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Abstract

This dissertation presents several contributions inherently the control of con-
strained Linearly Parameter Varying (LPV) systems. First the basic analysis
and synthesis tools needed to deal with the class of LPV systems are carried
out and introduced. Some novel results are given, especially for what regards
the use of scheduled control laws and stability conditions for LPV with slow
parameter variations.
Then we moved on the problem of constrained control. Several new constrained
stabilization results are proposed here for the first time and improvements in
the procedures to build-up time-variant strategies able to deal with constrained
LPV system are given. Moreover a new particular kind of control strategy based
on the idea of exploiting the prediction set structure is introduced here for the
first time in the LPV framework. It has been pointed out in which way those
approaches can be arranged within Model Predictive Control (MPC) schemes
to more efficiently deal with constrained LPV systems and two new fast-MPC
algorithms for LPV system have been proposed. In this thesis some attention
has been given to the analysis of LPV systems with slow parameter variations
and some preliminary results are reported. Such a class of systems has many
potentials but, due to the ”hidden” nonlinearities it introduces, it is still not
well understood and would deserves further careful investigations.
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Introduction

Motivations and Goals

Nowadays practice suggests that amongst all possible deficiencies of current
control design methods, the reduced capability to deal with accurate plant
models is probably one of the most crucial, limiting the performance poten-
tially achievable when applied to industrial processes. This is especially true
when the satisfaction of prescribed constraints is a mandatory requirement.
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Such a situation is very common. In fact, accurate mathematical descrip-
tions of ”real-world” plants typically result in nonlinear systems subject to
eventually time-varying uncertainties (due to environmental conditions, set
points feature, unmodelled dynamics, noise, etc). Moreover, almost all real
plants are subject to saturation phenomena (actuator limitations, physical re-
straints, etc ) and to safety constraints which have to be enforced to guarantee
a proper system behavior. Sometimes, when the required control performance
are not stringent, some of the above aspects can be neglected. However, when
a high performance control task is necessary, the designer has to carefully take
them into account in order to avoid hazardous situations both for equipments
and human beings.

In the last two decades a significant effort has been produced by the re-
search community in the direction of developing formal tools able jointly to
cope with constrained control problems and to take into account possibly
time-varying uncertainties. In particular, because of its natural capabilities to
handle constraints in a systematic way, Model Predictive Control (MPC) has
proven to be a reliable choice for many applications and has gained a good
reputation in the industrial world.

Originally developed to meet the control requirements of petroleum re-
fineries and power plants, MPC refers to a family of optimization based con-
trol algorithms which make use of a process model to explicitly give plant
forecasts. At each sampling time, an MPC algorithm optimizes future plant
behavior by computing a sequence of virtual optimal input moves. Then, the
first element of the computed sequence is applied to the plant and the entire
procedure is repeated at the next sampling time. For such a reason this ap-
proach is sometimes referred to as Receding Horizon Control.
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Fig. 0.2. Model Predictive Control Scheme

MPC literature is vast and it covers various system descriptions and frame-
works including linear, nonlinear, uncertain and time-varying systems. As al-
ready pointed out, it is of industrial relevance the ability to properly deal
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with systems whose dynamic behavior is subject to non-stationary phenom-
ena. For such a reason, in this dissertation we will focus on a particular class
of (possibly) time varying systems: the so called Linear Parameter Varying
(LPV) systems paradigm.

LPV systems are characterized by the dependence on a possibly time-
varying parameter vector that is supposed to be measurable at each time
step. Such a framework was introduced in the late 80’s to formalize the ideas
behind gain-scheduling control and, as we will in detail in this thesis, it has
a wide range of applications in industrial and vehicular control. In recent

p

System Matrices 

pBpA ,
u x

Z-1

Fig. 0.3. Linear Parameter Varying System

years, several MPC algorithms have been proposed for the LPV framework
yielding to interesting results. However, in our opinion, many of them are
just a smart adaptation of previously strategies just proposed for uncertain
systems and some of the properties of the LPV systems have not yet been fully
exploited in MPC schemes. In this thesis, we will investigate the structural
properties of the LPV framework in terms of prediction sets, stabilizability and
constrained stabilizability results, providing some novel ideas, with the final
aim at developing new better performing model predictive control strategies.

Thesis Outline

The thesis is divided into two parts.

In the first part, the LPV framework is described, together with the re-
lated control strategies. It will be shown how the use of scheduling control
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law may give rise to a more complex model structure, and how it is possible
to overcome such a problem by means of convexification methods. Moreover,
a new convexification method is proposed and a re-interpretation of linearly
scheduled control laws applied to a LPV system is given. Finally, in the third
Chapter the problem of finding a state feedback stabilizing control law is dis-
cussed. Several existing method, both using standard and nonstandard Lya-
punov function are shown. Moreover, in the last part of Chapter 3, the use of
nonstandard Lyapunov functions, allowed us to define new stability condition
for LPV systems subject to bounded parameter variations.

The second part of the thesis is devoted to constrained control for LPV
system. In Chapter 4 the constrained control design for LPV system is formu-
lated and the concept of invariance introduced and specialized to the Linear
Parameter Varying case. In Chapter 5 the problem of the state trajectories
prediction for LPV system are discussed together with the possible strategies
exploited to regulate its behavior. New approaches to the prediction problem
are introduced and a class of control strategies based on these new predic-
tion sets is introduced for the first time within this framework. Chapter 6
presents several way to solve the problem of constrained control design for the
class of systems under exam. First, the problem of state-feedback constrained
stabilization is detailed, the existing methods are recalled and some new ap-
proaches, based on nonstandard Lyapunov functions, are presented. Then the
use of a time-varying control strategy is discussed and several different algo-
rithms are proposed. In Chapter 7 the Model Predictive Control paradigm
is introduced, underlining in which way the previous chapter results can be
arranged in a Receding Horizon scheme. Feasibility and the stability issues
are carefully discussed. The last Chapter presents two new low-computational
demanding MPC algorithm.

The following novel results, published or currently under review, are proposed
in this thesis:

• A new convexification method for LPV systems subject to linearly self-
scheduled control laws, based on a refinement of existing techniques is
shown in Subsection 2.2.3.

• An interpretation of an LPV system subject to linearly self-scheduled con-
trol laws as a particular class of uncertain system is proposed in Section
2.2.4.

• In Section 3.2 the problem of stabilizability for LPV systems subject to
slowly varying systems is solved and several results are obtained. Stabi-
lizability conditions for such a class of systems seems to complete miss in
the discrete time LPV literature.

