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1

Introduction and Motivation

“Stay hungry, stay foolish.”

Steve Jobs, 5th June 2005

1.1 The Semantic Web

During the years, the World Wide Web has grown exponentially. The growing
number of computers, their affordability, the invention of new tools made the
Web one of the most successful inventions of human history.

People now spend hours on the Web every day, accessing knowledge and creat-
ing new knowledge: they write blogs, publish news and personal experiences on
social networks, and most of all they look for information they are interested
in.

For this purpose, search engines like Google or Yahoo perform “the dirty work”,
which makes life easier for those who search.

Nevertheless, here the problems arise. Often, in fact, information retrieved by
such engines are too general, off topic, or incomplete. It is easy to have the
feeling that the search engine did not “get” what the purpose of the search was
about.

This is due to the fact that the original Web was designed around users: a
collection of documents, linked in a merely syntactic way by anchors; which
permit a hypertextual navigation between topics related to each other. Since
those days, though, the Web has changed, and nowadays a huge quantity of
information is available, often hidden, sometimes difficult to be found. The new

Web, called Semantic Web [8] has been designed around machines, and it is an
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Fig. 1.1: The Semantic Web architecture

extension of the current Web through standards and technologies that enable
machines to understand the information on the Web so that they can support
richer discovery, data integration, navigation, and automation of tasks.

The Semantic Web will enhance the power of searches, making it possible to
provide better answers, and it will also provide tools for integrating different
sources, and useful automated services.

Roughly, the main idea behind the Semantic Web is to add a machine-readable
meaning to Web pages, to use ontologies for a precise definition of shared terms
in Web resources, to make use of knowledge representation technology for au-
tomated reasoning from Web resources, and to apply cooperative agent tech-
nology for processing the information of the Web.

According to the original design the Semantic Web is divided into layers

At the bottom layer, standards to identify resources have been placed: URI
and Unicode. The first one is used to identify resources, the latter to represent
typed text.

The above layer hosts languages used to represent data in a semi-structured
way, and to provide annotations for them. We are talking, as it should be ob-
vious to the most, of the XML family (XML, namespaces and XML schema).

the third layer provides formalisms to express meta-data expressions using RDF
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and its extension RDF Schema.

the fourth layer is based on ontologies. It permits the expression of semantics
related to concepts, as we will deal with thoroughly in the following of this
thesis.

The final layers deal with logic, proof, and trust issues.

The Digital Signature layer is supposed to provide means to identify the proper
origin of a specific resource. We are interested especially in the Ontology Layer
and the Logic Level. The Ontology level has reached a good maturity, since
the Web Ontology Language (OWL) is now a standard by the w3c. The Logic
Level and the Rule Level are being developed actively. Several attempts have
been done in order to integrate the World of Rules Languages with the world
of Logics. We will deal with some of these ways in this document.

The question is due at this point: Is the Semantic Web the answer to user needs?
Will it be successful? We don’t know that, but we believe the technologies be-
hind it will be exploited for sure, and it is likely that they are going to change

the web as we mean it nowadays, even if the complete vision will not take place.

1.2 Knowledge Representation

Knowledge representation (KR) is a branch of artificial intelligence. It is mainly
focused on represent information, or knowledge, in a way that is suitable to
support inference. In fact, it goes together with reasoning, which is a service
offered by “intelligent” systems in order to derive new knowledge from the al-
ready present one.

Knowledge representation tools are specified in a formal way: one must define
the reality of interest (by means of a vocabulary or ontology as we will see later
on), and the formal logics behind, which will then permit the user to derive the
new information. Usually the logics are defined by means of symbols, operators
and semantics, which in turn gives meaning to the sentences expressed in that
logics.

When one specifies a logics, the compromise between expressivity and com-
plexity is raised. The more expressive logic is, the more complex is to actually
reason about it. You can represent more, but new information is harder to de-

rive, or not feasible at all.
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KR has been pushed, lately, by the Semantic Web, so it has been developed
actively, especially in the field of Ontologies (OWL language and related for-

malisms).

1.3 Integrating Different Formalisms: Problems and Solutions

In the fast-changing world of Semantic Web, different Knowledge Representa-
tion Formalisms have been proposed, and new ones are proposed very often.
This will be likely to happen until the Semantic Web is not a “solid” reality.
If you compare these formalisms, you will discover that they have deep differ-
ences, both in syntax and semantics. To try to be clear about them, we can
divide them into families. On the one hand we find the Description Logic based
languages. They are really used in the Semantic Web, especially for modeling
Ontologies. We recall here that an Ontology is a formal specification of a col-
lection of Concepts and the relationships between them, in a certain context.
The most used language, OWL (Web Ontology Language) has been inspired by
the Description Logics [4]. This family of logic formalisms is derived from the
world of First Order Logic, and brings many features of it. On the Contrary,
logic programming languages, like Datalog or Prolog, derive from the Database
World. When compared, leaving out for the moment the syntactic differences,
we can single out the main reason why these formalisms "clash" when used for
knowledge representation: Open World Assumption (OWA) vs Closed World
Assumption (CWA).

To better explain the problem, we discuss it informally, using an example.

Ezample 1.1. We have a relation “hasWife”. As the name suggests, it is used to
store the couples of men and women which are married, stating that the man
X has the woman Y as wife. To better specify this situation, we may add some
constraints to this relation. In Description Logics-based languages it is possible

to use the constructs domain and range. In this case, one might say that:

domain(hasWife, man)

range(hasWife,woman)
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In our knowledge base, there are the following axioms:

hasWife(“John", “Jim")
man(“John"), man(“Jim")

Forgetting for a moment that this is illegal in some states, we ask if this is

permitted, and what are the semantic consequences.

Under Closed World Assumption, everything that is not explicitly contained in
the Model, i.e. what we know about the world, is supposed to be false. In this
case, the only thing we know is that there is a constraints over the knowledge
base, which is violated by the statement. So, under CWA the knowledge base
is inconsistent On the contrary, under OWA, even if there is a constraint,
since the semantics is monotonic, that statement is permitted. Constraints like
domain and range are used solely for inference (by default, the system would
say that a man is married to a woman), but not for excluding statement from
the model. It is necessary to say that, from an historical point of view, these
differences are closely connected with the scenario in which such assumptions
are used. Closed World is typical of Database World. In a typical DB, we will
have tables containing data, and this is everything we know. The answers to
queries must consist of tuples from the DB, and nothing else (that is to say
that nothing can be “invented”). On the other hand, Open World Assumption
is used mainly in the world of Web, in particular in RDF and all its extensions
(RDFS, OWL, etc.). In a web context, information is changing all the time,
and a limited “vision of things” is more suitable than an absolute knowledge.

There is another semantic difference, which is linked to OWA and CWA, but
slightly different. We are talking about the problem of Unique Name Assump-
tion (UNA). In logics with the UNA, different names always refer to different
entities in the world. To better exemplify this concept, an example is again well

placed here.

Example 1.2.
hasWife(“John”, “Jane")

Moreover we assume not to be in an Islamic country, therefore the following
also holds:
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. . . //
cardinality(“hasWife" 1)

In this case, the following information (false!) is given:

hasWife(“John", “Jenny")

If UNA is adopted, an error is triggered, because there is inconsistency.
If, instead, UNA is not used here, the deduction is that “Jenny” and “Jane” are

the same person, i.e. the same object in the knowledge base.

Usually, description-logic based systems don’t assume Unique Names. This is
due to the nature of the Web. It is not difficult to understand, in fact, that on
the Web there are many links and many names which refer to the same entities
(files, images, resources). In this scenario, it is useful to have the possibility to
ensure equivalence between two syntactically different ways of reference to the
same concept.

In logic programming, differently, constants are usually interpreted in terms of
themselves, which means that two different constants relate always to different

concepts.

1.4 Motivation and Related Work

In this thesis we focus on the problem of integrating hybrid logic formalisms.
We concentrate towards studying methods of translation from Semantic Web
formats to logic programming.

In particular:

1. We deal with the problem of conjunctive query answering in description
logics, and propose a solution based on the translation of ontologies to logic
programs.

2. We generalize the previous translation approach using modular translation
for various formalisms, like frame logics and OWL2 fragments.

3. We describe the realization of a OWL2 RL reasoner based on RIF and
dlvhex.

As for point one, we have designed a novel technique for dealing with descrip-
tion logics based ontologies, and turn them into logic programs,which can in
turn be evaluated using state-of-the-art logical engines such as pDLv. The frag-

ment we chose id ELHT, because of its computational properties. We formally
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prove the effectiveness of our approach, which is also sperimentally confirmed

by the prototype software we have designed and tested against competitors.

As for point two, we describe the modularization of different formalisms, using
Logic Programming as final language. The first one is Frame Logic, which is
translated to be integrated into the DLT framework, in order to be exploited
for logic programming. Subsequently, we provide a formal translation for the

three fragments of OLW2, pointing out distinctive features.

Finally, for point three, we introduce the language RIF, which we use as a mid-
dleware for realizing a OWL2 RL reasoner. The reasoner is based on the dlvhex
platform. The implementation procedure is thoroughly described, and results
in a prototype which already delivers most of the OWL2 RL functionality, in-
cluding built-ins and datatypes.

1.4.1 Related Work

In addition to the abovementioned differences with respect to the “vision of the
world” occurring between this variety of formalisms, the crucial point is that
all of these logics have to coexist in a Web scenario: this a source of many tech-
nical problems. The supporters of this or that formalism push to apply their
own language, but do the user need all this diversity? Web is meant to help
people look for information and knowledge, and share data with others. It is
possible to state that a coherent vision of things would improve significantly
the user experience.

Different ways may be adopted in order to accommodate things. In the last
years, proposals were made in the scientific community, that try to solve these
problems.

There exists a more direct way of dealing with different and apparently incom-
patible formalisms. Given two formalisms /7 and F», we can translate theories
expressed in Fj into theories expressed in F». Accomplishing this task is not al-
ways possible, depending solely on the two formalisms involved. In our fields of
interest, i.e. Semantic Web and Logic Programming, many attempts have been
done, with different results. In fact, this is still an open problem, since when

two formalisms which are actually very different are put in contact, problems
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like inconsistencies, excessive computational complexity and incompatibilities
arise.

Translation between formalisms, though, has proven to be particularly useful
when dealing with certain tasks of interest. One of these is, query answering,
which is historically inefficient in Description Logics knowledge bases.

In fact, in such knowledge bases, queries of instance retrieval and instance
checking are usually implemented by spawning a number of independent refu-
tation queries, so that they perform very badly.

For this reason, many techniques have been proposed for rewriting this kind of
knowledge bases to other formats, in which more efficient evaluation algorithms
are known. Motik [54] presented a resolution-based algorithm for reducing very
expressive DL KBs to disjunctive datalog programs.

Kazakov [37] has exploited saturation-based theorem proving to derive a range
of decision procedures for various DLs of the EL family [2]. These approaches,
however, do not deal with conjunctive queries, which were taken into account
by Calvanese et al.[I9] for the DL-Lite family of languages, for which query
answering was shown to be in LogSpace w.r.t. data complexity; and by Rosati
[63] for EL, for which query answering was shown to be PTime-complete w.r.t.
data complexity.

Moreover, another rewriting technique has been recently proposed by Lutz et
al. [47]. It is based on the EL family. They use a different approach w.r.t. the
standard query rewriting techniques, since their algorithm rewrites both the
query and the ABox w.r.t. the TBox.

All the aforementioned techniques are closely related; however, they have been
designed to handle different DLs.

One of our goals is to propose a new technique for rewriting Description Logics
in a scenario of conjunctive query answering. The efficiency gain we claim is
based on the fact that we do not perform slow, exponentially costly rewriting
by eliminating function symbols, for example.

As a further step, we propose techniques that are modular, meaning that it
can be easily decomposed in basic steps, one for each of the aspects of starting
language. It is furthermore extensible, in the sense that if one wants to add new
features to the language, does not have to rewrite everything, but the additions
can be made “on the fly”.

Finally, we also investigate new Logic Languages such as RIF (Rule Interchange
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Format), and prove its usefulness in being a middleware for translation of het-
erogeneous formalisms (in particular OWL2RL and dlvhex [24]). In particular,
we will show how a novel Reasoner for OWL2RL has been realized. It is based
on the powerful language called dlvhex, a external-source flavoured version of
the popular DLV logic reasoner. RIF is used for the intermediate layer of trans-
lation. This is very important and general, as theoretically our reasoner can be
used with other logic engines, after writing the correct translator.

It’s important to say, in this case, that the prototype we realized is possibly
the only one existing with such features, like full support to all RIF built-ins,
and full-fledged reasoning in OWL2RL.

1.5 Structure of this Thesis

This thesis is divided into three parts.

In the first part we will investigate the relationship between fragments of De-
scription Logics and Logic Programming, aiming at a translation which may
ease the process of Instance Retrieval. In particular, we will introduce a frag-
ment called ELHT, which belongs to the EL family.

We will define the fragments used and the translation formally, and demon-
strate it is sound and complete.

In the second part we will study the problem of translating different formalisms,
passing from a particular fragment to some dialects of the Web Ontology Lan-
guage. We will show that such translation can be easily performed using ap-
posite axiomatic modules. We will give a detailed explanation of all the mod-
ules necessary for the translation, evidencing the differences occurring between
them.

The fragments we are going to translate belong to different families. In the last
part we will broaden the scope of the research, introducing the RIF language,
and in particular how to employ its power to build a bigger framework. The
target of such framework is the realization of a complete OWL2RL reasoner,
which exploits the reasoning qualities of the dlvhex system. To this end, an
intermediate step has proven to be necessary:using the RIF language as a mid-

dleware.
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Conclusions will then follow.



2

Preliminaries

“Stop! Who approaches the bridge of
death must answer me these
questions three, and the other side

he see...”

Monty Python and the Holy Grail

This chapter aims at introducing the main topics this thesis is about, giving
concepts necessary to better understand the following chapters.

In particular, we will give concepts regarding the following topics:

e Logic Programming and Answer Set Programming: features, syntax and
semantics.

e Frame Logic: syntax and semantics.

e Description Logics: introduction and basic language.

o OWL2 Profiles.

e RIF.

2.1 Logic Programming and Answer Set Programming

In this section we introduce some general concepts about Logic Programming,
and of one of its flavors, Answer Set Programming (ASP from now on) which
will be used very often in the rest of this document. In fact, it will be necessary
for all the topics we will encounter, since logic programming is the ending point
of all the translation we will propose.

Logic programming consists, in its broadest sense, in the usage of mathematical
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logic for computer programming. In this view, logic is used as a purely declara-
tive representation language, and a theorem-prover or model-generator is used
as the problem-solver. The problem-solving task is split between the program-
mer, who is responsible only for ensuring the truth of programs expressed in
logical form, and the theorem-prover or model-generator, which is responsible
for solving problems efficiently.

ASP is a branch of Logic Programming which has been receiving growing at-
tention in the last years. It has been based on the notion of Stable Model
Semantics, and lately on the Answer Set Semantics, which we will discuss in
the following. It, as a paradigm, lets the users represent knowledge by means
of logic theories, and to infer new knowledge, represented by themodels of the
given theory.

The most interesting feature of ASP, which distinguishes this paradigm from
languages like Prolog, is its full declarativity. It means that it makes no dif-
ference whatever order is used in specifying facts and rules. On the contrary,
Prolog, for example, has a procedural semantics, relying on the syntactic order
of rules and subgoals thereof.

ASP is nonmonotonic: this means that the already present knowledge is defea-
sible, as the arrival of new knowledge can alter what is believed to be true.

A very important feature of this kind of programs is the presence of Negation
as Failure, whose meaning is given in terms of the stable model semantics for
normal logic programs. This kind of negation is also known as Default Nega-
tion. The semantics has been subsequently extended by the same authors by
adding the support for Strong Negation, Disjunction in the head of rules and
other useful features.

We will describe the features used by the system named DLV [42] enhanced
with more features we have used in the thesis work. Most of these features
are available through some systems derived from DLV, which we will describe
subsequently.

After this, we will give a brief introduction of some systems which implement

the discussed features: dlvhex,DLT,DLV-complex.

2.1.1 Syntax

Here we introduce the logic language we will use later. It is basic logic program-

ming, augmented with the features that will prove to be necessary, especially
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function symbols and external atoms, which are non-standard in classical logic
programming.

HLP programs are Logic Programs supporting functions symbols, higher order
atoms, external atoms, lists and disjunction in the heads of rules.

Let P,V,C, E be four countable disjoint sets of predicate symbols , variable
symbols , constant symbols, external predicate symbols.

For convention (as used by most solvers) elements from V a are represented
by strings beginning with uppercase letters, while elements from P and C' are
represented either as strings beginning with lowercase letters or as strings sur-

rounded by double quotes.

A normal term is either a variable or a constant. Let ¢1,...,t, be terms and f
be a function symbol (also called functor) of arity n, f(¢1,...,t,) is a functional
term.

tor) of arity n. A list term can be of the two forms: [t1,...,¢,], where t1,...,t,

are terms; [h|t], where h (the head of the list) is a term, and ¢ (the tail of the
list) is a list term.

A term is either a normal term,a functional term or a list term.

Each predicate p has a fixed arity £ > 0. Let p,t1,...,tx be terms and, in
particular, let p be a predicate of arity k, p(ti1,...,tx) is an higher order atom
(or atom). An atom having p as predicate name is usually referred as p(t). If p
is a constant then p(t) is an ordinary atom.

An external atom has the form

&g{Yl, e ,Yn}<X1, e ,Xm)

where Y1, ..., Y, and X,..., X, are two lists of terms (called input and output
lists, &g € G is an external predicate name. We assume that &g has fixed
lengths in(&g) = n and out(&g) = m for input and output lists, respectively.
Intuitively, an external atom provides a way for deciding the truth value of an
output tuple depending on the extension of a set of input predicates.

A (positive) disjunctive rule r is of the form: aq V... Vay < B1,..., By., where
k>0;a1,...,ar and Bq,..., B, are atoms or external atoms. The disjunction
a1 V...V ag is called head of r, while the conjunction f1,..., B,. is the body
of 7. We denote by H(r) the set of the head atoms, by B(r) the set of body
atoms; we refer to all atoms occurring in a rule with Atoms(r) = H(r) U B(r).

A rule having precisely one head atom (i.e., k = 1 and then |H(r)| = 1) is
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called a normal rule. If r is a normal rule with an empty body (i.e., n = 0 and
then B(r) = () we usually omit the < sign; and if it contains no variables,
then it is referred to as a fact. A LPFHELD program P is a finite set of rules.

A V-free program P is a program counsisting of normal rules only.

2.1.2 Semantics

The semantics of LPTHELD programs extends and generalizes the (consistent)
answer sets semantics of dis- junctive datalog programs, originally defined in
[31] and subsequently in [13].

For any program P, let Up (the Herbrand Universe) be the set of all constants
appearing in P. In case no constant appears in P, an arbitrary constant v is
added to Up .

For any program P, let Bp (Herbrand Literal Base) be the set of all ground
(classical) literals constructible from the predicate symbols appearing in P and
the constants of Up.

For any rule r, Ground(r) denotes the set of rules obtained by applying all
possible substitutions o from the variables in r to elements of Up . Note that
for propositional programs, P = Ground(P) holds.

An interpretation I is a set of ground classical literals, i.e. I C Bpw.r.t. a
program P. A consistent interpretation X C Bp is called closed under P (where
P is a positive disjunctive datalog program), if, for every r € Ground(P),
H(r) N X # wheneverB(r) € X. An interpretation X C Bp is an answer
set for a positive disjunctive datalog program P, if it is minimal (under set

inclusion) among all (consistent) interpretations that are closed under P.

2.1.3 dlvhex

We will now introduce dlvhex, which will be used thereafter especially thanks
to its external knowledge features. It will be exploited for importing ontologies
in the first part, and as terminal reasoner in the third part of this thesis.
dlvhex is the name of a prototype application for computing the models of so-
called HEX-programs, which are an extension of Answer-Set Programs towards
integration of external computation sources.

In particular, HEX-programs are higher-order logic programs (which accom-

modate meta-reasoning through higher-order atoms) with external atoms for
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software interoperability. Intuitively, a higher-order atom allows to quantify
values over predicate names, and to freely exchange predicate symbols with

constant symbols. Look at the following example:

C(X) « subClassOf(D,C), D(X).

An external atom facilitates to determine the truth value of an atom through

an external source of computation. For instance, the rule

reached(X) < &reachledge, a](X)

computes the predicate reached taking values from the predicate &reach, which
computes via &reachledge,a] all the reachable nodes in the graph edge from
node a, delegating this task to an external computation source (e.g., an external
deduction system, an execution library, etc.).

The architecture of dlvhex consists of a core language,which is ASP with higher
order, and a collection of plugins, i.e. external atoms written for answering
special needs, like the DL-plugin (for description logics), the Sparql plugin(for
using SPARQL queries to query the knowledge base) and the RIF plugin, which
is still in development, and will be described in detail in the remainder of this

thesis.

2.2 Frame Logic

We introduce next Frame Logic, which will be used in the second part. In par-
ticular, it will be integrated in logic programming using a modular translation.
Frame Logic(F-logic) [39, [7T1] is a knowledge representation and ontology mod-
eling language which combines the declarative semantics and expressiveness
of deductive database languages with the rich data modeling capabilities sup-
ported by the object oriented data model.

As such, F-logic constitutes both an important methodology and a tool for mod-
eling ontologies in the context of Semantic Web. Also, F-logic features play a
crucial role in the ongoing activity of the RIF Working group [38]. F-logic was
originally defined under first-order semantics [39], while a well-founded seman-

tics, satisfactorily dealing with nonmonotonic inheritance can be found in [71].
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F-Logic offers a declarative, compact and simple syntax, as well as the well-
defined semantics of a logic-based language. Features include, among others,
object identity, complex objects, inheritance, polymorphism, query methods,
encapsulation. F-logic stands in the same relationship to object-oriented pro-
gramming as classical predicate calculus stands to relational database program-
ming. The base of F-Logic is the definition of classes and individuals, as in any

other representation language.

FEzample 2.1.

man :: persomn.

woman :: person.
marco : man.

marina : woman.

This states, that “men and women are people” and that “Marco is a man”, and

"Marina is a woman®.

To add details to the classes, just like in object-oriented programming lan-

guages, it is possible to express attributes with values.

Example 2.2.

person[hasSon = man).
marcolhasSon —» {eustachio, genovef fa}].
married(marco, marina).

This defines that “the son of a person is a man”, “Kustachio and Genoveffa are

the sons of Marco” and “Marco and Marina are married”.

In F-Logic it is also possible to express rules to describe relationships between

concepts and/or instances, like the following example shows:

FEzample 2.3.
man(X) « person(X) AND NOT woman(X).

FORALLX,Y < X : personlhasFather —Y <Y : man[hasSon — X].
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These mean "X is a man if X is a person but not a woman" and "if X is the
son of Y then Y is the father of X".

2.2.1 Syntax

We use here some compact definitions, which can be found in[68].

The alphabet of an F-logic language comprises some object constructors, play-
ing the role of function symbols, a set of variables, and auxiliary symbols like
()], —,—, &, e = == and the well-known first-order logic connectives.
For convention, object constructors start with lower case letters whereas vari-
ables start with uppercase ones.

We will use ID terms for names of objects, classes and methods. They are
formed by object constructors and variables.

In the sequel let o, ¢, c1,co,m,p1,...,pn and r be ID-terms for n > 0. An is-a
atom is an expression of the form o : ¢ (the object o is a member of the class
c) or ¢ :: cg, that is to say that the class ¢; is a subclass of the class cs.

We will call data atoms the following expressions:

o[mQ@(py,...,pn) — 1] (1)
o[mQ@(py,...,pn) &> 1] (2)
o[mQ(p1,...,pn) — 1] o[MmQ(p1,...,pp) => 1| (3)

(1) means that applying the scalar method m with the given parameters to o
(object) results in 7; in (2), o (class in this case) provides the inheritable scala
method m to its members, which, if called with the given parameters, results
in 7; (3) is the same as above, but for multivalued methods.

An eg-atom is an expression of the form p; = ps with the meaning that p; and
p2 denote the same object.

A rule h < by,...,bp with & > 1, is a logic rule over atoms h, by, ..., bx. A fact
is a formula h., given an atom h.

A query is a formula by, ..., b, k> 1.

A emph program is a set of facts and rules.

Atoms can be combined in molecules in a short notation.

Note that F-logic does not distinguish between classes, methods, and objects
which uniformly are denoted by ID-terms; also variables can occur at arbitrary

positions of an atom.
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2.2.2 Semantics

The semantics of F-logic extends the semantics of first-order logic. Formulas
are interpreted over a semantic structure. We restrict our discussion to Her-
brand interpretations where the universe consists of all ground ID-terms. An
H-structure is a set of ground atoms describing an object world, thus it has to
satisfy several closure axioms related to general properties of Object Orienta-

tion.

Definition 2.4. Let H be a (possibly infinite) set of ground atoms. H is an
H-structure if the following conditions hold for arbitrary ground ID-terms

/ .
Uy UQ,y -+« y Upyy Upy Uy AN Uy

w:u € H (subclass reflexivity).

e ifuj:ius € H and ug :: ug € H then uy :: us € H (subclass transitivity).

e uj:us € H and ug :: uy € H then up = ug € H (subclass acyclicity).

e ifuy :uy € H and uy :: us € H then uy : us € H (instance-subclass
dependency).

o if uplum@(uy,...,up = u,)] € H and up[um@(uy,...,u, = ul)] € H

then u, = ul. € H. where — stands for — or e (uniqueness of scalar

methods).

