifically, in this phase we model the decomposition of processes in sub-

processes and activities, and connect them to required information contents and

specific portions of the business organization related to them. In the second phase, we

produce a requirement analysis adopting a Function-for-Process (F4P) approach,

where information system development is modeled, planned, and dynamically

reported according to a package-oriented organization. Specifically, features of the

information system are grouped in packages and integrated with processes that

characterize the target scenario.

After the implementation and enactment of the information system, logs of

executions are stored and analyzed by process mining techniques (e.g., [17]), which

aim at extracting useful knowledge from traces generated by processes of at-work

information systems. This way we are able to deduce paths of process executions,

and, as a consequence, we can produce an ex-post analysis of scenarios, thus

highlighting differences due to diverse execution scenarios of the realized information

system. This analysis should be used as input of a new instance of the methodology

for modeling a new (similar) information system, or re-engineering the actual

information system.

The methodology we propose is supported by UML diagrams [9] that are able to

offer a meaningful expressivity to developers and consultants, and an immediate

interpretation to customers. In more detail, in the P2F phase, we adopt an approach

based on Use Case and Activity Diagrams in order to obtain a Business Model

characterized by a process-oriented representation. In the F2P phase, we still adopt

Use Case Diagrams to model the logical structure of functions, but progressively we

introduce Deployment Diagrams and Class Diagrams to model the architecture of the

information system and its physical elements, such as databases, control modules, and

interfaces. As a result of this phase, we obtain a Conceptual Model allowing us to

define the functional analysis, and an Implementation Model allowing us to formalize

requirements for the final realization of the information system.

3.2 Related works

The strict relationship among business processes and information systems has

been firstly recognized in [31] at early 90’s. Business processes heavily influence the

final structure and functionalities of information systems. Symmetrically, the

development of the information system influences the design of specific business

processes of the target organization.

According to this evidence, several information systems modeling methodologies

that, like ours, are focused on processes have appeared in literature recently. Also,

some interesting applications of this novel class of methodologies have been

proposed. Among such applications, we recall: (i) integration of process-oriented

techniques and Data Warehouses [32], (ii) simulation of business processes to

35

precisely capture information systems requirements [33], (iii) process-driven

modeling in the context of e-learning systems [34].

From the straightforward convergence of the mentioned research effort and

practical applications, it is reasonable to claim that achieving a total synergy between

design of business processes and development of information systems should be the

goal of any organization, as stated in [35],[36],[37]. Nevertheless, in real-life

organizations business analysts and information systems engineers very often have

distinct roles within the organization, and, in addition to this, very often they use

different tools, techniques and terminologies [38]. This contributes to make the

achievement of the above-introduced synergy more difficult, and puts severe

drawbacks with respect to a complete integration between organizations and

information systems. On the other hand, it is very difficult to predict the “relative”

consequences of changes occurring in business organizations and information systems

[39], so that re-engineering issues play a critical role in this respect.

Giaglis [40] proposes an accurate taxonomy of business processes and

information systems modeling techniques, also putting in evidence similarities and

differences among the available alternatives. In [40], according to [41], the following

perspectives of an information systems modeling technique are systematized: (i)

functional perspectives, (ii) behavioral perspectives, (iii) organizational perspectives,

and (iv) informational perspectives. As demonstrated throughout the paper, our

proposed methodology strictly follows this paradigm, and meaningfully includes all

the introduced perspectives, plus innovative amenities.

Implementation-wise, the methodology we propose is based on three levels of

modeling and analysis, enriched with a final ex-post analysis of business process

traces. Each level founds on classical UML diagrams enriched with stereotypes

aiming at carefully modeling even-complex business processes by means of the so-

called UML Profiles. This idea is not new in the context of information systems

modeling techniques. For instance, in [42] a UML-based framework for modeling

strategies, business processes and information systems of a given organization is

proposed. Similarly to ours, this framework adopts a multi-level approach during the

modeling phase. Other proposals based on the usage of specialized UML profiles for

capturing several aspects of modeling information systems are [43,44,45].

Ex-post analysis of business process traces can be instead regarded as an

innovative aspect of the methodology we propose. This resembles the work of

Mendes et al. [46], where scenario evolution is modeled in terms of a specific process

that captures organizational changes. Contrarily to this, in our methodology scenario

evolution is not captured on the basis of a fixed, a-priori pattern, but instead it is

deduced from the analysis of process traces originated by the interaction between

users and the system.

Another distinctive feature of our methodology is the idea of separately modeling

the static knowledge (i.e., the knowledge modeled by means of Use Case and Class

Diagrams) and the dynamic knowledge (i.e., the knowledge modeled by means of

Activity Diagrams). This amenity if finally combined with the ex-post analysis

illustrated above, thus allowing us to achieve a powerful tool for mining and

reasoning on processes, and, consequentially, significantly improving the modeling

capabilities of the proposed methodology.

36

3.3 Scenario analysis and the Business Model

The definition of business processes characterizing the scenario in which the

information system will operate is a milestone of the planning phase. Business Model

is thus an essential input to the subsequent selection and definition of functions able

to manage information useful for the specific information system context.

Scenario analysis is obtained as a result of the study of the target organization,

interviews to members of the organization, reading of documents, selection of

relevant procedures etc. All these elements are referred and represented in the

Business Model, which is a formalization of organization processes, actors of the

organization, and information. To efficiently support this formalization, Business

Model is organized in several components: (i) Process Schema, which models

processes of the information system; (ii) Actor Schema, which models actors of the

information system; (iii) Archive Schema, which models archives of the information

system.

Actors and archives are formalizations of active and passive entities that interact

with processes. We represent them by adopting stereotypes of the native UML actor

element. We consider as actors all the operators (human or automatic) that activate or

enact a process. An archive is instead every information source useful for the

execution of a process. In the actor and archive schemas, we model and represent

taxonomies and ontologies [16] of entities in order to permit a meaningful

contextualization of organization and information elements.

In the Process Schema, processes are modeled by means of a top-down approach.

Specifically, we analyze processes and then select sub-processes that characterize

each of them. Distinguishing between processes and sub-processes is a non-trivial

engagement, which also strongly depends on the particular application context. In our

methodology, in order to cope with this conceptual aspect we assert what follows.

A process is a set of procedures that are finalized to obtain a goal, starting from

the input. A process involves a number of actors, and requires information modeled in

terms of archives. Finally, a process is composed by sub-process.

A sub-process is an element of a process P, more restricted than P, but having the

same formalization. A sub-process models components required for the release of a

sub-service (or sub-product) of the information system. These components are

referred as the path of execution of the sub-process. Finally, a sub-process can be

structured, i.e. composed itself by other sub-processes in a hierarchical fashion, or

atomic, i.e. without any sub-sub-process (in this case, the sub-process is named as

activity).

An activity is an atomic element that represents a specific portion of work, and

constitutes a logic step within a process. To model evolution of activities within a

same process P, we make use of an Activity Diagram (see Fig. 9) that establishes the

temporal order of the activities during the enactment of P.

37

Fig. 9 From a Use Case Diagram to the related Activity Diagram

Top-down analysis focuses on high-level processes characterizing the information

system scenario. In the visual representation implementing such analysis, we

introduce a package for every macro-process. Each package contains a Use Case

Diagram in which the use-case element corresponding to the process P is connected

with use-case elements corresponding to every sub-process Pi of P. To model these

connections, we use include, extend, and specialize associations provided by UML. In

more detail, we assume the following association semantics.

A process P “includes” a sub-process Pi if, in every instance of P, an instance of

Pi is required to be executed. A sub-process Pi “extends” a process P if, in every

instance of P, an instance of Pi is executed only if a given condition is verified (this

condition is expressed by the so-called extension point element). A sub-process Pi

“specializes” a process P if Pi involves all the sub-processes involved by P and other

specific activities.

A UML association is used to connect a use-case representing a process P or a

sub-process Pi to an actor A or an archive S. Therefore, we are able to express that an

actor executes a process (or a sub-process), and that a process requires or modifies

information contained in an archive during its execution.

For each process P, we then model the path of execution of its sub-processes, via

associating an Activity Diagram to P. As a consequence, we finally obtain that in the

Use Case Diagram of P we represent a first analysis about the composition of P, and

in the Activity Diagram we formalize the sequence of execution of activities of P and

express pre-conditions and post-conditions among activities via conventional join,

fork, and merge constructs.

38

Fig. 10 Modular representation of processes

This decomposition is replicated for every sub-process that is itself a structured

(sub-)process. To this end, we select its sub-sub-processes and connect them to it by

means of include, extend or specialize associations. Then, we model the dynamic of

the evolution of the sub-process by linking it to a specific Activity Diagram.

In total, for each process P, we introduce an Activity Diagram containing sub-

processes Pi directly connected to P; furthermore, if a sub-process Pi itself involves

sub-sub-processes Pi,j, their sequences of execution should be represented by another

Activity Diagram connected to Pi. If a sub-process Pi of a process P is too much

articulated to be represented in the main Use Case Diagram (of P), we introduce a

sub-package Bi that contains another Use Case Diagram. This allows us to obtain a

modular and incremental process organization that gives us benefits at both modeling

and visualization tasks. In the main Use Case Diagram, we represent the sub-package

Bi and its related sub-process Pi, and we connect Bi to P. The result is a hierarchical

and modular representation of processes (see Fig. 10), that can be easily modified in a

specific portion without conditioning the whole structure of the model. It should be

noted that this amenity plays a critical role in complex and scalable information

systems.

3.4 Analysis of function and the Conceptual Model

Scenario analysis describes the context in which the information system will

operate. The next step is to analyze and model functions supported by the system in

order to facilitate the execution of processes within the organization. Conceptual

Model is the output of this phase. In the Conceptual Model, we provide: (i) a formal

schema of functions and users; (ii) a formal schema of data; (iii) a formal schema of

interactions between functions and data. Furthermore, Conceptual Model also

represents functional blocks and views on data (i.e., information sources’ schemas).