• In Section 4.2.3 some minor contributions to the definition of invariant set
for LPV systems are shown.
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• In Chapter 5 some slight improvements on the computation of prediction
set are given.

• in Section 5.6 the Prediction Set Based Control Strategies are presented
for the first time within the LPV framework.

• In the first part of Chapter 6, the constrained stabilization methods mak-
ing use of standard Parameter Varying Lyapunov Functions have been
proposed by the author in [45]. All the results based on non-standard
Lyapunov, instead, are here presented for the first time.

• In the second part of Chapter 6, some minor novelties (cost computation,
more flexible control strategies) are presented. Moreover the use of the the
Prediction Set Based Control Strategies is adopted here for the first time
to control constrained LPV systems.

• In Chapter 7, even if following classical ideas, new feasibility and stability
results are given in a general way, able to include many MPC algorithm
derived by using previous chapters results.

• Finally, in Chapter 8, two new fast-MPC algorithm are proposed using,
respectively, invariant set ideas and viability arguments.





Part I

Linear Parameter Varying Systems





1

Discrete Time Linear Parameter Varying
Systems

In this chapter we introduce the Linear Parameter Varying (LPV) systems
framework, a class of possibly time-varying models whose system matrices
depend linearly on a parameter which is supposed to be bounded and measur-
able at each time instant. This class of systems description is very interesting
because enables us to deal in a simpler way with a wide class of processes,
including particular nonlinear models whose state trajectory can be embed-
ded inside a LPV “state evolution tube”. The chapter is organized as follows,
in the first Section, the framework is introduced together with the necessary
notation. Then, in the second Section, we discuss some peculiarities of the
LPV framework (some additional notation useful for the thesis remainder is
also considered) and finally, in the third Section, examples of typical processes
which can be described by means of the LPV framework are illustrated and
its relationships with the Takagi-Sugeno Fuzzy descriptions are discussed.

1.1 Definitions

The introduction of Linear Parameter Varying systems framework can be
dated to the end of the 80’s (see [1]-[2]) with the aim of developing a for-
mal framework to give soundness to gain-scheduling control strategies. As we
will see in the following, LPV description has proved to be an interesting
formalism to deal with a large class of real plants. In the literature both con-
tinuous and discrete-time LPV systems have been considered. Here we focus
on discrete-time polytopic LPV systems (hereafter referred as LPV systems
for simplicity), which can be defined as follows:

Definition 1.1. A discrete-time LPV system is a possibly time-varying linear
system

x (k + 1) = A (p(k)) x (k) + B (p(k)) u (k) (1.1)

where x(k) ∈ Rn denotes the state, u(k) ∈ Rm the input and A(p(k)), B(p(k))
are matrices of proper dimension depending linearly on a possibly time-varying
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parameter p(k), constrained a-priori to lie in some known bounded real set and
assumed to be measurable on-line.

Definition 1.2. A discrete-time LPV systems is said to be polytopic when the
system matrices have the following structure

[A (p(k)) B (p(k)) ] =
l
∑

i=1

pi (k) [Ai Bi ] (1.2)

where [Ai Bi], i = 1, . . . , l are the extremal realizations of the plants’ fam-
ily and the parameter vector p(k) = [p1(k), . . . , pl(k)]T belongs to the l-
dimensional unit simplex

Σl ,

{

p ∈ Rl

∣

∣

∣

∣

∣

l
∑

i=1

pi (k) = 1, pi (k) ≥ 0 i = 1, ..., l

}

. (1.3)

The feature of the LPV framework that p(k) is assumed to be measurable at
each time step k is hereafter referred to as the LPV hypothesis.

Note that, in the above definition, no particular assumptions on the
parameter behavior are given. This implies that, at least in principle, no
particular dependence is supposed between p(k) and its future evolutions
p(k + 1), p(k + 2), . . . .
The latter means that even switching-like behaviors, in which the parameter
jumps from a point to another one of the simplex, are admissible. Though
very general, such a freedom of the parameter behavior can be not adequate
to provide a fitting description to some classes of time varying (or even nonlin-
ear) plants. In fact, in a large number of relevant applications, the parameter
p (k) may represent slowly varying quantities (e.g. environmental conditions,
physical parameters, unmodelled nonlinear dynamics,etc). In order to deal in
a proper way with those kind of plants it is possible to sophisticate the LPV
model by introducing some dependencies (or constraints) on the future occur-
rences of the parameter vector. The most natural way is the introduction of
the so-called bounded parameter variation property:

Definition 1.3. A discrete-time polytopic LPV system is said to be subject to
bounded parameter variations if p (k) belongs to the following possibly time-
varying polytopic set

Υ (p(k − 1)) , {p ∈ Σls.t.|pi − pi (k − 1)| < ∆pi, i = 1, ..., l} (1.4)

where ∆pi > 0 is the maximum increment of the i-th entry of the vector p (k)

Remark 1.4. Note that when ∆pi = 1 i = 1, . . . , l, one recovers the stan-
dard LPV system definition without any assumption on its rate of parameter
changes.
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1.2 LPV Information Vector

Here we introduce the notion of plant information vector and the related
notation. As previously seen, LPV descriptions differ from uncertain plant
representations due to the parameter which is supposed to be known (mea-
surable or computable) at each time instant k. In order to describe all the
information available at time k we introduce the information vector ξ(k)

ξ(k) , [x(k)T , p(k)T , k]T (1.5)

This definition is convenient because in general, at each time step k, all system
decision variables (i.e. the manipulable input u(k)) can be chosen accordingly
to the whole information vector

u (k) = u (ξ(k)) = u (x (k) , p (k), k) . (1.6)

the input can be, in fact, a function of the parameter, the state and the
actual time k. In what follows, we will distinguish between the two classes of
dependence, namely:

• Time-Invariant Control Laws when the control law does not depend on
k, i.e.

u(k) = u(ξ(k)) = u(x(k), p(k))

• Time-Varying Control Laws in the general case (1.6)

Remark 1.5. The information vector ξ acts as a sort of extended state for
the system. Starting from this consideration, model (1.1) subject to bounded
parameter variations (1.4) can be rewritten as follows

[

x (k + 1)
p (k + 1)

]

=





l
∑

i=1

pi(k) (Aix + Biu (ξ (k)))

p (k)



+

[

0
1

]

∆p (k) (1.7)

where ∆p(k), the variation on p(k), can be regarded as an appropriate ex-
ogenous persistent disturbance which acts in such a way that the parameter
variation constraints (1.4) are satisfied. The latter implies that p(k + 1) and
x(k + 1) are not independent each other but both of them depend on p(k).
Interestingly enough, such a dependence disappears in the case of LPV with-
out bounded parameter variations because p(k + 1) can be any value in the
unit simplex Σl for any value of x(k + 1); i.e.:

[

x (k + 1)
p (k + 1)

]

=





l
∑

i=1

pi(k) (Aix + Biu (ξ (k)))

0



+

[

0
1

]

∆p (k) (1.8)

with ∆p(k) ∈ Σl.