Furthermore the well known free equality axioms for = have to hold.
With respect to an H-structure the meaning of atoms and formulas is given in
the usual way, moreover, minimal models can be defined as standard meaning

of a program.

2.3 Description Logics

Description Logics has a very important role in this thesis, since it involved in
all topics we will deal with.

Description Logics [4](DLs) is a family of Knowledge Representation formalisms
that represent the knowledge of an application domain by first defining its rele-
vant concepts (terminology), and then using these concepts to specify properties

of objects and individuals occurring in the domain (the world description).
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Description Logics, as the name suggests, is characterized by a formal, logic-
based semantics.

Another distinguished feature is the emphasis on reasoning as a central ser-
vice: reasoning allows one to infer implicitly represented knowledge from the
knowledge that is explicitly contained in the knowledge base. Description Log-
ics support inference patterns that occur in many applications of intelligent
information processing systems, and which are also used by humans to struc-
ture and understand the world: classification of concepts and individuals.

A knowledge base (KB) comprises two components, the TBox and the ABox.
The TBox introduces the terminology, i.e., the vocabulary of an application do-
main, while the ABox contains assertions about named individuals in terms of
this vocabulary.

The vocabulary consists of concepts, which denote sets of individuals, and roles,
which denote binary relationships between individuals. In addition to atomic
concepts and roles (concept and role names), all DL systems allow their users
to build complex descriptions of concepts and roles. The TBox can be used to
assign names to complex descriptions. The language for building descriptions
is a characteristic of each DL system, and different systems are distinguished
by their description languages. The description language has a model-theoretic
semantics. Thus, statements in the TBox and in the ABox can be identified
with formulae in first-order logic or, in some cases, a slight extension of it.

A DL system not only stores terminologies and assertions, but also offers ser-
vices that reason about them. Typical reasoning tasks for a terminology are
to determine whether a description is satisfiable (i.e., non-contradictory), or
whether one description is more general than another one, that is, whether
the first subsumes the second. Important problems for an ABox are to find
out whether its set of assertions is consistent, that is, whether it has a model,
and whether the assertions in the ABox entail that a particular individual is
an instance of a given concept description. Satisfiability checks of descriptions
and consistency checks of sets of assertions are useful to determine whether a
knowledge base is meaningful at all.

With subsumption tests, one can organize the concepts of a terminology into
a hierarchy according to their generality. A concept description can also be
conceived as a query, describing a set of objects one is interested in. Thus, with

instance tests, one can retrieve the individuals that satisfy the query.
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In any application, a KR system is embedded into a larger environment. Other
components interact with the KR component by querying the knowledge base
and by modifying it, that is, by adding and retracting concepts, roles, and
assertions. A restricted mechanism to add assertions are rules. Rules are an
extension of the logical core formalism, which can still be interpreted logically.
However, many systems, in addition to providing an application programming
interface that consists of functions with a well-defined logical semantics, pro-
vide an escape hatch by which application programs can operate on the KB in

arbitrary ways.

2.3.1 Basic Language

Here we give some notions of the basic constructors it is possible to use to built
a DL knowledge base.

To describe a reality of interest, we need some constructors, useful to specify
concepts. They can give either simple or complex descriptions. The simple ones
are called atomic concepts and roles. Starting from these, one can form a more
complex description, the form of which depends on the language in use.

Here we will not focus on a language in particular, on the contrary this intro-
duction will deal with general concepts, universally applicable.

We have some atomic concepts and roles,i.e. they can be expressed only in
terms of themselves.

We call Basic Concept a concept which can be expressed using the constructors
of the language, starting from one or more atomic concepts. Without loss of

generality we assume these constructors to be used:

ALC B(Ch)
ANBLCC(Cy)
AC 3R.B(Cs)
AR.A T B(Cy)
3R.T C B(Cs)
B C 3R.T(Cy)
PLC S(Cy)

R~ C S(Cy)
RLC S5 (Cy)
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| Axiom ELHI H |[FOL formulaF (H)

Aa) A(a)

R(a,b) R(a,b)

ACB VzA(z) — B(z)

ANBCC Ve A(z) A B(z) = C(z)
AC3RB VzA(x) = [ByB(y) A R(z, )]
JRAC B Vr[FyA(y) A R(z,y)] — B(x)
JRTCB Vz[JyR(z,y)] — B(z)

BC 3R.T VoB(z) — ByR(z,y)]

RC Sor R~ C S \Ve,yR(z,y) = S(x,y)

RC S or R C SVzyR(y.z) — S(z,y)

Table 2.1: Semantics of a DL knowledge base given in terms of the correspond-
ing FO formulas.

Semantics for a DL knowledge is given by means of first order logics (FOL).
In, particular, a DL ontology can be seen as a conjunction of FOL formulas.
the models of each axiom are the same of the ones of the corresponding FOL
formula. In the table we show, for each axiom, the corresponding first
order formula.

Given a knowledge base, the semantics is given by the following formula:

= N\ FE)A N\ FH

HeT HeA

2.4 OWL2 and OWL2 Profiles

OWL2 is the new version of the popular Ontology Web Language (OWL). It
is divided into profiles, as we will see later in detail. It was designed in order
to be more modular than its predecessor, and focused on tasks, giving different
expressivity for different scenarios.

Similarly to OWL, it is based on description logics, in particular there is a
different fragment for each OWL2 profile. It permits, for this reason, to define
vocabularies and axioms, to model reality. This is possible by defining ontolo-

gies.
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2.4.1 OWL2

An OWL 2 [1] ontology is a formal description of a domain of interest. OWL

2 ontologies consist, of the following three different syntactic categories:

e Entities, such as classes, properties, and individuals, are identified by IRIs.
They form the primitive terms of an ontology and constitute the basic ele-
ments of an ontology. For example, a class a:Person can be used to represent
the set of all people. Similarly, the object property a:parentOf can be used
to represent the parent-child relationship. Finally, the individual a : Marco
can be used to represent a particular person called “Marco”.

o FExpressions represent complex notions in the domain being described. For
example, a class expression describes a set of individuals in terms of the
restrictions on the individuals’ characteristics. Axioms are statements that
are asserted to be true in the domain being described. For example, using
a subclass axiom, one can state that the class a : Student is a subclass of
the class a : Person. These three syntactic categories are used to express
the logical part of OWL 2 ontologies that is, they are interpreted under a
precisely defined semantics that allows useful inferences to be drawn. For
example, if an individual a : Marco is an instance of the class a : Student,
and a : Student is a subclass of a : Person, then from the OWL 2 semantics
one can derive that a : Marco is also an instance of a : Person.

o FExpressions represent complex notions in the domain being described. For
example, a class expression describes a set of individuals in terms of the
restrictions on the individuals’ characteristics. Axioms are statements that
are asserted to be true in the domain being described. For example, using a
subclass axiom, one can state that the class a : Student is a subclass of the

class a : Person.

In addition, entities, axioms, and ontologies can be annotated in OWL 2. For
example, a class can be given a human-readable label that provides a more
descriptive name for the class. Annotations have no effect on the logical aspects
of an ontology that is, for the purposes of the OWL 2 semantics, annotations
are treated as not being present. Instead, the use of annotations is left to the
applications that use OWL 2. For example, a graphical user interface might

choose to visualize a class using one of its labels.
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Finally, OWL 2 provides basic support for ontology modularization. In partic-
ular, an OWL 2 ontology O can import another OWL 2 ontology O’ and thus

gain access to all entities, expressions, and axioms in O'.
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Fig. 2.1: OWL2 Typical Workflow.

2.4.2 OWL2 Profiles

An OWL 2 profile (commonly called a fragment or a sublanguage in computa-
tional logic) is a trimmed down version of OWL 2 that trades some expressive
power for the efficiency of reasoning.

Here we describe three profiles of OWL 2, each of which achieves efficiency in
a different way and is useful in different application scenarios. The profiles are
independent of each other. The choice of which profile to use in practice will

depend on the structure of the ontologies and the reasoning tasks at hand.
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OWL2 EL

OWL 2 EL is particularly useful in applications employing ontologies that con-
tain very large numbers of properties and/or classes. This profile captures the
expressive power used by many such ontologies and is a subset of OWL 2 for
which the basic reasoning problems can be performed in time that is poly-
nomial with respect to the size of the ontology [EL++]. Dedicated reasoning
algorithms for this profile are available and have been demonstrated to be im-
plementable in a highly scalable way. The EL acronym reflects the profile’s
basis in the EL family of description logics [EL++], logics that provide only

Existential quantification.

OWL2 QL

OWL 2 QL is aimed at applications that use very large volumes of instance
data, and where query answering is the most important reasoning task. In
OWL 2 QL, conjunctive query answering can be implemented using conven-
tional relational database systems. Using a suitable reasoning technique, sound
and complete conjunctive query answering can be performed in LOGSPACE
with respect to the size of the data (assertions). As in OWL 2 EL, polyno-
mial time algorithms can be used to implement the ontology consistency and
class expression subsumption reasoning problems. The expressive power of the
profile is necessarily quite limited, although it does include most of the main
features of conceptual models such as UML class diagrams and ER diagrams.
The QL acronym reflects the fact that query answering in this profile can be

implemented by rewriting queries into a standard relational Query Language.

OWL2 RL

OWL 2 RL is aimed at applications that require scalable reasoning without
sacrificing too much expressive power. It is designed to accommodate OWL 2
applications that can trade the full expressivity of the language for efficiency,
as well as RDF(S) applications that need some added expressivity. OWL 2
RL reasoning systems can be implemented using rule-based reasoning engines.
The ontology consistency, class expression satisfiability, class expression sub-

sumption, instance checking, and conjunctive query answering problems can be
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solved in time that is polynomial with respect to the size of the ontology. The
RL acronym reflects the fact that reasoning in this profile can be implemented

using a standard Rule Language.

2.5 RIF

The Rule Interchange Format (RIF) is a new language, whose definition was
started in 2005 by the RIF working group.

RIF focused on exchange rather than trying to develop a single one-fits-all rule
language because, in contrast to other Semantic Web standards, such as RDF,
OWL, and SPARQL, it was immediately clear that a single language would
not satisfy the needs of many popular paradigms for using rules in knowledge
representation and business modeling. But even rule exchange alone was recog-
nized as a daunting task. Known rule systems fall into three broad categories:
first-order, logic-programming, and action rules. These paradigms share little in
the way of syntax and semantics. Moreover, there are large differences between

systems even within the same paradigm.

Given this diversity, what is the most useful notion of rule exchange? The
approach taken by the Working Group was to design a family of languages,
called dialects, with rigorously specified syntax and semantics. The family of
RIF dialects is intended to be uniform and extensible. RIF uniformity means
that dialects are expected to share as much as possible of the existing syntactic
and semantic apparatus. Extensibility here means that it should be possible
for motivated experts to define a new RIF dialect as a syntactic extension to
an existing RIF dialect, with new elements corresponding to desired additional
functionality. These new RIF dialects would be non-standard when defined, but

might eventually become standards.

Because of the emphasis on rigor, the word format in the name of RIF is some-
what of an understatement. RIF in fact provides more than just a format.
However, the concept of format is essential to the way RIF is intended to be
used. Ultimately, the medium of exchange between different rule systems is

XML, a format for data exchange. Central to the idea behind rule exchange
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through RIF is that different systems will provide syntactic mappings from
their native languages to RIF dialects and back. These mappings are required
to be semantics-preserving, and thus rule sets can be communicated from one
system to another provided that the systems can talk through a suitable di-
alect, which they both support.

The RIF group, as stated previously, decided to create different dialects, to

satisfy different needs. The existing dialects are:

e Rif-Core
e RIif-BLD
e Rif-PRD

Here we will focus mainly on the BLD dialect, that has been used for our
purpose. In the following we will present the syntax and the semantics of this

particular dialect.

2.5.1 Syntax

We will use the Rif Presentation Syntaz, which is not a concrete syntax (the
only concrete one is the XML syntax), but is well suited for better showing the
language features.

It deliberately leaves out details such as the delimiters of the various syntactics
components, escape symbols, and other similar symbols.

From now on, with a little abuse of notation, we talk about the elements of

RIF, but actually we are dealing with the elements of RIF presentation syntaz.

The Alphabet of RIF-BLD consists of a countably infinite set of constant sym-

bols C; a countably infinite set of variable symbols V (disjoint from C); a

countably infinite set of argument names, A (disjoint from C and V); con-

nective symbols And, Or, <—; quantifiers symbols Exists, Forall; the symbols =

, #, #H#, — >, External, Import, Prefix, Base; the symbols Group, Document;
the symbols for representing lists: List, OpenList;the auxiliary symbols (, ), [, ], <
>

The set of connective symbols, quantifiers, =, etc., is disjoint from C and V.
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The argument names in A are written as Unicode strings that must not start
with a question mark, "?". Variables are written as Unicode strings preceded
with the symbol "7".

Constants are written as “literal” "symspace, where literal is a sequence of
Unicode characters and symspace is an identifier for a symbol space. Symbol
spaces are defined in Section Constants, Symbol Spaces, and Datatypes of RIF-
DTB. For the description of RIF-DTB, please look at the following paragraphs.

The symbols =, #, ## are used in formulas that define equality, class mem-
bership, and subclass relationships. The symbol — > is used in terms that have
named arguments and in frame formulas. The symbol Fxternal indicates that
an atomic formula or a function term is defined externally (e.g., a built-in) and
the symbols Prefix and Base enable compact representations of IRIs (RFC-
3987).

The symbol Document is used to specify RIF-BLD documents, the symbol
Import is an import directive, and the symbol Group is used to organize RIF-
BLD formulas into collections.

The language of RIF-BLD is the set of formulas constructed using the above
alphabet according to the rules given below.

In RIF-BLF it is possible to build several types of terms:

e Constants and variables. If t € C or t € V then t is a simple term.

e Positional terms. If t € C and t1,...,t,,n > 0, are base terms then ¢(¢1 .. .t,)
is a positional term.

e Positional terms correspond to the usual terms and atomic formulas of clas-
sical first-order logic [Enderton01, Mendelson97].

e Terms with named arguments. A term with named arguments is of the form
t(s1 = v1...8, — vp), where n > 0,¢t € C and vy,...,v, are base terms

and s1,...,S8, are pairwise distinct symbols from the set A.

The constant t here represents a predicate or a function; sq,..., s, represent ar-
gument names; and vy, ..., v, represent argument values. The argument names,
S1,-..,8n, are required to be pairwise distinct. Terms with named arguments
are like positional terms except that the arguments are named and their order

is immaterial. Note that a term of the form f() is, trivially, both a positional
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term and a term with named arguments.
Terms with named arguments are introduced to support exchange of languages
that permit argument positions of predicates and functions to be named (in

which case the order of the arguments does not matter).

e List terms. There are two kinds of list terms: open and closed. A closed
list has the form List(ty ...t,,), where m > 0 and t1,...,t,, are terms. An
open list (or a list with a tail) has the form OpenList(t;...tmnt), where
m > 0 and t1,...,tn,t are terms. Open lists are usually written using the
following: List(t; ...tm|t). The last argument, t, represents the tail of the
list and so it is normally a list as well. A closed list of the form List() (i.e.,
a list in which m=0, corresponding to Lisp’s nil) is called the empty list.

e Equality terms. ¢ = s is an equality term, if ¢ and s are base terms.

e Class membership terms (or just membership terms). t#s is a membership
term if ¢ and s are base terms.

e Subclass terms. t#+s is a subclass term if ¢ and s are base terms.

e Frame terms. t[p1 — v1...p, — v, is a frame term (or simply a frame)
if t,p1,...,pn,v1,...,0p,n > 0, are base terms. Membership, subclass, and
frame terms are used to describe objects and class hierarchies.

e Externally defined terms. If ¢ is a positional or a named-argument term then
External(t) is an externally defined term. External terms are used for repre-
senting built-in functions and predicates as well as "procedurally attached"
terms or predicates, which might exist in various rule-based systems, but

are not specified by RIF.

Observe that the argument names of frame terms, py, ..., p,, are base terms and
S0, as a special case, can be variables. In contrast, terms with named arguments
can use only the symbols from ArgNames to represent their argument names.
They cannot be constants from C or variables from V. The reason for not
allowing variables for those is to control the complexity of unification, which is
used by several inference mechanisms of first-order logic.

RIF-BLD distinguishes certain subsets of the set Const of symbols, including
subsets of predicate symbols and function symbols. Section Well-formed For-

mulas gives more details, but we do not need those details yet.



2.5 RIF 31

Definition 2.5. (Atomic Formula). Any term (positional or with named argu-
ments) of the form p(...), where p is a predicate symbol, is also an atomic
formula. Equality, membership, subclass, and frame terms are also atomic for-
mulas. An externally defined term of the form External(yp), where ¢ is an
atomic formula, is also an atomic formula, called an externally defined atomic

formula.

It is important to remark that simple terms (constants and variables) are not
formulas.
More general formulas are constructed from atomic formulas with the help of

logical connectives.

Definition 2.6. (Formula). A formula can have several different forms and is
defined as follows:

o Atomic: If ¢ is an atomic formula then it is also a formula.
e Condition formula: A condition formula is either an atomic formula or a
formula that has one of the following forms:

— Conjunction: If ©1,...,0n,n > 0, are condition formulas then so is
And(p1 ... ¢p), called a conjunctive formula. As a special case, And()
is allowed and is treated as a tautology, i.e., a formula that is always
true.

— Disjunction: If ©1,...,0n,n0, are condition formulas then so is
Or(p1...¢n), called a disjunctive formula. As a special case, Or() is
permitted and is treated as a contradiction, i.e., a formula that is always
false.

Existentials: If ¢ is a condition formula and ?Vy, ..., 7V,,n > 0, are distinct

variables then Exists?Vi...7V,(p) is an existential formula.

Condition formulas are intended to be used inside the premises of rules. Next we
define the notions of rule implications, universal rules, universal facts, groups

(i.e., sets of rules and facts), and documents.

Rule implication: ¢ < 1 is a formula, called rule implication, if: ¢ is an atomic
formula or a conjunction of atomic formulas, 1 is a condition formula, and none
of the atomic formulas in ¢ is an externally defined term (i.e., a term of the
form FEaxternal(...)).

Universal rule: If ¢ is a rule implication and ?Vp,...,7V,,n > 0, are distinct
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variables then Forall?Vy ...?7V,(¢) is a formula, called a universal rule. It is
required that all the free variables in ¢ occur among the variables 7V1 ...7Vn
in the quantification part. An occurrence of a variable 7v is free in ¢ if it is
not inside a subformula of ¢ of the form FExists?v(¢) and ¢ is a formula.
Universal rules will also be referred to as RIF-BLD rules. Universal fact: If
@ is an atomic formula and ?Vi,...,?7V,,n > 0, are distinct variables then
Forall?Vy ... 7V, (p) is a formula, called a universal fact, provided that all the
free variables in ¢ occur among the variables 7V ...7V,. Universal facts are
often considered to be rules without premises.

Group: If ¢1, ..., ¢, are RIF-BLD rules, universal facts, variable-free rule impli-
cations, variable-free atomic formulas, or group formulas then Group(pl ... ¢n)
is a group formula. As a special case, the empty group formula, Group(), is
allowed and is treated as a tautology, i.e., a formula that is always true. Non-
empty group formulas are used to represent sets of rules and facts. Note that
some of the ¢;’s can be group formulas themselves, which means that groups
can be nested.

Document: An expression of the form Document(directive; ... directive,I")
is a RIF-BLD document formula (or simply a document formula), if I" is an
optional group formula; it is called the group formula associated with the doc-
ument. directive, ..., directive, is an optional sequence of directives. A direc-
tive can be a base directive, a prefix directive or an import directive. A base
directive has the form Base(< iri >), where iri is a Unicode string in the form
of an absolute IRI [RFC-3987|. The Base directive defines a syntactic shortcut
for expanding relative IRIs into full IRIs, as described in Section Constants,
Symbol Spaces, and Datatypes of [RIF-DTB].

A prefix directive has the form Prefiz(p < v >), where p is an alphanumeric
string that serves as the prefix name and v is an expansion for p — a Unicode
sequence of characters that forms an IRI. (An alphanumeric string is a sequence
of ASCII characters, where each character is a letter, a digit, or an underscore ,
and the first character is a letter.) Like the Base directive, the Prefix directives
define shorthands to allow more concise representation of constants that come
from the symbol space rif:iri (we will call such constants rif:iri constants). This
mechanism is explained in [RIF-DTB|, Section Constants, Symbol Spaces, and
Datatypes.
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An import directive can have one of these two forms: I'mport(< loc >) or
Import(< loc >< p >). Here loc is a Unicode sequence of characters that
forms an IRI and p is another Unicode sequence of characters. The constant
loc represents the location of another document to be imported; it is called
the locator of the imported document. The argument p is called the profile of
import; it has the form of a Unicode character sequence in the form of an IRI
- see [RIF-RDF+OWL).

A document formula can contain at most one Base directive. The Base directive,
if present, must be first, followed by any number of Prefix directives, followed
by any number of Import directives.

In the definition of a formula, the component formulas ¢, ¢;, ¥;, and I" are said
to be subformulas of the respective formulas (condition, rule, group, etc.) that

are built using these components.
RIF-BLD Annotations in the Presentation Syntax

RIF-BLD allows every term and formula (including terms and formulas that
occur inside other terms and formulas) to be optionally preceded by one an-
notation of the form (* id ¢ *), where id is a rif:iri constant and ¢ is a frame
formula or a conjunction of frame formulas. Both items inside the annotation
are optional. The id part represents the identifier of the term or formula to
which the annotation is attached and ¢ is the metadata part of the annota-
tion. RIF-BLD does not impose any restrictions on ¢ apart from what is stated
above. This means that it may include variables, function symbols, constants
from the symbol space rif:local (often referred to as local or rif:local constants),

and so on.

Document formulas with and without annotations will be referred to as RIF-
BLD documents.

Well formed formulas

Not all formulas and thus not all documents are well-formed in RIF-BLD: it is
required that no constant appear in more than one context. What this means
precisely is explained below. Informally, this means that each constant symbol
in RIF-BLD can be either an individual, a plain function, a plain predicate,

an externally defined function, or an externally defined predicate. However,
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symbols can be polyadic: the same function or predicate symbol (normal or
external) can occur with different numbers of arguments in different places.
Note that polyadic symbols could be replaced by non-polyadic symbols with
the arity information encoded in the function or predicate names.

The set of all constant symbols, C, is partitioned into the following subsets:

e A subset of individuals.

e The symbols in Const that belong to the symbol spaces of Datatypes are
required to be individuals.

e A subset of plain (i.e., non-external) function symbols.

e A subset for external function symbols.

e A subset of plain predicate symbols.

e A subset for external predicate symbols.

The above subsets do not differentiate between positional and named argument
symbols. Also, as seen from the following definitions, these subsets are not
specified explicitly but, rather, are inferred from the occurrences of the symbols.
Definition (Context of a symbol). The context of an occurrence of a symbol,
Const, in a formula, ¢, is determined as follows:

If s occurs as a predicate of the form s(...) (positional or named-argument)
in an atomic subformula of ¢ then s occurs in the context of a (plain) pred-
icate symbol. If s occurs as a function symbol in a non-subformula term of
the form s(...) then s occurs in the context of a (plain) function symbol. If
s occurs as a predicate in an atomic subformula External(s(...)) then s oc-
curs in the context of an external predicate symbol. If s occurs as a func-
tion in a non-subformula term External(s(...)) then s occurs in the context
of an external function symbol. If s occurs in any other context (in a frame:
sl...],...[s = ...]J,or...[... = s]; or in a positional /named-argument term:

p(...s...),q(... > s...)), it is said to occur as an individual.

Definition 2.7. (Imported document). Let A be a document formula and
Import(loc) be one of its import directives, where loc is a locator of another
document formula, A'. We say that A’ is directly imported into A.

A document formula A’ is said to be imported into A if it is either directly
imported into A or it is imported (directly or not) into some other formula that

1s directly imported into A.
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The above definition deals only with one-argument import directives, since
only such directives can be used to import other RIF-BLD documents. Two-
argument import directives are provided to enable import of other types of
documents, and their semantics are supposed to be covered by other specifica-
tions, such as [RIF-RDF+OWL].

Definition (Well-formed formula). A formula ¢ is well-formed iff:

every constant symbol (whether coming from the symbol space rif:local or not)
mentioned in ¢ occurs in exactly one context. if ¢ is a document formula and
'k are all of its imported documents, then every non-rif:local constant symbol
mentioned in ¢ or any of the imported ’is must occur in exactly one context
(in all of the is). whenever a formula contains a term or a subformula of the
form External(t), t must be an instantiation of a schema in the coherent set
of external schemas (Section Schemas for Externally Defined Terms of [RIF-
DTBJ) associated with the language of RIF-BLD. if t is an instantiation of a
schema in the coherent set of external schemas associated with the language
then t can occur only as External(t), i.e., as an external term or atomic formula.
Definition (Language of RIF-BLD). The language of RIF-BLD consists of the
set of all well-formed formulas and is determined by:

the alphabet of the language and a set of coherent external schemas, which
determine the available built-ins and other externally defined predicates and

functions.