39

Functional blocks are modeled by use-case packages and taxonomies of actors,

according to an approach similar to the one used to model processes in the Business

Model (see 3.3). Data views are instead represented by means of Class Diagrams.

Therefore, we can state that Conceptual Model is characterized by two aspects that

capture the overall knowledge of the information system: (i) static analysis given by

the Data Schema, which describes schemas of information sources, and View Schema,

which describes views on the latter schemas; (ii) dynamic analysis given by the User

Schema, which models users, and Function Schema, which models functions. Both

static and dynamic analysis concur to capture even complex aspects of the

information system, thus adding novel and useful amenities to traditional design

methodologies.

Fig. 11 A view and its documentation

Data Schema contains a Class Diagram that represents a conceptual model of the

database underlying the information system. We use Table and Key stereotypes to

adapt UML classes and attributes, thus modeling a data schema. Foreign keys and

cardinality constraints are instead represented via UML associations among classes.

At this level, we make use of composition and aggregation associations, and

taxonomies to represent logical relations among entities. Therefore, Data Schema is a

high-level description of the information system database, which is then detailed in

the Implementation Model.

View Schema is a package that contains a Class Diagram named as View

Catalogue. A view is a portion of database useful in a specific functional context.

Each view is represented by a package containing a Class Diagram in which the

involved-by-the-view entities/classes of the database are shown, along with their

relations. In each package, a view is represented as an actor with the stereotype View,

and can be exported in the Function Schema to model in detail the interaction among

functions and data they require or modify. Also, we associate a documentation to each

view V (see Fig. 11), such that this documentation contains additional information on

V like: the logical name of V; for each entity/class, the list of specific attributes –

obtained as a selection of the whole set of attributes – that are useful in the specific

40

functional context; the way used in the specific context to navigate associations

among entities/classes etc.

User Schema has the same syntax of the one relative to the Actor Schema in the

Business Model (section 3.3). While actors are entities (human or automatic) that

activate or enact processes, users are instead entities (human or automatic) that will

interact with the information system in the real-life realization.

Similarly to users, functions in the Function Schema are modeled by adopting

syntax analogous to the one employed in the Business Model to represent processes,

with the difference that archives are substituted by views (coming from the View

Schema).

3.5 The implementation model and the development of the

information system

Once requirement analysis is completed and Conceptual Model is defined, a

physical planning of the information system is necessary. Guidelines defined in the

Conceptual Model are mapped on the software architecture designed for the system.

On the basis of the specific information system, different architectural solutions can

be chosen, but every choice should include at least three levels of implementation: (i)

a Database Level to model information/data sources of the system; (ii) a Control

Level to models (software) classes implementing the application logic of system

procedures; (iii) an Interface Level to model forms handling the interaction between

system and users (human or automatic).

Fig. 12 A control schema

In order to efficiently support these requirements, Implementation Model is

constituted by several components: (i) Architecture, which contains a representation

of physical elements of the information system (i.e., the software architecture of the

system); (ii) Database, which implements the Database Level; (iii) Control, which

implements the Control Level; (iv) Interface, which implements the Interface Level.

41

Similarly to other models of our methodology, each component is implemented

by a package, according to the following organization. Architecture component

contains a Deployment Diagram where nodes and components of the system

implementation can be defined. Furthermore, just like other constructs of our

methodology, it is possible to define sub-packages in order to obtain a modular

representation of the system implementation. Database component contains a Class

Diagram enriched by stereotypes, named as DB Schema, which allows us to represent

the schema of data stored in the information sources of the system (i.e., the database

underlying the system). With respect to the Data Schema of the Conceptual Model, in

the DB Schema of the Implementation Model we model in detail all components of

data tables (e.g., attributes with data type and range of validity etc), in a similar way

to what happens in conventional CAD tools for E/R diagrams, thus obtaining a linear

description of the system database. Control component contains a Class Diagram,

named as Control Schema (see Fig. 12), in which a control class’s catalogue is

represented. Each control class is implemented as a UML class with stereotype

Control, and contains methods used by the Interface Level to manage data from the

Database Level. Also, each control class refers to one or more views inherited from

the DB Schema on the basis of their relevance and scope with respect to the specific

functional context. Methods of each control class are described within the UML class

in forms of software interfaces (e.g., Java-based) and documentation in free text.

Fig. 13 An interface schema

Following the organization of the Implementation Model, Control Level is

invoked by the Interface Level that contains a Class Diagram, named as Interface

Schema (see Fig. 13), which models the interaction between system and users. Paths

of interactions are expressed in Activity Diagrams of the Conceptual Model; we use

these paths to model a sequence of forms, which, in our implementation, are UML

classes enriched with specific stereotypes. Specifically, a form is characterized by

three elements that determine the final representation of such form (see Fig. 14): (i)

entry unit, which is an area of the form where users submit input elements to the

system via traditional GUI controls such as text fields, combo boxes, check boxes etc;

(ii) data unit, which is an area of the form where information derived from the

42

underlying database (i.e., sets of tuples) is shown; (iii) display unit, which is an area

of the form where static components are shown (e.g., textual information describing

how to use form controls).

Fig. 14 Conceptual representation of a form

In our methodology, a form can be a plain form, a list form, or a recursive form.

Plain forms are basic realizations of the form construct. List forms, modeled by the

stereotype FormL, are used to represent forms in which sets of tuples are shown.

Recursive forms, modeled by the stereotype Form*, are used to represent forms that

are shown many times, one for each tuple corresponding to a specific parameter.

When forms transmitting parameters to other forms are considered (e.g., during

user transactions), we support this facet of the information system by appending

specific attributes to UML classes. These attributes are described by the stereotype

LinkP. To ensure data consistency, we simply impose that the type of transmitted

parameters is the same of (appended) attributes in the related UML class.

3.6 The application scenario

The methodology we propose is actually experimented in Exeura [15], a spin-off

company of the University of Calabria that operates in the IT and KM (Knowledge

Management) areas.

Given an application domain, our methodology should be executed in a complete

or partial way, by specifying and personalizing the P2F and F4P phases on the basis

of the specific context. P2F phase is executed according to an agile approach,

characterized by short and adaptive iterations, each of them containing an analysis

step and a modeling step. Frequent interactions with customers allow validation and

revised versions of the analysis, and, if needed, inclusion of novel elements useful to

support new procedures of the information system. F4P phase is instead executed

according to an incremental approach. A first architectural and functional model of

the system is delivered, so that every system procedure is supported by a specific

functional analysis and an implementation phase, where a high-level of concurrency

and feedback is permitted. In particular, Implementation Model is structured in such a

way as to enable reverse engineering methods [14] starting from the source code.

If the whole software planning and implementation must be executed to realize a

new system, P2F and F2P phases are both required, of course. In this specific case,

thanks to process mining techniques that allow us to analyze traces of execution of

43

processes (e.g., [17]), is then possible to deduce an ex-post evaluation of the scenario

that in turn generates a new instance of the methodology. Here, the goal is to take

advantages from previously-modeled scenarios when novel, similar scenarios are

considered. If the re-engineering of an existing system is required, scenario analysis

should be derived through the analysis of process logs generated by process mining

tools such as ProM [13].

Part II

The advances

4

4
 Ontology for modelling business process knowledge

Summary: This chapter describes an ontology-based organizational knowledge representation

framework focused on the specification of a two kinds of ontologies: the top level ontology

containing concepts characterizing the typical organizational background and COKE ontologies

representing so called core organizational knowledge entities. The framework constitutes an

abstract representation of organizational knowledge providing a semantic support for designing

knowledge management infrastructure able to interoperate with systems already existing in an

organization. Moreover, the annotation of COKE w.r.t. the top level ontology allowed by the

framework facilitates their semi-automatic handling, retrieval and evolution monitoring.

4.1 Information systems and organizational knowledge

In the last years many enterprise models aimed to give a formal representation of

the structure, activities, processes, information, resources, people, behaviours, goals,

and constraints of a business, government, or other enterprise has been proposed in

literature [4]. All these models consist of an ontology based on a vocabulary along

with some specification of the meaning or semantics of the terminology within the

vocabulary. For example, the Toronto Virtual Enterprise Ontology (TOVE) [3] is an

ontology providing a shared terminology for the enterprise that defines the meaning

(semantics) of each term in a precise and an unambiguous as possible manner using

first-order logic; IDEF Ontologies [2] intended to provide a rigorous foundation for

the reuse and integration of enterprise models; CIMOSA [5] aimed to provide an

appropriate integration of enterprise operations by means of efficient information

exchange within the enterprise with the help of information technology.

All these ontologies attempt to describe in detail the whole organizational

knowledge and structure. The resulting models are less flexible and not easily

applicable in the very dynamic contest of a real enterprise.

This chapter describes an ontology-based framework for specifying

organizational knowledge. The framework aims to represent so called Core

Organizational Knowledge Entities (COKE) in an ontology expressed using a novel

ontology representation language based on disjunctive logical programming. The

Framework is organized as a two level family of ontologies: the first level (top level)

ontology represents the set of concepts characterizing organizational background; the

46

second level ontologies formally represent the COKE (i.e. human resources, business

processes, technical resources, knowledge objects). The resulting formal

representation of organizational knowledge aims at contributing as theoretical base in

supporting the analysis and design of Knowledge Management Systems (KMS) in

two manner: first ontologies represent an abstract representation of organizational

knowledge providing a semantic layer allowing interoperability between existing

systems and the KMS, second COKE can be easily annotated w.r.t. top level ontology

using semi-automatic mechanisms, so their evolution can be better captured and

handled.

4.2 The Ontology-Based Framework

The proposed ontology-based framework [6] is organized as a set of ontologies as

described in Fig. 15. The top level ontology (topic ontology) contains concepts

characterizing organizational background knowledge. These concepts are used for

annotating COKE.

The COKE ontologies formally represent human resources, business processes,

knowledge objects, technical resources constituting the main elements characterizing

the organizational structure and playing a fundamental role in business activities

execution. All the ontologies are strictly connected by relations between their own

elements and are represented using the DLP+ language.