Remark 1.6. It may be interesting to note that if the control strategy is known,
on the basis of (1.7) and (1.8), the information vector ξ(k) can be replaced by
an initial state x(0) and a feasible sequence p(τ), τ = 0, . . . , k without lack of
information.
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1.3 Applications and LPV-related frameworks

Some typical applications of the LPV framework are here briefly analyzed.
In the first subsection we discuss the the LPV framework capability to deal
with scheduling control strategies and, in the second, on the importance of
the LPV paradigm to deal with particular classes of nonlinear systems. Fi-
nally, in the third subsection, we introduce the class of Takagi-Sugeno (T-S)
Fuzzy systems. This class of systems is conceptually very close to the LPV
framework and shares several properties with it. The differences between the
two frameworks will be analyzed and it will be shown how results holding for
the LPV framework reflect into those pertaining to T-S literature.

1.3.1 Scheduling Systems

In many real situations, a system may be subject to transitions among differ-
ent conditions that can be associated to variations of some system parameter.

In some cases they arise because of modeling problems. In other cases they
may be due to physical variables affecting the nominal behavior of the plant.

The idea of gain scheduling consists in using a parameterized control law
with compensator parameters chosen online as a function of some plant pa-
rameters or states. Such an approach has been successfully used to solve many
control problems since ’70’s (see for instance [5] and [6]) although, for a long
time, in the absence of a rigorous analysis and without sound results on stabil-
ity, robustness and performance. The LPV framework has been introduced by
Shamma ([1]) and others ([4]) at the beginning of ’90 as a rigorous approach
to cover the above theoretical lacks.

1.3.2 Nonlinear Embedding

One of the main merits (see [7],[8],[9]) of the Linear Parameter Varying frame-
work is its capability to allow the embedding the state trajectory of particular
nonlinear systems inside a LPV tube of state evolutions. Let us consider a
nonlinear system in the form

x(k + 1) = f(x(k), u(k)) (1.9)

where x(k) ∈ X ⊆ ℜn denotes the state and u(k) ∈ U ⊆ ℜm denotes the
input and X, U are, respectively, the state and input prescribed domains. If
we are able to rewrite (1.9) in a bilinear structure

x(k + 1) = A(x(k))x(k) + B(x(k))u(k) (1.10)

and if (A(x(k)), B(x(k))), ∀k can be embedded into a polytopic set of vertices
(Ai, Bi) , i = 1, . . . , l i.e.

{[A(x(k)), B(x(k))] s.t. x(k) ∈ X} ⊆ conv{{[Ai, Bi]}
l
i}
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then the system (1.10), for x ∈ X, is equivalent to

x(k + 1) =
l
∑

i=1

pi (x(k))Aix(t) + Biu(t) (1.11)

where the nonlinearity is transferred on a suitable realization of the parameter
vector p(x(k)) ∈ Σl. The main idea of the LPV embedding is as follows:

• at each time k, p(x(k)) is known because x(k) is fully available;
• the trajectory of the parameter p(·) does depend on the state trajectory.

Because this relationship is nonlinear, we will relax it and suppose that
p(x(k)) can be any value in the simplex Σl.

Such an embedding approach proved to be a powerful tool in the analysis and
synthesis of nonlinear systems (see [10],[11],[12]).

1.3.3 Takagi-Sugeno Fuzzy Systems

In 1985 Takagi and Sugeno (see [13]) introduced a particular class of fuzzy
systems, now known as ”Takagi-Sugeno Fuzzy Systems”. A Takagi-Sugeno
fuzzy system is a particular LPV system in the form (1.1) where the value of
the parameter vector p(k) ∈ Σl depends on a set of normalized membership
functions. Even if in this thesis we will not make use of such a formalism, it
may be of interest because of similarities with the LPV framework. Moreover,
many results presented in the vast T-S fuzzy literature can be successfully
adopted into the LPV framework (and vice versa).

The typical discrete T-S fuzzy model description is given by a set of rules
Ri

p for i = 1, . . . , l.:

Ri
p : IF x1 (k) is M i

1 and ... and xn (k) is M i
n

THEN x (k + 1) = Aix (k) + Biu (k)

where x (k) =
[

x1 (k) . . . &xn (k)
]T

∈ ℜn denotes the state, u (k) =∈ ℜm the
input vector and Ai ∈ ℜn×n, Bi ∈ ℜm×n the system matrices. M i

j (j = 1, ..., n)
denotes fuzzy sets defined by some membership function. The membership
function of xj belonging to M i

j is denoted by

µi
j (x (k)) .

If we introduce M i = M i
1 × . . .×M i

n and µi (x (k)) =
n
∏

j=1

µi
j (xj (k)) denoting

the grade of membership of x (k) in M i, we can rewrite the whole system as
follows

x (k + 1) =
l
∑

i=1

hi (x (k)) [Aix (k) + Biu (k)]
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where

hi (k) =
µi (x (k))

l
∑

i=1

µi (x (k)) .

Because functions µi (x (k)) are assumed to be positive this implies

0 ≤ hi (x (k)) ≤ 1,
l
∑

i=1

hi (x (k)) = 1.
.

It is then possible to note that the T-S fuzzy systems can be seen as particular
LPV systems where the parameter depends on some state function.

Chapter Summary

LPV formalism has been here introduced together with the information vector
ξ(k) = [x(k)T , p(k)T , k] representing all information available for control at
time k. The main uses of the LPV framework have been summarized and the
relationships with the Takagi-Sugeno Fuzzy System descriptions pointed out.