2.5.2 Semantics

Truth Values

The set TV of truth values in RIF-BLD consists of two values, t and f.
Semantic Structures

The key concept in a model-theoretic semantics for a logic language is the
notion of a semantic structure [Enderton01, Mendelson97|. The definition is
slightly more general than what is strictly necessary for RIF-BLD alone. This
lays the groundwork for extensions to RIF-BLD and makes the connection with
the semantics of the RIF framework for logic-based dialects [RIF-FLD]| more

obvious.
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Definition 2.8. (Semantic structure). A semantic structure, I, is a tuple of
the form <TV, DTS, D, Dind, Dfunc, IC, IV, IF, INF, Ilist, Itail, Iframe,
Isub, Tisa, I=, Iexternal, Itruth>. Here D is a non-empty set of elements called
the domain of I, and Dind, Dfunc are nonempty subsets of D. D;,qis used to
wnterpret the elements of Const that occur as individuals and Dfunc is used to
interpret the elements of Const that occur in the context of function symbols.
As before, Const denotes the set of all constant symbols and Var the set of all
variable symbols. DTS denotes a set of identifiers for datatypes (please refer to
Section Datatypes of [RIF-DTB] for the semantics of datatypes).

The other components of I are total mappings defined as follows:

IC maps C to D. This mapping interprets constant symbols. In addition:

If a constant, ¢ € C, is an individual then it is required that IC(c) We also
define the following mapping from terms to D, which we denote using the same
symbol I as the one used for semantic structures. This overloading is convenient
and creates no ambiguity.

Iy maps V to Dj,q. This mapping interprets variable symbols. Ir maps D
to total functions D} , — D (here D} , is a set of all finite sequences over
the domain D;nd). This mapping interprets positional terms. In addition if
d € Dyype then Ir(d) must be a function D} ; — Djynq. This means that when
a function symbol is applied to arguments that are individual objects then
the result is also an individual object. INF maps D to the set of total func-
tions of the form SetO fFiniteSets(ArgNamesxD;nd) — D. This mapping
interprets function symbols with named arguments. In addition if d € D fync
then I N F(d) must be a function SetO f FiniteSets(ArgNameszDinq) — Ding.
This is analogous to the interpretation of positional terms with two differences:
Each pair < s,v >€ AzD;,4 represents an argument/value pair instead of
just a value in the case of a positional term. The arguments of a term with
named arguments constitute a finite set of argument/value pairs rather than
a finite ordered sequence of simple elements. So, the order of the arguments
does not matter. Ij;; and Iy are used to interpret lists. They are mappings
of the following form: Ijst @ Dxing — Dind; ltail @ Dind + ®Ding — Ding
In addition, these mappings are required to satisfy the following conditions:
(i) The function Ij;s is injective (one-to-one); (i) The set Ij;s (D}, ;), hence-
forth denoted Dy, is disjoint from the value spaces of all data types in DTS.

Itail(ab ey Qg Ilist(ak-l—la .. 7ak+m)) = Ilist(ah ey Ay A1y - - - 7ak+’m>~
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Note that the last condition above restricts I,; only when its last argu-
ment is in Dyge. If the last argument of I,y is not in Dyg, then the list
is a general open one and there are no restrictions on the value of I, ex-
cept that it must be in Dj,q. Ifrqme maps Djygto total functions of the
form SetO fFiniteBags(D;nqDing)D. This mapping interprets frame terms.
An argument, d € Dj,q4, to Ifrqame represents an object and the finite bag
< ai,v; >,...,<ap,vV > represents a bag of attribute-value pairs for d. We
will see shortly how If.qme is used to determine the truth valuation of frame
terms.

Iy gives meaning to the subclass relationship. It is a mapping of the form
DinaxDing — D. Igyp will be further restricted in Section Interpretation of
Formulas to ensure that the operator ## is transitive, i.e., that c¢;##cs and
coffftcs imply c1##fcs.

I;sq gives meaning to class membership. It is a mapping of the form D;nq Ding
D. I;s, will be further restricted in Section Interpretation of Formulas to ensure
that the relationships # and ## have the usual property that all members of a
subclass are also members of the superclass, i.e., that o#cl and cl#+#scl imply
o#scl.

I_ is a mapping of the form D;,qxD;nq — D. It gives meaning to the equality
operator.

Lirytn s @ mapping of the form D — TV. It is used to define truth valuation
for formulas.

Tezternal 18 @ mapping from the coherent set of schemas for externally de-
fined functions to total functions Dx — D. For each external schema o =
(?7X1...7Xn;7) in the coherent set of external schemas associated with the
language, Iezternai(0) is a function of the form D,, — D.

For every external schema, o, associated with the language, lepternqai(0) is as-
sumed to be specified externally in some document (hence the name external
schema). In particular, if o is a schema of a RIF built-in predicate or function,
Ieqternai(0) is specified in [RIF-DTB] so that:

e If o is a schema of a built-in function then . sernq (o) must be the function
defined in |[RIF-DTB].
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e If o is a schema of a built-in predicate then Iyyt5 0 (Lesternal (o)) (the compo-
sition of Ipyen and Iegternal(0), a truth-valued function) must be as specified
in [RIF-DTB.

We also define the following mapping from terms to D, which we denote using
the same symbol [ as the one used for semantic structures. This overloading is

convenient and creates no ambiguity.

e I(k)=1IC(k),if k is a symbol in C;
o I(?7w) =1V (?v),if ?v is a variable in V;

o I(f(tr-..tn)) = IFUI()U(t2),-- -, (tn));

o I(f(s1—=v1...8n = vy)) =INFI(f))(<s1,I(v1) >,...,< 8n, L(vp) >);

Here we use ... to denote a set of argument/value pairs.
For list terms, the mapping is defined as follows: I(List()) = Ij;s:(<>).
Here <> denotes an empty list of elements of D;,4. (Note that the domain of

Ij;s is DY . so D?nd is an empty list of elements of D;,4.)

ind?

I(List(ty .. .tp)) = List(I(t1), - ., I(tn))sn > 0
I(List(ty .. .tat)) = Laa(I(t1), ..., I(t2), I(t))n > 0

I(olai...v1...ax = vg]) = Lprame(L(0))(< I(a1),I(v1) >,...,< I(an), I(vy) >)

Here ... denotes a bag of attribute/value pairs. Jumping ahead, we note that
duplicate elements in such a bag do not affect the truth value of a frame formula.
Thus, for instance, [a — ba — b] and o[a — b] always have the same truth value.
I(cr#t#tca) = Isub(I(c1), I(c2))
I(o#c) = lisa(I(0), I(c))
Iz =y)=1=(I(z),1(y))
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I(External(t)) = Iexternal(o)(I(s1),...,1(spn)), if t is an instantiation of the
external schema o = (7X7...7X,;7) by substitution ?X;/s1...7X,,/s1.

Note that, by definition, External(t) is well-formed only if t is an instantia-
tion of an external schema. Furthermore, by the definition of coherent sets of
external schemas, t can be an instantiation of at most one such schema, so
I(External(t)) is well-defined.

The effect of datatypes.

The set DTS must include the datatypes described in Section Datatypes of
[RIF-DTB].

The datatype identifiers in DTS impose the following restrictions. Given
dt € DTS, let LS4 denote the lexical space of dt, V Sy denote its value
space, and Lg : LSy — V. Sy the lexical-to-value-space mapping (for the
definitions of these concepts, see Section Datatypes of [RIF-DTB]). Then the
following must hold: V.Sg; C D;,g; and For each constant “lit”""dt such that
lit € LSgs, IC(“lit"™dt) = Lgs(lit).

That is, IC must map the constants of a datatype dt in accordance with Lg;.
RIF-BLD does not impose restrictions on IC for constants in symbol spaces

that are not datatypes included in DTS.
Interpretation of Non-document Formulas

This section defines how a semantic structure, I, determines the truth value
TVall(p) of a RIF-BLD formula, ¢, where ¢ is any formula other than a doc-
ument formula. Truth valuation of document formulas is defined in the next
section.

We define a mapping, TVall, from the set of all non-document formulas to TV.
Note that the definition implies that TVall(p) is defined only if the set DTS
of the datatypes of I includes all the datatypes mentioned in ¢ and lexternal
is defined on all externally defined functions and predicates in ¢.

Definition (Truth valuation). Truth valuation for well-formed formulas in RIF-
BLD is determined using the following function, denoted TVall:

Positional atomic formulas:

TVall(r(ty...ty)) = Itruth(I(r(ty .. .t,)))
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Atomic formulas with named arguments:

TVall(p(sy = vi...5k = vg)) =

Itruth(I(p(sl — vy ...sk — vg))).

Equality: TVall(z = y) = Itruth(I(z = y)).

To ensure that equality has precisely the expected properties, it is required
that: Itruth(I(z = y)) = t if I(z) = I(y) and that Itruth(I(z = y)) = f
otherwise. This is tantamount to saying that TVall(z = y) = t if and only if
I(x) = I(y). Subclass: TVall(sc##cl) = Itruth(I(sc##cl)). To ensure that
the operator ## is transitive, i.e., ci##co and co##c3 imply cl##cs, the
following is required:

Vey, o, e3 € D if TV all(cl##c2) = TV all (co#t#cs) = t then TV all(cyi#F#c3)
=1.

Membership: TV all(o#tcl) = Itruth(I(o#cl)). To ensure that all members of
a subclass are also members of the superclass, i.e., o#cl and cl##scl imply
o0#scl, the following is required:

Vo, cl, scl € D,if TV all(o#tcl) = TV all(cl##scl) = t then TV all(o#scl) =t.
Frame: TVall(olar — v1...ar — vi|) = Itruth(I(olar — vi...ar — vgl])).
Since the bag of attribute/value pairs associated with an object o represents the
conjunction of assertions represented by these pairs, the following is required,
if k > 0:

TVall(olag — vy ...ax— > vg]) =t if and only if TVall(oja1— > v1]) = ... =
TVall(olax— > vi]) =t.

Externally defined atomic formula:

TVall(External(t)) = Itruth(Iexternal(o)(I(sl),...,I(sn))),if t is an atomic
formula that is an instantiation of the external schema o = (7X1...7Xn;7) by
substitution ?X1/s1...7Xn/sl. Note that, by definition, External(t) is well-
formed only if ¢ is an instantiation of an external schema. Furthermore, by the
definition of coherent sets of external schemas, ¢ can be an instantiation of at
most one such schema, so I(Ezternal(t)) is well-defined.

Conjunction: TVall(And(cl...cn)) = t if and only if TVall(cl) = ... =
TVall(cn) = t. Otherwise, TVall(And(cl...cn)) = f. The empty conjunc-
tion is treated as a tautology, so TVall(And()) = t.

Disjunction: TValI(Or(cl...cn)) = f if and only if TVall(cl) = ... =
TVall(cn) = f. Otherwise, TVall(Or(cl...cn)) = t. The empty disjunction
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is treated as a contradiction, so TValI(Or()) = f.

Quantification: TV all (Exists?vy ...7on(p)) =t <= for somel*TVall*(p) =
t.

TVall(Forall?vy ... 7on(p)) =t < VI*TVall % () =t.

Here I'* is a semantic structure of the form < TV, DTS, D, Dind, D func, IC, I x
V. IF,INF,Ilist, Itail, I frame, Isub, [isa, I =, Iexternal, Itruth >, which is
exactly like I, except that the mapping I*V, is used instead of IV. I*V is de-
fined to coincide with IV on all variables except, possibly, on 7vy,..., 7un.
Rule implication: TV all(conclusion < condition) = t,

if either TV all(conclusion) =t or TV all(condition) = f.

TVall(conclusion < condition) = f otherwise.

Groups of rules: If " is a group formula of the form Group(y; ...p,) then
TVall(I') =t if and only if TVall(py) =t,...,TVall(p,) =t.

TVall(T') = f otherwise.

This means that a group of rules is treated as a conjunction. In particular, the

empty group is treated as a tautology, so TVall(Group()) = t.

Interpretation of Documents

Document formulas are interpreted using semantic multi-structures, which are
sets of closely related semantics structures. The need for multi-structures arises
due to the fact that a RIF-BLD document can import other documents and
thus is essentially a multi-document object. One interesting aspect of the multi-
document semantics is that rif:local symbols that belong to different documents

can have different meanings.

Definition 2.9. (Semantic multi-structure). A semantic multi-structure Tisa
set of semantic structures of the form J, I; iy, lio, ..., where I and J are RIF-
BLD semantic structures; and Iii,lis,etc., are semantic structures adorned
with the locators of distinct RIF-BLD formulas (one can think of these adorned
structures as locator-structure pairs). All the structures in I (adorned and non-
adorned) are identical in all respects except for the following:

The mappings JC,IC, I1Ci1,ICi9,... may differ on the constants in C that

belong to the rif:local symbol space.
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As will be seen from the next definition, the structure I in the above is used
to interpret document formulas, and the adorned structures of the form lik are
used to interpret imported documents. The structure J is used in the definition
of entailment for non-document formulas.

The semantics of RIF documents is now defined as follows.

Definition 2.10. (Truth valuation of document formulas). Let A be a docu-
ment formula and let Ay, ..., Ay, be all the RIF-BLD document formulas that

are imported (directly or indirectly, according to Definition Imported document)

into A, Let I',T'1,...,T';, denote the respective group formulas associated with
these documents. Let I = J I Iiq, ..., Ii,, ... be a semantic multi-structure
that contains the semantic structures adorned with the locators i1, ...,1, of the
documents Ay, ..., A,. Then we define:

TVall(A) =t if and only if TValI(T') = TValliy(Ty) = ... = TVallix(T,) =
t.

Note that this definition considers only those document formulas that are reach-
able via the one-argument import directives. Two argument import directives
are not covered here. Their semantics is defined by the document RIF RDF
and OWL Compatibility [RIF-RDF+OWL].

Also note that some of the I'; above may be missing since all parts in a document
formula are optional. In this case, we assume that ['; is a tautology, such as
And(), and every TV al function maps such a I'; to the truth value ¢.

For non-document formulas, we extend TVall (¢) from regular semantic struc-
tures to multi-structures as follows. Let I = J,I;... be a semantic multi-
structure. Then TVall(p) = TValJ(p).

The above definitions make the intent behind the rif:local constants clear: oc-
currences of such constants in different documents can be interpreted differ-
ently even if they have the same name. Therefore, each document can choose
the names for the rif:local constants freely and without regard to the names of

such constants used in the imported documents.
Logical Entailment

We now define what it means for a set of RIF-BLD rules (embedded in a group
or a document formula) to entail another RIF-BLD formula. In RIF-BLD we
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are mostly interested in entailment of RIF condition formulas, which can be
viewed as queries to RIF-BLD groups or documents. Entailment of condition

formulas provides formal underpinning to RIF-BLD queries.

Definition 2.11. (Models). A multi-structure I is a model of a formula, o,
written as I |= ¢, <= TVall(p) = t. Here ¢ can be a document or a non-
document formula.

Definition 2.12. (Logical entailment). Let ¢ and v be (document or non-
document) formulas. We say that ¢ entails 1, written as ¢ = 1, if and only if
for every multi-structure, 1 , I = o implies I = .
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3

From Description Logics to Answer Set Programming

3.1 Introduction

In this chapter we address an important problem, which arises from the huge
quantity of formalisms present in the Semantic Web: Integration.

Knowledge representation is a very important task for the Semantic Web, and
many of the formalisms introduced to that end are ontology-based (see e.g.
[5).

To accomplish this task, we will focus on some particular fragments. In partic-
ular, we will exploit the representation power of Description Logics, as well as
the reasoning power of logic programming.

The difficulties arise in choosing a “language family” which is nowadays suitable
to our end.

In this respect, the OWL language made recently a significant step towards solid
maturity after the introduction of the OWL 2 W3C Recommendation [52]. We
gave several details about OWL2 in the previous chapter. This recommendation
gives legitimate focus on fragments of the OWL 2 general language tailored at
efficient performance taken from different perspectives and/or reasoning tasks
[50]: classification of large ontologies (OWL EL), query answering (OWL QL),
and expressiveness tailored at rule-based axiomatization and implementation
(OWL RL). The OWL EL profile specifically identifies a fragment of OWL 2
(based on the description logic £L£++ [2 [B]) which sacrifices expressiveness-yet
preserving many constructs used in practical ontologies- but allows classifica-
tion in polynomial time.

The fragment ELH has a fair theoretical complexity also when conjunctive

query (CQ, in the following) answering is considered (P-time complete, [63]),



48 3 From Description Logics to Answer Set Programming

but this is beyond what is commonly considered the current complexity require-
ment for scalability on large ABoxes: roughly speaking, it is highly desirable
that conjunctive querying over ontologies comes at little or no additional cost
with respect to conjunctive querying over plain databases (recall that the data
complexity of CQ answering over plain databases is as elementary as the com-
plexity class ACy [7]). This computational complexity requirement has direct
impact on implementation of query answering, since it calls for overcoming
some peculiar technical difficulties: while the OWL QL profile, based on the
DL — Liter description logics, enjoys the so called FO-reducibility property, this
latter allowing scalable implementation on standard RDBMS systems, OWL2
EL does not enjoy this property [18].

On the other hand, the OWL2 RL profile allows a straightforward implemen-
tation via an axiomatization expressed in terms of FOL Horn clauses: this
latter enables the possibility of bottom-up materializing inferred information
in RDBMSs, via logic programming and/or deductive database tools. This is,
for instance, the approach taken by the Oracle 11g Database Semantic Tech-
nologies [70]. OWL2 EL lacks the possibility of a direct implementation like
the above, mostly due to the fact that unrestricted existential quantification
implies that, when inferred information has to be materialized in practice, a
possibly infinite number of new Skolem terms is obtained.

In order to demonstrate the practical viability of query answering on E£++
(or fragments/extensions thereof), a number of proposals has been devised,
aimed at circumventing these technical difficulties: in particular, in [47] it is
shown how 557—[‘1’” ontologies can be queried by pre-materializing a canonical
model which enlarges the database/ABox at hand. Furthermore, the query at
hand is appropriately rewritten (this latter step being independent from ter-
minological and instance data). This approach leads to the notion of combined
fo-rewritability, in which both Abox and Tbox are converted into a FO struc-
ture (an enlarged version of the ABox), which can be queried using traditional
first order queries (i.e. SQL).

As an alternative approach, in [55] query answering on the description logic
ELHIO™ is treated by a preliminary resolution step which eliminates Skolem
terms from the equivalent FO representation of the ontology at hand.

We focus in this thesis on the ELHT description logic, which covers most of the

basic constructs of OWL EL, plus inverse roles. We propose a newly-devised



3.1 Introduction 49

approach to Conjunctive Query answering, which takes new significant steps to-
wards a viable implementation using (deductive) database technologies and/or
logic programming techniques.

In particular:

1. TBoxes are rewritten into a set of corresponding Horn clauses, possibly
containing function terms: the corresponding class of logic programs —called
ELHT- is identified and its properties analyzed.

2. We show that queries on ELHZ-programs can be answered against a fi-
nite portion of their ground instantiation, which is only polynomially larger
than the original ABox. As a by-product result, we show how conjunctive
querying in this class of programs can be finitely evaluated, thus enlarg-
ing the family of fragments of logic programming [26), 27, 15, @] for which
decidability of querying, even in the presence of function symbols, is known.

3. Function terms are neither eliminated nor pre-processed in any
way. Our approach can be directly implemented:

e over rule-based systems, provided that function terms or some form of
value invention is supported (the language fragment herein considered
is fully supported by solvers like XSB [65] or DLV [42]); or

e directly over DBMS systems, by a stored procedure which iteratively in-
vokes a series of SQL queries, producing a polynomially-bounded number
of new values.

4. The approach lend itself to two query-evaluation strategies:

e Pre-processing with storage of inferred information. Notably, and despite
the presence of function terms, a materialization step which computes
the least model of the finite ground logic programs needed for answering
CQs, has only logspace complexity in the size of the ABox. Such a model
is polynomially larger than the original ABox.

e On-the-fly evaluation of queries: The non-ground ELHL program corre-
sponding to the TBox can be stored together with the original ABox,
avoiding the pre-materialization step. Then the program can be evalu-
ated on a query per query basis. Known optimization techniques, such
as magic sets [], allow to significantly reduce the size of data processed
when submitting queries.

It is known that the first approach might be space-consuming and system

bootstrap times might be non negligible when large ABoxes are loaded,
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although small updates are usually performed in significantly shorter time:
if storage space is a constraint, the second strategy might be desired.

5. Fast proof-of-concept prototyping: we show how our approach can be fast
prototyped using existing technologies [23], [I, 42]. In particular, reasoning
on knowledge bases can be axiomatized by meta-rules which can be declara-
tively specified, and subsequently evaluated on a rule-based system. Prelim-
inary experimental results reveal encouraging performance of our prototype,

despite the lack of ad-hoc optimizations.

3.2 The description logics fragment: ELHI

We are going to introduce the fragment in use for our project. We reintroduce
syntax and semantics, specialized to the case, in order to better exemplify the

subsequent techniques.

3.2.1 Basic language.

We consider the description logic ELHT extending the basic ££ 2] language
with inverse roles, and role ContainmentE] It is given a set N¢ of atomic concept
names, a set Np of atomic role names, and a set Ny of constant (individual)
names. If R is an atomic role, then a basic role can be either R or R™. A basic
concept can be of the form A, T, dR.A, or B By, where By and By are basic
concepts, R is a role and A is an atomic concept. A TBox 7T is a set of concept
(resp. role) inclusion assertions of the form By C By (resp. Ry C Rs), where
Bj and Bs are basic concepts (resp. Ry and Rg are basic roles). Without loss
of generality we assume that axioms in a TBox 7T are of the form A C B,
ANBCC,ACdR.B,dRAC B, dRTC B, BCLJdR.T,PC S, R C S,
and RC S~ for A, B, C atomic concepts, R an atomic role and P and S basic
rolesE] An ABox A is a set of membership assertions in two possible forms: A(a)
and R(a,b), where A is a concept, R is a role and a,b are individuals from the
domain N7. A ELHT knowledge base is defined as KB = (T, A), where T is a
TBox and A is an ABox.

! This language basically covers most of OWL-EL, and includes in addition inverse roles.
2 An equisatisfiable TBox of this form can be obtained from a general £LHZ TBox by
applying a number of syntactic substitutions.
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’c‘,’E”HI axiom H‘FOL sentence F(H) ‘Rule set L(F(H)) ‘
Aa) A(a) A(a). (R1)
R(a,b) R(a,b) R(a,b). (R2)
ACB VzA(x) — B(x) B(X) + A(X). (R3)
ANBLCC Ve A(z) A B(x) = C(z) C(X) «+ A(X),B(X). (R4)
AC3R.B VeA(z) — [ByB(y) A R(z,y)]|B(fa(X)) + A(X). (R5)
R(X, fa(X)) < A(X).
JR.AC B Vz[dyA(y) A R(z,y)] — B(x)|B(X) < A(Y), R(X,Y).(R6)
JR.TLCB Vz[dyR(x,y)] — B(x) B(X) «+ R(X,Y). (RT)
BC3RT VaeB(x) — [FyR(x,y)] R(X, fa(X)) + B(X). (R8)
RC S or
R-CS™ Va,y R(z,y) — S(z,y) S(X,Y) « R(X,Y). (R9)
RC S or
R-CS Vz,y R(y,z) = S(z,y) S(X,Y)«+ R(Y,X). (R10)
[FOL Query Q(X) [Rule £(Q(X)) |
Y (X)) A A gn(Xy) ansg(X) < (Q1)
QI(XI) A A Qn(Xn)

Table 3.1: Semantics of ELHT given in terms of corresponding FOL sentences.
For an axiom A in the form A C dR.B, f4 denotes a fresh function symbol.
Analogously, for a query @, ansg denotes a fresh predicate name.

We give the semantics of a ELHTZ knowledge base in terms of a conjunction
of first order sentences. In particular, in Table each ELHT axiom H is
associated to the corresponding first order sentence F(H). The semantics of
KB is given by its corresponding first order theory F(KB) = Apycr F(H) A

NmeaF (H).

3.2.2 Queries.

A conjunctive query Q(X) (or simply, query) is a formula Y ¢1(X1) A ... A
qn(Xy,), where: (i) {q1,...qn} € Noc UNpg; each X;(1 < i < n) is a list of
variables and constants, having according arity with the corresponding ¢;. (%)
X is the non-empty list of free variables of Q(X), while Y is the remaining list
of bound variables of Q(X). We assume @ is connected, that is there exist a
permutation P of its atoms such that if ¢; precedes ¢; in P then ¢; and ¢; have
at least one variable in common. Let k be the arity of X. An answer to Q(X)
over a knowledge base KB, is a k-tuple of constants of N7 such that F(KB) =
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Q(z1,...,xx). We denote the set of answers to Q(X) as ans(Q(X),KB). A

particular case of query answering is Instance Retrieval (IR) in which n = 1.

3.2.3 Logic Programs

We refer here the general concepts regarding logic programs HLP, seen in 2
adding some details which are necessary in this chapter.

A logic program P is a set of closed universally-quantified FOL formulas (called
rules) of the form [44]:

T a(Xo) — bl(Xl), .. ,bn(Xn)

For ease of notation, we omit universal quantifiers while ‘)’ stands for ‘A’. ﬂ Ina
rule 7 the atom a(Xy) is called head, while the conjunction b1(Xy),...,b,(X,)
is called body. The set of atoms appearing in the body is denoted by B(r), sim-
ilarly, H(r) denotes the head of . A rule is safe if all the variables occurring in
H(r) also occur in some atom of B(r); in the following, we assume that rules

are safe. An atom (resp. rule) is said to be ground if it does not contain variables.