The framework give an abstract representation of COKE’s allowing semantic

interoperability among the various type of information systems used in the

organization. More in detail, the framework provides a uniform representation of

knowledge handled by the systems already existing in the organization such as

document and project management systems, ERP and CRM systems. Connecting such

systems to the framework using ad hoc software modules handled knowledge object

can be better stored, managed and retrieved.

Fig. 15 The organizational knowledge framework

47

4.2.1 The Top Level Ontology

The top level ontology or topic ontology contains concepts characterizing the

typical organizational background. It specifies the explicit and implicit organizational

declarative knowledge concerning the concepts characterizing an application domain:

e.g. an IT enterprise background is founded on concepts coming from computer

science field. As top level ontology it provides the other COKE ontologies with

concepts to formally annotate their contents.

4.2.2 The COKE Ontologies

COKE Ontologies contain the formal representation of human resources and their

organization in groups, processes and their activities, knowledge objects constituting

elements produced or used in business processes, technical resources in term of

instruments used during business process execution.

The Human Resource Ontology represents individuals working in the

organization (knowledge workers) and social groups they are involved in. Each

individual profile is represented in term of implicit, explicit, individual and social

knowledge, organizational role, social group membership, required technical

resources. Each social group (community of practice, project team, organizational

group, etc.) profile is represented in term of its members profiles.

Fig. 16 The Human Resource ontology

The Business Processes Ontology contains procedural knowledge related to the

managerial, operational and decisional processes. Each of them is described in terms

of activities, sub-processes, transition states and conditions, involved actors, treated

topics, etc. This can be a simple representation of business process or a complex

ontology where the workflow structure and the taxonomic and non-taxonomic

relations between processes are represented using the DLP+ language [Leone, 04].

48

The business process ontology exploits an interesting capability of DLP+ language

allowing the expression of relations between classes, that enables the representation

of process meta-model, process schemas and process instances.

Fig. 17 The business process ontology

The Knowledge Objects Ontology maps the structure of logical objects (e. g.

database schema, database tables, textual documents, web pages, etc.) containing

explicit knowledge under structured, semi-structured or unstructured form [1]. These

are used in the business processes and handled by the human resources through

knowledge-based tools. Knowledge objects retrieval, management and handling is

facilitated by the annotation on the topic ontology concepts.

Fig. 18 The business object ontology

49

The Technical Resources Ontology identifies the tools by which knowledge

objects are created, acquired, stored and retrieved. The execution of a query to the top

level ontology can be executed using a specific tool able to retrieve all the elements

related with a specific concept. Element can be filtered to obtain a specific COKE

related to the query. For example a query result can contain people knowing a given

concept or systems containing knowledge objects related to some concepts. This

allows the management of implicit and explicit knowledge stored in structured, semi-

structured or unstructured machine-readable forms.

Fig. 19 The technical resource ontology

4.3 Future enhancements

This chapter describes an ontology based framework for organizational

knowledge representation providing an abstract definition of COKE’s enabling the

dynamic capture of business processes changes and evolutions. Moreover the

framework allows the automatic annotation of COKE’s to enterprise relevant

concepts allowing semantic retrieval and management capabilities. Future works

regard the definition and implementation of the annotation mechanisms and the

representation of time in the ontology.

5

5
 Ontology for process oriented Information Systems

Summary: An ontology-based approach for supporting Loosely-Structured Cooperative

Processes (LSCP) is defined in this chapter. Ontology are adopted to provide an enterprise

contextualization of operations executed on heterogeneous context by indipendent component

integrated in Service Oriented Architecture. A semantic analysis of the domains of these

operations offers an input to process mining algorithms that are able to discover procedural

knowledge about enterprise.

5.1 Loosely-Structured Cooperative Processes

The “internetworked” enterprise domain is a challenging application scenario,

due to the complexity and dynamicity of the collaboration processes that typically

arises in such a context, which could greatly benefit from some suitable elicitation,

management and sharing of both intra- and inter-organizational information and

knowledge. In particular, it is desirable to provide both workers and decision makers

with a unified and high-level view over the cooperation processes. This usually

requires quite long and complex analysis tasks, but can be supported by knowledge

discovery techniques, devoted to extract and restructure knowledge about the

processes, as well as to guide and optimize future cooperation work. Many possible

scenario are considered in literature. For example, an approach for grid-oriented

virtual enterprise is proposed in [101].

Let now consider a context in which heterogeneous functional component of a

distribute informative system are running and each one operates on a specific

semantic context. Basing on a synchronization protocol and on a mapping schema of

local data, an architecture inspired to the SOA protocol is able to provide an

integration of these components. We propose a knowledge-based framework for

supporting an ex post analysis of the operations executed by the components finalized

to extract knowledge about dynamic aspects of the enterprise.

Our goal is to offer a contextualization of the operations executed on different

semantic context. Adopting an enterprise view, local operations and data are framed

as steps and parameter of so defined “loosely-structured cooperative processes”

(LSCP). In fact, emerging work models increasingly take the form of loosely

structured, often self-organising networks of nimble and virtual knowledge work

51

teams within and between organisations. So, with an appropriate semantic

interpretation of log of execution captured on a service oriented architecture, it is

possible to retrieve contextually relevant knowledge elements in order to elaborate

process schemas representing collaborative and distributed work.

To obtain this goal, our approach provide an enterprise model derived as an

extension of the one illustrated in the previous chapter and applied on an architectural

scenario characterized by an Enterprise Application Integration protocol based on

message interchanging. We propose a methodology to elaborate the logs contained in

the messages, basing on the operations’ domain that is composed by either document,

user or project unit. Focusing on each element we apply process mining algorithms to

obtain process schemas representing dynamic evolution of the domain [104].

We apply this framework to an enterprise project-oriented context, considering an

information system composed by functional component providing project

management, content management, user management and timesheet management.

5.2 A framework for supporting and tracking LSCPs

Fig. 20 Conceptual architecture of the framework

Our purpose for loosely-structured cooperative processes analysis is based on a

multi level framework, as illustrated in Fig. 20. The functional capability to support

the enterprise requirements are provided by the operational components that are

involved in the distributed information system. An interoperability among

components is provided by an Enterprise Architecture Integration level: every

functional module is enriched by an EAI snippet able to capture events generated by

52

local operations and frame them in an enterprise context. EAI snippets generate

messages that contain information about the operation and its domain. These

messages are captured on the Enterprise Service Bus that represents the connection

among component. An ontology-based Enterprise Data Loader (EDL) provide to

extract knowledge about operations with repsect to a shared enterprise model and this

knowledge is stored in a centralized Enterprise Data Warehouse (EDW).

The EDW constitutes the knowledge base for the Knowledge Managment and

Discovery level, that is composed by two features that allow ontology management

and process analysis features, available on the managerial cockpit provided by the

highest architectural level. Enterprise ontologies are invoked by the EDL module to

extract knowledge contained in the messages transmitted on the ESB. They are also

useful to examine the operations’ domain to individuate elements on which effectuate

the log reconstructioning. The process logs are captured with respect to different level

of process abstraction: taxonomies of processes allow to consider more or less

detailed descriptions of operations’ domain contained in the EDW. The output of this

elaboration is in a Process-oriented Log Data Base and so processed by a Process

Mining module. The result offered to enterprise manager is new process schemas, that

can be stored in the enterprise knowledge base to refine process taxonomies and

contribute to the discovering of new knowledge patterns.

5.3 The Enterprise Integration and Tracking level

5.3.1 The Enterprise Service Bus

During the 1990s, companies bought packaged software solutions for the

enterprises that worked well individually but they created information islands. In most

cases, each system produced redundant information (like customer information) and

the process of manually updating the related informations in different systems quickly

becomes cumbersome. Eventually, some of the data across systems became

inconsistent.

From problems like double data entry, inconsistent data, and data isolation the

“enterprise application integration” (EAI) was born, to combine separate applications

into a co-operating federation of applications. The subsequent picture shows three

different pattern of EAI for interoperability purposes adopted in the last decades. A

time-line, from left to right, is implied.

53

Fig. 21 Enterprise Application Integration patterns

Firstly, developers adopted point-to-point integration because it was easy to

understand and quick to implement. As additional applications are integrated in a

preexisting set, the situation becomes unwieldy. Each application is tightly coupled

with the other ones through their point-to-point links. Changes in one application may

break the correlated applications. Another disadvantage with this approach is the

number of integration points needing support. If we have five applications integrated

with one another, we need ten different integration points. As a result, each additional

application becomes harder to integrate and maintain.

To avoid this problem an intermediate layer to isolate changes in one application

from the others is necessary. This layers are often called “integration middlewares”

and they was originally built mostly around proprietary systems with their own

canonical protocols and data formats operating in centralized hub configurations. To

integrate a system into the hub some adaptors to convert its protocols and data

formats to the hub’s canonical protocols and data formats are necessary. The protocol

and format conversions results also in low overall performance. Support for standards,

if any, was often tacked on to EAI products as barely working afterthoughts.

A very popular middleware technologies are those called “message-oriented

middleware” (MOM). Applications communicate with one another by passing

messages and these messages are queued if the receiver is unavailable thus

guaranteeing that the messages will eventually be delivered.

The Enterprise Service Bus (ESB) is a new kind of middleware that supports

services-oriented interactions among enterprise applications. In the ESB model, most

or all applications and services in the enterprise connect to the ESB and communicate

with each other over the ESB. Applications and services usually connect using SOA

standards, whereas legacy systems require integration via traditional EAI technologies

such as adapters. The communication between endpoints is handled by message

oriented middleware: programs connect to the ESB and send or receive messages. The

ESB handles routing details, mediation of differences between endpoints, and the

physical details of communication.

While the ESB can be described as a recent approach to enterprise connection and

integration, it stands firmly on the shoulders of three disciplines that have already

proven their worth in the enterprise. The ESB concept is made possible through the

convergence of Service Oriented Architecture (SOA), Enterprise Application

Integration (in traditional sense), and Message Oriented Middleware. The rapid

54

progress being made in each of these disciplines is all leading in the same direction,

convergence.