2

Scheduled Control Laws and LPV Systems

In this Chapter we define and discuss some of the typical scheduled control
laws which are used in dealing with discrete-time LPV systems. Although
those kind of control laws ensure better results w.r.t. non-scheduled control
laws, the resulting closed-loop system structure is inherently more complicated
and careful investigations are mandatory. This Chapter is organized as follows.
First, the typical control laws adopted in the LPV framework are introduced.
Then, some notes on the non-convex nature of the closed-loop state evolution
sets are reported. Several convexification strategies are therefore proposed
to deal with such a problem and a general interpretation of all the above
convexification procedures is given.

2.1 Scheduled Control Laws

As already seen, the parameter p(·) is a relevant information to be used for
improving the control action on the system. For such a reason hereafter we
focus on the determination of control laws that explicitly depend on it.

2.1.1 State Affine Scheduled Control Laws

The simplest and the most common parameter dependent control laws are
those which depend linearly from the parameter vector:

u (ξ(k)) =

(

l
∑

i=1

pi (k) ui (x (k))

)

(2.1)

where ui (x (k)) , i = 1, . . . , l are LTI affine state-dependent contol laws of the
form

ui(x(k)) = Fix(k) + ci, i = 1, . . . , l (2.2)

with Fi ∈ Rm×n, ci ∈ Rm. Note that many classical gain scheduling con-
trol laws can be rewritten in this form. As detailed better later, the main
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disadvantages in using this kind of laws is that they introduces a quadratic
dependence between the one-step ahead closed-loop state evolution and the
parameter value. In this dissertation, we will mostly refer to this kind of con-
trol laws.

2.1.2 Non-standard Scheduled Control Laws

In recent literature, scheduled control laws alternative to (2.1) have been also
proposed. Of particular interest here is the one proposed in [14], where a
linearly parameter dependent state feedback control law is corrected by the
inverse of a scheduled correction matrix:

u (ξ(k)) =







l
∑

i=1

pi(k)Fi





l
∑

j=1

pj(k)Ψj





−1





x(k) (2.3)

where Fi ∈ Rm×n and the correction matrix elements Ψj ∈ Rn×n act as an
additional degree of freedom. The main merit of the above scheduled control
law (2.3), as it will be better remarked later, is that it allows the derivation
of less conservative conditions for closed-loop stability. Observe also that the
state feedback control laws (2.1) can be seen as a special case of (2.3) with
Ψi = I, i = 1, . . . , l.

2.2 Non-convexity of the One-step Reachable Set

It is of particular interest here to understand what the closed-loop state evo-
lutions become when a parameter scheduled control law (2.1) or (2.3) is em-
ployed. In fact, it is straightforward to note that, in general, even the simplest
scheduled control law (2.1) introduces a parameter nonlinearity into the one-
step ahead state evolution:

x(k + 1) =
l
∑

i=1

pi(k)Aix(k) +
l
∑

i=1

pi(k)Bi

l
∑

j=1

pjuj (x)

As a consequence the set

X+ =







x(k + 1) =

l
∑

i=1

piAix(k) +

l
∑

i=1

piBi

l
∑

j=1

pjuj (x)

∣

∣

∣

∣

∣

∣

∀p ∈ Σk







i.e. the set of all states reachable from x(k) in one step for any possible pa-
rameter occurrence, is not convex in general. The above considerations imply
that the use of parameter scheduled control laws leads up to more cumber-
some analysis and synthesis tasks. On the other hands, the advantages of using
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scheduled control laws have been extensively remarked in literature and it is
main reason of the LPV framework success.

A typical way to overcome the non-convexity nature of X+ is that of ex-
ploiting a convenient (polytopic) outer approximation. In the following sub-
sections, we will show and discuss some of the convexification procedures that
can be used when control laws of the form (2.1) are used.

2.2.1 A Naive Convexification

A very simple way to deal with the quadratic dependence seen above, is given
by the following procedure.

Let us rewrite (1.1) as follows

x (k + 1) =

l
∑

i=1

pi (k)



Aix (k) + Bi

l
∑

j=1

pj (k) uj (x (k))



 =

=

l
∑

i=1

l
∑

j=1

pi (k) pj (k) [Aix (k) + Biuj (x (k))], (2.4)

∀p(k) ∈ Σl

Observe that the set of all states x(k + 1) reachable from x(k) for a given
control law in form (2.1) by arbitrarily changing p(k) ∈ Σk is not convex
because of the products pi(k)pj(k). A possible way to easily convexify the
above set is by considering

x (k + 1) =

l
∑

i=1

l
∑

j=1

p̄i,j (k) [Aix (k) + Biuj (x (k))] (2.5)

∀p̄ ∈ Σ2
l

were

p̄ (k) = [p̄1,1 (k) , p̄1,2 (k) , . . . , p̄1,l (k) , p̄2,1 (k) , . . . , p̄ll (k)] ∈ ℜl2 (2.6)

The proof that (2.5) is a feasible convexification for (2.4) can be obtained by
noting that for each p(k) there exists a corresponding p̄(k) with entries

p̄ij (k) = pi (k) pj (k) , i = 1, . . . , l, j = 1, . . . , l, (2.7)

such that p̄ (k) ∈ Σl because of

pi (k) pj (k) ≥ 0,
l
∑

i=1

l
∑

j=1

pi (k) pj (k) = 1
(2.8)
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While very simple to obtain, the above embedding is not very efficient and
exhibits several weak spots. One of the main problems is that many advantages
coming from the employment of a scheduled control law are lost. For instance,
the following Lemma shows that, if we use this convexification procedure,
scheduled control laws have the same stabilization capability of non-scheduled
control laws, i.e. laws of the form (2.1) with ui(x(k)) = u(x(k)), i = 1, ..., l:

Lemma 2.1. A LPV system in the form (2.5) is stabilizable by a scheduled
control law (2.1) if and only if it is stabilizable by a non-scheduled control law
of the form

uj(x(k)) = u(x(k)), j = 1, ..., l

Proof. To prove the above result it is enough to consider a certain occurrence
of p̃ ∈ Σl2 such that p̃ij = 1 and all the other entries of p̃ are zero. Then, the
autonomous system (2.5) becomes

x(k + 1) = Aix(k) + Biuj(x(k))

A necessary condition for (2.5) to be stable is that uj(x(k) asymptotically
stabilizes x(k + 1) = Aix(k) + Biu(k). By repeating the above procedure for
i = 1, . . . , l, j = 1, . . . , l, the statement is proved.

The above lemma implies that, by making use this kind of re-parametrization,
the knowledge and use of p̃ for feedback does not improve the stabilization
capabilities. The above considerations explain the weakness of this approach
in exploiting the possible advantages of LPV systems w.r.t. other frameworks.