The semantics of a logic program P is usually given in terms of its minimal
Herbrand model denoted by LM (P). More in detail, let Up be the set of all
ground terms that can be built combining constants and functors appearing in
P. Up is called the Herbrand Universe of P. The Herbrand Base of P, denoted
by Bp, is the set of all ground atoms obtainable combining predicate names
occurring in P with elements from Up. Given a ground atom a(ti,...,t,) we
denote by NL(a(ty,...,t,)) the number NL(a(t1,...,t,)) = maxo<i<nNL(t;)
(n > 0). The set of all ground instances of the rules of P w.r.t. the universe Up,
denoted by Ground(P,Up), is called (ground) instantiation of P. An Herbrand
model M is a subset of Bp such that, for each r € Ground(P,Up), H(r) € M
or there is an atom a € B(r) such that a ¢ M. M is a minimal model if there
does not exist a Herbrand model N of P such that N C M. Given an atom a
(resp. a set of atoms S), we write M=ppaif a € M (resp. Ml=ppS if S C M),

3 Note that logic programs are by default interpreted under Unique Names Assumption
(UNA), while, in principle, the semantics of ££LHZ knowledge bases could be given in
terms of FOL theories without UNA. This latter choice has no impact on the description
logic herein considered, we thus assume semantic of ELHZ knowledge bases is given in
terms of FOL theories with UNA.
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otherwise M~ pa (resp. M~rpS). A logic program P is guaranteed to admit
a unique minimal model LM (P), which coincides with the intersection of all
its Herbrand models [44].

We recall some, easy to prove, relevant properties of logic programs. Hereafter
we assume that a program P is given. Note that Up, as well as Ground(P,Up)
and LM (P), might be infinite.

Proposition 3.1. For each U C Up,
LM (Ground(P,U)) C LM (Ground(P,Up)) = LM (P).

Let be Uy = {t € Up|NL(t) < k}, k > 0, we denote by LM (P) the minimal
model of the program Ground(P,Uy). The following properties hold.

Proposition 3.2. (i) for 0 < i < j, Ground(P,U;) C Ground(P,U;) and
LM ;(P) C LM ;(P); and (ii) for each atom a € LM;(P), NL(a) < i.

Given a set I C Bp, we say that a ground atom a is supported in [ if there exists
a supporting rule r € ground(P,Up) such that the B(r) C I and H(r) = a.

Let P be a ground program and a € P be a ground atom. A rule defining a
in P, is a rule r € P such that H(r) = a. The program P, defining a in P is
the smallest program P, C P, such that it contains all rules defining a in P,
and for each b € B(r), r € P,, P, C P,. The atom a is well-supported in I if
there exists a strict well-founded partial ordering < on elements of I such that
there exists a rule r € Ground(P,Up) with H(r) = a, body(R) C I and for
any b € B(r), b < a. I is well-supported if all its atoms are well-supported. The

following known result holds

Theorem 3.3. [29] For a logic program P, LM (P) is well-supported.

3.3 ELHI-Programs

We now illustrate how ELHZ knowledge bases can be translated to to cor-
responding logic programs. We then define and focus on the class of ELHZ-
programs and show some of their properties.

Given a ELHT knowledge base KB, the corresponding logic program L(F(KB))
is defined as In Table [3.1] For each type of axiom H it is reported the corre-
sponding FOL formula F(H) and, for each formula F(H) it is reported the
corresponding logic program L(F(H)) obtained by standard Skolemization.
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For ease of notation, we assume that both the predicate vocabulary of F(H)

and L(F(H)) contain N¢ and Ng. The logic program corresponding to B is:

L(F(KB) == | £(F(H)).
HeKB

We recall the following.
Theorem 3.4 ([44]). Let KB be a ELHT knowledge base then:

o F(KB) satisfiable = L(F(KB)) has a minimal model;
o F(KB) unsatisfiable < L(F(KB)) is unsatisfiable.

In general, the LM (L(F(KB))) is not finite minimal model as shown in the

following example.
Ezample 3.5. Let consider the knowledge base K = {A C 3JR.A, A(c)}, thus the
corresponding L(F(K)) is

A(fa(X)) < AX).  R(X, fa(X)) < AX). A(o).

The minimal model of P is

{A(C)v A(fA(C)), R(Cv fA(C))v A(fA(fA(C)))7 R(fA(C)7 fA(fA(C)))v .- }

which is infinite. |

Note that the binary predicates occurring in LM (L(F(KB))) contain terms

having a specific form as we will see later.

Definition 3.6. A ELHT-program P is a logic program containing set of rules
in the form (R1)-(R9) (Table and (possibly) one rule in the form (Q1).

It is easy to see that a £LHZ-program is into one-to-one correspondence with
a ELHT knowledge base.

Lemma 3.7. Let P be o ELHI-program, then for each binary predicate R oc-
curring in P such that R(t1,t2) € LM (P), it holds that [N L(t2) — NL(t1)| < 1.

Proof. (Sketch). As shown in Table[3.1] the binary predicates can be supported
in LM (P) only in rules of the form (i) R(a,b) for NL(a) = NL(b) = 0, for which
the Lemma trivially holds; (i) R(X, fa(X)) < B(X) and R(fa(X),X) «
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B(X): in this case, ground rules obtained by these two rules form can support
only atoms in the form R(¢, fa(t)) or R(fa(t),t), for which the Lemma holds;
and, (%) R(X,Y) «+ S(X,Y), R(X,Y) < S(Y, X): for this two form of rules
note that, when grounded, they can in principle support an atom a = S(¢1, t2)
for which |NL(t2) — NL(t1)| > 1. Note however that a cannot be well-supported:
thus it cannot appear in LM (P) by Theorem

3.4 Query answering

In this section we show how query answering on a ELHZ knowledge base can
be done in practice by exploiting the corresponding £ LHZ-program L(F(KB)).
A query Q(X) on KB can be rewritten in the rule £(Q(X)) as shown in the
Table [3.1], and the following holds:

Theorem 3.8. Let KB be a ELHT knowledge base, QQ be a query on KB, and

Z1,...,Ty be constants occurring in KB, then
(x1,...,25) € ans(Q(X),KB) & ansg(x1,...,x;) € LM((L(F(KB)))UL(Q)).

Proof. ansg(x1,...,zx) ¢ LM((L(F(KB)))UL(Q(z1,...,2k))) < the body of
(L(Q(x1,...,x))) is not satisfied in any model of L(F(KB)) < F(KB) A
—Q(x1,...,x) is satisfiable & F(KB) = Q(z1,...,zk) < (z1,...,2n) ¢
ans(Q(X), £B). |

Theorem states that query answering on a knowledge base B can be done
via query answering on the corresponding ELHZ program. Despite the pos-
sibly infinite size of LM (L(F(KB))), we now show that query answering on
L(F(KB)) can be done by considering only a finite subset of its ground instan-
tiation. To this end we introduce the notions of inclusion graph and existential
depth. In the following, we assume that a ELHZ knowledge base KB = (T, A)

is given.

Definition 3.9 (Inclusion Graph). The Inclusion Graph (IG) of KB is a
labeled directed graph IG = (V,E) having a node in V' for each concept/role

occurring in T, and:

o an arc (C,D,n) isin E for each ariom C T D in T;
e arcs (R,C,n),(B,C,n) are in E for each aziom IR.BC C in T;
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e arcs (B1,C,n),(Ba,C,n) are in E for each axiom BN By T C in T,
e arcs (C,R, f),(C,B, f) are in E for each aziom C T 3IR.B in T.

Let p be a simple path in IG, the f-length of p, denoted by |p|, is the number
of arcs e = (a,b,l) of p such that £ = f.

Example 5.10. Let consider the knowledge base:
AC3JR.B BC3JR.C JRCLCB

The corresponding inclusion graph IG = (V, E, ¢) is as follows: V = {A, R, B, C'},
E={(AR,[),(AB,f),(B,R,f),(B,C,f),(R,B,n),(C, B,n)}. The f-length
of p=<(A R, f),(R,B,n),(B,C, f) >is [p| = 2.

Definition 3.11 (Existential Depth). Let IG be the Inclusion Graph of KB
and, E be a concept or a role. The existential depth of E is defined as follows:

ED(E) = max p|

where @ = {p| p is a simple path in IG with E as ending node}.

Ezample 3.12. Consider the knowledge base of Example the existential
depth of concept C'is ED(C) = 2.

The role played by the existential depth of a concept become clear in the
following Theorem. We now show that instance retrieval of a concept/role can
be done by computing only a finite portion of LM (L(F(KB)), corresponding
to LMo(L(F(KB)) for a role R and corresponding to LM gp(cy(L(F(KB)) for

a concept C.

Lemma 3.13. Let P = L(F(KB)) be a ELHI-program, then:
(I)if R(tl,tg) < L]W(P) with NL(R(tl,tg)) =0 then R(tl,tg) S L]W()(P)

(2)if C(t) € LM(P) with NL(t) = 0 then C(t) € LM pc(P);

Proof. (1) Since NL(t1) = NL(t2) = 0, the program defining R(t1,t2) in
Ground(P,Up) does not contain function symbols. From hypothesis R(t;,t2) €
LM (P) it then holds that R(t1,t2) € LMo (P).
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(2) We proceed by induction, that is we demonstrate that the implication holds
when ED(C) = 0 (base) and, then we show that the thesis follows for ED(C) =
n if the thesis holds for each ED(C') < n (induction).

(base) If ED(C) = 0 then the program defining C(¢) in Ground(P,Up) does
not contain function symbols, therefore C(t) € LMo (P) and the thesis follows.
(induction) Assume that, for each concept E in KB such that ED(E) =i and
and E(t) € LM (P) it holds that E(t) € LM ;(P), for each i < n.

Suppose that ED(C) = n, C(t) € LM(P), and C(t) € LM ,+1(P) but C(t) &
LM, (P).

Next, we show that in this case ED(C) should be n + 1 contradicting the
hypothesis.

Since C(t) € LMp4+1(P) and C(t) ¢ LM,(P), there must be a rule r €
Ground(P, Uy,+1) supporting C(t) such that LM, (P)rpB(r) and

LMy 1 (P)=LpB(r).

By Lemma [3.7], if we look at Table r can be of the forms: (a) C(t) +
Eq(t); or (b) C(t) < Ei(t), Ea(t); or (c) C(t) < Ri(t,t1); or (d) C(t) «
Ri(t, fa(t)),Ci(fa(t)). Note that, both in case of rules of the form (a) and
(b), it holds Ej(t) ¢ LM, (P) (otherwise C(t) € LM (P), since NL(E;(t)) =
NL(C(t))), j = 1,2. Moreover, also in case of rules of the form (c¢), Ri(t,t1) ¢
LM, (P), from hypothesis LM, (P)LpB(r).

Therefore, there must be a rule 1 such that LM, 1 (P)ErLpB(r1), which be-
longs to the program defining C(t) in Ground(P,Uy+1), of the form:

ri: O(t) < Ra(t, f5,(1)), Cr(f5, (1))

where C corresponds to a concept C, which can either be C itself or C is
subsumed by C in KB and C is defined by a set of axioms C = C U---UC,
(z > 1) of the form:

C {Kl E KQ} or
" {EiNKy C Ky, K C Ko, K C Ko}
Note that rule r; corresponds to the axiom A; := dR;.C; C C_’E] Since

LM n(P)#LpB(r1) then Ri(t, f5,(t)) ¢ LMn(P) or Ci(f5,(t)) ¢ LMn(P).
We now show that Ry(t, fp,(t)) € LM, (P), thus Ci(f5,(t)) ¢ LM, (P). By

4 Note that, r1 can be of type (d).
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looking at Table .1 we have that Ri(t, f,(t)) can be supported only if in
Ground(P,Uy41) there is a rule of the form:

re1: Ri(t, fg,(t)) + Q1(t)

where R; denotes either Ry itself or a relation R; subsumed by R; trough a
sequence of axioms in KB of the form S’ C S”. The rule re; corresponds to the
axiom B; := Q1 T 3R,.C} (note that function symbol fp, can be generated only
by an axiom involving Cj of this form) and, thus ED(Q) < ED(C)—1=n—1.
Suppose that Ri(t, fz,(t)) ¢ LM, (P) then by rule re;, Q1(t) ¢ LM, (P), but,
from the inductive hypothesis applied to Q1(t), we have that KB [~ Q(t),
therefore Q(t) ¢ Mg, for each g > n — 1. Since rule re; is the only rule that
allows for deriving Ry (¢, f, (t)), then it must be the case that Q(t) € LM, (P),
and also that Ry(t, fg, (t)) € LM, (P). Since Ri(t, f5,(t)) € LM,(P), and
LM, (P)rpB(r1) we have that Cy(fg, (t)) ¢ LM, (P).

Now, the same considerations made for C(t) (i.e., there must be rule like 1)
can be done for C1(fp,(t)), and so there must be a rule o € Ground(P,U,+1)

of the form:

T2 C_l(fBl(t)) <~ RQ(fB1 (t)vaQ(fB1 (t)))702(f32(f31(t)))

corresponding to the axiom Ay := IRy.Cy T (4, such that

RQ(fBl(t)vaz(fB1(t))) € LMy(P) and C2(f82(f81(t))) ¢ LM, (P), and so on
for each 1 < k < n there must a rule ry € Ground(P, U,41) of the form:

rig1 : Crlty) < Rig1 by fBsr (tr))s Crgr (fB,4 (1))

where ti, = fg, (fB,_, (.- (fB,(t)), corresponding to an axiom of the form Ay, :=
IR}y41.Cry1 C C. Moreover, each Ryy1(tg, fur1(tr)) is derived from a rule of

the form:

rer1 : Ri1(te, By, (tr)) < Qrra(te)

corresponding to the axiom Byi1 := Qp+1 C EiRkH.C_’kH.

For each k < n we have that Ci(ty) & LMnp(P) A Rig1(tk, fBe,, (t) €
LM (P) N Cry1(fBy., (tr)) ¢ LM, (P); whereas, for k = n since the atom
Ryi1(tn, [B,41(tn)) & LM, (P) (having nesting level n 4 1), then

Rp, .\ (tn, fB,.1 (tn)) is derived in Ground(P,Upy1) from rule re,41. Thus, by
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construction of KB we have that ED(C) = n + 1, which contradicts the hy-
pothesis. |

Theorem 3.14 (Instance Retrieval). Let C be a concept, R a role, and t1,ts

be constants, then:

1. <t1> € CLTZS(C(X),ICB) <~ O(tl) S WED(C);
2. <t1,t2> S ans(R(X, Y),’CB) = R(tl,tg) € LMy;

Proof. Thesis follows from Lemma and Proposition [3.1]
The above result can be extended to general conjunctive queries.

Lemma 3.15. Let P = L(F(KB)) then:

(1)if C(t) € LM(P) then C(t) € LM, (P) where n = NL(t) + ED(C);
(2)if R(t1,te) € LM(P) then R(t1,t2) € LM, (P) where n > NL(R(t1,t2)) +
ED(R).

Proof. Suppose that C(t) € LM(P), ED(C) = n, NL(t) > 0 and C(t) ¢
LM gpcy+NL@)—1 but C(t) € LM gpc)+nL(); following analogous considera-
tion done to prove Lemma(3.13] only a rule r, of the following form can support

C(t) in Ground(P,Ugpc)+NL)):

Tn t Cn—l(tn—l) — Rn(tn—la an(tn—l))aCn(an(tn—l))‘

here t,,—1 = fn, ,(fB, (... (fB,(t)) with NL(t,,—1) = n—1+ NL(t), therefore
I8, (tn-1) € Ugpc)+nL@) and r, € Ground(P,Ugpcy+nL())- This means
that C(t) € LM gpoy+nL)(P) if C(t) € LM (P).

(2) If R(t1,t2) € LM(P) and NL(t;) = 0, i = 1,2, R(t1,t2) € LM, and
ED(R) = 0 as shown in the Lemma [3.13] If NL(t;) > 0, there must be a rule
r1, supporting R(t1,t2), of the following form:

r1: Ri(t, fate)) < Q(1).

where R; denotes either R itself or a relation R; subsumed by R; trough
a sequence of axioms in KB of the form S’ C S”. Therefore, ED(R) =
ED(Q) + 1 from the Definition 3.11] Moreover, Q(¢t) € LM}(P), where
k = ED(Q) + NL(t), from item (1). Therefore, the rules supporting Q(t)
are active in Ground(P,Uy). Therefore,
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Consequently,
hen R(t1,t2) € LM ,,(P) where n > k+ED(R), and k = maz{NL(t;)|i = 1, 2}.

Definition 3.16 (Level Mapping). Let Q := ¢(Xo) < ¢1(X1),...,q2(Xy) a

query on an ontology K there is a level mapping || ||q defined as follows:

1. for any |lq:[p]|| = 0, if ||g:[p]|| € Xo;

2. for any [lq:[p']|| = lla;[p"]l| if @ilp'] == ¢;[p"];
3. for any ||@:[p'll] < lalp"l] o 0" < p".

4- laill = ll@i[1]l] if concept

5. aill = llai[2]]] if role

1QI = maz||gl|.

Lemma 3.17. Let K be an ELHL knowledge base, R be a role in IC, and
ED(R) = m. Therefore, for each atom R(ti,ta) € LM(L(K)) such that
NL(R(t1,t2)) = n holds that:

1. R(tl,tg) S Wm_1<£<IC)) iﬁm >n,
2. R(tl,tg) S Wm+n(£(’C)) szm < n.

Proof. Next we denote L(K) by P and LM, (P) by M,.
Note that, if K = R(t1,t2) where n = 0 then R(t1,t2) € LMo(P). Suppose
that n = 1, K = R(t, f(t)), R(t, f(t)) € My+1 and R(t, f(t)) ¢ M,,. Since
R(t, f(t)) € My,+1 holds, there exists a ground rule r € Ground(P,Up,+1) of
the form:

r: R(t, f(t)) < Ci(t)

where R denotes either R itself or a relation R subsumed by R trough a sequence
of axioms in K of the form S’ © S”. Rule r; derives from an axiom of the
form A; := C; T 3R.Cy. Therefore, from definition of the existential depth,
ED(Cy) = ED(R) — 1. Therefore, C1(t) € My—1. Since NL(t) = 0 then
r1 € Ground(P,Uy,—1) and R(t, f(t)) € My,—1.

where ED(Cy) =m —1

Lemma 3.18. Let K be an ELHL knowledge base and C' and R be a concept
and o role in IC then
1. If K = C(t) then C(t) € LM ,,(L(K)) where n = ED(C) + NL(C(t));
2.If K = R(t1,t2) then R(ti,t2) € LM,(L(K)) where n = ED(R) +
NL(R(t1,t2)).
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Proof. (1.) If NL(t) =0 and ED(C) =n, C(t) € M,
Suppose that the thesis holds for NL(t) = m — 1 and let NL(¢) = m. From
the construction of Pg, the following ground instance of the rules r; are in the

program Pc C Ground(P,U) supporting C(t):

Tht1 0 Chk(tmak) < Rit1 (bmtks Fntbr1 (Emtk))s Cotr (Frntkr1 (b))

where NL(ty,4x) = m + k, for each k = 1,...,n; — 1. Therefore, Po C
Ground(P, Uy, +m) and, since C(t) € M thus C(t) € My ym,.

Theorem 3.19 (Conjunctive Query Answering). Let K be an ELHT
knowledge base, Q = q(Xo) < q1(X1),...,q.(Xy) be a conjunctive query,
m = max{ED(q)|i = 1,...,n} and j the number of roles appearing in B(Q)
then

K E q(co) < q(co) € LMp(L(K)) k=j+m

where N L(co) = 0.

Proof. (<) Obvious. (=) Since K |= q(co) then K = q1(c1) A. .. Agn(cy). If all
gi are concepts, then NL(¢;) =0 for each 1 < i <n.

If @ contains roles, then they are of the form ¢;(t, f(t)) where NL(t) = k,
k> 0.

Note that, if ED(q;) = i1 and NL(cj) = i then gj(cj) € LM, 14,. Therefore,
let imaz = maz;, yiex) then {qi(c1)...qn(cn)} € LM,

3.5 Complexity

Theorem 3.20. [ is given an integer k. For a concept or role CR appearing in
a ELHT knowledge base KB, deciding whether ED(CR) > k is NP-complete.

The above can be shown, e.g., by reduction to the Longest Path Problem (see
[30], problem [GT23]). Note however, that, under data complexity regime, for
KB = (T, A), we can assume 7 fixed and compute required values of ED()
once and for all. In the cases in which this computation is not desirable, note
that the existential depth is bounded by the number Maxz of axiom of type
A C JR.C belonging to KB, and in virtue of Theorem regarding depth,
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Theorem 3.21. Given ELHT knowledge base KB = (T, A), and an integer k,
G = grnd(L(F(KB),Uy) has size O(|A*|T|s***2) where s is the number of
azioms of type A T AR.C in T. G can be computed in LOCGSPACE in the size of
A.

Proof. As intermediate result, note that Pr = L(F(T)) has size linearly pro-
portional to the size of T, while P4 = L(F(.A)) is at most a syntactical variant
of A; clearly, Ground(Pya,Uy,) = Pa. Now, Uy, consists of | A|s**! different sym-
bols while each rule » € Pr contains at most two variables ranging over Uy: the
number of ground instances of r is thus in the worst case bounded by (|A|s**1)2.
G can be easily generated by maintaining a fixed number of log-space counters
ranging over elements of Uy and rules of Pr. It is also easy to see that one can
avoid storing Pr and Pj, as intermediate byproducts of the computation (or,
standard composition techniques for LOGSPACE algorithms can be applied, see
e.g. [53]). Hence the result.

3.6 System Prototyping

In this section we show how we managed fast prototype a proof of concept
system. More details will follow later, about the implementation issues and
solutions. The workflow of this latter is the following:

an input ABox A and a TBox T are given in OWL format; the DLVHEX system
[23] takes in input: A and T in form of a triple stream, and a logic program
S tailored at converting A and T into set of logic facts A’ and T’. In order to
obtain Ly = L(F(T)), we exploit the DLT system [I] which takes in input 77,
a set of meta-axioms S and outputs Lp. Meta-axioms are expressed using the
higher order syntax accepted by DLT, such as, for instance

S(Y,X) « R(X,Y),inverseO f(R, S)@ont.

which, when instantiated over actual role names r and s, produce the logic
program rule s(Y, X) < r(X,Y).

Ly and A’ can be then used by a logic programming solver such as DLV [42].
This latter system allows to generate G = Ground(Ly U A’, Uy) for a fixed
k. k can be determined in terms of the maximum existential depth of T" and
query length. LM (Gr) can be then generated and stored for subsequent fast

query answering.
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In alternative, for a given query @, it is possible to apply the magic set trans-
formation M(Lr,Q) [5] on Ly and @, and compute LM (ground(M (L U

A/, Q)v Uk))

3.7 Remarks and Related Work

The approach shown in this chapter has clear points of contact with a) former
research on query answering over different supersets of ££ [3], 47, 55]; also,
ELHI-programs have a remarkable connection with b) other attempts of iden-
tifying fragments of logic programming whose presence of function terms does
not affect decidability of querying [15l O 27, 26] and with ¢) reasoning with
chase techniques [14] [63], [64].

As for the first category, this paper tackles the issue of query answering on £L£
from a different perspective: with respect to [55], we deal directly with Skolem-
ized logic programs and we do not require a function symbols elimination step.
For what implementation is concerned, this allows the elimination of an in-
termediate resolution module: obtained £LHZ-programs can be directly piped
towards current logic programming engines with little or no modification at all.
Similarly with [47, B], our approach can be seen as one exploiting the property
of combined FO rewritability which ELHT knowledge bases enjoy. Note that in
[47] it is suggested to permanently store a pre-computed canonical model Ty
of the knowledge base I at hand. Answering a query ¢ by checking whether
Tx = q is not sound however, thus ¢ is properly rewritten into a query gx
in order to regain soundness. Similarly, we can opt for storing implicitly the
model Ly = LM (L(F(K))) for k a bound depending on the existential depth
of K and the maximum allowed size of queries. The size of Ly is comparable to
|Zx|): also, queries do not require rewriting and can be directly answered (in
AC) data complexity [7]) over Ly. Furthermore, we can opt for storing L(F(K))
only (whose size is linear in the size of K) and perform on demand reasoning
on a query per query basis.

As for point b) above, it is worth noting that recently much work has been
devoted to the identification of classes of logic programs, mostly under answer
set semantics, for which at least some form of reasoning is decidable in spite of

the presence of function symbols. Example of this research are finitely-ground
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(FG) programs [15] and finitely recursive programs [9]. Given the relationship
between existential restrictions and function symbols, often such kind of re-
search has been partially inspired by description logics, such as in the case of
FDNC programs [27] and bidirectional programs [26]. For space reason we can-
not report the formal definition of the abovementioned classes and we remaind
the reader to the corresponding papers: it is however worth remarking that
ELHT programs are not directly comparable with any of the above classes,
thus constituting a new fragment of logic programming for which query an-

swering is proven to be decidable.
Theorem 3.22. The following hold:

1. P €eELHI# P € FG;

2. P eELHIA P € FDNC;

3. P e ELHI P is bidirectional;

4. P eELHI#A P is finitely recursive.

Proof. Proof can be easily given by counterexamples: note that the ELHT
program of Example is not FG and also not FDNC. The ELHZ program
{r1 + R(X, fa(X)) < A(X)., 72 : B(fa(X)) < A(X)., f : A(a).} is not
bidirectional, while the ELHZ program {r : B(X) «+ A(Y),R(X,Y). f :

A(a).} is not finitely recursive.