There are multiple complete definitions proposed for an ESB. However most

definitions encompass a healthy subset of the following composite definition.

• An ESB is a backbone for connecting and integrating an enterprise’s

applications and services.

• An ESB provides the necessary infrastructure to create a service oriented

architecture.

• An ESB is a convergence of EAI, MOM, and SOA concepts.

• An ESB is based on open standards such as XML, SOAP, and WS-*.

• An ESB provides intelligent routing, such as publish-subscribe, message

brokering, and failover routing.

• An ESB provides mediation, overcoming data, communication, and security

differences between endpoints.

• An ESB integrates with legacy systems using standardsbased adapters.

• An ESB provides logical centralized management but is physically

decentralized.

• An ESB is able to apply EAI concepts such as rules and orchestrations.

• An ESB is able to monitor and throttle activity as per a Service Level

Agreement (SLA).

In our framework interoperability between software modules at the operational

level was well satisfied from the capabilities of an open source ESB named “Mule”. It

has been enriched by specific services that allow registration/unregistration of

modules, sending/receiving messages. Also “internal” services was implemented to

provide fully configurable routing capabilities, message dispatching to previously

registered modules, return receipt dispatching. The subsequent picture shows our

experimentation scenario that involves four operational modules for project, time

sheets, resources and contents management.

55

Fig. 22 ESB experimentation scenario

5.3.2 The Enterprise Knowledge Model

The data level shared by different functional context constitutes a semantic model

defined as Enterprise Knowledge Model (EKM). It is an extension of the COKE level

belonging to the framework introduced in section 4.2.2. It represents an abstract view

on which the data structures characterizing the specific functional area integrated by

the architecture are mapped. A detail of the semantic relationships between each data

structure and the EKM is provided in a mapping registry. EKM entities are organized

by domain. Since our purpose is to support process-oriented organizations, we

consider two relevant domains:

• a “user” domain, containing a description of human resource, roles and

workgroups

• a “process” domain, containing a description of tasks, assignments to the

human resources, contents, technical resources and workspaces

We define Enterprise Operation (EOp) each operation that is enacted by one of

the tools integrated by the architecture and that is able to produce an effect on one of

the entities belonging to the EKM. So, for example, the creation of a new project in a

project-management tool should be receipt by a content-management tool as a

creation of a specific workplace. Therefore, an EOp is an event that is expected in a

specific functional context but it is also relevant as a step of a collaborative process.

Traditional approaches to business process management impose to model a

procedural schema before individuating tools or services that are able to perform each

step. This implies that identifying which parts of business are supported by which

parts of the system is not a straightforward task [62]. Our approach to process

modeling, based on EOps, is instead characterized by an ex post analysis of the usage

pattern of each functional component that produces an effect on the shared semantic

model: by analyzing the effects of the local events on the EKM, we are able to frame

heterogeneous operations as steps of a unique distributed process and so, by applying

56

process mining algorithms to the logs of execution of these operations, we are able to

obtain a schema of the process.

EOps are so generated consequently to a trigger produced by a tool: an EOp

should be activated by different tools and each of them give raise to the propagation

of the effects of the operation on the other tools. The synchronization of the tools is

provided by the architecture illustrated in the previous section. Knowledge maps are

able to frame local characteristics of operations in a more abstract enterprise view:

they correlate functional data structures to the EKM entity to which they are referred.

5.4 Analysing process logs

Process mining techniques, recently appeared in the literature, are a valid means

for automatically extracting new knowledge on the behavior of a process, based on

data gathered during its past enactments and stored in suitable logs (see, e.g., [21] for

a survey on this topic). Clearly, such ex-post analysis of process executions, make

such techniques quite different from traditional “business process monitoring’’

solutions, which primarily focus on performances aspects, and typically offer simple

statistics and mechanisms for detecting problematic cases.

Different kinds of process mining techniques have been defined in the literature,

which, based on historical log data, can extract abstract process models, according to

different perspectives of the processes, such as, e.g. flow of work, social relationships.

For the sake of conciseness, in the remainder of this section, we only focus on the

mining of workflow schemas.

Although there is a plethora of languages for modelling a process, most process

mining approaches focus on workflow models, which describes both process activities

and routing constraints that coordinate their execution. As an illustrative example,

consider the toy HANDLEORDER process for managing customers’ orders in a company,

shown in Fig. 23. Here, edges represent precedence relationships, while additional

constraints are expressed via labels associated with activity nodes. For example, task l

is an AND-join activity, as it must be notified that both the client is reliable and the

order can be supplied correctly. Conversely, b is a XOR-split activity, since it can

activate just one of its adjacent activities.

Fig. 23 Workflow schema for the sample HANDLEORDER process

Each time a workflow schema W is enacted, it produces an instance, i.e., a

suitable sub-graph satisfying all constraints associated with W. Most process-oriented

57

systems typically store different kinds of events occurred during each process

enactment. A popular format for representing log data is described next.

5.4.1 The MXML format for process logs.

MXML is an XML-based format recently introduced for representing event log

data, which is now widely in the research community, and in the popular process

mining framework ProM [98]. The structure of an MXML document is shown in Fig.

24. The root node of an MXML document represents a log file, with a Source element

possibly indicating the system it was imported from. A workflow log can contain an

arbitrary number of Processes, each of them collecting a series of executions for a

specific process, which are modelled by different ProcessInstance elements. Each

process instances consists of a number of AuditTrailEntry, each of which describes

one specific log event. Every audit trail entry mandatorily contains two elements: the

WorkflowModelElement, which indicates the workflow task the event refers to, and

EventType, specifying the running state of the event, such as, e.g., scheduling,

completion, suspension, termination.

Two optional elements of an audit trail entry are Timestamp, storing when the

event occurred, and Originator, which identifies the resource, e.g., person, program or

component, that triggered the event in the system.

Additional information can be stored in connection with different elements, by

way of Data elements, consisting of attribute-value pairs.

Fig. 24 The MXML format: a standard for process logs

58

5.4.2 Process Mining solution adopted

Many process mining approaches proposed in the literature [97] are aimed at

discovering a single workflow model (like the one shown in Fig. 23), and mainly

differ in the formalism used to represent workflow models.

The goal is to describe the events in a given process log (possibly represented

according the MXML format discussed above) in an accurate and compact way. It is

worth noting, that even such a model for the process already exists, the application of

process mining can help to discover the real behaviour that occurs in the practice,

possibly evidencing differences with the prescribed one.

Some recent proposals try to overcome the difficulty of these approaches in

discovering precise models for processes exhibiting complex dynamics. In particular,

the approach proposed in [97] extracts a set of workflows, collectively named

disjunctive workflow schema, which provide a modular and accurate representation of

the process. The approach implements a hierarchical, top-down, clustering procedure,

where traces sharing a similar behaviour are clustered together, and then equipped

with a specialized schema, possibly obtained by using some classical process mining

algorithm. At the end of the procedure, a hierarchy of workflow schema is obtained,

whose leaves constitute a disjunctive schema for the log. In order to efficiently

partition a set of traces by well-known clustering methods, we resort to a “flat”

relational representation of the traces, by projecting them onto suitable features,

expressing behavioural patterns that are not modelled properly by the workflow

schema that is being refined.

The approach sketched above has been recently extended in [96] by combining

the clustering of process executions with ad-hoc abstraction technique, aimed at

obtaining a compact and handy representation for each high-level schema, which

emphasizes the most relevant behavioural features while abstracting from specific

details. The result is a novel process mining approach capable of building a taxonomy

of process models. In a nutshell, the taxonomy is modelled as a tree of workflow

schemas, where the root encodes the most abstract view, which has no pretension of

being an executable workflow, whereas any level of internal nodes encodes a

refinement of this abstract model, in which some specific details are introduced. In

other words, leaf nodes stand for concrete usage scenarios (computed through the

clustering), whereas each non-leaf node (computed through abstraction mechanisms)

is meant to provide a unified, generalized, representation for all the process models

associated with its children.

Both these latter techniques, as well as previous algorithms, have been integrated

in our current implementation of the architecture described in section 0515.2. In fact

we believe that the discovery of hierarchies and taxonomies of process models can

well support the creation of process ontologies, hence enabling for consolidating the

knowledge on the different schemes of collaborative work adopted in the enterprise.

5.5 From LSCP log to process schemas

The application of process mining techniques to the execution logs gathered in a

cooperation environment like the one sketched in section 05.2 is not trivial. Indeed,

59

process mining techniques found on the assumption that each registered event refers

to a well-defined step in the process and to a case (i.e., a process instance).

Conversely, such information might not be available in an unambiguous way in the

case of loosely structured cooperation schemes, where different kinds of processes

can be spontaneously arise without a well-specified model, and are carried out on the

basis of elementary functions provided by the operational systems.

On the other hand, the availability of background knowledge concerning the

organizational structure and the domains involved in the cooperation processes

provides a valuable semantics-enhanced way to restructure such low-level logs into

suitable process logs, where the log events are represented at some proper level of

abstraction suitable for the analysis.

5.5.1 Abstraction-based restructuring of EOp logs

In the following we shortly describe the main kinds of information stored in the

EOp logs collected in the cooperation architecture based on ESB.

A key concept in the collaboration scenario depicted so far is represented by the

Project, intended as a bunch of (possibly not completely specified a-priori) activities,

aimed at achieving specific targets and constraints, and associated with a range of

resources. In a sense, projects are a sort of logical containers for the basic operations,

which can be very useful for monitoring and analysis purposes.

Each atomic event registered in this log regards the execution of some Enterprise

Operation. Different kinds of EOp exist that can be classified according to different

perspectives, pertaining, e.g., their function and context. For instance, possible

categories could be project definition, user management, resource management,

project run, content creation.

EOP instances can be associated as well with information on the actual

parameters of the operation executed. Clearly the class of major parameters strongly

depends on the kinds of operation performed: e.g., Users in the case of user

management operation, Documents for content management operations, Tasks for task

run operations. Each operation instance refers to the Tool it was carried out with, and

the Agent that performed it, and contains a timestamp.