2.2.2 Half-sum Convexification

In order to overpass the limitations of the above naive procedure, a better
convexification procedure has been recently proposed by Tanaka [15]. Let us
rewrite (1.1), under the action of a whatsoever regulation strategy, (2.1) as
follows

x (k + 1) =

l
∑

i=1

l
∑

j=1

pi (k) pj (k) [Aix (k) + Biuj (x (k))] (2.9)

By exploiting the symmetry of pi (k) pj (k) = pj (k) pi (k), (2.9) can be rewrit-
ten as

x (k + 1) =
l
∑

i=1

p2
i (k) [Aix (k) + Biui (x(k))]

+
l
∑

i = 1
j = i + 1

2pi (k) pj (k)
[

(Ai+Aj)x(k)+(Biuj(x(k))+Bjui(x(k)))
2

] (2.10)

Observe that



2.2 Non-convexity of the One-step Reachable Set 21

l
∑

i=1

p2
i (k) +

l
∑

i = 1
j = i + 1

2pi (k) pj (k) = 1

2pipj ≥ 0, p2
i ≥ 0

(2.11)

but again a non-convex set of one-step reachable states is achieved. Then, we
can embed (2.10) into the following convex outer approximation

x (k + 1) =
l
∑

i = 1
j = i + 1

p̄ij (k)
[

(Ai+Aj)x(k)+(Biuj(x(k))+Bjui(x(k)))
2

]

p̄(k) =
[

p̄11(k) p̄12(k) . . . p̄ll(k)
]T

∈ Σl(l+1)/2.

(2.12)

where

p̄ij (k) =

{

pi(k)2 if i = j
2pi(k)pj(k) otherwise

(2.13)

is the mapping between the parameter vector p(k) and p̄(k). In order to eval-

Fig. 2.1. p(k) locus on the (p2

1, p
2

2, 2p1p2) space (Dashed line graph) and half-sum
embedding

uate how this outer approximation is tight, one could consider the locus of
values of the vector p̄ obtained by (2.13) for all possible values of p(k) ∈ Σk

with respect to the whole simplex Σl(l+1)/2. To give a geometrical intuition,
such a locus is depicted in Figure 2.1 for the case l = 2, where A,B,C are
the vertices of the unitary simplex Σl(l+1)/2. Such a figure shows also how
the Half-sum embedding exploits the symmetry of pipj = pjpi and could be
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eventually improved by means of geometrical considerations reported in the
next subsection.

Remark 2.2. It is of interest to note that this reparamenterization is not only
less conservative then the naive one, but also it generates less vertices.

2.2.3 Improving the Convexification

In this subsection we propose a new method to sharpen further on the outer
approximating embedding seen in the previous subsection. To this end, con-
sider the following preliminary result [16]:

Lemma 2.3. Let p(k) ∈ Σl, where Σl denotes the l-dimensional unit simplex.
Then, the following property holds true

2 pi(k) pj(k) ≤
1

2
, i = 1, . . . , l, j = i + 1, . . . , l. (2.14)

Proof. Consider the maximum allowable value of a single term pi pj which is
obtained when pk = 0, ∀k 6= i, j. Under this condition and because p ∈ Σl,
one has that pi +pj = 1. Therefore, it follows that pi pj = (1−pj)pj = pj −p2

j .
As a consequence the maximum value of the above equation is attained when
pj = 1

2 and (2.14) follows.

Lemma 2.3 implies that the parameter p(k) can be embedded into a new con-
vex region defined by the intersection of the unit simplex Σl(l+1)/2 and the
family of half-spaces (2.14).

In order to make clear the idea via graphical arguments we consider first
the case l = 2. Therefore, a general result will be presented. To this end, con-
sider next Figure 2.2 which shows a geometrical representation of the Half-
sum approach. Points (A = [1, 0, 0]T , B = [0, 1, 0]T , C = [0, 0, 1]T ) represent
the vertices of the unit simplex Σl(l+1/2) defined in (2.11) while the couple
(D1 = [1/2, 0, 1/2]T ,D2 = [0, 1/2, 1/2]) describes the points of intersection be-
tween the unit simplex Σl(l+1)/2 and the hyperplane 2 p1p2 = 1/2. The dashed
line depicts the exact locus of the parameter defined by (2.13) for all possible
values of p(k) ∈ Σk. Lemma 2.3 guarantees that such a locus can be then
embedded by means of the convex combination of the points (A,B,D1,D2)
Let us consider the Half-sum representation of the overall closed loop systems.
Then, we have

x(k + 1) = p̃1Φ1,1(x(k)) + p̃2Φ1,1(x(k)) + p̃12Φ1,2(x(k))
p̃ = [p̃1, p̃2, p̃12]

T ∈ Σ3
(2.15)

where

Φi,j(x(k)) =
Aix(k) + Biuj(x(k)) + Ajx(k) + Bjui(x(k))

2
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Because of the above considerations, if we consider the convex hull of the
points obtained by evaluating (2.15) for p̃ = A,B,D1,D2, the following new
tighter embedding is obtained

x(k + 1) = p̄1(k)Φ1,1(x(k)) + p̄2(k)Φ2,2+ p̄1112(k)
(

1
2Φ1,1(x(k))+ 1

2Φ1,2(x(k))
)

+
+ p̄2212(k)

(

1
2Φ2,2(x(k)) + 1

2Φ1,2(x(k))
)

p̄ ∈ Σ4

with the original parameter vector p(k) related to the new p̄(k) via the fol-
lowing relationship





p2
1(k)

p2
2(k)

2p1(k)p2(k)



 =





1 0 1
2 0

0 1 0 1
2

0 0 1
2

1
2













p̄1(k)
p̄2(k)

p̄1112(k)
p̄2212(k)









(2.16)

Fig. 2.2. p(k) locus on the (p2

1, p
2

2, 2p1p2) space (Dashed line graph). A − B − C

polygon: Half-sum embedding. A − D1 − D2 − B polygon: proposed embedding

The above ideas can be formalized and applied to any arbitrary dimension
l. By generalizing the above approach, condition (2.14) consists of intersecting
the Half-sum embedding via the hyperplanes

2 pi(k) pj(k) =
1

2
, i = 1, . . . , l, j = i + 1, . . . , l

and to sharpen (2.12) as follows
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x(k + 1)=
l
∑

i=1

p̄i(k) [Aix(k) + Biui(x(k))]+

l
∑

i=1,
w=1,

s=w+1

p̄iiws(k)