Eventually, it is worth noting that our work has relationship with chase tech-
niques used in the relational database field: it can be seen that ELHZ-programs
can be ported to equivalent Guarded Tuple Generating Dependencies [14]; also,
it has been shown how chase can be applied for answering conjunctive queries
under £L [63]: as a remarkable difference, note that chase rules require a spe-
cific order of application, and they can not be straightforwardly specified in a
declarative way. In [64] it is identified a bound in the number of Skolem terms
necessary for building a finite chase in the case of databases with inclusion
dependencies (these latter include as a special case £L existential restrictions).
Such a bound depends on the number of atoms and occurrences of existential
variables in the query at hand and on the number of attributes affected by
inclusion dependencies; note that our similar notion of existential depth de-
pends also on how existential restrictions are structurally related in TBoxes,
and might enforce in practical cases a smaller bound. It is matter of future

research to investigate about relationship among the two notions.
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Implementation and Testing

4.1 System Prototype

To implement the aforementioned techniques, we have realized a system proto-
type, which relies on several technologies. Next we will give a short descriptions
of the main components of such system, pointing out the particular features it
has been given to better fulfill its end.

The input to the system is an Ontology O, and a query @ over such ontology,

onologyzFects | P Modules Processor

/
\\cmﬂ \\ cuﬂ tﬂm@ Query Answer

Fig. 4.1: The System Prototype

which in general is a conjunctive query. The ontology must obey the rules and
constraints of the description logics in use. In our case that is ELHZ, which we
described in detail earlier in this thesis.

The system consists of various components:

¢ Ontology2Facts
e Modules Processor
e Optimizer

e Answer Set Solver
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Next we will describe them in detail.

4.1.1 the “Ontology2Facts” component

The original ontology, as well as the query, is usually expressed in RDF-like
syntax (and structure). Actually it is a sequence of triples, describing concepts,
roles and instances. This component performs the translation of the ontology
and query into facts. To this end, it employs the power of dlvhex. In particular,
we have used an external atom called rdf, the function of which is to retrieve
ontology data from an URL (the ontology URL) and inject it in a normal logic
atom. This

The so generated atoms are in turn converted into simple facts, named after the
keywords of the ontology language, i.e. the names used to recognize a class from
an object, etc. For example, if we give the system an RDF file corresponding

to the following ontology:
dr.d; C do

sCr

dl T dy

The system returns the following higher order facts program:

Frpx :
existsInConcept(r, dy, dz).
subPropertyO f(s,).
subClassO f(d1, dz).

This is realized using two separate modules: Fact Translator and Translator,

which we report:

FactTranslator:It transforms the ABox in unary and binary facts.

triple(X,Y,Z) < &rdf[URL|(X,Y, Z).
C(X) « triple(X, “rdf : type”,C),C'! = “owl : Ontology”.
P(X,Y) < triple(X, P,Y), P! = “rdf : type”, P! = “owl : imports”.

Translator:It Transforms the TBox in a set of facts, according to what is found.
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triple(X,Y, Z) < &rdf[URL](X,Y, Z).

subPropertyO f(P, Q) < triple(P, “rdfs : subPropertyOf”, Q).
subClassOf(C, D) <« triple(C, “rdfs : subClassOf”, D).
range(P, R) < triple(P, “rdfs : range”, R).
domain(P, D) < triple(P, “rdfs : domain”, D).
label(P, L) < triple(P, “rdfs : label”, L).
type(O, T) <« triple(O, “rdf : type”,T).

“—

inverseO f(P, R) triple(P, “owl : inverseOf”, R).

someValuesFrom(B, R, C) < triple(B, “owl : someValuesFrom”,C),
triple(B, “owl : onProperty”, R),
type(B, “owl : Restriction”).

class(C) < triple(C, “rdf : type”, “owl : Class”).
property(P) <+ triple(P, “rdf : type”, “owl : ObjectProperty”).
property(P) <« triple(P, “rdf : type”, “owl : DatatypeProperty”).
intersectionO f(A, B, C) < triple(A, “owl : intersectionOf”, L),
triple(L, “rdf : first”, B), triple(L, “rdf : rest”, C).
intersectionO f(C, D, E) <+ intersectionOf(A, B, C), triple(C, “rdf : first”, D),
triple(C, “rdf : rest”, E), E! = “rdf : nil”.
equivalentClass(C, D) <+ intersectionO f(A, B, C), triple(C, “rdf : first”, D),
triple(C, “rdf : rest”, “rdf : nil”).
complementO f(C, D) <+ triple(C, “owl : complementO f”, D).
transitive(R) < triple(R, “rdf : type”, “owl : TransitiveProperty”).

4.1.2 Modules Processor

The end of this component is to combine the facts generated with the semantic
rules defining the description logic fragment in use. For this reason, we need
a ruleset for each constructors of ELHZ. This component relies on the higher-
order capabilities of ASP.

We report next the various axiomatic modules necessary for ELHZ. They cor-
respond to the ones seen in 3] but have been adapted to use the keywords of the
OWL2EL language. This is necessary since real-word ontologies are written in
such languages. The keyword “someValuesFrom” corresponds to 3 ; the inverse
roles have been simulated with two rules which state that if 1 is the inverse of

ro, it must also be true that 7y is the inverse of 7.
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D(X) — C(X), subClassOf(C, D).

R(X, f(ERC, X)) + ERC(X), someValuesFrom(ERC,R,C).
C(f(ERC,X)) <+ ERC(X), someValuesFrom(ERC,R,C).

D(X) «— R(X,Y),C(Y), existsInConcept(R,C, D).
Ri(X,Y) — Ry(Y, X), inverseOf(R1, R). (4.1)
Ry (X,Y) +— R1(Y, X), inverseOf(R1, R2).

Cy(X) +— C1(X), equivalentClass(Cy,Cs).

Ci(X) — C2(X), equivalentClass(Cy,Ca).

R(X,Y) +— S(X,Y), subPropertyOf(S, R).

4.1.3 The Optimizer: The Magic Set Rewriting Technique

The Optimizer module aims at reducing the size of the instantiation of the
program. To this end, it employs the well known Magic Sets Rewriting Tech-
nique, originally defined in [5]. In the following, we will thoroughly describe
this technique, and in particular the modifications we have performed to make

it suitable for our needs.

Introduction

The Magic Sets rewriting technique takes a significant place in the literature
about logic programming and deductive database systems, since its early defi-
nition.

Given a logic program P and a query @ over its vocabulary, this technique
consists in rewriting P with respect to @), by adding some predicates and some
newly created rules: these latter are introduced in order to simulate the top-
down computation of the program. By using Magic Sets it is possible to reduce
the amount of unnecessary computation, due to portions of the ground version
of P which cannot alter the answer to (), but are however evaluated if a pure
bottom-up scheme is used. Many extensions and modifications of the base tech-
nique have been proposed in literature, aimed at improving or extending it to
more specific cases. Among them, we mention here the extensions to disjunc-
tive logic programs in [20], 32], and the one realized for programs with (possibly
unstratified) negation in [28]. In this paper we focus our attention on positive
disjunctive logic programs with function symbols, applying the magic set tech-

nique to this kind of programs. Some particular issues arise when considering
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this language, due to the presence of function symbols along with disjunction.
The main contributions of this work are: (i) we extend the magic set technique
to the case of positive disjunctive programs with function symbols by devising
an appropriate transformation algorithm; (ii) we give an implementation of the

algorithm, and we show how it works by example.

We define the following entailment notion with respect to an interpretation I.
For a a ground atom: [ = «a iff a € I; For ay,...,a, ground atoms:
ITEay,...,apif I =a; foreach 1 <i<n;IlEa;V---Vay,iff I | a; for at
least one i, 1 <i<mn.Foraruler: I =riff I = H(r) or I |~ B(r);

A model for P is an interpretation M for P such that every rule r € grnd(P)
is such that M = r. A model M for P is minimal if no model N for P exists
such that IV is a proper subset of M. The set of all minimal models for P is
denoted by MM(P).

An interpretation I for a program P is an answer set for P if I € MM(P) (i.
e., I is a minimal model for the positive program P). The set of all answer sets
for P is denoted by ans(P). We say that P |= a for an atom a, if M = a for
all M € ans(P).

Informal Overview

The Magic Sets rewriting technique consists of a simulation of the top-down
evaluation of a query @ by modifying an original program P and producing
a rewritten program M (P, Q) which comprises additional rules, and updates
to the original ones. M (P, Q) is conceived in order to reduce computation to
what is actually relevant for answering the query. In fact, grnd(P) contains,
in general, many ground rules that have no impact in answering ) as they are
related to atoms which @ does not depends on. In general, it is expected that
grnd(M(P,Q)) has smaller size than grnd(P).

The original magic sets method was first described in [5] for the case of Datalog,
i. e. logic programs without function symbols. Following work considered the
presence of functional terms, yet not explicitly taking disjunction also into
account (see e.g. [|). Concerning the stable model semantics, it is known how
to apply this rewriting technique to Datalog Programs with disjunction |20 [32]

and also (with some restricting assumption) to unstratified programs [28].
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To give an intuition about the general magic set technique for Datalog pro-
grams, we can consider the following (traditional) example. Let us consider the

query @ = path(1,5)? on the following program P;:
path(X,Y):-edge(X,Y). path(X,Y):-edge(X, Z), path(Z,Y).

As a first step, head predicates are “adorned". Basically, we simulate the top-
down computation and annotate the way how the variable bindings are prop-
agated from the head atom to body atoms. Each rule of the input program is
replaced by an “adorned" one in which the name of each predicate is modified
by appending the binding information.

Given an I DB predicate, we denote a bound argument with the b letter, while a
free one is labeled with f. For instance path®? is a predicate which is in principle
a subset of path: in particular its first argument is restricted to a set of values
(the magic set of path®’) which is usually much smaller than the range of path
on its first argument. The adornment process starts from the query @. This
latter is adorned in a very simple manner: all constants in the query become
bound, all variables are marked as free (we obtain in this case the predicate
path®). Adornment is propagated to rules’ heads in which path appears, and
subsequently from the head to the body. If a new adorned predicate is created
(as it is present in the head or the body of the rule), this is processed in turn in
the same way of the original adorned query, until no more adorned predicates
have to be processed. SIPs (Sideways Information Passing Strategies) are used
in order to establish the adornment policy.

In our example, the arguments of the given query are both constants,and thus

bound; we will build the adorned program according to path®:

Note that EDB predicates are excluded from adornment. The next step of the
transformation consists in generating magic rules starting from the adorned
program. These rules define magic predicates. A magic predicate defines the
allowed range of values for bound arguments of a predicate. We start from the
head of the rule.

Given an adorned head atom a(t), we obtain the set of terms t’, derived from
t by removing all the terms corresponding to free arguments, and generate the
magic atom magicy(t'). Then, for each atom b in the body, we create its magic

version magicy(. .. ). Subsequently, we generate a magic rule having magic, in
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the head and magic, in the body, followed by all the atoms of the adorned rule
which can propagate the binding.

The third step consists of the modification of the adorned rules. In this step we
add to the bodies of the rules the magic atoms which have been generated in
the previous step. For each rule with head h, an according magic atom magicy,

is inserted in the body of the rule.

magic_path®(1,5). magic_path®®(Z,Y):-magic_path®®(X,Y),edge(X, Z).
path(X,Y):-magic_path?(X,Y), edge(X,Y).
path(X,Y):-magic_path®®(X,Y), edge(X,Z), path(Z,Y).

Finally, in the last step the query is processed by adding a magic fact
magic_q _ad if q is the query and ad its adornment; In our example we add
magic_path®®(1,5).

The resulting program is then evaluated w.r.t. the query.

Maygic Sets for DLP with Function Symbols

Here we present an improved Magic Set technique. It is designed to be able to
deal with programs containing both disjunction and functions symbols. Even
if our programs do not contain disjunction, actually, we present the general
technique, assuming the non-disjunctive programs as a special case of.

The algorithm is sketched in Figure The main procedure is called magify.
The function magify takes a program P and a query @ as input, and applies
the Magic Sets Transformation, generating M (P, Q) (the magified program).
magify is made of other subprocedures, detailed in the following. Let us as-

sume it is given the query: Q2 = a(f(1))? and the program Ps:
rl:a(X)Vbh(X):-c(X),e(X). r2:c(f(X)):-c(X). r3:e(l). r4d:c(1).

When a query is conjunctive, it is transformed into a rule, having in the head a
new atom which contains all the variables from the atoms in the original query.
The original query is replaced by a new one which consists of the head of the
newly created rule. This procedure is performed by the function normalize-
Query(Query Q).

The next step consists of creating the adorned program AP, by means of the

function createAdornedProgram(Program P, Query Q), reported in Fig-
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Program magify(Program P, Query Q)

Program M(P,Q)=0;
if(Q.isconjunctive())

Rule R’,Query Q’;

(Q’,R’) = normalizeQuery(Q);
P.addRule(R’);

Q=Q’;

Program AP = createAdornedProgram(P,Q);
Program MR = createMagicRules(AP);
Program MP = addMagicAtoms(P);

Fact MF = createMagicFact(Q);
M(P,Q)=removeAdornments{ MPUMRUMF');
return M(P,Q);

Fig. 4.2: Function createAdornedProgram

Program createAdornedProgram( Program P,

Query Q)
{

Stack S = @; Program AP = (J;
S.push(createAdornedVersionOf(Q));
while(S. size > 0)

Atom x= S.pop();
for(Rule r in P)
Rules adornedRules = adornRule(r,x);
AP.add(adornedRules);set Done(X);
for(Rule ar in adornedRules)
for(Atom a in ar)
if('done(a)) S.push(a);

}

return AP;

Fig. 4.3: Function createAdornedProgram

ure [£.3] A stack S is used in order to keep the atoms scheduled for adorn-
ment. The query is adorned using the function createAdornedVersionOf
and pushed in S at first. The main cycle pops out from S a given atom a and
accordingly adorns each rule having in the head an atom whose name matches
with it. When a certain adornment is generated for the first time for a pred-
icate, this is pushed into .S, in order to be processed. The algorithm iterates
until S is empty.

The adornment of each rule is actually performed by the inner function
adornRule(r, z) which returns a set of adorned rules according to the labels of

x, to be added to the adorned program. If x is not in the head of r, adornRule
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returns an empty set. More in detail, the output of adornRule contains a set
R’ of adorned rules for each atom 2’ € H(r) which unifies with z. Each ' € R’
is built according to the following strategy: per each 2’ € H(r) which unifies
with z, 2’ is labeled according to z, then such labelling is propagated to B(r),
according to a SIP. Successively, adornments are propagates from B(r) to the
remaining head atoms. Moreover, from the obtained adorned disjunctive rule
r’, corresponding to z’, we obtain |H (r)| — 1 auxiliary rules obtained by leaving
in the head only one atom z € H(r)\ {2’} and having B(r)U(H(r)\x) as body.
The obtained set of auxiliary rules in AP will not take part in the final program
M(P,Q), but will be further processed in order to obtain the set of magic rules
MR. In turn, magic rules are created, according with the traditional strat-
egy, by calling the CreateMagicRules function. In our example, we get first
from rule r1 and 72, the adorned versions r1’ : a®(X) Vv b°(X):-c?(X), e(X)
and 72" : (f(X)):-c®(X) then createMagicRules(Program P) obtains
from r1’ and r2’ the corresponding magic rules; and from r1’ we get the two
rules: a®(X):-c?(X),e(X),b(X). b°(X):-c?(X),e(X),a’(X)., while 72’ is left
unchanged.

Now the function createMagicRules simply applies the normal Magic-Set
strategy to these intermediate rules, as seen in previous section. In our exam-

ple we obtain:

magic_c®(X):-magic_a’(X), e(X), b (X).
magic_c®(X):-magic_b*(X), e(X), a’(X).
magic_c®(X):-magic_c(f(X)).

The third rule has been obtained by applying the algorithm for the non dis-
junctive case.

Now, the function addMagicAtoms(P) is called, which returns a version of
P including magic predicates within the body of each rule of P. In this sim-
ple step, for each atom in the head of the rule the corresponding magic atoms
are added in the body. Successively, a magic atom from the query is gener-
ated by the function createMagicFact(Query Q)) to be added to the final
output. In our example we get: magic_a®(f(1)). Finally, the function call re-
moveAdornments(M P U MRU MF) removes all adornments from the non-

magic predicates. This is necessary as stated in [20]. The final output for our
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example is the following:

magic_c®(X):-magic_a’(X), e(X), b (X).
magic_c®(X):-magic_b(X), e(X), a’(X).
magic_c?(X):-magic_c®(f(X)). magic_ab(f(1)).

a(X) Vb(X):-c(X),e(X), magic_a®(X), magic_b"(X).
c(f(X)):-e(X), magic_c(f(X)).
It must be noted here that two aspects of the class of programs we are treating,

disjunction and the presence of function symbols, need a particular treatment.

In particular:
Disjunction

requires modifications on the adornment strategy. Let » be a rule of the form:

rl:hi(t1) V...V hp(tn):=b1(p1), - bm(Dm)-

If we adorn the rule w.r.t. the atom h;(t;), also other head atoms have to be
taken into consideration, because they can contain variables which are actually
important for the evaluation. The function acts as follows:(i) the atom h;(¢;)
is adorned w.r.t. the query; (ii) the body is adorned w.r.t. the adornments of
hi(t;) by using a suitable SIP; (iii) other head atoms hi(t1) V...V hi—1(ti—1) V
hiv1(tix1) V...V hy(t,) are adorned w.r.t. patterns found in the body.

In fact, it has been shown in [32] that if we want to keep the algorithm sound,
other head predicates cannot propagate bindings, but can only receive them. In

this case bindings are propagated from the body to the remaining head atoms.
Function symbols

have impact on the choice of the labelling for arguments: Given an atom af(. ..,
t, ...) for ¢t a functional term ¢ , the corresponding argument of a is labelled as
bound iff all the subterms of ¢ are set as bound at the moment of adornment
of a.

Remark. Our transformation applies to programs with function symbols, thus,
in general, an evaluation of the M (P, Q) is not guaranteed to terminate. How-
ever, there are language restrictions that ensures termination, for instance see

I16].
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Implementation Notes

The prototype has been implemented in the Java programming language as a
preprocessor able to generate a magified program M (P, Q) compatible with the
DLV input format [42] from a given program P and a, possibly conjunctive,
query Q. The system uses a new Library, called DLVParser, which contains a
full framework of classes useful for both the parsing and the manipulation of a
Disjunctive Logic Programs in standard syntax.

Design patterns have been used, in order to keep the system flexible and easily
extensible. In particular, the Strategy pattern has been used for allowing the
implementation of multiple SIPs, so that the user of the API of our system is
allowed to define his own strategy. To define a new SIP, only a few methods
have to be implemented. We have implemented a default SIP, which mimics
the propagation of bindings in the Prolog SLD resolution. Inclusion of other

constructs such as negation and constraints are forthcoming.

4.1.4 The Solver

The solver is nothing else than the DLV system. It uses the last version of
DLV, called DLvV-complex, which has interesting properties. In fact, it exploits
the higher-order capabilities of such system, since the program to evaluate is
higher-order (we do not eliminate function symbols, as other systems do).
The submitted program is evaluated, and the answer set is generated. It is only
one answer set because the original program does not contain disjunction in
the head, as the chosen DL-fragment has no need for it.

The answer set represent the answer to the query, in term of Tuples.

4.2 Experimental Results

4.2.1 The Leigh University Benchmark (LUBM)

The Leigh University Benchmark [33] is a suite created for testing purposes. It
provides the user an ontology of a University, called Univ-Bench. Univ-Bench
describes universities and departments and the activities that occur at them.
Its predecessor is the Univ1.0 ontologyl, which has been used to describe data

about actual universities and departments.
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The authors created an OWL version of the Univ-Bench ontology. The ontology
is expressed in OWL Lite, the simplest sublanguage of OWL.

To keep the ontology suitable for our needs, some constructs have been dis-
abled, as ELHT is less expressive than OWL Lite. Test data of the LUBM are
extensional data created over the Univ-Bench ontology. For the LUBM, it is
available a method of synthetic data generation. This serves multiple purposes.
Data generation is carried out by UBA (Univ-Bench Artificial data genera-
tor), a tool developed for the benchmark. The support for OWL datasets in
the tool has been implemented. The generator features random and repeatable
data generation. A university is the minimum unit of data generation, and for
each university, a set of OWL files describing its departments are generated. In-
stances of both classes and properties are randomly decided. To make the data
as realistic as possible, some restrictions are applied based on common sense
and domain investigation. Examples are “a minimum of 15 and a maximum of

9,

25 departments in each university”, "an undergraduate stu- dent/faculty ratio
between 8 and 14 inclusive®, “each graduate student takes at least 1 but at most
3 courses”, and so forth. A detailed profile of the data generated by the tool
can be found on the benchmark?s webpage.

The generator identifies universities by assigning them zero-based indexes, i.e.,
the first university is named University0, and so on. Data generated by the tool
are exactly repeatable with respect to universities. This is possible because the
tool allows the user to enter an initial seed for the random number generator
that is used in the data genera- tion process. Through the tool, we may specify
how many and which universities to generate.

Finally, as with the Univ-Bench ontology, the OWL data created by the gen-

erator are also in the OWL Lite sublanguage.

4.2.2 Tests run

We have used the UBA to generate universities knowledge bases of various
sizes.

In the following, we will indicate with“ Lubmx”, with X a positive integer, the
test set generated, which comprises X Universities, obviously connected to each
other.

The Lubm Testsuite delivers 14 queries, but for our tests we decided to use
only 3 of them, to better focus on the analysis of results.

The chosen queries are the following:
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Queryl:

(type GraduateStudent 7X)
(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

- This query bears large input and high selectivity. It queries about just one
class and one property and does not assume any hierarchy information or in-
ference.

Query?7

(type Student ?X)
(type Course ?Y)
(teacher0f http://www.DepartmentO.University0.edu/AssociateProfessorQ 7Y)

(takesCourse 7X 7Y)

This query is similar to Query 6 in terms of class Student but it increases in
the number of classes and properties and its selectivity is high.

Queryl0

(type Student ?7X)

(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit)
subClassOf relationship between GraduateStudent and Student, i.e., subClas-
sOf relationship between UndergraduateStudent and Student does not add to

the results.

We tested our reasoner against the famous emph Pellet Reasoner [67]. The test
methodology is the following: We submit the queries to the reasoner, and take
the timestamps. Then, we subtract the parsing time from the total time, be-
cause parsing could be done only once in a realistic scenario.

To check the effectiveness of the optimization technique (the Magic Sets), we
used two versions of the reasoner, one of which does not exploit such technique.
For what it concerns Pellet, again we do not include the parsing time in the
timestamps reported, and set the dimensions of the Java Heap to the maximum
available on the test machine.

All the tests have been run on a Apple MacPro machine, which is a Xeon-
based multicore machine, with 8 Gigabytes of Ram memory. It runs Debian
Gnu-Linux, in the 64-bit flavor.

The results shown above are very interesting. First of all, it is necessary to
point out that Pellet resulted unable to handle a LUBM greater than 10. All
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Solver|Solver No-Magic|Pellet
Query 1| 0.15 0.16 0.12
Query 7| 0.73 0.74 0.1
Query 10| 0.14 0.73 0.01

Table 4.1: Tests run on LUBM1

Solver|Solver No-Magic|Pellet
Query 1| 0.47 0.5 0.5
Query 7| 2.54 2.78 0.74
Query 10| 1.31 1.05 0.23

Table 4.2: Tests run on LUBMI10

Solver|Solver No-Magic|Pellet
Query 1| 1.54 1.67 fail
Query 7| 8.43 9.12 fail
Query 10| 4.38 3.94 fail

Table 4.3: Tests run on LUBMS30

Solver|Solver No-Magic|Pellet
Query 1| 3.2 3.57 fail
Query 7(20.51 22.76 fail
Query 10| 8.17 7.39 fail

Table 4.4: Tests run on LUBM45

the queries resulted in a OutOfMemory exception, for any heap size chosen.This
is probably due to the fact that Pellet stores all the data in memory, without
using any streaming technique.

In contrast, our prototype just loads data on the fly, keeping a small portion of
the program in memory at once. This results in the capacity of handling pro-
grams (and ABoxes) of any size. In case of small sizes, Pellet performs slightly
better than our reasoner.

It is interesting that the Magic Sets rewriting technique works very well for the

first two queries, but not on the third. This shows that the technique itself is
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valid, but the results also depend on the Sideways Information Passing (SIP)

used.
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Axiomatization Techniques






5

Integrating Frame Logic in Answer Set Programming

5.1 Introduction

In this chapter we aim at closing the gap between F-logic based languages
and Answer Set Programming, in both directions: on one hand, Answer Set
Programming misses the useful F-logic syntax, its higher order reasoning capa-
bilities, and the possibility to focus knowledge representation on objects, more
than on predicates. On the other hand, manipulating F-logic ontologies un-
der stable model semantics opens a variety of modeling possibilities, given the
higher expressiveness of the latter with respect to well-founded semantics.
Our approach is set in between a pure model theoretic semantics (proper of
F-logic and many of its extensions [39] [71]), and a pure “rewriting" semantics,
in which inheritance is specified by means of an ad-hoc translation to logic
programming [36]. More details on F-Logic may be found in the Preliminaries
Chapter 2| In the former case, semantics is given in a clean and sound manner:
however, the way inheritance (and in general, the semantics of the language)
is modeled is hardwired within the logic language at hand, and cannot be easy
subject of modifications. In the latter case, semantics is enforced by describing a
rewriting algorithm from theories to appropriate logic programs. In such a set-
ting the semantics of the overall language can be better tuned by changing the
rewriting strategy. It is however necessary to have knowledge of internal details
about how the language is mapped to logic programming, making the process
of designing semantics cumbersome and virtually reserved to the authors of the
language only.