Fig. 25 sketches an EOp log, registering a series operations performed in a toy

example, concerning only two different projects, named KMS-plus and PROMIS.

60

Fig. 25 Simplified representation of an EO log for a test example

Notice that, for the sake of clarity, just one parameter, denoted as subject, is

admitted to be involved in each operation instance. And just two tools, PM (“project

manager”) e UM (“user manager”), are considered able to perform EOp. In a real

execution log, subject is a set of parameters constitutes of EKM entities involved in

the EOp executed by tools. Every instance of EOp is characterized by a process

attribute that constitutes a contextualization of the operation as step of a process. This

is delivered by local tools, that in correspondence to an internal operation export

towards the ESB the involved data and the context to which they are referred. In this

example, process attribute is mapped on project entity, because all the data managed

by the tools integrated in the ESB are framed with respect to a project view. In other

words, if we consider an enterprise domain, workspace entity provided by a content

management tool are correlated to cost-area entity provided by a timesheet

management tool and both entities are connected to the project entity. In this context,

every EOp performed by tools are so connected to data that refers an instance of the

project entity. Mapping the project entity to the process attribute required by logs

structure, we are able to offer a contextualization of the EOp.

Due to the scarce semantic content associated with the basic domain of EOp, this

dimension of the log is not a good candidate for being mapped into the tasks (i.e.,

61

WorkflowModelElement) of the unknown workflow model that a process mining

algorithm should eventually discover.

There can be different ways to restructured such logs into a process logs suitable,

for the application of process mining techniques. The availability of ontologies for the

different domains related with the EOp logs (e.g., users, tools, etc.) provides a means

for deciding log events are represented at some proper level of abstraction suitable for

the analysis.

In particular we focus here on taxonomical information, such as that roughly

sketched in Fig. 26, which provides a (partial) classification scheme for project tasks

(i.e., the subject of log instances related to task run enterprise operations).

Such a hierarchy allow for choosing different abstraction levels for representing

the instances of their associated domain, in a flexible and dynamic fashion.

Project Task

Analisys

Requirement
Analysis

Cost
Analysis

Research RevisionDevelopment

T1 T2 T3 T4T5 T8T7 T6 T10T9 T12T11

Implementation Testing
Research

Investigation
Research
Reporting

Fig. 26 A classification hierarchy over project tasks

The messages passing on ESB and logged on ESB server constitutes the

knowledge base to extract process schema, each of one is constituted by a particular

sequence of events happened in local tool. To obtain an more flexible and application

of the process mining techniques, dynamic mechanisms has been provided to

individuate the process execution instances for which a workflow schema is required.

This way, process mining algorithms can be applied to a generic subset of operations

registered in the knowledge base, so allowing an analysis of the dynamic context in

which operations are executed. This enable to extend process mining to every

procedural aspect of the architecture and not only to the ones that are explicitly

referred to a process attribute of the logs.

The whole approach is detailed as follow:

 A) EOp log restructuring

A.1) selection of a subset of EOp instances contained in the

messages

A.2) mapping EOps on process activities

A.3) grouping of task execution in process instances

A.4) process log producing

 B) Execution of a process mining algorithm on log so obtained

62

Fig. 27 Excerpt of a process log extracted

During the A.1 phase , to obtain a well defined subset of EOp instances, selection

conditions can be specified with reference to different properties associated to the

operations, as illustrated in Fig. 25: kind of operation, tool by which the operation is

performed, user that enact the operation, project in which operation is involved, date

of execution.

The A.2 phase allow to specify what kind of activities constitute the process thati

is going to be examined, with respect to the attributes selected in the previous phase.

This step specifies what level of abstraction will be adopted to represent the process.

In particular, in the more detailed case, an activity of the process is referred to an

operation executed by a certain user, on a certain object, using a certain tool. So every

node in the workflow schema discovered by the process mining will be labelled by a

n-upla:

 <eop, subject, tool, user>

63

that represents one of the process activity.

To obtain a less detailed, and so more concise, representation, during the

definition of the activity required for the process it is possible to abstract from some

aspects related to the operation execution, i.e. if we consider just the tool on which the

operation is performed, so disregarding other properties, it is possible to obtain a

process model describing workflow among different tools.

The goal of the A.3 phase is to restructure events that are obtained by previous

phase. Two different approaches are available:

• Project-oriented: every process instance is referred to the execution of a

project

• User-oriented: every process instance is referred to the set of operations

executed by a user, aggregated respect on a certain temporal period

(daily, weekly...)

In particular, the project-oriented approach requires that all events are grouped in

process instances respect on the project to which they are correlated. In other words,

every process instance is constituted by a sequence of operations that are executing

during a certain project. This kind of approach is most relevant in order to analyze

goal-oriented context as enterprises.

User-oriented approach, instead, is based on a different way to re-organize the

activities traced in process instances: every instance does not relate to a project

execution but assembles the set of operation executed by a user. This approach allows

to discover pattern of behaviour of the user, that are useful to understand the modus

operandi of a user or a class of user. Some examples of analysis that should be

supported are: how programmer users work, on a weekly period, on project classified

as “research project”; how analyst users interact with tools on a daily period (the

result of this analysis can be useful to elaborate a personalization of user interface).

During the A.4 phase, the process instances are transcribed in a process log

consistent with respect to MXML format. Finally, during the B phase, process mining

techniques extract a process model that express knowledge on worjflow

characterizing the process analyzed.

5.5.2 Applying process mining to restructured logs

Fig. 28 illustrates the process log obtained applying the proposed approach to the

EOp log showed in Fig. 25. In this example, only task run operations are considered

and activities are mapped on subject of these operations (in the case of the task run

operations, the subject is the task itself). They adopt a level of abstraction higher than

the concrete task names that appear in the log, in particular, has been sorted out the

second level in the hierarchy shown in Fig. 26 (containing, e.g., categories

RequirementAnalysis, and Revision). The projects, instead, are considered as process

instances, i.e., each process instance corresponds to the sequence of EOp instances

that have been executed for a given project.

The application of process mining techniques on this log allows to extract

knowledge about workflow characterizing the execution of different projects. Fig. 28

is a screenshot of the process mining tool integrated in our architecture, which

illustrates the results obtained by using the algorithm in [97]. On the left side is

reported a taxonomy of schemas and the root is shown on right side. In real and

64

complex scenario this kind of hierarchies allow the analysis of collaborative context

and are adopted to build process ontologies.

Fig. 28 Process model discovered for the log

6

6
 Ontology for modelling business process knowledge

Summary: A novel approach to model processes and workflows is presented. It is based on the

OntoDLP language, an extension of Disjunctive Logic Programming with object-oriented

features. Compared to traditional models, the approach enables knowledge inference on

dynamic structures of the process, thanks to the reasoning capabilities of OntoDLP. Moreover,

the approach can be also used to redefine and classify existing workflow schemes. Indeed, their

execution traces, produced by workflow engines, can be easily imported through the mapping

facilities of the underlying metamodel, and eventually organized into taxonomic structures for

modeling different execution-patterns.

6.1 A metamodel for process logic representation

Fig. 29 A portion of process metamodel

The approach proposed in this chapter is based on a metamodel allowing for an

intuitive graph-oriented representation of processes, based on the explicit definition of

node and transition [102]. The metamodel includes a set of constructs allowing to

abstract workflow solutions adopted by a large number of tools in the open source

66

community. We implement this metamodel by using the OntoDLP language, an

extension of Disjunctive Logic Programming (DLP) with object-oriented features. We

are able to define classes of processes and activities that can be both composed, to

make process schemas, and classified to obtain hierarchical structures. Importantly,

thanks to the reasoning capabilities provided by the DLP, we can define logic rules to

analyze and automatically classify the traces of processes execution and to infer new

knowledge about process-schema structures.

While the metamodel adopted in our approach is graph-oriented, it provides

explicit constructs to express node and transition elements. It is derived from JPDL

modeling approach just to allow an easy mapping to process traces generated by

jBPM workflow engine.

As shown in Fig. 29, we consider a process as a composition of nodes, events,

actions and task. A task should be associated both to a process or to specific portion

of it. As in JPDL, we adopt a “swimlane” item to express a group of tasks that refer

an unique assignment. Assignment shall be then associated to many kind of actors,

based on particular workflow execution context. We connect “event” and “action”

items to “node” and “transition” respectively, just to express that a transaction

executed anywhere should be acknowledged in our context and associated to a

specific state of our process schema. About nodes, we distinguish the initial and the

ending point of the process, by using “start state” and “end state” respectively.

Fig. 30 A focus on node constructs

All other nodes are classified as “common nodes”. As shown in Fig. 30, we

assume many kind of common nodes. For example, “fork”, “join” and “wait node”

are flow control nodes. A “decision node” is a particular node which is associated to a

“condition” and to an “handler” that is an entity able to resolve the issue. A task node,

should instead be associated to one or more task assigned to an actor. Every common

67

node has also one or more variables that can be used to map input and output

elements of the activity.

A particular kind of node is a “subprocess node” that is an activity that refers an

external process to the current one. Significantly different is a “group node” that

contains a set of activities without any constraint about their composition. By defining

specific relations among a “group node” and many common nodes, we are able to

express that a particular node is a collection of nodes. We can also use these

collections to facilitate the categorization of processes. A group node, in fact, should

express a common semantics that results an abstraction of the semantics connected to

the single activities. So, for example, a “development” activity should be composed

by an “implementation” and a “test” step.

6.2 Process representation and reasoning

Our approach is based on the formal representation of processes, according with

the metamodel illustrated in the previous section, in the logic-based language

OntoDLP introduced before: all constructs used for this process representation are

defined in as previous chapter. On top of such a representation, we can then specify a

number of (OntoDLP) inference rules, which allow us to discover new process

properties and capture also dynamic knowledge which is hidden in process schemas.