[

(2Ai+Aw+As)x(k)+2Biui(x(k))+Bwus(x(k))+Bsuw(x(k))

4

]

+

l
∑

i=1,
j=i+1,
s=j+1

p̄ijis(k)

[

(2Ai+Aj+As)x(k)+Biuj(x(k))+(Bj+Bs)ui(x(k))+Bius(x(k))

4

]

+

l
∑

i=1,
j=i+1,
w=i+1,
s=w+1

p̄ijws(k)

[

(Ai+Aj+Aw+As)x(k)+Biuj(x(k))+Bjui(x(k))+Bwus(x(k))+Bsuw(x(k))

4

]

(2.17)
with

l
∑

i=1

p̄i(k) +
l
∑

i=1,
w=1,

s=w+1

p̄iiws(k)+
l
∑

i=1,
j=i+1,
s=j+1

p̄ijis(k)+
l
∑

i=1,
j=i+1,
w=i+1,
s=w+1

p̄ijws(k) = 1 (2.18)

where p̄i(k) ≥ 0 and p̄ijks(t) ≥ 0 are new suitable combinations of the param-
eter vector p(k) ∈ Σl.

Remark 2.4. The proposed convexification is obviously tighter than (2.12).
The price to be paid is in an increased complexity: the number of vertices

becomes l4+2l3−5l2+10l
8 instead of l(l + 1)/2.

Remark 2.5. Figure (2.2) suggests that further ”cutting planes” can be used
to obtain further tighter and tighter outer embedding of the parameter pro-
jection. This can be orderly obtained by geometrical considerations at a price
of an increasingly number of vertices.

Example 2.6. In Figure 2.3 the three convexification methods presented in this
Chapter are used to predict an outer approximation of the one-step ahead
prediction set X+. The following controlled plant is considered

x(k) =

2
∑

i=1

pi(k)Aix(k) +

2
∑

i=1

pi(k)Bi

2
∑

j=1

pj(k)uj

where

A1 =

(

2 −0.1
0.5 1

)

, B1 = [1 − 0.3]T , u1 = 1,

A2 =

(

1 0.1
2.5 1

)

, B2 = [0.7 0.1]T , u2 = 10.
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and the initial state is x(0) = [10 − 2]T .
Dotted blue line represents the real X+; the area limited by the red line is

the Naif convexification; magenta line encloses the Semi-Sum convexification
set and the green line is the bound of the prediction set obtainable through
the convexification method proposed in this Subsection.

10 15 20 25 30 35
0
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20

25

x
1

x 2
1−step ahead predicion set for any p ∈  Σ

l
 occurrence and embeddings

Naif Convexification
Half−sum Convexification
Improved Convexification
Real 1−step predictions

Fig. 2.3. An example of state prediction embedding

2.2.4 An interpretation of LPV convexification

It is interesting to furnish an interpretation of the above LPV convexification
procedures. If the chosen control law is such that the input is a convex combi-
nation (depending on the parameter vector p) of u1, . . . , ul vectors, the LPV
system can be regarded as an equivalent system described in the form

x (k + 1) =
l
∑

i=1

pi (k) Aix (k) +

+
[

B1 . . . Bl

]





p1 (k) p1 (k) Im×m . . . p1 (k) pl (k) Im×m

. . . . . .
pl (k) p1 (k) Im×m . . . pl (k) pl (k) Im×m









u1 (k)
. . .
ul (k)



 =

=
l
∑

i=1

pi (k) Aix (k) +
[

B1 . . . Bl

]

(

p (k) p (k)
T
⊗ Im×m

)





u1 (k)
. . .
ul (k)





(2.19)
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where ⊗ denotes the Kronecker product. Exploiting the fact that p (k) ∈ Σl,
it is possible to rewrite (2.19) as follows,

x (k + 1) =





(

1T
n ⊗ Inxn

)

(

p (k) p (k)
T
⊗ Inxn

)





A1

. . .
Al







x (k) +







[

B1 . . . Bl

]

(

p (k) p (k)
T
⊗ Imxm

)











u1

. . .
ul





p (k) ∈ Σl

(2.20)

where 1n = [1 . . . 1]T ∈ ℜn. Such a system, with state x (k) and input vector

ūT =
[

uT
l . . . uT

l

]T
, depends quadratically on p (k) pT (k) with p(k) ∈ Σl.

The idea here consists of embedding the matrix family p (k) pT (k), achieved
for p (k) ∈ Σl, into a polytopic set of matrices defined by suitable vertices
{Π1, . . . ,Πlc}. This interpretation allows us to embed our LPV system into
the following uncertain polytopic system

x (k + 1) =

lc
∑

i=1

p̄i (k)
[

Āix (k) + B̄iū (x (k))
]

= (2.21)

where

Āi =





(

1T
n ⊗ Inxn

)

(Πi ⊗ Inxn)





A1

. . .
Al







 i = 1, . . . , lc (2.22)

B̄i =





[

B1 . . . Bl

]

(Πi ⊗ Imxm)



 i = 1, .., lc (2.23)

and p̄ (k) ∈ Σlc is the corresponding lc-dimensional parameter vector. It is
important to note that such a new vector p̄ (k) ∈ Σlc is related to p (k) ∈ Σl. In
fact, by its definition, for each p (k) ∈ Σl there exists (at least) one p̄ (k) ∈ Σlc

such that
lc
∑

i=1

p̄i (k) Πi = p (k) pT (k) .