Here we define a basic stable model semantics for FAS programs which does not

purposely fix a special meaning for the traditional operators of F-logic, such
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w.on

as class membership “:" and subclass containment “::". Indeed, FAS programs
are conceived as a test-bed on which an advanced ontology designer is allowed
to choose the behavior of available operators from a predefined library, or to
design her own semantics from scratch. The ability to customize the semantics
of the language is crucial especially in presence of inheritance constructs. In
fact, when one has to model a particular problem, a specific semantics for
inheritance may be more suitable than another, and it is often necessary to
manipulate and/or combine the predefined behaviors of the language.

The topics we focus in the following of this chapter are:

1. We present the family of Frame Answer Set Programs (FAS programs), al-
lowing usage of frame-like constructs, and of higher order atoms. Interestingly,
positively nested frames may appear both in the head and in the body of rules.
The language allows to reason in multiple contexts which are called framespaces.
2. We provide the model-theoretic semantics of FAS programs in terms of their
answer sets.

3. We show how semantics features can be introduced on top of the basic
semantics of the language by adding an appropriate axiomatization. Structural,
behavioral, and arbitrary semantic for inheritance can be easily designed and
coupled with user ontologies. In some cases, we show how these axiomatizations
relate with F-logic under first order semantics.

4. We illustrate in which terms contexts can be exploited for manipulating
hybrid knowledge bases having many data sources working under different en-
tailment regime;

5. The language has been implemented within the DLT system, a front-end
for answer set solvers. Besides the fragment of language herein presented, DLT
allows negated nested molecules, and re-usable template programs. If coupled
with a proper answer set solver, the same front-end allows usage of complex

terms (e.g. functions, lists, sets), and external predicates [23]).

5.2 Syntax

We present here the syntax of FAS programs. Informally, the language allows
disjunctive rules with negation as failure in the body; with respect to ordinary
Ans-Prolog (the basic language of Answer Set Programming), there are three
crucial differences. First, besides traditional atoms and predicates, the language
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supports frame molecules in both the body and the head of rules, following the
style of F-logic [39]. When representing knowledge, frame molecules allow to
focus on objects, more than on predicates. An object can belong to classes, and
have a number of property (attribute) values. As an example, the following is
a frame molecule:

brown : employee | surname — “Mr. Brown”,
skill = {java, asp},
salary — 800,
gender — male,

married — pink |

The above molecule defines membership of the subject of the molecule (brown)
to the employee class and asserts some values corresponding to the properties
(which we will call also attributes) bound to this object. This frame molecule
states that brown is male (as expressed by the value of the attribute gender),
and is married to another employee identified by the subject pink. brown knows
java and asp languages, as the values of the skill property suggest, while he has
a salary equal to 800. Intuitively, one can see a class membership statement in
form x:c as similar to a unary predicate ¢(x). Accordingly, x[m — v] can be
seen has a binary predicate m(z,v).

As a second important difference, higher order reasoning is a first class citizen
in the language: in other words, it is allowed quantification over predicate, class
and property names. For instance, C'(brown) is meant to have the variable C
ranging over the Herbrand universe, thus having employee(brown) as possible
ground instance.

Finally, our language allows the use of framespaces to place atoms and molecules
in different contexts. For example, suppose there are two Mr. Brown, one work-
ing for Sun and the other for Ibm. We can use two different assertions, related
to two different framespaces to distinguish them, e.g. brown: employee@Qsun
and brown : employee@ibm.

We formally define the syntax of the language next.

Let C be an infinite and countable set of distinguished constant and predi-
cate symbols. Let X be a set of variables. We conventionally denote variables

with uppercase first letter (e.g. X, Project), while constants will be denoted
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with lowercase first letter (e.g. z, brown, nonWantedSkill). A term is either a
constant or a variable.

Atoms can be either standard atoms or frame atoms. A standard atom is in the
form to(t1,...,tn)Qf, where tg, ..., t,, f are terms, to represents the predicate
name of the atom and f the context (or framespace) in which the atom is
defined.

A frame atom, or molecule, can be in one of the following three forms:

. S[Ulw"vvn]@f
e socQf

e socluy,...,v,)Qf

where s, c and f are terms, and vy, ..., v, is a list of attribute expressions. Here
and in the following, the allowed values for the meta-symbol ¢ are “:" (instance
operator), or “::" (subclass operator). Moreover, s is called the subject of the
frame, while f represents the context (or framespace).

To simplify the notation, whenever the context term f is omitted, we will
assume f = d, for d € C a special symbol denoting the defaulf context.

An attribute expression is in the form p, p — v or p — {vy,...,v,}, where p
(the property/attribute name) is a term, and vy, . .., vy, (the attribute values) are
either terms or frame molecules. Here and in the following, the meta-symbols —
and — are intended to range respectively over {—, =} and {=, —», =, e»}.
Note that, according to this definition, when used within attribute expressions,
the symbols in the set {=, =%, ==, >} allow sets of attribute values on their
right hand side, while — and e allow single values.

A literal is either an atom p (positive literal), or an expression of the form —p
(strongly negated literal or, simply, negated literal), where p is an atom. A naf-
literal (negation as failure literal) is either of the form b (positive naf-literal),
or of the form not b (negative naf-literal), where b is a literal.

A formula is either a naf-literal, a conjunction of formulas or a disjunction of
formulas.

A simple atom is either a standard atom, or a frame atom in the forms socQf,
slp = v]Qf or s[p — {v}]Qf, for s,c,p,v and f terms of the language. The
notion of simple literal and of simple naf-literal are defined accordingly on top
of the notion of simple atom.

A Frame Answer Set program (FAS program) is a set of rules, of the form
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arV---Vap+by,...,bg,notbgi1,...,n0otbny.

where a1,...,a, and by, ..., b are literals, not by41, . .., not b, are naf-literals,
and n > 0, m > k > 0. The disjunction ay V --- V a, is the head of r, denoted
by H(r), while the conjunction by A-- - Abx Anot bgy1 A. .., Anot by, is the body
of r, denoted by B(r). A rule with empty body will be called fact, while a rule
with empty head is a constraint.

A plain higher order FAS program contains only standard atoms, while a plain
FAS program contains only standard atoms with a constant predicate name. A
positive FAS program do not contain negation as failure and strongly negated
atoms. In the following, we will assume to deal with safe FAS programs, that is,
programs in which each variable appearing in a rule r appears in at least one

positive naf-literal in B(r).

Example 5.1. The following one rule program is a valid FAS program. Intuitively,
it represents the fact that each person is male or female.

Plgender — “male”] V Plgender — “female”] :- P : person.

5.3 Semantics

Semantics of FAS programs is defined by adapting the traditional Gelfond-
Lifschitz reduct, originally given for a ground disjunctive logic program with
strong and default negation [31], to the case of FAS programs.

Given a FAS program P, its ground version grnd(P) is given by grounding rules
of P by all the possible substitutions of variables that can be obtained using
consistently elements of Cﬂ A ground rule thus contains only ground atoms;
the set of all possible simple ground literals that can be constructed combining
predicates and terms occurring in the program is usually referred to as Herbrand
base (Bp). We remark that the grounding process substitutes also nonground
predicates names with symbols from C (e.g., a valid ground instance of the
atom H (brown, X) is married(brown, pink), while a valid ground instance of

brown[H — yellow] is brown[color — yellow]).

1" As shown next, our semantics implicitly assumes that elements of C are mapped to them-
selves in any interpretation, thus embracing the unique name assumption.
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An interpretation for P is a set of simple ground literals, that is, an interpre-
tation is a subset I C Bp. I is said to be consistent if Va € I we have that
-a & 1.

We define the following entailment notion with respect to an interpretation I.

For a a ground atom:

(E1) If a is simple, then I = a iff a € I;
(E2) I E=notaiff I £ a.
For ly,...,l, ground literals:

(E3)IEUL NNl iff T =1, for each 1 <14 < n;
(EA)T=1 V- Vi, iff T =1; for some 1 <i < n.

For s, p, f ground terms, and my, ..., m, ground frame molecules:

(E5) I |=s[p—{m1,...mpy}]Qf iff I = s[p = {m;}]|Qf, for each 1<i<

n.

For s, s, ¢,p, f, f' ground terms, and v = {vy,...,v,} a set of ground attribute

value expressions:

E6) I = s[vy,...,v,]Qf iff I |=s[v1]Qf A--- A s[v,]Qf;
ET) I Esocv]Qfif [ EsocQf As[v]Qf;
)
)

&

(
(
(BS) I |= s[p— o/[7]]Qf i I = s[p — s|0f A 5[7]0f;
(B9) I | s[p—{s'[v]}|Qf iff T = s[p — {s'}]af A s'[v]Qf;

(E10) I |= s[p— /(3]0 0f iff I = s[p— s]0f A /[T]0f"

(B11) T |= s[p— {#[3]0f}0f iff I = s[p— {s'}]0f A §[T]0f"

Note that rules (E8) and (E9) force s'[v], which does not have an explicit
framespace, to belong to the context f of the molecule containing it. On the
contrary, s'[v]@Qf" in (E10) and (E11) has a proper framespace f’, and the
entailment rules take care of this fact. Then, rules (E6) to (E11) define the
context of a frame molecule as the nearest framespace explicitly specified.

For a rule r:
(E12) I =riff I = H(r) or I |~ B(r);

A model for P is an interpretation M for P such that M = r for every rule
r € grnd(P). A model M for P is minimal if no model N for P exists such
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that IV is a proper subset of M. The set of all minimal models for P is denoted
by MM(P).

Given a program P and an interpretation I, the Gelfond-Lifschitz (GL) trans-
formation of P w.r.t. I, denoted P’ is the set of positive rules of the form {a; V
~Vay, < by, -+, by }such that {a;V---Vay, < b1, ,bg,not bgyy1,--- ,not by}

is in grnd(P) and I = notbgi1 A--- A not by,. An interpretation I for a pro-
gram P is an answer set for P if I € MM(P') (i.e., I is a minimal model for
the positive program P!) [58, [71]. The set of all answer sets for P is denoted
by ans(P). We say that P |= a for an atom a, if M |= a for all M € ans(P).
P is consistent if ans(P) is non-empty.

For a positive program P allowing only the term d in context position, we define
the F-logic first-order semantics in terms of its F-models. A F-model My is a

model of P subject to the conditions

1

“::" encodes a partial order in My;

)
F2)ifa:be My and b::c € My then a:c € Mjy;
F3) if ajm — v] € My and a[m — w] € My then v = w, for =€ {—, o=};
F4) if alm => v] € My and b::a then bjm ~=> v] € My, for =>€ {=,=>};
F5) if cfm = v], a:c and a[m — w] € My then w:v € My;

)

(
(
(
(
(
(

[
F6) if cjm = v], a:c and a[m —» w] € My then w:v € My,

We say that P = a for an atom a if My = a for all F-models of P.

Ezample 5.2. The program in Example[p.I]together with the fact brown: person.
has two answer sets, M; = {brown:person, brown|gender — “male” |}
and My = { brown: person, brown[gender — “female”] }. Both M; and My are
F-models. Note that M3 = { brown : person, brown| gender — “female” |,
brown| gender — “male” | } is neither an F-model nor an answer set for dif-
ferent reasons: it is not an F-model because of condition (F'3) given above,
while it is not an answer set because it is not minimal. Note also that dis-
junctive rules trigger in general the existence of multiple answer sets, while the
presence of constraints may eliminate some or all constraints: for instance, the
same program enriched with the constraints < brown|gender — “male”] and

+ brown[gender — “female”| has no answer setﬂ

2 A constraint < ¢ can be seen as a rule f < ¢, not f, for which there is no model containing
c.
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5.4 Modeling semantics and inheritance

Given the basic semantics for a FAS program P, it is then possible to en-
force a specific behavior for operators of the language by adding to P specific
“axiomatic modules". An aziomatic module A is in general a FAS program.
Given a union of axiomatic modules S = A; U---U A,, we will say that P
entails a formula ¢ under the axiomatization S ( P Eg ¢ ) if PUS = ¢. The
answer sets of P under axiomatization S are defined as ansg(P) = ans(PUJS).

We illustrate next some basic axiomatic modules.
Basic class tazonomies.

“:"and “::" the usual

The axiomatic module C, shown next, associates to
meaning of monotonic class membership and subclass operator.

c1: An:B<+ A::C, C::B.

co: AA— XA

ca: +— A:C, C::A, A#C.

cs: X:C«+ X:D, D::C.
Rules c¢; and cy enforce transitivity and reflexivity of the subclass operator,
respectively. Rule c3 prohibits cycles in the class taxonomy, while ¢4 implements
the class inheritance for individuals by connecting the “::" operator to the “ : "

operator. The acyclicity constraint can be relaxed if desired: we define in this

case C' as C \ cg}

Single valued attributes.

Under standard F-logic, the operators — and e~ are associated to families of
single valued functions: indeed, in a F-model M it can not hold both a[m — v]
and a[m — w], unless v = w. Under unique names assumption, we can state
the above condition by the set F of constraints:

fs: — AM = V], AM - W],V #W

fo: < AIM o> V],AIM o> W],V #W

Structural and behavioral inheritance.

We show here how to model some peculiar types of inheritance, such as struc-

tural and behavioral inheritance.

3 Note that the atom A # C amounts to syntactic inequality between A and C.
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Structural inheritance is usually associated to the operator =-. Let P; be the
following example program:

webDesigner ::javaProgrammer. javaProgrammer ::programmer.

webDesigner : :html Programmer. javaProgrammer|salary = medium).

htmlProgrammer[salary = low].
For short, we denote in the following webDesigner as wd, javaProgrammer as jp and
htmlProgrammer as hp.
Under structural inheritance, as defined in [39], property values of superclasses
are “monotonically" added to subclasses. Thus, since ¢; is subclass of ¢y and
¢y, one expects that P, |=cus webDesigner[salary = {low, medium}] for some
axiomatic module S.
The axiomatic module S shown next, associates this behavior to the operators
= and =>.

s7: DIA=T]« D::C, C[A=T)].

sgs: D[A=>T]|+ D::C, C[A=>T].
Note that s5 (resp. sg) do not enforce any relationship between “=" and “—"
(resp. “==" and “—»") as in [39]. We will discuss this issue later in the section.
Behavioral inheritance 7], allows instead nonmonotonic overriding of prop-
erty values. Overriding is a common feature in object-oriented programming
languages like Java and C++: when a more specific definition (value, in our
case) is introduced for a method (a property, in our case), the more general
one is overridden. In case different information about an attribute value can be
derived from several inheritance paths, inheritance is blocked. Let us assume to
add to P; the assertions jp[income e~ 1000] and hp[income o 1200] .
Under behavioral inheritance regime [71]@, the assertions jp[income e 1000] and
hplincome o= 1200] would be considered in conflict when inherited from wd. In-
deed, both wd[incomee— 1000] and wd[incomee— 1200] under the three-valued
semantics of [T1] are left undefined. Under FAS semantics it is then expected to
have some axiomatic module B where neither P, =pyruc wd[income e 1000] nor

Py Enpuruc wdlincome o 1200] hold.

* Note that in [7T] the above semantics is conventionally associated to the — operator, while
we will use o
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The above behavior can be enforced by defining B as follows

b : overridden(D,M,C) < E[M e V], C::E, E::D,C # E, E # D.

bio : inheritable(C, M, D) <— C::D, D[M e V], not overridden(D, M, C).
bi1: C[M e~ V]V C[M e V]Qfalse < inheritable(C, M, D), D[M o+ V.

bia : exists(C, M) < C[M & V1.

bis : < inheritable(C, M, D), not exists(C, M).

big : existsSubclass(A,C) + A:C,A:D,D::C,C # D.

bis : A[M — V]Qcandidate < A:C,C[M e V], not existsSubclass(A, C).
bis : AIM — V|V AM — V]Qfalse + A[M — V]Qcandidate.

bi7 exists' (A, M) < A[M — V].

bis : «+ inheritable(C, M, C), A: C,not exists' (A, M).

The above module makes usage of stable model semantics for modeling multiple
inheritance conflicts. By means of rule b;; and byg it is triggered the existence
of multiple answer set in the presence of inheritance conflicts, one for each
possible way to solve the conflict itself.

Note that anspuruc(P1) contains two different answer sets M; and My which
respectively are such that M; | wdfincomee— 1200] and My = wdlincome o
1000]. However, both assertions do not hold in all the possible answer sets.
Thus, similarly to “well-founded optimism" semantics, we obtain that Py [“cun

wplincome o+ X] for any X.

Constructive vs well-typed semantics.

The operator = is traditionally associated to —. For instance if both jp[keyboard =
americanLayout] and jim : jp[keyboard — ibm1050] hold, one might expect that
ibm1050 : americanLayout.

However, one might wonder whether to implement the above required behavior
under a constructive or a well-typed semantics.

The two type of semantics differ in the way incomplete information is dealt with.
In a “well-typed" flavored semantics, most axioms are seen as hard constraints,

which, if not fulfilled, make the theory at hand inconsistent.
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In the first case, it may be desirable to use the “=-" operator for defining strong
desiderata about range and domain of properties, while the “—" could be used
to denote actual instance values such as in the following program Ps:
programmer[salary = integer].
g : programmer|[salary — aSalary].
+— X : programmer[salary — Y],notY : intege7
Note that ans(Ps) is empty, unless it is not ezplicitly asserted (well-typed) the
fact aSalary : integer.
On the other hand one may want to interpret constructively desiderata about
domain and range of properties, as it is typical, e.g. of RDFS. Consider the
program Ps:

programmer[salary = integer).
g : programmer|[salary — aSalary]

Y :integer + X : programmer|salary — Y]
Here P53 has a single answer set containing the fact aSalary : integer.
The two types of semantics stem from profound philosophical differences: well-
typedness is commonly (but not necessarily) associated to modeling languages
inspired from database systems, living under a single model semantics and
Closed World Assumption. To a large extent one can instead claim that first
order logics (and descendant formalisms, such as descriptions logics and RDFS),
is much more prone to deal constructively with incomplete information.
It is however worth noting that despite their conceptual difference, constructive
and well-typed semantics are often needed together. As a matter of example,
modeling in Java (as well as C++ and F-logic) needs both flavors. Construc-
tiveness comes into play in inheritance within class taxonomies (e.g., if A::B
and B::C hold, the information A::C does not need to be well-typed and is in-
ferred automatically), but well-typedness is required in several other contexts,
(e.g. strong type-checking prescribes that a function having a given signature
can not be invoked using actual parameters which are not ezxplicitly known to
fulfil the function signature).
Whenever required, FAS programs can be coupled with axiomatic modules en-

coding both well-typed and constructive axioms.

® With some liberality we use here “integer" as class name more than a concrete datatype,
without losing the sense of our example.
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The following axiomatic module CO encodes constructively how the operators

= and — can be related each other:
co15 : V:T+ C[A=T],I:C,I[A—V].
while W, shown next, encodes the same relation under a well-typed semantics.

wie : «— C[A=T),I1:C,I[A— V],notV : T.

5.5 Properties of FAS programs

FAS programs have some property of interest. First, F-logic entailment can me
modeled on top of FAS programs by means of the axiomatic modules C, S, F,
and CO. Let A=CUSUFUCO.

Theorem 5.3. Given a positive, non-disjunctive, FAS program P with default
contexts only, and a formula ¢, then P |=4 ¢ iff P =5 ¢.

Proof. (Sketch). (=) Assume P U A is inconsistent. Given that P is a positive
program, then inconsistency amounts to the violation of some instance of con-
straints cs, f5 or fg. We can show that, accordingly, there is no F-model for P.
On the other hand, if PU A is consistent, one can show that the unique answer
set of P is the least F-model of P.

(<) It can be shown that if P has no F-model, then P U A is inconsistent.
Viceversa, if P has some F-model its least model corresponds to the unique
answer set of P U A. O

One might wonder at the significance of = 4-entailment for disjunctive programs
with negation. This entailment regime diverges quickly from the behavior of
monotonic logic as soon as negation as failure and disjunction is considered,
and is thus incomparable with first order F-logic. It is matter of future research
to investigate on the relationship between FAS programs and F-logic under
well-founded semantics.

As a second important property, we show that contexts can be exploited for
modeling hybrid environments in which more than one semantics has to be
taken in account. For instance one might desire a context s in which only CUS
hold as axiomatic modules (this is typical e.g. of RDFS reasoning restricted to
p-DF [51]), while in a context b we would like to have a different entailment

regime, taking in account e.g. B and F.
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We will say that an axiomatic module (resp. a program, a formula) A is defined
at context c if for each rule r € A, each atom ¢ € r has context c. If an axiomatic
module (resp. a program, or a formula) A is defined at the default context d,
then the axiomatic module AQc, defined at context ¢, is obtained by replacing

each atom a appearing in A with aQc.

Example 5.4. Consider the program P, defined as follows. P, has two contexts,
rdf and inh. Py contains knowledge coming from an RDF triplestore defined in
term of the facts t(gb, rdf:type, hp)@Qrdf, t(gb, name, “Gibbi”)@rdf, etc. Also P con-
tains the rules X:cC@rdf < t(X,rdf:type, C)Qrdf, X[M — V]Qrdf + t(X, M, V)Qrdf,
C::DQrdf <« t(C,rdfs: subClassOf, D)@rdf. Then, we add to P, the program
P @inh where P is taken from Section [5.4] plus the rule X : C@inh «+ X : CQrdf.
We want that C and S hold under the rdf context, while C and B hold under the
inh context. This can be obtained by defining A = (C U S)QrdfU (C U B)Qinh
and evaluating P, under = 4-entailment.

For instance, Py =4 gb: [income & 1000]@inh .

We clarify next how contexts interact each other. First, we consider programs in
which contexts are strictly separated: that is, each rule in a program contains
only atoms either with context a or only atoms with context b. This way, a
program can be seen as composed by two separate modules, one defining a and
the other defining b. The following proposition shows that programs defined in

separated context behave separately under their axiomatic regime.

Proposition 5.5. It is given a program P = P'Qa U P"Qb, and aziomatic
modules AQa and BQb. Then, for formulas ¢Qa and ¥Qb, we have that, if
P U AQa U BQb is consistent,

P = jaauBas $Qa A Qb < P' =4 ¢ AN P" =p o

Contexts can be seen in some sense as separate knowledge sources, each of
which having its own semantics for its data. In such a setting, it is however
important to consider cases in which knowledge flows bidirectionally from a
context to another and viceversa.

This situation is typical of languages implementing hybrid semantics schemes.
For instance, DL+log [62] is a rule language where each knowledge base com-

bines a description logic base D (living under first order semantics), with a
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rule program P (living under answer set semantics). D and P can mutually
exchange knowledge: in the case of DL+log, predicates of D can appear in P,
allowing flow of information from D to P.

Similarly, we are assuming to have a program P, two contexts a and b, each of
which coupled with axiomatic modules AQa and BQ@b. The program P freely
combines atoms with context a with atoms with context b, possibly in the same
rule.

For simplicity, the following theorem is given for programs containing simple
naf-literals only.

Given an interpretation I we define I, as the subset of I containing only atoms
with context a. The extended reduct P*'a of a ground program P is given by

modifying each rule r» € P in the following way:

e if [Qa € H(r) and [Qa ¢ I, then delete [Qa from 7;
e if [Qa € H(r) and [@Qa € I, then delete r;

e if [Qa € B(r) and [Qq € I, then delete [Qqa from r;

e if [Qa € B(r) and (Qa ¢ I, then delete r;

e if notiQa € B(r) and lQa ¢ I, then delete not[Qqa from r;
e if notl@Qa € B(r) and [Qa € I, then delete r;

—~

Theorem 5.6. Let P be a program containing only atoms with context a and
b, and AQa and BQb be two axiomatic modules.
Then,

M e ansA@aug@b(P) = M, € CLTZSA@CL(P*MZ’) A M,y € ansB@b(P*M“)

Roughly speaking, the above theorem states that from the point of view of
context a one can see atoms from context b as external facts, and viceversa. An
answer set M of the overall program is found when, assuming M, as the set
of true facts for a, we obtain that M, is the answer set of P*Me U B@b, i.e. an
answer set of the program obtained by assuming facts in M, true. Viceversa,
if one assumes M, as the set of true facts for context b, one should obtain M,
as the answer set of P*Mv U AQa.

Proof. (Sketch). ( = ) Assume M € ans(P U AQa U BQ@b), it is easy, yet
tedious, to construct M, and M, and verify that M, € ans(P*M» U AQq) and
M, € ans(P*Mﬂ U B@b). Given P, = P*Mv U AQqa and P, = P*M« U B@b, the
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proof is conducted by showing that M, (resp. M}) is a minimal model of P&Ma
M

(resp. P,").

( < ) Given M, and M, such that M, € ans(P*™» U AQa) and M, €

ans(P*Ms U B@b), the proof is carried out by showing that M = M, U M,

is a minimal model of P U AQq U AGHM O

5.6 System Overview

FAS programs have been implemented within the DLT environment [35]. The
current version of the system is freely available on the DLT Web page, together
with examples, a tutorial, and the axiomatic modules herein presented.