Fig. 31 An example of process schema

A process schema is a definition of a path of execution of activities that can be

enacted many times. Every execution of a schema is a process instance in which

variables have their value assignment. Before the instances generation, in the process

schema are so defined only classes of activities that can admit different enactments in

relation to different values assigned to their variables. We represent these classes of

activities as specializations of the nodes introduced in the metamodel.

68

This way, a particular activity belonging to a specific process, is modeled as a

specialization of one of the classes specifying an “activity node” element of the

metamodel. So, for example, “requirement analisys”, “research”, “implementation”

and “test” activities are subclasses of “task node” and may be involved in a “project”

element, modeled as a “process” subclass:

class project isa {process}.

class research isa {task_node}.

class requirement_analisys isa {task_node}.

class implementation isa {task_node}.

class test isa {task_node}.

relation has_research_task(proj:project, res:research).

relation has_requirement_analysis_task(proj:project,

req_anal:requirement_analysis).

relation has_implementation_task(proj:project, impl:implementation).

relation has_test_task(proj:project, test:test).

We can then define a pattern of execution for a “project” type process, by

declaring a set of subclasses of the “transition” element associating pairs of activities:

class start_fork_transition isa {transition} (from:start_state,

to:fork).

class research_join_transition isa {transition} (from:research,

to:join).

class requirement_analisys_join_transition isa {transition}

(from:requirement_analisys, to:join).

class decision_test_transition isa {transition} (from:decision_node,

to:test).

class test_end_state_transition isa {transition} (from:test,

to:end_state).

Moreover, similarly to the nodes, also these specific transitions must be

associated to the specific ``project" element.

In our approach, every instance of a process will generate several logical facts.

So, for example, an instance of the above schema for a KMS process is here

formalized as follows:

#7:process(name:"KMS").

#8:research(name:"KMS research", asynchronous:"true").

#9:requirement_analisys(name:"KMS requirement analisys",

asynchronous:"true").

#10:test(name:"KMS test", asynchronous:"true").

#11:join(name:"join node", asynchronous:"true").

#12:research_join_transition (name:"KMS research-join

transition",from:#8, to:#11)

#13:requirement_analisys_join_transition (name:"KMS requirement

analisys-join transition",from:#9, to:#11)

69

By performing reasoning on these facts we are able to infer new knowledge on

static and dynamic aspect of processes. For example, we can define a rule expressing

that every process that involves a “requirement analysis” and an “implementation”

activity is “project” type process.

P:project(N):- contains(process:P, node:N1),

contains(process:P,node:N2), N1:requirement_analisys(),

N2:implementation(), P:process(name:N).

This way, the KMS process above defined, will be classified also as instance of

“project” class. Adopting recursively this approach, we are able to recognize a

“research and development project” as a project that involves also a “research”

activity.

P:research_development_project(N):- contains(project:P, node:N1),

N1:research(),P:project(name:N).

where class research_development_project is defined as

class research_development_project isa {project}.

This way we are able to define a hierarchical structure of process schemas. When

we start to design a process, we can use this hierarchical structure to find an

appropriate schema for modeling a specific context. If we modify this schema, by

adding or removing activities, we will be always able to automatically classify new

instances, by using specific reasoning rules.

By example, if an ontology or a quality certification system provides a document

classification we are able to classify a generic activity that receives as input a

“notification” and produces as output a “research deliverable” as a research activity,

using the following rule:

C:research(name:N, asynchronous:"true"):- C:node(name:N).

has_input(c_node:C, v:variable(name:"notification")),

has_output(c_node:C, v:variable(name:"research deliverable")).

where relations has_input and has_output are defined as follows:

relation has_input(c_node:common_node, v:variable).

relation has_output(c_node:common_node, v:variable).

Moreover, also if an activity is not modeled as atomic node, we can discover it in

a path of activities that receives a specified input and produces a specified output. For

example, we can define a project as a “research and development project” if it

contains a research activity and a “development”, i.e. a path from a node that receives

a “requirement analysis document” to a node that produces a “test report”

P:research_development_project(N):- P:process(name:N),

contains(process:P, node:N1),

contains(process:P, node:N2),

contains(process:P, node:N3),

N1:research(),

has_input(c_node:N2, v:variable(name:"requirement analysis

document")),

has_output(c_node:N3, v:variable(name:"test report")), path(from:N2,

to:N3).

70

This way, we are able to capture also dynamic knowledge that is hidden in

process schemas.

6.3 Implementation and future works

The approach introduced in this paper has been implemented in OntoDLV system

[7], that is an ontology management platform based on OntoDLP language and

allowing to create, modify, navigate and query ontologies using a user-friendly visual

environment. The metamodel adopted and presented in this work has been defined

using the graphical interface and validated by the consistency check offered by the

system. The addition of reasoning modules in OntoDLV allows the extraction of new

knowledge about process schemas. In fact OntoDLV guarantees inference capabilities

thanks to the integration of DLV system, widely recognised as the state of the art in

the field of non monotonic reasoning (and disjunctive logic programming). For

complexity analysis issues in OntoDLV refer to DLV results, shown in [8].

The long-term goal of this approach is to provide a support in the whole process

management life-cycle. Actually, the metamodel has to be integrated in a framework

for specifying enterprise models [6]. This way, it is possible to obtain an ontology of

organizational processes that should support an architecture of heterogeneous open

source tools for enterprise activities, like project planning and monitoring, timesheet

compiling and analyzing, document management. Just to be easily mapped on JBoss

process framework, widely adopted in open source community, the metamodel is

inspired to JPDL formalism. With respect to JPDL and other xml-based languages,

the proposed approach is able to use inference rules of DLP. This is particularly

useful to link the triggers generated by generic JBoss-based tools to particular process

events. Moreover, logic rules make possible to discover semantic dependencies inside

process elements: actually, as it is illustrated in this paper, hierarchical structures are

set just on the belonging of activities to process schemas; our purpose is to reason and

to extract hierarchies also on the behaviour of processes.

The inference rules should be semi-automatically suggested by integrating

process mining techniques that examine process instances. Process structures obtained

should be useful in the process design phase: using OntoDLV querying we are able to

find classes of process either composed by particular activities or associated to

specific parameters or actors. A correlated future work regards the definition of

techniques to semi-automatically compose a particular process schema as a function

of the provided input, the required output and the existing classes of activities.

Conclusions

A core challenge in Business Process Management is the continuous, bi-

directional translation between a business requirements view on the process space of

an enterprise and the actual process space of this enterprise, constituted by the

multiplicity of IT systems, resources, and human labour. However BPM does not

provide a uniform representation of an organization’s process space at a semantic

level, which would be accessible to intelligent queries or for compliance checks. The

advent of Semantic Business Process Management increased the level of automation

of BPM by representing the various spheres of an enterprise using ontology languages

and Semantic Web Services frameworks. Nevertheless no one complete methodology

or framework have imposed as a standard in the SBPM that actually constitutes a

universe of local solution and approaches. Moreover, existing Information Systems

constitutes an heterogeneous scenario of solutions and a standardization is not a

reasonable perspective, also because enterprise processes involved heterogeneous

functional areas.

Therefore, the evolution towards SBPM have to be progressive and modular. This

thesis propose a methodology for a continuous planning, analysis and enhancement of

process-oriented IS oriented to capture and support an update of the system based on

the observation of the users’ behaviour. On another side, a set of semantic solution to

support the whole lifecycle of the BPM are introduced. Process mining algorithms

seem actually to be the most concrete basis to provide machine-accessible

representations of the BPM scenario. However, until now, Process mining has been

focused only on control flow and workflow. A few attention has been reserved to the

data and organization domains connected to the process. In other words, raditional

process mining techniques addressed the discovery of workflow models (the so called

process-mining control-flow perspective) by focusing on the occurrences of process

tasks in the registered logs, thereby completely disregarding any other kind of

information usually kept by real systems, such as activity executors, time-stamps,

parameter values, and various performance data. In actual fact, recently, some efforts

have been spent in the problem of extracting knowledge on social collaborations from

process logs (the so-called organizational process-mining perspective). In [107] an

approach to obtain a structural network based on users interactions is obtained from

process analysis. In [13], instead, recent innovations consider an ontology to represent

the domain connected to the process execution, but this ontology is cabled inside the

72

process definition code. The solutions that have been introduced in our thesis are

instead based on a close relationship between the description of process and its

domain, in which ontologies support process analysis and process analysis enables the

ontology evolution and the domain knowledge discovering.

This relationship is one of the most relevant enhancement introduced by the

solution introduced in chapter 5 to support loosely-structured collaborative process. In

fact it enables the discovering of new process schema with respect to task that are

obtained by an ontology-based restructuring of operations log. In this approach, the

tasks that are related to process steps can be a conceptualization of project unit as well

as document or user. This way, after the process mining analysis, we obtain

taxonomic structures in which every level represents a description of classes of task

with a different level of abstraction on attributes and so we are able to offer a

classification of project unit as well as other domain elements. This approach has

actually ultimate a first experimentation and requires now more detailed

enhancements on different aspects:

• the enterprise model has to be extended to offer a logic-oriented

representation of dynamic aspect of the behaviour

• the ontology-based knowledge extraction in the operation logs has to

consider a portion of operation domain wider than the subject

description provided in this phase: by this point of view a semantic

enrichment of the operation description will be useful

• the output schemas have to be automatically mapped in the logic

formalism adopted for the reasoning on the knowledge, to obtain an

integrated discovery process

In particular, the framework that we adopt for enterprise knowledge

representation is actually under development [105, 106] to implement a (semi)

automatic mechanism for enterprise entity annotation respect on an ontological topic.

Actually this aspect is focused especially on a semantic approach for knowledge

extraction in structured and unstructured document. In a following phase, the power

of the Disjunctive Logic Programming used to implement the approach will be able to

allow to throw new knowledge about domain knowledge also on the process

knowledge base.