Then it is always possible to define a certain mapping function

ρ : Σl → Σlc (2.24)

such that
lc
∑

i=1

(ρ̄ (p (k)))i Πi = p (k) pT (k) .
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Within this framework, the previously convexification procedures simply cor-
responds to three different ways to achieve convex outer approximations of
matrices p (k) pT (k). In particular, if we denote by ei for i = 1, . . . , l the i-th
vector of the canonical basis of ℜl, it is possible to show that:

1. The naive convexification procedure corresponds to the following embed-
ding strategy

p (k) pT (k) ⊂ conv

{

{

eie
T
j

}l
i=1
j=1

}

2. For the Half-sum convexification procedure, the symmetry of p (k) pT (k)
is also taken into account and exploited. This corresponds to add new
vertices to the above embedding for p (k) pT (k) and obtaining, as a con-
sequence:

p (k) pT (k) ⊂ conv

{

{

eie
T
i

}l

i=1
,

{

1

2

(

eie
T
j + eje

T
i

)

}l

i=1
j=i+1

}

3. In the new convexification procedure proposed in Subsection 2.2.3, the
additional inequality p1 (k) pT

2 (k) < 1/4 is also imposed, which leads to

p(t) pT (t) ∈ co







{

ei eT
i

}l

i=1
,
{

1
4

(

ei eT
j + ej eT

i

)

+ 1
2ei eT

i

}l
i=1

j=i+1
,

{

1
4

(

ei eT
j + ej eT

i

)

+ 1
4

(

ei eT
m + em eT

i

)}l
i=1

j=i+1
m=j+1

,

{

1
4

(

ei eT
j + ej eT

i

)

+ 1
4

(

em eT
n + en eT

m

)}l
i=1

j=i+1
m=i+1
n=m+1











(2.25)

Remark 2.7. It can be interesting to note that this reformulation allows one
to look for tighter embedding procedures just focusing on the problem of
approximate p (k) pT (k) within a polytope of matrices.

Chapter Summary

In this Chapter, scheduled control laws for the control of LPV systems have
been introduced. Scheduled control law complicates the system dynamics be-
cause the set of states reachable from x(k) in one-step for any possible param-
eter occurrence is not a convex set. The Half-sum convexification proposed in
[15] has been introduced. As well known, it improves the naive one presented
in Subsection 2.2.1. A further convexification procedure, based on a refine-
ment of the Half-sum approach, is here presented for the first time, at the
best of our knowledge, and it believed to be original. Finally, a new general
interpretation of all described convexification procedures has been proposed
which it is also believed original.
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Stabilizability Results

The aim of this Chapter is to review existing stabilizability results for LPV
systems and to propose novel and more refined conditions obtainable by ex-
ploiting different classes of Lyapunov functions and/or by using particular
LMI tricks. The Chapter is organized into two Sections. First we focus on
the stabilizability conditions for LPV systems with no hypothesis on their
parameter variations. Many of the existing approaches in literature will be
reviewed and discussed. In the second Section, the stabilizability problem of
LPV systems subject to bounded parameter variations is addressed. There is
a lack in literature regarding results on stabilizability conditions for such a
class of systems and, up to our best knowledge, the results presented here are
new.

Many of the above stabilizability conditions will result in the form of ma-
trix inequalities not linear in the unknowns, which need to be satisfied for all
values of the LPV parameter vector. Convex relaxations are then of paramount
relevance for control design purposes. Several convexification procedures can
be used and corresponding convex optimization formulations of the control
design problem derived. In order to avoid a tedious enumeration of such pro-
cedures, in this Chapter we will focus on the main ideas underlying their
application. An extensive though not exhaustive list of the convexification
techniques proposed in literature will be provided in the final Appendix A

3.1 Stabilizability Results for LPV systems

In this section we introduce the main ideas and results about the stabilizability
of LPV systems. We restrict our attention to scheduled state-feedback control
laws of the form

u (ξ (k)) = F (p (k))x (k) (3.1)

where F (p (k)) ∈ ℜm×n is a feedback matrix, having and arbitrary depen-
dence on the parameter vector. In order to find stabilizing control laws we will
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use Lyapunov stability arguments. In particular, in the following subsections
we will introduce different Lyapunov functions frameworks, the related basic
ideas and stabilizability results.

3.1.1 Quadratic Lyapunov Function

The simplest Lyapunov function is the classical quadratic form

V (ξ (k)) = xT (k) Px (k) (3.2)

where P ∈ ℜn×n is a positive definite matrix P = PT > 0. In order to impose
asymptotic stability of the closed loop system

x (k + 1) = [A (p (k)) + B (p (k))F (p (k))]x (k) (3.3)

the gain F (p(k)) must be chosen such that the Lyapunov difference

V (ξ (k + 1)) − V (ξ (k)) (3.4)

is negative along the augmented trajectories ξ(k). The above condition is
equivalent to

xT (k)
(

[A (p (k))+B (p (k))F (p (k))]
T

P [A (p (k))+B (p (k))F (p (k))]−P
)

x (k) < 0.

(3.5)
A sufficient condition which ensures that such an inequality can be satisfied
for all the states x(k), is obtained by imposing that the following matrix is
negative definite

[A (p (k)) + B (p (k))F (p (k))]
T

P [A (p (k)) + B (p (k))F (p (k))] − P < 0
(3.6)

Via Schur complements and standard congruence transformations, (3.6) can
be shown to be equivalent to the fulfillment of

[

Q ∗
[A (p (k))Q + B (p (k))Y (p (k))] Q

]

> 0

Q > 0
(3.7)

where Q = P−1 and Y (p (k)) = F (p (k))Q. Then, in order to find a stabiliz-
ing control law and an associated Lyapunov function, we can solve in principle
the following problem

Problem 3.1. Find Y (p), Q such that
[

Q ∗
[A (p)Q + B (p) Y (p)] Q

]

> 0,∀p ∈ Σl

Q > 0
(3.8)
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Note that due to the arbitrary structure of F (p), the term B (p) Y (p) could
depend in a nonlinear way from the parameter p and, as a result, Problem 4.1
is not convex in general. A convex problem is obtained if some of the above
conditions are relaxed and if particular structures to the allowable control
laws are considered. Relaxations are generally achieved in two ways

• If linearly scheduled state-feedback control laws (2.1) are employed, i.e.

F (p) =
∑l

i=1 piFi, then Y (p) can be parameterized as

Y (p) =

l
∑

i=1

piYi, Yi = FiQ (3.9)

Thanking to (3.9) we can easily exploit convexification procedures of the
state evolution tube and its interpretation seen in Section 2.2 to obtain
sufficient conditions able to ensure (3.8) (see [15], [17])

• In general, we can use other relaxation theories (see [18] and references
therein).

If, for instance, the Half-sum convexification procedure is employed, the fol-
lowing lemma can be proved

Lemma 3.2. Under control laws of the form (2.1) and by exploiting the Half-
sum convexification procedure, the matrix inequality (3.8) can be relaxed to
the following set of LMI conditions

[

Q ∗
[

AiQ+AjQ+BiYj+BjYi

2

]

Q

]

> 0, i = 1, ..., l, j = i, ..., l

Q > 0

(3.10)

which depend linearly on the unknowns Yi, i = 1, ..., l and Q.