DLT works as a front-end for an answer set solver of choice S. Programs are
rewritten in the syntax of S and then processed. Resulting answer sets in the
format of S are then processed back and output in DLT format. DLT is com-
patible with most of the languages of the pLv family such as prv [42], divhex
[24] and the recent DIv-complex. The native features of the solver of choice
are made available to the DLT programmer: this way features such as soft con-
straints, aggregates (DLV), external predicates (dlvhex), and function, list and
set terms (DLV-complex) are accessible. Limited support is given also for other
ASP solvers.

DLT allows the syntax presented in this paper and implements the presented
semantics. Atoms without context specification are assumed to have the default
context d. In order to avoid typing, the default implicit context can be switched
by using a directive in the form @name., which sets the implicit context to name
for the rules following the directive.

We overview next some of the other features of DLT, which, for space reasons,

can not be focused in the present work.

Complex nested expression.

DLT allows the usage of negated attribute expressions. From the operational
point of view, if a frame literal in the body of a rule r has subject 0o and a
negative attribute not m, our prototype removes not m from the attributes of
0, adds not a to the body of r, where a is a fresh auxiliary atom, and adds
a new rule a:-o[m]. to the program. This procedure can be iterated until no

negated attribute appears in the program. Then, the answer sets of the original
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program are the answer sets of the rewritten program without auxiliary atoms.
Since negated attributes can appear in negative literals and can be nested, they
behave like the nested expressions of [43], allowing in many case to represent
information in a more succinct way. The model-theoretical semantics of this
aspect of the language is not focused in this paper and is matter of future

work.

Example 5.7. The following rule states that a programmer P is suitable for
project ps if P know ¢++ and perl, but is not married to another programmer

knowing c++ and perl.
Pl[suitable — ps] < X :programmer,

”

P:programmer|(skills — {“c++”, “perl”},
not married — X|[skills = {“c++", “perl”}].

Template definitions.

A DLT program may contain template atoms, that allow to define intensional
predicates by means of a subprogram, where the subprogram is generic and
reusable. This feature provides a succinct and elegant way for quickly introduc-
ing new constructs using the DLT language, such as predefined search spaces,
custom aggregates, etc. Differently from higher order constructs, which can be
used for the same purpose, templates are based on the notion of generalized
quantifier, and allow more versatile usage. Syntax and semantics of template

atoms are described in [17].

5.7 Remarks and Related Work

We summarize here the main topics we focused in this chapter, pointing out

significant features and issues.

Stable vs well-founded semantics.

FAS programs have some peculiar differences with respect to the original F-logic.
Importantly, while well-founded semantics [31] is at the basis of the nonmono-
tonic semantics of F-logic, FAS programs live under stable model semantics. The
two semantics are complementary in several respects. The well-founded seman-

tics is preferable in terms of computational costs: at the same time, this limits
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expressiveness with respect to the stable model semantics, which for disjunctive
programs can express any query in the computational class X5.

On the other hand, the well-founded semantics is three-valued. Having a third
truth value as first class citizen of the language is an advantage in several sce-
narios, such as just in the case of object inheritance. Indeed, the undefined
value is exploited in F-Logic when inheritance conflicts can not be solved with
a clear truth value. Note, however, that the stable model semantics gives finer
grained details in situations in which the well-founded semantics leaves truth
values undefined. The reader can find a thorough comparison of the two seman-
tics in [31]. FAS answer sets should not be confused with the notion of stable

object model given in [T1].

Semantic Web languages.

Since F-logic features a natural way for manipulating ontologies and web data,
it has been investigated for a long as suitable basis for representing and rea-
soning on data on the web. The two main F-Logic systems Flora and Florid
(I72, 46]) share with FAS programs the ability to work both on the level of
concepts and attributes and on instances.

F-logic has been investigated as a logical way to provide reasoning capability
on top of RDF in the system TRIPLE ([66]) that has native support for con-
texts (called models), URIs and namespaces. It is possible also to personalize
semantics either via rule axiomatization (e.g. one can simulate RDFS reason-
ing by means of TRIPLE rules) or by means of interfacing external reasoners.
The semantics of the full TRIPLE language has not been clearly formalized:
its positive, non-higher order fragment coincides with Horn logic.

The possibility to define custom rule set for specifying the semantics which best
fits the concrete application context is also allowed in OWLIM ([40]).

Answer Set Programming

Several works share some point in common with the described techniques in the
field of Answer Set Programming. An inspiring first definition of F-logic under
stable model semantics can be found in [2I]. The fragment considered focuses
on first order F-logic with class hierarchies, and do not explicitly axiomatize
structural inheritance with constructive semantics and single valued attributes.
Higher order reasoning is present in dlvhex [24]. Contexts were investigated

under stable model semantics also in [56]. In this setting, context atoms are
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exploited to give meaning to a form of scoped negation, useful in Semantic Web
applications where data sources with complete knowledge need to be integrated
with sources expected to work under Open World Assumption. Similarly to our
work, multi-context systems of [I0)] are used in order to define hybrid system
with a logic of choice. Contexts can transfer knowledge each other by means of
bridge rules, while in our setting it is not necessary a clear distinction between
knowledge bases and bridge rules.

Nested attribute expressions behave like nested expressions as in [43], although
we do not allow the use of negation in the head of rules. A different approach
to nonmonotonic inheritance in the context of stable model semantics was pro-
posed in [12], in which modules (which can be overridden each other) are as-
sociated with each object, and objects are partially sorted by an isa relation.
The idea of defining an object-oriented modeling language under stable model

semantics has been also subject of research in [61] and [60].
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Translating OWL2 Profiles to ASP with Axiomatic
Modules

OWL2, as stated previously, is divided into three different profiles. Each profile
has been created for answering to different problems, and is based on different
description logic fragments. We give next some modular translations from the
fragments of OWL2 to Logic Programming. Such translations may be used for
improving query answering, as we have seen for the case of ELHZ. We propose
separate translations for the three profiles, even if some of the constructs are
in common, to better esemplify the language and what it takes to perform the
operation of translating it to a different formalism. As in the case of ELHT,
we first trasform the rules in first order sentences, then we apply a classical

skolemization procedure to have the corresponding logic programming rules.

6.1 OWL2-EL

For OWL2-EL, being it very similar to ELHZ, we just report the conversion
table. In particular, we give the semantics of a ELHT knowledge base in terms
of a conjunction of first order sentences. More specifically, in Table each
ELHT axiom H is associated to the corresponding first order sentence F(H).

The semantics of KB is given by its corresponding first order theory F(KB) =
Nwrer FH) N Ngea F(H).
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IEE”HI axiom H‘FOL sentence F(H)

‘Rule set L(F(H))

A(a) A(a) A(a). (R1)
R(a,b) R(a,b) R(a,b). (R2)
ACB VzA(x) — B(x) B(X) + A(X). (R3)
ANBLCC Ve A(z) A B(x) = C(z) C(X) «+ A(X),B(X). (R4)
AC3R.B VeA(z) — [ByB(y) A R(z,y)]|B(fa(X)) + A(X). (R5)
R(X, fa(X)) < A(X).
JR.AC B Vz[dyA(y) A R(z,y)] — B(x)|B(X) < A(Y), R(X,Y).(R6)
JR.TLCB Vz[dyR(x,y)] — B(x) B(X) «+ R(X,Y). (RT)
BC3RT VaeB(x) — [FyR(x,y)] R(X, fa(X)) + B(X). (R8)
RC S or Vz,y R(x,y) = S(z,y) S(X,Y)«+ R(X,)Y). (R9)
R-C S~
RC S or Va,y R(y,z) — S(z,y) S(X,Y)« R(Y,X). (R10)
R-CS
[FOL Query Q(X) [Rule £(Q(X)) |
Y (X)) A A gn(Xy) ansg(X) <
QI(Xl) A A Qn(Xn) (Ql)

Table 6.1: Semantics of ELHZ given in terms of corresponding FOL sentences.
For an axiom A in the form A C dR.B, f4 denotes a fresh function symbol.
Analogously, for a query @, ansg denotes a fresh predicate name.
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6.2 OWL2-QL
’DL—LITE axiom H‘FOL sentence F(H) ‘Rule set L(F(H)) ‘
A(a) A(a) A(a). (R1)
R(a,b) R(a,b) R(a,b). (R2)
ACB VxA(x) — B(x) B(X) «+ A(X) (R3)
AC L Ve A(z) — +— A(X). (R3)
ALC-B Ve A(z) — -B(X) + A(X) (R3)
-B(z),VxB(x) — -A(z) |-A(X) + B(X)
ALC Ci N0y VeA(z) A B(x) = C(z) |C1(X) «+ A(X), (R4)
JRTCB Vz[3yR(z,y)] — B(z) |B(X) « R(X,Y).  (R7)
BC3R.T VeB(z) = [FyR(z,y)] |R(X, fa(X)) + B(X).(R8)
RCS Vr,y R(z,y) — S(z,y) [S(X,Y)«+ R(X,Y). (R9)
| [FOL Query Q(X) _ [Rule £(Q(X)) |
Y ¢ (X)) AL A (X)) ansg(X)
q1(X1) AREERA Qn(Xn)' (Ql)

6.3 OWL2-RL

from the corresponding lists in the following:

Table 6.2: Semantics of DL-LITE given in terms of corresponding FOL sen-
tences. For an axiom A in the form A C JR.B, f4 denotes a fresh function
symbol. Analogously, for a query @, ansg denotes a fresh predicate name.

For OWL2-RL we need to use a different approach. This fragment, in fact, is
noticeably more complex than the others. In particular, it permits the use of
more concept costructors, as well as equivalence between concepts. We can now

define a OWL2-RL Thox and Abox. The TBox is built using expressions of the

form Sub C Super, or ey = ez, where Sub, Super, el,e2 can have any value

Sub : class|Sub L Sub|SubM Sub|3R.Sub

Super : class|—Sub|VR.Super|3R.Super

e : class|e; M ez|dataExpression
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dataExpression deserves a special treatment. OWL2RL, as stated before, al-
lows for the full xml-schema datatypes, as well as equivalence expressions. The
increased expressivity introduces new kinds of problems.

Here we present an axiomatization based on [50], but adapted for the ASP
syntax. It models the rdf-based semantics of OWL2RL, expressed in ASP. In
particular, we need modifications for the variables and for the lists, which are
different in ASP. Lists in OWL2RL (RDF syntax) are represented using the
paradigm first-rest. To better esemplify this behaviour,we show a table con-

taining the triples necessary to represent a list of elements ej,eo,...,e,_1, €n.

T(h,rdf : first,er) |T'(h,rdf : rest, z3)
T(zo,rdf : first,es)|T (zo,rdf : rest, z3)

T (zp,rdf : first,en) |T(zn, rdf : rest,rdf : nil)

Table 6.3
Pattern used to expand a list in OWL2RL

In classical ASP lists are not supported by default. The new version of DLV,
called DLV-complex, introduces this useful feature, as well as other interesting
capabilities, which enhance the expressive power of the language.

To implement OWL2RL lists in ASP, we use the following method: we introduce
an atom called whose predicate name is "List". It has two arguments: the first
is a variable , the second is a List term.

list(X,[A]) < first(X, A),rest(X,nil)

list(X,[A|B]) < first(X, A),rest(X,Y),list(Y,[B])

In DLV-complex Lists can be represented by a single construct. A list of ele-
ments ey, ..., e, can be represented with the term [eq, ..., e,]. From now on

we will use this construct when dealing with lists of any kind.
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OWL2RL axiom code H|ASP axiom
eq-ref sameAs(S,S) < P(S,0)
sameAs(P, P) < P(S,0)
sameAs(O, O) <+ P(S,0)
eq-sim sameAs(Y, X) « sameAs(X,Y)
eq-trans sameAs(X,Z) < sameAs(X,Y), sameAs(Y, Z)
eq-rep-s P(S,0) < sameAs(S,S")
eg-rep-p P(S,0) < sameAs(P, P')
eq-rep-o P(S,0) + sameAs(0O,0")
eq-diff-1 — sameAs(X,Y),dif ferentFrom(X,Y)
eq-diff-2 — allDif ferent([z1, ..., zn]), sameAs(z;, zj)
eq-diff-3 — allDif ferent([z1, ..., 2y]), sameAs(z;, z;)
eq-diff-4 < allDif ferent([z1,...,2n]),
distinctMembers([z1, . .., zn]), sameAs(z;, z;)
Table 6.4

Semantics of Equality in OWL2RL given in terms of corresponding ASP rules.
For axioms eq-diff-2, eq-diff-3,eq-diff-4 the condition is that 1 <i < j<n

The table above models the semantics for equality. In fact, it is necessary to

specify how equality is handled by the system. Apart from the first axioms

(reflexivity, symmetry and transitivity the meaning of which is trivial), the

allDif ferent axioms are important, as they introduce constraints to avoid

that an equivalence is forced by mistake.
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Axiom Code|ASP axiom

prp-dom |C(X) < P(X,Y),domain(P,C)

prp-rng  |C(Y) «+ P(X,Y),range(P,C)
prp-fp  |sameAs(Y1,Ys) < functional Property(P), P(X, Y1),
P(X,Y5)
prp-ifp  [sameAs(Xy, Xo) < inverseFunctional Property(P),
P(X1,Y), P(X2,Y)

prp-irp |« irreflexiveProperty(P), P(X, X)
prp-symp |P(Y, X) < symmetricProperty(P), P(X,Y)
prp-asyp |« asymmetricProperty(P), P(X,Y), P(Y, X)

prp-trp  |P(X, Z) < transitiveProperty(P), P(X,Y), P(Y, Z)
prp-spol |P(X,Y) + Pi(X,Y), subPropertyO f (P, Ps)
prp-spo2 |P(Uy,Up41) < propertyChainAxiom([p1,...,pn]),
PL(Uy, Us), Py(Us, Us), ... ., Po(Un, Ups1)
prp-eqpl  |P2(X,Y) < Pi(X,Y), equivalent Property( Py, Ps)
prp-eqp2  |P1(X,Y) «+ P (X,Y), equivalent Property(Py, Py)
prp-pdw |« propertyDisjointWith(Py, P2), Pi(X,Y), P2(X,Y)
prp-adp |« allDisjoint Properties([Py, Py)), Pi(U, V), P;(U,V)
Vi<i<j<n

prp-invl |Py(Y, X) < inverseOf(Py, Ps), PQ(X Y)

prp-inv2  |P1(Y, X) < inverseOf(Py, Py), P ( Y)

prp-key |sameAs(X,Y) «+ hasKey( Py, Pol)s
C(X)vpl(X>Z1)a' ( )

CY). Pu(Y, Z41), ... Pa(Y, Z0)

prp-npal |« sourcelndividual(X, I1), assertionProperty(X, P),
targetIndividual (X, I2), P(I1, I2)

prp-npa2 | sourcelndividual(X, I), assertionProperty(X, P),
targetValue(X, Lt), P(I, Lt)

Table 6.5
Semantics of Properties in OWL2RL given in terms of corresponding ASP
rules.

The above table defines all the axioms for the Properties. Between all the ax-
ioms, some are trivial (the first ones until prp-spol). The axiom prp-spo2. on
the contrary, is very interesting. It models the propertyChainAxiom, which is
a brand new construct introduced in OWL2. It is used to model a set of prop-
erty which are applicable in a chain. Using transitivity, one can derive that
P(Uy,Uy,41) holds if the a chain of properties between them exist.

One can also model a set of Disjoint properties (prp-pdw, prp-adp), as well as
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Complex Keys. This is, as propertyChainAxiom, a new feature of OWL2. The
axiom prp-key, in fact, lets the user express a key formed by a set of properties.
This was not possible in the original OWL language.

Some of these new constructs exploit the power of lists, which make possible
to express sets of elements in a compact way. Of course this is not directly
expressible in OWL2 (xml syntax), but it is natural and easy in logic program-

ming, making the notation easy to use and straightforward.
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Axiom Code|ASP axiom
cls-thing |class(thing)
cls-nothingl |class(nothing)
cls-nothing2 |« nothing(X)
cls-intl  |C(Y) « intersectionOf(C,[Cy,...,Cp]),C1(Y),...,Cp(Y)
cls-int2  |C1(Y) < intersectionOf(C,[Ch,...,Cy]),C(Y)
Cn(Y) < intersectionO f(C,[C1,...,Cy]),C(Y)
clssuni  |C(Y) <= unionOf(C,[Ch,...,Cp]),Ci(Y),¥V1<i<n
cls-com |« complementO f(C1,C2), C1(X), Ca(X)
cls-svfl | X(U) - someValuesFrom(X,Y),onProperty(X, P),
PU,V),Y(V)
cls-svf2 | X(U) < someValuesFrom(X,thing),onProperty(X, P),
P(U,V)
cls-avf  |Y(V) < allValuesFrom(X,Y),onProperty(X, P),
P(U,V), X (U)
cls-hvl P(U, Y) < hasValue(X,Y),onProperty(X, P), X (U)
cls-hv2 | X(U) + hasValue(X,Y), onProperty(X, P), P(U,V)
cls-maxcl |« mazCardinality(X,0),
onProperty(X, P), X (U), P(U,V)
cls-maxc2 |sameAs(Y1,Ys) <+ maxCardinality(X,1),
onProperty(X, P), X (U), P(U,Y1), P(U,Y3)
cls-maxqcl [« maxQualCardinality(X,0), onProperty(X, P),
onClass(X,C), X(U),P(U,Y),C(Y)
cls-maxqc2 [« mazrQualCardinality(X,0), onProperty(X, P),
onClass(X,thing), X (U), P(U,Y)
cls-maxqc3 [sameAs(Y1,Ys) < maxQualCardinality(X,1),
onProperty(X, P),onClass(X,C), X(U),
P(Ua }/i)a C(Yl)7 P(Uu Yé)v C(YQ)
cls-maxqcd [sameAs(Y1,Ys) < maxQualCardinality(X, 1),
onProperty(X, P),onClass(X,thing), X (U), P(U, Y1), P(U,Y>)
cls-oo  |C (Y1) < oneOf(C,[Y1,...,Yy,])
C(Y,) < oneOf(C,[Y1,...,Ys])
Table 6.6

Semantics of Classes in OWL2RL given in terms of corresponding ASP rules.

The table above specifies the axioms about classes. The interesting axioms

here are the ones regarding intersection: cls-intl and cls-int2. In the first one,
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an object C(Y) is derived if it is defined as the intersection of n other classes,
and C;(Y") exists. In the second one, the opposite condition is expressed: C;(Y)
is derived if C(Y exists.

’Axiom Code‘ASP axiom ‘
cax-sco |Ca(X) < subclassO f(Cy,Cs),C1(X)

cax-eqcl |Ca(X) < equivalentClass(Cq,Cs), C1(X)

cax-eqc2 |C1(X) « equivalentClass(Cy, Cy]), Co(X)

cax-dw |« disjointWith(C1,Cs), C1(X), Ca(X)

cax-adc [« allDisjointClasses([C1,Cy]),Ci(Z),Cj(Z)V1<i<j<n

Table 6.7
Semantics of Class Axioms in OWL2RL given in terms of corresponding ASP
rules.

Axioms from the table above (semantics of class axioms) are rather straightfor-
ward, yet some of them appear interesting. In particular, the last two deal with
the concept of disjointness. cax-dw states that two disjoint classes cannot have
individuals in common; cax-adc generalizes that to a list of pairwise disjoint
classes.

For datatypes, the following holds:

e dt-typel: rdfs : Datatype(dt) for each datatype dt supported by OWL2 RL.

e dt-type2: dt(It) for each literal [t and each datatype dt which are supported
by OWL2 RL. Moreover, the data value of It must belong to the value space
of dt.

o dt-eq: sameAs(lty,lt2) for all literals ¢; and ty with the same data value.

o dt-diff: dif ferentFrom(lty,lts) for all literal ¢; and ¢ with different data
values.

e dt-not-type: < dt(It) for each literal It and each datatype dt supported by
OWL2 RL, for which [t does not belong to the value space of dt
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Axiom Code|ASP axiom
scm-cls  |subClassO f(C,C) < owl : Class(C)
equivalentClass(C, C) < owl : Class(C)
subClassO f(C,owl : Thing) < owl : Class(C')
subClassO f(owl : Nothing, C) < owl : Class(C)
scm-sco  |subclassO f(Cy, Cs) < subclassO f(Ch, Cy), subclassO f(Ca, Cs)
scm-eqcl  |subclassO f(Ch, Co) < equivalentClass(Cy, Ca)
subclassO f(Cq, Cy) < equivalentClass(Cy, Co)
scm-eqc2  |equivalentClass(Cy, Cy)
subclassO f(C1, Ca), subclassO f(Ca, Ch)
scm-op  [subPropertyO f(P, P) < object Property(P)
equivalent PropertyO f (P, P) < object Property(P)
scm-dp  |subPropertyO f(P, P) < datatype Property(P)
equivalent PropertyO f (P, P) < datatype Property(P)
scm-eqpl  [subPropertyO f( Py, P2) < equivalentProperty(Py, Ps)
subPropertyO f(Pa, Py) < equivalent Property(Py, Ps)
scm-eqp2  |equivalent Property(P1, Py) < subPropertyO f (P, Ps),
subPropertyO f(Pa, Py)
scm-doml |domain(P,Cs) < domain(P, Cy), subclassO f(Cy, Ca)
scm-dom2  |domain(Py,C) <+ domain(Ps, C), subpropertyO f(Py, P3)
scm-rqnl  |range(P, Co) + range(P, C1), subclassO f(Cy, Ca)
scm-rqn2  |range(Py, C) < range(Py, C), subPropertyO f( Py, Ps)
scm-hv  [subclassO f(Ch, Cs) « hasValue(Cy, I),onProperty(Ci, P1),
hasValue(Cs, I), onProperty(Cs, Py)subPropertyO f (P, Ps)
scm-svil  |subclassO f(Cy, Ca) < someValuesFrom(Cy, Y1),
onProperty(Cy, P)someV aluesFrom(Cs, P),
onProperty(Ca, Py), subclassO f(Y1,Ya)
sem-svi2  |subclassOf(Ch, Ca) < someValuesFrom(C1,Y),
onProperty(Cy, Py), someValuesFrom(Csy,Y),
onProperty(Ca, P), subpropertyO f (P, P»)
scm-avfl |subclassOf(C1,Cy) < allValuesFrom(Cy, Y1),
(
(
(
(
(
(

onProperty(Cy, P), allValuesFrom(Cs, Ys),
onProperty(Ca, P), subclassO f (Y1, Ya)

scm-avi2  |subclassO f(Co, Cy) < allValuesFrom(Cy,Y),
onProperty(Cy, P1), allValuesFrom(Ca,Y),
onProperty(Ca, P), subpropertyO f (P, P»)

scm-int  |subclassO f(C, Cy) < intersectionOf(C.[C1,...,Cy])

subclassOf(C, Cy) <+ intersectionO f(C.[C1,...,Cy])
scm-uni  |subclassO f(C1,C) < unionOf(C.[Cy,...,Cy])

subclassO f(Cy, C) < unionO f(C.[Cy,...,Cy))

Table 6.8
Semantics of Schema Vocabulary in OWL2RL given in terms of corresponding
ASP rules.
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In the table regarding the semantics of Schema Vocabulary, all the constructors
are used, in order to deliver the features they offer. For example, it is stated
that domain respects the subclassOf-subPropertyOf paradigm (sqc-dom1 and
sqc-dom?2) as well as range (scm-rqnl and scm-rqn2). It is stated, moreover,
the behaviour of subclass w.r.t. to intersectionOf and unionOf (scm-int and
scm-uni); equivalentClass is considered, of course, as a special case of sub-
classOf (scm-eqcl and scm-eqc2). subclassOf is put in relationship with all-

ValuesFrom and someValuesFrom (scm-svfl, scm-svi2, scm-avfl, scm-av{2).

6.4 Remarks

The translation of OWL2 fragments permits, as said, to use the power of logic
programming to deal with ontologies expressed in such languages. The trickiest
fragment is undoubtfully OWL2 RL, which was designed to be the most ex-
pressive one. Many translation rules are necessary, in fact, to implement all the
features this language offer.

In this way, by circumventing the well known semantic problems we have dealt
with in previous sections, it is possible to use the expressive power of such
language combined with the efficiency of logic programs reasoning engines. It
is interesting to take note that the translation is very general and, with some
syntactic changes, other systems than DLV may be used for evaluation, given

they support similar features.
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7

Implementation of a OWL2RL Reasoner with RIF
and DLVHEX

7.1 Introduction

The W3C is currently developing RIF (Rule Interchange Format) [38], a uni-
versal layer designed for exchanging rules between different and possibly het-
erogeneous systems over the Semantic Web. It is focused on the exchange more
than on the development of a single system to fit all needs of all the already
available rule systems, because it appears clear that a system which fits all
needs is very difficult, if not impossible to build, due to the large syntactic
and semantic differences between different systems or even in different modules
of the same system. The RIF working group divided the language into dialects
which are meant to be used in different situations, while maintaining the largest
subset of rules in common. They are called RIF profiles: Core, BLD and PRD.
While Core is formed by the base constructs of the language, BLD (Basic Logic
Dialect) is focused on logic, while PRD (Production Rules Dialect) is based on
the concept of production rules. Among other features, by treating F-Logic like
frames equivalently to RDF triples, particularly the RIF Core and RIF BLD
fragments, promise a standard format for publishing and exchanging rules on
top of RDF.