References

[1] S. Staab, D. O'Leary (eds.) (2000) Bringing Knowledge to Business Processes,

Proceedings of 2000 AAAI Spring Symposium, AAAI Press, 2000

[2] E. Fillion; C. Menzel, T. Blinn, R. Mayer (1995), An Ontology-Based Environment for

Enterprise Model Integration. Paper presented at the IJCAI Workshop on Basic

Ontological Issues in Knowledge Sharing, 19-20 August1995, Montreal, Quebec,

Canada.

[3] M.S. Fox (1992), "The TOVE Project: Towards A Common-sense Model of the

Enterprise", Enterprise Integration Laboratory Technical Report

[4] M.S. Fox, M. Gruninger (1998), "Enterprise Modelling", AI Magazine, AAAI Press, Fall,

pp. 109-121.

[5] B. Heuluy, F.B. Vernadat (1997), The CIMOSA Enterprise Ontology, Proceedings of the

IFAC Workshop-MIM'97, Vienna, February 3-5,1997.

[6] Gualtieri A., Ruffolo M. (2005): An Ontology-Based Framework for Representing

Organizational Knowledge, Proceeding of I-Know '05 - 5
th

 International Conference on

Knowledge Management, Graz Austria

[7] OntoDLV system, http://www.exeura.it/ontodlv

[8] Ricca F., Leone N. (2006): Disjunctive Logic Programming with Types and Objects: The

DLV+ System. Journal of Applied Logics Elsevier ISSN: 1570-8683 (to appear); KBS

Research Reports INFSYS RR-1843-05-10 Institut für Informationssysteme Technische

Universität Wien Favoritenstrasse 11 A-1040 Vienna Austria

[9] Booch G., Rumbaugh J., and Jacobson I. (1998), The Unified Modeling Language User

Guide, Addison-Wesley.

[10] Center for Technology in Government, University at Albany, A Survey of System

Development Process Models CTG.MFA – 003, Technical Report, available at
http://demo.ctg.albany.edu/publications/reports/survey_of_sysdev/survey_of_sysdev.pdf

74

[11] Coad, P., De Luca, J., and Lefebre, E. (1999), Java Modeling in Color with UML:

Enterprise Components and Process, Prentice Hall.

[12] Cockburn, A. (2002), Agile Software Development, Addison-Wesley.

[13] Department of Technology Management, Eindhoven Technical University, The ProM

Framework, available at http://is.tm.tue.nl/~cgunther/dev/prom/

[14] Eilam, E., Reversing (2005): Secrets of Reverse Engineering, Wiley.

[15] Exeura - Knowledge Management Solutions, http://www.exeura.it

[16] Fensel, D., Ontologies (2001): A Silver Bullet for Knowledge Management and

Electronic Commerce, Springer Verlag.

[17] Greco G., Guzzo A., Manco G., and Saccà D. (2005), “Mining and Reasoning on

Workflows”, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 4,

2005, pp. 519-534.

[18] Royce, W.W. (1970), “Managing the Development of Large Software Systems”, Proc. of

IEEE WESCON, pp. 1-9.

[19] Wetzstein B.; Ma Z.; Filipowska A.; Kaczmarek M.; Bhiri S.; Losada S.; Lopez-Cobo,

J.M.; Cicurel L. (2007): Semantic Business Process Management: A Lifecycle Based

Requirements Analysis. Proceedings INPROC-2007

[20] Leymann, Frank; Roller, Dieter (2000): Production Workflow - Concepts and

Techniques. PTR Prentice Hall, 2000.

[21] van der Aalst, W.M.P; van Dongen, B.F.; Herbst, J.; Maruster, L.; Schimm, G.; Weijters,

A.J.M.M (2003): Workflow mining: A survey of issues and approaches. Data &

Knowledge Engineering 47 (2003) 237–267.

[22] Smith, Howard; Fingar, Peter: Business Process Management. The Third Wave. Meghan-

Kiffer,US 2003.

[23] Hepp M.; Leymann F.; Domingue J.; Wahler A.; Fensel D. (2005): Semantic Business

Process Management: A Vision Towards Using Semantic Web Services for Business

Process Management. Proceedings of the IEEE ICEBE 2005, October 18-20, Beijing,

China, pp. 535-540

[24] Hepp M; Roman D (2007): An Ontology Framework for Semantic Business Process

Management, Proceedings of Wirtschaftsinformatik 2007, February 28 - March 2, 2007,

Karlsruhe.

[25] Irene Celino, Ana Karla Alves de Medeiros, Gernot Zeissler, Michael Oppitz, Federico

Facca, Stefan Zoeller: Semantic Business Process Analysis (2007), Proceedings of the

Workshop on Semantic Business Process and Product Lifecycle Management (SBPM-

2007), Vol-251, CEUR-WS, June 2007, ISSN 1613-0073

75

[26] van der Aalst, W.M.P.; Pesic, M. (2006): Specifying, Discovering, and Monitoring

Service Flows: Making Web Services Process-Aware. BPM Center Technical Report,

No. BPM-06-09, 2006.

[27] Fox, Marc S. et al. (1998): An Organisation Ontology for Enterprise Modeling. In: M.

Prietula; K. Carley; L. Gasser (Hrsg.): Simulating Organizations: Computational Models

of Institutions and Groups. AAAI/MIT Press, Menlo Park CA 1998, pp. 131-152.

[28] Gruninger, Michael et al. (2000): Ontologies to Support Process Integration in Enterprise

Engineering. In: Computational & Mathematical Organization Theory 6 (2000) 4, pp.

381-394.

[29] Dietz, Jan L. G. (2006): Enterprise Ontology. Springer, Berlin / Heidelberg

[30] I. Weber, J. Hoffmann, J. Mendling, J. Nitzsche (2007), Towards a Methodology for

Semantic Business Process Modeling and Configuration, Proceedings of the 2nd

International SeMSoC Workshop ``Business Oriented Aspects concerning Semantics and

Methodologies in Service-oriented Computing'' (SemSoc'07), at ICSOC'07, Vienna,

Austria

[31] Davenport, T.H., and Short, J.E. (1990): The New Industrial Engineering: Information

Technology and Business Process Redesign. In Sloan Management Review, Vol. 31, No.

4, pp. 11-27.

[32] zur Muehlen, M., 2001. Process-Driven Management Information Systems - Combining

Data Warehouses and Workflow Technology. In Proc. of the 4th ICECR-4 Int. Conf., pp.

550-566.

[33] Serrano, A. 2003. Capturing Information System’s Requirement Using Business Process

Simulation. In Proc. of the 15th ESS Int. Conf.

[34] Kim, K-H, Yoo, H.-J., and Kim, H.-S., 2005. A Process-Driven E-Learning Content

Organization Model. In Proc. of 4th IEEE ACIS Int. Conf., pp. 328-333.

[35] Grover, V., Fielder, K.D., and Teng, J.T.C., 1994. Exploring the Success of Information

Technology Enabled Business Process Reengineering. In IEEE Transactions on

Engineering Management, Vol. 41, No. 3, pp. 276-284.

[36] van Meel, J.W., Bots, P.W.G., and Sol, H.G., 1994. Towards a Research Framework for

Business Engineering. In IFIP Transactions A: Computer Science and Technology, Vol.

54, pp. 581-592.

[37] Teufel, S., and Teufel, B., 1995. Bridging Information Technology and Business: Some

Modeling Aspects. In SIGOIS Bulletin, Vol. 16, No. 1, pp. 13-17.

[38] Earl, M.J., 1994. The New and the Old of Business Process Redesign. In Journal of

Strategic Information Systems, Vol. 3, No. 1, pp. 5-22.

[39] MacArthur, P.J., Crosslin, R.L, and Warren, J.R., 1994. A Strategy for Evaluating

Alternative Information System Designs for Business Process Reengineering. In

International Journal of Information Management, Vol. 14, No. 4, pp. 237-251.

76

[40] Giaglis, G.M., 2001. A Taxonomy of Business Process Modeling and Information

Systems Modeling Techniques. In International Journal of Flexible Manufacturing

Systems, Vol. 13, No. 2, pp. 209-228.

[41] Curtis, W., Kellner, M.I., and Over, J., 1992. Process Modeling. In Communications of

the ACM, Vol. 35, No. 9, pp. 75-90.

[42] Vasconcelos, A., Caetano, A., Neves, J., Sinogas, P., Mendes, R., and Tribolet, J.M.,

2001. A Framework for Modeling Strategy, Business Processes and Information Systems.

In Proc. of the 5th IEEE EDOC Int. Conf., pp. 69-80.

[43] Castela, N., Tribolet, J.M., Silva, A., and Guerra, A., 2001. Business Process Modeling

with UML. In Proc. of the 3rd ICEIS Int. Conf., Vol. 2, pp. 679-685.

[44] Sinogas, P., Vasconcelos, A., Caetano, A., Neves, J., Mendes, R., and Tribolet, J.M.,

2001. Business Processes Extensions to UML Profile for Business Modeling. In Proc. of

the 3rd ICEIS Int. Conf., Vol. 2, pp. 673-678.

[45] Neves, J., Vasconcelos, A., Caetano, A., Sinogas, P., Mendes, R., and Tribolet, J.M..

Unified Resource Modelling: Integrating Knowledge into Business Processes. In Proc. of

the 3rd ICEIS Int. Conf., Vol. 2, pp. 898-904.

[46] Mendes, R., Mateus, J., Silva, E., and Tribolet, J.M., 2003. Applying Business Process

Modeling to Organizational Change. In Proc. of the 2003 AMCIS Int. Conf.

[47] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana (2001) "Web Services

description Language (WSDL) 1.1.," W3C, Note 2001.

[48] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson (2005): Web

Services Platform Architecture: Prentice Hall.

[49] Shapiro, R.(2002): A Comparison of XPDL, BPML and BPEL4WS. Cape Visions,

http://xml.coverpages.org/Shapiro-XPDL.pdf

[50] Workflow Management Coalition (1999): Terminology and Glossary, Issue 3.0.

Document Number WfMC TC-1011.

[51] Arkin A. (2002): Business Process Modeling Language, BPMI.org

[52] IBM (2002): Business process execution language web services, version 1.0

[53] van der Aalst W.M.P. (1998): The Application of Petri Nets to Workflow Management.

The Journal of Circuits, Systems and Computers, 8(1):21-66.

[54] Jboss (2005): jBPM Process De¯ nition Language, version 3.0

[55] Fensel, D., Bussler, C. (2002): The Web Service Modeling Framework WSMF. Eletronic

Commerce: Research and Applications. Vol. 1-2002. 113-137

77

[56] Fensel, D. and Motta, E. (2001): Structured Development of Problem Solving Methods.

IEEE Transactions on Knowledge and Data Engineering, Vol. 13(6)-2001. 913-932.

[57] Casati F., Ceri S., Pernici B., and Pozzi G. (1995): Conceptual Modeling of Workows. In

Proc. 14th Object-Oriented and Entity-Relationship Modelling , Gold Coast, Australia,

December.

[58] Kappel G., Lang P., Rausch-Schott S., and Retschitzegger W. (1995): Workflow

Management Based on Objects, Rules, and Roles. Bulletin of the Technical Committee

on Data Engineering, IEEE Computer Society, 18(1), pages 11{18.

[59] Kradolfer M.: A Workflow Metamodel Supporting Dynamic, Reuse-Based Model

Evolution, University of Zrich, Ph. D. Thesis

[60] SWWS Consortium (2003). Report on Development of Web Service Discovery

Framework. October 2003. http://swws.semanticweb.org/public_doc/D3.1.pdf

[61] Cabral, L. and Domingue, J. and Motta, E. and Payne, T. and Hakimpour, F. (2004)

Approaches to Semantic Web Services: An Overview and Comparisons. In Bussler, C.

and Davies, J. and Fensel, D. and Studer, R., Eds. Proceedings First European Semantic

Web Symposium (ESWS2004)

[62] Kilov, Haim (1999), Business Specifications, Prentice Hall.

[63] Greco S., Leone N. and Rullo P. (1992): COMPLEX: An Object-Oriented Logic

Programming System, IEEETKDE vol 4-1992.

[64] Baral C. and Gelfond M. (1994): Logic Programming and Knowledge Representation,

JLP vol 19/20, 73/148-1994.

[65] Lobo J., Minker J. and Rajasekar A. (1992): Foundations of Disjunctive Logic

Programming, The MIT Press, Cambridge, Massachusetts.

[66] Disjunctive Logic Programming and Disjunctive Databases, 13th IFIP World Computer

Congress, Hamburg, Germany (1994).

[67] Eiter T., Faber W., Gottlob G., Koch C., Leone N., Mateis C., Pfeifer G. and Scarcello F.

(1999): The DLV System, Workshop on Logic-Based Arti¯ cial Intelligence, Washington,

DC.

[68] Gelfond M. and Lifschitz V. (1991): Classical Negation in Logic Programs and

Disjunctive Databases, NGC vol 9, 365{385.

[69] Lifschitz V. (1996): Foundations of Logic Programming, Principles of Knowledge

Representation, 69{127.

[70] Minker J. (1994):Overview of Disjunctive Logic Programming, AMAI vol 12 1{24.

[71] Baral C. (2002): Knowledge Representation, Reasoning and Declarative Problem

Solving, Cambridge University Press.

78

[72] M. Polanyi (1996): The Tacit Dimension, Routledge and Kegan Paul.

[73] M. Polanyi (1997): Tacit Knowledge. Chapter 7 in Knowledge in Organizations,

Laurence Prusak, Editor. Butterworth-Heinemann, Boston.

[74] I. Nonaka (1994): A Dynamic Theory of Organizational Knowledge Creation. In

Organization Science, 5-1994

[75] I. Nonaka, H. Takeuchi (1995): The Knowledge-Creating Company. Oxford University

Press

[76] Hayes, P. J.(1985): The Second Naive Physics Manifesto, in Hobbs and Moore (eds.),

Formal Theories of the Common-Sense World, Norwood: Ablex.

[77] McCarthy, J. (1980): Circumscription -- A Form of Non-Monotonic Reasoning, Artificial

Intelligence, 5(13): 27-39, 1980.

[78] Fabien Gandon (2002) Ontology engineering: a survey and a return on experience.

Technical report.

[79] N. Guarino and P. Giaretta (1995):. Ontologies and knowledge bases: Towards a

terminological clarification. In N.J. Mars, editor, Towards Very Large Knowledge Bases

–Knowledge Building and Knowledge Sharing, pages 25–32, Amsterdam, 1995. IOS

Press.

[80] T. R. Gruber (1993): A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, 1993.

[81] Pim Borst. Construction of Engineering Ontologies for Knowledge Sharing and Reuse.

PhD thesis, Tweente University, 1997.

[82] N. Guarino (1998): Formal Ontology and Information Systems, "Formal Ontology in

Information Systems: proceedings of FOIS'98", N. Guarino (ed), IOS Press, p 3-15.

[83] O. Corcho and A. Gomez-Perez (2000). A Roadmap to Ontology Specification

Languages. In R. Dieng and O. Corby, editors, 12th International Conference on

Knowledge Acquisition, Modeling and Management (EKAW), pages 80--96, Juan-les-

Pins, France, October 2-6, 2000. Springer.

[84] Farquhar, A., Fikes, R., Rice, J. (1996) The Ontolingua Server: A Tool for Collaborative

Ontology Construction. Proceedings of KAW96. Banff, Canada.

[85] Genesereth, M., Fikes, R. (1992) Knowledge Interchange Format. Technical Report.

Computer Science Department. Stanford University. Logic-92-1.1992.

[86] Kifer, M., Lausen, G., Wu, J. (1995) Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of the ACM.

[87] MacGregor, R. (1991) Inside the LOOM clasifier. SIGART bulletin. #2(3):70-76. June,

1991.

79

[88] Finin, T., et al. (2003) Automatically generated DAML markup for semistructured

documents'. Proceedings of the 2003 AAAI Spring Symposium on Agent-Mediated

Knowledge Management (AMKM).

[89] Fensel, D., et al (2001) OIL: An ontology infrastructure for the semantic web',. IEEE

Intelligent Systems, March/April 2001.

[90] Horrocks, I. & Harmelen, F.V. (2001) Reference Description of the DAML+OIL

Ontology Markup Language.

[91] Luke, S. & Heflin, J. (2000) SHOE 1.01 Proposed specification. SHOE Project.

[92] Karp, R., Chaudhri, V., Thomere, J. (1999) XOL: An XML-Based Ontology Exchange

Language.

[93] Bray, T., Paoli, J., Sperberg, C. (1998) Extensible Markup Language (XML) 1.0. W3C

Recommendation. http://www.w3.org/TR/REC-xml.

[94] Lassila, O., Swick, R. (1999) Resource Description Framework (RDF) Model and Syntax

Specification. W3C Recommendation. http://www.w3.org/TR/PR-rdf-syntax.

[95] Brickley, D., Guha, R.V. (1999) Resource Description Framework (RDF) Schema

Specification. W3C Proposed Recommendation. http://www.w3.org/TR/PR-rdf-schema.

[96] Greco G, Guzzo A, Pontieri L. (2005) Mining hierarchies of models: from abstract views

to concrete specifications. In Proc of the 3rd International Conference on Business

Process Management (BPM'05), pages 32--47.

[97] Greco G, Guzzo A, Pontieri L, Saccà D (2006) Discovering expressive process models by

clustering log traces. IEEE Trans. on Knowledge and Data Engineering, 18(8): 1010--

1027.

[98] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and

W. M. P. van der Aalst (2005). The ProM framework: A new era in process mining tool

support. In Proc. of 26th Intl. Conf. on Applications and Theory of Petri Nets

(ICATPN'05), pages 444-454, 2005.

[99] Dean M., Connolly D., van Harmelen F., Hendler J., Horrocks I., McGuinness D. L.,

Patel-Schneider P.F., and Stein L.A. (2003). OWL web ontology language reference.

W3C Working Draft, 31 March 2003. Available at http://www.w3.org/TR/2003/WD-owl-

ref-20030331.

[100] Dell'Armi T., Gallucci L., Leone N., Ricca F., and Schindlauer R.. ONTODLV: an ASP-

based System for Enterprise Ontologies. In Proceedings ASP 2007: Answer Set

Programming: Advances in Theory and Implementation, Porto, Portugal, pages 99-113,

September 2007.

[101] A. Cuzzocrea, A. D’Atri, A. Gualtieri, A. Motro, D. Saccà (2007): Grid-VirtuE: A

Layered Architecture for Grid Virtual Enterprises. Proceedings of Confenis07, IFIP

International Conference on Research and Practical Issues of Enterprise Information

Systems, Beijing, China

80

[102] A. Gualtieri, T. Dell’Armi, N. Leone (2006): Process representation and reasoning using

a logic formalism with object-oriented features. Proceeding of BPI - Workshop on

Business Process Intelligence (BPI) in conjunction with BPM 2006 Vienna, Austria

[103] A. Gualtieri, D. Saccà (2006): A process-driven modelling of information systems.

Proceeding of Itais ’06 – 3rd Italian Conference of Information Systems, Milano, Italy

[104] F. Folino, G.Greco, A.Gualtieri, A.Guzzo, L.Pontieri (2007): knowledge discovery and

classification of cooperation processes for internetworked enterprises. Proceeding of Itais

’07 – 4th Italian Conference of Information Systems, Milano, Italy

[105] M. Ruffolo, M. Manna (2006). “A Logic-Based Approach to Semantic Information

Extraction”. Proceedings of the 8th International Conference on Enterprise Information

Systems (ICEIS’06), Paphos, Cyprus, May 23-27, 2006

[106] M. Ruffolo, N. Leone, M. Manna, D. Saccà (2006). “Towards a Semantic Information

Extraction Approach from Unstructured Documents”. Proceedings of the fourteenth

Italian Symposium on advanced Database System (SEBD’06), Ancona, Italy, June 18-21

2006

[107] J. Scott. Social Network Analysis. Sage, Newbury Park CA.