Likewise, ontologies in OWL2RL[49], a rule-based sublanguage of the Web on-
tology language OWL2 [52], enables the support of inference over ontologies
directly in rule-based system. This is achieved by giving a partial axiomatisa-
tion of the RDF OWL2 semantics in terms of first-order implications that can
be encoded as rules.

At the moment few implementations of OWL2RL and RIF-Core exist since both

languages are quite new. Moreover, we are not aware of any implementations —
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as of yet — that implement the combinations of RIF and OWL as standardized
[11].

To fill this gap we propose and implemented a reduction of those languages to
DLVHEX [24], a powerful disjunctive logic reasoner based on the Answer Set
Programming paradigm. DLVHEX has it roots in DLV, a disjunctive Datalog
system, but adds several features to the base language. The most interest-
ing of them is the possibility to use natively higher order atoms and external
atoms, which are added to the core language by means of a plug-in architecture.
Through external atoms it is possible to inject procedural code in the otherwise
purely declarative semantics of the language. This concept is very similar to li-
braries for other reasoners which enable interaction with external data sources,
such as, e.g., the integration of RDF support in SWI-Prolog [69]. There already
exist a rich collection of DLVHEX plugins for Semantic Web languages, such
as SPARQL [57], RDF and OWL DL [25]. Our new plugin for RIF-Core and
OWL2RL not only expands the interoperability of DLVHEX with these two
new standards, but also enables the combination of both with the other data
models and extensions, already accessible by plugins, for an evaluation, exper-
iments and new applications by combining these languages with the expressive
features of Answer Set Programming [6] 22].

Our plugin allows DLVHEX to load and process RIF rule sets as well as
OWL2RL ontologies. These are transformed to DLVHEX programs in a two-
step translation: we first rewrite from OWL2RL to RIF-Core, and then perform
a translation into DLVHEX. To this end there exist two different OWL2RL-
to-RIF reduction methods, though, a static RIF rule set [59, Appendix 8.1] or
dynamic a translation function from OWL2RL ontologies to RIF documents
which yields RIF rules specifically to the input ontology [59, Appendix 8.2|. In
comparison, the former approach bears some limitations in relation to inter-
operability with other RIF rule sets, and the combination of RIF with OWL
ontologies as specified in [11] is rather based on the latter. Despite these re-
strictions, our current version of the OWL2RL reasoner transforms OWL2RL
ontologies into RIF rules by the static rule set for the sake of a rapid first im-
plementation. We will explain the limitations of this approach when doing it
naively, and approximate the full dynamic combination of [II] by some exten-

sions of the naive first translation.



7.2 System Description 117

In the following we give a description of our system, its current development
status as well as an accompanying example in Section[7.2and and conclude
with a report on our future plans in Section

7.2 System Description

Our plugin consists of three parts: the OWL2RL to RIF-Core translation fol-
lowing [59], a RIF-Core to DLVHEX translator component, and the DLVHEX
reasoner. In sequel we will provide more details to these components while we
describe the system’s workflow partitioned into its three essential stages:
Phase I - Translation from OWL2RL to RIF-Core An OWL2RL ontol-
ogy, given in RDF/XML, as input is forwarded to the OW2RL to RIF-Core
translator which translates RDF triples of the input ontology to RIF frames
and merges them with the static rule set from [59] to a RIF-Core document.
The application of the static rule set to the RIF frames gained from the input
will be performed during the evaluation of this RIF document later on.
N esor

OWL2RL-to-RIF
Translation

\J

RIF/XML-to-
-RIF/PS
Translator

v

* RIF/PS Program

OWL2RL RDF-Triples-to- RIF-Core
Ontology » _Frames Converter > Program >

Fig. 7.1: Translation OWL2RL to RIF-Core

Phase II - Reduction of RIF-Core to DLVHEX The previously obtained
RIF-Core document is preliminary reduced to a DLVHEX program. For that,
the document is first parsed into an abstract syntax tree that is translated
into a HEX program by a tree walking algorithm which gradually generates,
adherent to a predefined set of translation rules, the corresponding HEX ex-
pressions from the visited tree nodes. This transformation includes reduction
of features from RIF not directly expressible in our system to the processable
input language of DLVHEX e.g. Lloyd-Topor [45] transformation of rule bodies

with disjunction, static type checking, or un-nesting of external predicates, i.e.
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built-ins. Eventually, the generated program is forwarded to DLVHEX which

returns a collection of answer sets.

AST-to-DLVHEX

RIF/PS Program P RIF-Core Parser P RIF-Core AST > Translator

v

DLVHEX - DLVHEX Reasoner 'DLVHEX Program

Answer Sets

Fig. 7.2: Reduction of RIF-Core to DLVHEX

Phase III - Answer Construction from DLVHEX to OWL2RL Even-
tually, the answer sets, which are basically sets of ground facts, are simply

transformed into a set of RIF ground atomic formulas.

DLVHEX
Answer Sets

RIF Answer
Constructor

OWL2RL Answer
Constructor

v

/ OWL2RL Answer

| ' RIFAnswer |

Fig. 7.3: Answer Construction from DVLHEX to OWL2RL

Example — RIF to DLVHEX

The OW2RL to RIF-Core translation, executed in Phase 1 is straightforward.
We give here only a small example for the RIF-Core to DLVHEX translation,
occurring in Phase II. We apply it here to a test case from the RIF devel-
opment group, http://www.w3.org/2005/rules/wiki/Factorial_Forward_
Chaining:

Document (
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
Prefix(func <http://wuw.w3.org/2007/rif-builtin-function#>)
Prefix(ex  <http://example.org/example#>)
Group
(
ex:factorial(0 1)

Forall 7N 7F7 7N1 ?F1 (
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ex:factorial(?N 7F) :-
And (External(pred:numeric-greater-than-or-equal(?N1 0))
?N = External(func:numeric-add(7N1 1))
ex:factorial (?N1 7F1)
?F = External(func:numeric-multiply(?N 7F1)) )
) ) )

This document describes the computation of the factorial for a positive integer
n. Our DLVHEX plugin rewrites the above RIF document into the following
two DLVHEX rules:

"ex:factorial"("O0", "1") :-
"ex:factorial"(VAR_N, VAR_F) :- &pred_numeric_geq[VAR_N1, "0"]1(),

equal (VAR_N, VAR_extOutput_1),

&func_numeric_add[VAR_N1, "1"](VAR_extOutput_1),

"ex:factorial"(VAR_N1, VAR_F1),

equal(VAR_F,VAR_extOutput_2),

&func_numeric_multiply[VAR_N,VAR_F1] (VAR_extOutput_2) .
The translation generates two rules, a fact and a proper rule, correspond-
ing to the two input RIF rules. The universal quantifier of the second RIF
rule is omitted here since DLVHEX rules are per se universal. RIF constants
(CURIes, typed literals, quoted unicode strings, etc.), such as ex:factorial
or 1, are embraced by double quotes. Prefix names in curies will generally be
expanded, but for better readability we didn’t resolve them here. RIF built-
in predicates and functions, such as pred:numeric-greaterthan-or-equal
and func:numeric-add, are rewritten to an corresponding external DLVHEX
atomﬂ So far we support all RIF built-ins which may appear in a RIF doc-
ument yielded by the OWL2RIF to RIF-Core translation. Beyond that, we
also support all numeric predicates and functions implementable via calls to an
XPath/XQuery Functions&Operators library.
Besides, the lack of higher-order atoms in the resulting HEX program is no
coincidence. In fact, those are not needed for a pure RIF-Core implementation.
Our planned support for RIF-BLD as well as future RIF extensions similar to

[25] will potentially demand higher-order features though.
Handling RIF-OWL2RL Combinations

The choice of a translation via the static rule set, applied in Phase I, seemed

more convenient to implement at first view. since it supports a fast imple-

1 Actually, for this particular example, we could have also exploited the built-in predicates
of DLVHEX, which supports natively simple arithmetic functions such as sum, multiply
and comparisons between variables. For the sake of the example, though, we decided to
show how the systems can handle such external predicates and functions, in a simple way
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mentation. However, several limitations arise when translating OWL2RL into
RIF via the static rules. Firstly, this method is rather inefficient compared to
Reynolds’s dynamic, pattern based approach [59, Appendix8.2|, which creates
more efficient RIF rules containing fewer free variables thus smaller grounding.
Further and more problematic, the static rules as such are not suitable for RIF-
OWL2RL combinations [I1], i.e, a blend of OWL2RL rules with arbitrary RIF-
Core rules. As pointed out in [I1] the static rules create problems w.r.t. equality
if applied to a RIF-OWL2RL combination, even if the RIF component is of RIF-
Core. The reason lies in the possible introduction of equality through OWL2RL
(via [Object|Data]MaxCardinality and {Universe}FunctionalObjectPro-
perty) that can also affect the predicates existing in the RIF-Core component.
In RIF-Core equality is only allowed in rule bodies and, thus, implications of
equalities are not natively expressible. Likewise, our base system, DLVHEX,
does not support equality natively, so we represent equality (which may only
appear in rule bodies in RIF-Core) using owl:sameAs. This works out perfectly
for the equality resembled by owl:sameAs on the level of RDF triples in the
OWL2RL component [49] rules eq-ref, eq-sym, eq-trans, eq-rep-s, eq-rep-p,
eq-rep-o|, by axiomatisation in the OWL2RL rule set, but it is not compre-
hensively applicable in an analogous way to terms in RIF-Core, since arbitrary
predicates or deeply nested external functions might occur in RIF rule sets
which are unaffected by this axiomatisation.

Since we use the static rule set for the OWL2RL to RIF translation, at least for
the time being, we developed a approximative rewriting for RIF rule sets for
RIF-OWL2RL combination that allows us to catch these effects of equality. For
a given RIF-OWL2RL combination < R, G >, where R is a RIF rule set and G
is an RDF Graph, potentially encoding an OWL2RL ontology, our algorithm

runs through the following steps and outputs a rewritten RIF-Core program S:

1. Initialise S with R. Flatten all nestings of external predicates and functions
in S by recursive substitution of nested terms with variables. For that,
we need to express various equalities between arbitrary function terms.
However, owl:sameAs is only applicable to express equality between sim-
ple terms. Thus, we need to introduce a new equality symbol ‘=’ which

expresses equality between arbitrary terms. Since the value of each func-
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tion term, by definition, belongs to an XML datatype we can think of = as
equality as evaluated by XPathE]

2. Add the static RIF-Core rule set of Reynolds to S.

3. Add G in form of frame facts to S.

4. For any constant ¢ that appears in R but not in G add the fact
clowl:sameAs->c] . to S.

5. For each rule of R in S rewrite any occurring atom p(t1, ..., t,) where p is a
constant and ¢; is a simple RIF term (1 < i < n) to an atom p(Xjy, ..., Xp)
where X; = ¢; if t; is a variable, else (i.e., t; is a constant) X; is a fresh
variable.

6. Apply Lloyd-Topr rewriting for non-conjunctive rule bodies in S.

7. Optimisation by removing unnecessary owl:sameAs and = statements from
the rule bodies in S.

Let us illustrate the effects of this algorithm by an example. Say HE] contains

p(?x) :- Or( q(?7x) r(?x,b) ) .
r(c(2 * 2 + 2)).

qa).

q(d) :- s( 1.3 +0.7).
s(1+1).

and G = {(a, owl:sameAs,b)}. Then we get the following intermediate results
for S:

After step 1:

p(?x) :- Or (q(?x) r(?x,b) ) .

r(c,?Y1) :- And( (?Y2 = 2 % 2) (?Y1 = ?Y2 + 2) ).
q(a).

q(d) :- And( s( 7Y1 ) (?Y1 = 1.3 + 0.7) ).

s(?Y1) - (?Y1 =1 + 1).

After step 2: S := S U "Static Rule Set"
After step 3: S := S U{alowl:sameAs->b]}

After step 4: S := S U {c[owl:sameAs->c], 2[owl:sameAs->2]}

2 In fact, on the stage of DLVHEX ‘=’ is evaluated by an external equality predicate imple-
mented through XPath equality checks.

3 Please note, that R deviates from the formal RIF syntax as we use here ‘4’ and ‘*’ for
the built-in functions func:numeric-add and func:numeric-multiply in infix-notation for
better readability
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After step 5:

p(?x) :- And ( Or (q(?x) =r(?x,?7X1) ) ?X1[owl:sameAs->b] ) .
r(7X1,7Y1) :- And( 7?X1[owl:samlAs->c] (?7Y2 = 2 * 2) (?Y1 = ?Y2 + 2) ).
qa).

q(?X1) :- And( ?X1[owl:samAs->d] s( ?Y1 ) (?¥1 = 1.3 + 0.7) ).
s(?7Y1) :- (?Y¥1 =1 + 1).

After step 7:

p(?x) :- q(?x) .

p(?x) :- And ( r(?x,7X1) ?X1[owl:sameAs->b] ) .
r(7X1,7Y1) :- And( 7X1[owl:samlAs->c] (?Y2 = 2 x 2) (?Y1
qa).

q(?X1) :- And( ?X1[owl:samAs->d] s( ?Y1 ) (?¥1 = 1.3 + 0.7) ).
s(?Y1) :- (?Y1 =1 + 1).

Y2 + 2) ).

Our translation is realized as a plugin[ﬂ to the DLVHEX systemﬂ Furthermore,
RIF-Core contains many built-ins in form of external predicates and functions.
These external functions are computed by use of a standard XML Library that
implements most of the common XPath /XQuery Functions& Operators [48]. At
present, we support a subset of those, as we focused our attention on the built-
ins which are mandatory for the reduction of OWL2RL reasoning to DLVHEX
via RIF.

e The reduction of OWL 2 RL to RIF is facilitated through the static rule set
given in [59]. In this approach RDF-triples of an OWL 2 RL ontology are
translated to RIF frames. Afterwards there semantics are represented by a
static set of RIF-Core rules. In our implemented, we add this static rules
as axioms to each RIF program together with the frames yielded from the
initial OWL2RL ontology.
e Limitations of embedding OWL 2 RL into RIF via the static rule set from
Dave Reynolds
— According to Dave Reynolds this is approach is correct but inefficient;
will be replaced with template or dynamic method in the future

— According to the author this rule set is correct, but creates problems
in terms of combination with existing RIF-Core rule sets: As Jos points
out the static rules create problems w.r.t. equality if applied to a RIF-
OWL2RL combination, even if the RIF component is of RIF-Core. The

* For the source code and installation/usage instructions, please refer to http://
sourceforge.net/projects/dlvhex-semweb/ as well as http://dlvhex-semweb.svn.
sourceforge.net/viewvc/dlvhex-semweb/dlvhex-rifplugin/.

5 http://www.kr.tuwien.ac.at/research/systems/d1lvhex/
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reason lies in the potential introduction of equality through the OWL2RL
rules for predicates in existing in the RIF-part, specifically:
Equality in OWL2RL is represented by ObjectMaxCardinality and
DataMaxCardinality restrictions, as well as FunctionalObjectProp-
erty UniverseFunctionalObjectProperty, Samelndividual, and HasKey
axiom.
Equality in rule heads is not a part of RIF-Core, the static rules sim-
ulate equality by replication. This works fine for the equality in terms
of triples. But replication is not analogously a comprehensive solution
for RIF terms in Core, since arbitrary deeply nested external func-
tions are allowed there and equality replication would yield infinity
replica rules.
Conclusion:
Thus the embedding of OWI1-2-RL RIF-Core combos in RIF-Core
can yield problems due to the lack of equality in RIF-Core, thus,
a correct representation of equality in a RIF-Core - OWL2RL
combination is not possible.
A reduction of OWL-2RL rule set to RIF-Core without the addi-
tion of any external rules is possible, but evidently prevents the
possibility to use these reduced rule sets with RIF rules form other
sources. This breaks the essential notion of RIF in terms of exten-

sible rule sets.

7.3 Implementation Notes

We want to focus now on some details regarding implementation of the proto-
type.

The basis of our reasoner is the dlvhex system, which is a logic engine we de-
scribed previously. At the time of working on our reasoner, the dlvhex system
was already very complete and full of capabilities. which are available through
a full-fledged system of plug-ins. We decided, in fact, to realize anything as a
plug-in for dlvhex.

The point-of-view is important in this case: in fact if you consider dlvhex the
main feature, you may see whole reasoner as a plug-in for it: if, on the contrary,

one watches it from the OWL2 RL scenario, dlvhex is nothing else than a logic
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engine, which is likely to be substituted with another one if the case.

We will focus here especially on two of the modules of the architecture.
The XML translator

Starting from the ontology, which is expressed in a XML-like syntax, the first
step consists of a translation in the presentation syntax. This is necessary for

two reasons:

e Human Readability: XML syntax is not human readable at all.
e Interoperability with other systems: some of them may use Presentation

Syntax as well. In this case an additional layer is necessary.

The implementation of the translator has been realized using the C+—+ pro-
gramming language. Moreover, we have exploited the power of a very famous
GNU C library: libxml2. It was originally designed for the Gnome Desktop En-
vironment, for handling xml documents.

The parser is top-down: parsing is started from the higher level symbol, down
to the terminal symbols. Next we report an example of code used for parsing
RIF documents.

Example 7.1. Function for translating an And of Formulas

xmlChar* RifParser::processAndFormulas(xmlTextReader* reader)
{
bool hasAnnotation = false;
xmlChar* annotation = xmlCharStrdup("");
if (DBG)
fout << "processing and of formulas" << endl;
int ret;
xmlChar* formulas = xmlCharStrdup("");
do
{
ret = xmlTextReaderRead(reader);
if (xml1StrEqual (xm1TextReaderConstName (reader),
xmlCharStrdup("id"))==

&% hasAnnotation == false)
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hasAnnotation = true;
annotation = processAnnotation(reader);
}
if ( xmlStrEqual (xmlTextReaderConstName (reader),
xmlCharStrdup("formula"))==1)
{

formulas

xmlStrcat (formulas, processFormula(reader));

formulas = xmlStrcat(formulas, xmlCharStrdup("\n"));

}
while (xmlStrEqual (xmlTextReaderConstName (reader),
xmlCharStrdup("And"))==0);

xmlChar* And = xmlCharStrdup("And(");
And = xmlStrcat(And, formulas);
And = xmlStrcat(And, xmlCharStrdup(")\n"));

if (hasAnnotation)

return xmlStrcat(annotation, And);

return And;

3

The code is used for translating a particular construct, i.e. the And of Formulas.

We recall here a part of the RIF grammar:

FORMULA ::= IRIMETA? ’And’ ’(’ FORMULA* ’)’ |
IRIMETA? °0r’ ’(’> FORMULAx °)° |
IRIMETA? ’Exists’ Var+ ’(’ FORMULA ’)’ |
ATOMIC |
IRIMETA? ’External’ ’(’ Atom ’)’

Please look at the first line. It explains that a formula may be expressed as an
“And” of Formulas, i.e. a conjunction of N formulas, N > 0. Of course such
definition is recursive. This conjunction can be preceded by an annotation, in-
dicated by the word “IRIMETA”. The question mark, as usually for EBNF,
means that the annotation is optional.

First, the presence of an annotation is looked for. Its presence goes together
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with the keyword “id”. If the annotation is found, it is stored and the com-
putation goes on. Then we look for the sequence of formulas, identified by the
keyword “formula”. Such sequence is closed by the word “And” (note that, being
a top-down parser, the presence of the opening “And” had triggered the calling
of this function). For each formula encountered, the “processFormula” function
is recursively invoked.

The workflow of the parsing is a sequence of similar functions, with the obvious

syntactic differences for different constructs.

The DTB Datatypes and built-ins

For the reasoner it has been necessary to implement a greatest part of the
RIF Datatypes and Built-ins. The datatypes are based on Xml-schema. Again,
to implement them libxml2 was used, which provided the necessary support.
Datatypes handle several aspects related to integer values, floating point,
strings, dates and times.

Built-ins regard utility function over strings and lists especially. To manage
and manipulate lists, in fact, it is possible to rely on functions like union,
difference, intersection, concatenation, etc. In the following example, the func-
tion reverse is defined. It takes a list [ : list(eq,...,e,) as an argument, and
returns the list {" defined as list(ey,...,e1). Lists in RIF may be nested, so
they are flattened before any operation on them. This is possible because ac-
cording to the semantics nested lists are equivalent to flat list. For example,
list(a,b,c) = list(a,list(b, c).

Ezxample 7.2. This function reverses the given list and returns the result

string ListChecker: :reverse(string & list)

{
string toReturn("List(");

string flatList = flatten(list);

int i = flatList.length()-1;

int count = O;
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string item("");
while (i>=0)

{
count++;
if (flatlist.at(i) == ? ?)
{
item = flatList.substr(i+1,i+count);
toReturn += item + " ";
item = " ";
count = O;
}
i--;
}

toReturn += ")";

return toReturn;

7.4 Remarks and Future Work

We presented a DLVHEX plugin for OWL2RL and RIF-Core reasoning. The
former is based on a 2-step reduction to DLVHEX via RIF-Core. This is, to our
knowledge, the first attempt to implement RIF-OWL combinations a la [I1],
At our current stage of development we facilitate the translation to RIF by the
static rule set of [59] which, as we have explained earlier, imposes restrictions
on reasoning in combination with other RIF-Core documents. For the future
we, therefore, will consider to modify the implementation of the first phase,
switching from the static rule set to the dynamic rewriting by [59, Appendix8.2]
similarly used in [I1] which is based on RIF-BLD. Consequently, we will also
try to extend the RIF-Core to DLVHEX translation in Phase II to more features
of RIF-BLD. Moreover we plan to implement the remaining RIF built-ins to
have a more complete translation from RIF-BLD to DLVHEX.






8

Conclusions and Future Work

In this thesis we have shown various techniques for the translation of logic for-
malisms in the Semantic Web.

First, we have introduced the background of the research, that is to say the
tools, techniques and theories we have used in order to broaden our vision of the
problem. Then, we have given a thorough insight of what the research activity
was useful to find out.

In the first part, we discussed our approach to the problem of integration of
heterogeneous formalisms in the Semantic Web. Such problem is actually very
complex, and we proposed our solution, specifically oriented to query answer-
ing. In fact, since the query answering task in the Semantic Web Language is
often not efficient, we have developed a technique which permits the translation
of an ontology in a logic program, which can in turn be used as input to a logic
engine, usually faster in such query tasks.

We have chosen a description logic fragment to be translated, ELHZ, and ex-
plained in detail how the translation is performed, and why it is sound and
complete. We have shown, moreover, that our ideas have been realized with
a prototype software, which makes use of reusable logic modules to translate
in a semantic way the input ontology. In order to assess the validity of this
approach, we have performed some tests, and shown the results compared to a
direct competitor, as Pellet [67] is.

In the second part we have generalized the modular approach, proposing other
formalisms which can be modularized and integrated with logic programming.
One of them is Frame Logic, which is a formalism aimed at bringing the power
of Object-Oriented Programming languages into logic. We designed a modular

framework to implement all F-Logic constructs into a system called DLT, which
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is a dialect of the popular logic programming system DIV.

Later on, we moved forward to the profiles of OWL2, which is the new ver-
sion of the popular Ontology Web Language. This language has been divided
into profiles, corresponding to different Description Logic Fragments. Again,
we performed the translation using a modular approach.

Finally, we have moved our attention to a different representation formalism,
although remaining in the Semantic Web scenario: RIF.

The latter is the name for a fresh standard for the exchange of Rules between
heterogeneous logic systems. We have used it to build a Reasoner able to process
OWL2RL ontologies. The Ontology is translated into a RIF program, which
is in turn converted into a dlvhex program (dlvhex is another system based on
DLV, with interesting capabilities). This implementation work has proven to be
particularly interesting, as at the time of it we were not aware of any existing
complete implementation of RIF, or any complete OWL2RL reasoner. Part of
research work herein reported has been acknowledged by the scientific commu-

nity on the following reported papers:

e Mario Alviano, Giovambattista [anni, Marco Marano.Alessandra Martello
“Versatile Semantic Modeling of Frame Logic Programs under Answer Set
Semantics”, ASWC 2008, Springer, pages 106-121, 2009.

e Marco Marano, Giovambattista lanni, Francesco Ricca “A Magic set im-
plementation for Disjunctive Logic Programming with Function Symbols”,
CILC 2009.

e Marco Marano, Phillip Obermeier, Axel Polleres “Translating OWL2RL to
DLVHex via RIF”, RR 2010, Springer, pages 244-250, 2010.

e Marco Marano, Giovambattista lanni: “Semantic Modeling of heterogeneous
Logics with Logic Programming” (Technical Report)

e Anna Bria, Giovambattista [anni, Marco Marano, Francesco Ricca: “A pure
forward-chaining approach for query answering on EL knowledge bases”
(Technical Report)

Future Work

The work described in this thesis has shown good results. As scientists, though,

we want to improve and complete the various techniques described previously,
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For what concerns the first part, we mean to extend the described transla-
tion technique to more expressive logic fragments. ELHZ is interesting, but it
lacks some features that would be interesting to have in the future. Constructs
like unrestricted universal quantification, bottom and top concepts, and others
would prove very useful for more complex reasoning tasks.

Moreover, the prototype needs some polishing and additional features, in order
to be used on a larger, non-academic scale.

The work on Frame Logic is also interesting. Possible developments in this di-
rection could be the introduction of more semantics, configurable on-the-fly as
usually, or a full integration with the DLV system, instead of DLT.

Finally, there seems to be a great interest around RIF in recent times. The rea-
soner already works, but it would be important to compare it with the other

reasoners which are going to be released, to measure performances and accuracy.
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