Proof. The latter is obtained by relaxing (3.8) by means of the Half-sum
convexification. �

3.1.2 Parameter Varying Lyapunov Functions

Parameter Varying Lyapunov functions have been introduced in the last
decade (see [19]) and have been successfully used to deal with LPV systems.
A Parameter Varying Lyapunov function is the following quadratic form

V (ξ (k)) = xT (k) P (p (k))x (k) = xT (k)

(

l
∑

i=1

pi (k) Pi

)

x (k) (3.11)

where Pi ∈ ℜn×n, i = 1, ..., l are positive definite matrices

Pi = PT
i > 0, i = 1, ..., l
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By using (3.11) as a Lyapunov candidate, the negativity condition on the
difference V (ξ (k + 1)) − V (ξ (k)) can be equivalently rewritten as

xT(k)
(

[A (p (k))+B (p (k))F (p (k))]
T
P (p (k+1))[A (p (k))+B (p (k))F (p (k))]−P (k)

)

x (k)<0

(3.12)
A sufficient condition ensuring the fulfillment of the above inequality is given
by

[A (p (k))+B (p (k))F (p(k))]TP (p (k+1))[A (p (k))+B (p(k))F (p(k))]−P (p(k))<0
(3.13)

Note that the above condition needs to be satisfied ∀p (k + 1) ∈ Σl. When
standard LPV systems are considered, i.e. without any hypothesis on their
parameters variation, (3.13) is equivalent to the following set of sufficient
conditions

[A (p (k))+B (p (k))F (p (k))]
T

Pi [A (p (k))+B (p (k))F (p (k))]−P (p (k))<0
i = 1, . . . , l

(3.14)
Next, via Schur complements, we obtain that (3.14) is implied by

[

P (p (k)) ∗
[A (p (k)) + B (p (k))F (p (k))] P−1

i

]

> 0 i = 1, . . . , l. (3.15)

Now, let us introduce a square and invertible matrix G ∈ ℜn×n as a new
variable and by means of matrix inequalities congruence arguments we have

[

G 0
0 In×n

]T [
P (p (k)) ∗

[A (p (k)) + B (p (k))F (p (k))] P−1
i

] [

G 0
0 In×n

]

> 0 i = 1, . . . , l

(3.16)
and we obtain

[

GT P (p (k))G ∗
[A (p (k)) + B (p (k))F (p (k))]G P−1

i

]

> 0 i = 1, ..., l (3.17)

If new variables Qi = P−1
i i = 1, ..., l, and Y (p) = F (p) G, are introduced,

we can the find a stabilizing control law along with the associated Lyapunov
function by solving, if possible, the following problem

Problem 3.3. Find Y (p), G,Q such that,

[

GT P (p)G ∗
[A (p)G + B (p) Y (p)] Qi

]

> 0,∀p ∈ Σl, i = 1, ..., l

Qi > 0 i = 1, ..., l
(3.18)

where P (p) =

(

l
∑

i=1

piQ
−1
i

)
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Also in this case the above problem is not convex in general because of the pos-
sible existing nonlinearities in the terms B (p) Y (p) and GT P (p) G. The non-
linearity due to B (p) Y (p) can be linearized by means of relaxation procedures
shown in Appendix A once a particular form for the parameter dependent ma-
trix F (p) is chosen. Conversely, the nonlinearities concerning GT P (p) G are
usually taken into account and relaxed by considering the following well known
dilation technicality presented by [20]

Lemma 3.4. Let G ∈ ℜn×n a square and invertible matrix and S = S′ ∈
ℜn×n a symmetric matrix, then

GT SG ≥ G + GT − S−1

As an example, we report in the following Lemma a convex design method
in the form of a LMI problem which results from the joint application of
the Dilation Lemma, the control law (2.1) and the Half-sum convexification
procedure

Lemma 3.5. Under the family of control laws (2.1) and by exploiting the Half-
sum convexification procedure, the matrix inequality (3.18) can be relaxed to
the following LMI conditions

[

GT + G −
Qi+Qj

2 ∗
[

AiG+AjG+BjYi+BiYj

2

]

Qs

]

> 0,
i = 1, ..., l,
j = i, ..., l,
s = 1, ..., l

Qi > 0 i = 1, ..., l

(3.19)

where P (p) =

(

l
∑

i=1

piQ
−1
i

)

Remark 3.6. Using a Parameter Varying Lyapunov Function yields in gen-
eral less conservative stabilizability conditions with respect to the classical
quadratic conditions. This advantage is typically paid in terms of the LMI
problem size. A simple comparison between the conditions (3.8) and (3.18)
shows an increased number of problem variables and LMI constraints to be
tested.

3.1.3 Nonstandard Lyapunov Functions

In general any kind of Lyapunov candidate function can be introduced and
used to characterize then stabilizability properties of LPV systems. However,
not all of them yield to convex conditions. We will report here two non-
standard classes of Lyapunov functions introduced in [14] which give rise to
control design methods based on convenient convex optimization problems.

The first class is the following positive definite quadratic form
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V (ξ (k)) = xT (k)

(

l
∑

i=1

pi (k) Qi

)−1

x (k) (3.20)

where Qi ∈ ℜn×n, i = 1, ..., l are positive definite matrices

Qi = QT
i > 0, i = 1, ..., l

By using this Lyapunov candidate, a sufficient condition for V (ξ (k + 1)) −
V (ξ (k)) < 0 is given by

[A (p (k))+B (p (k))F (p (k))]
T
(Q (p (k+1)))

−1
[A (p (k))+B (p (k))F (p (k))]−

− (Q (p (k)))
−1

< 0
(3.21)

Then by Schur complements

[

(Q (p (k)))
−1

∗
[A (p (k)) + B (p (k))F (p (k))] Q (p (k + 1))

]

> 0 (3.22)

and congruence transformation

[

Q (p (k)) 0
0 I

] [

(Q (p (k)))
−1

∗
[A (p (k)) + B (p (k))F (p (k))] Q (p (k + 1))

] [

Q (p (k)) 0
0 I

]

> 0

(3.23)
can be converted into

[

Q (p (k)) ∗
[A (p (k)) + B (p (k))F (p (k))Q (p (k))] Q (p (k + 1))

]

> 0 (3.24)

Note that if no bounds on the parameter variations are assumed, the above
inequality needs to be checked ∀p(k) ∈ Σl, ∀p(k + 1) ∈ Σl. Because p(k + 1)
is linearly combined with Qi, i = 1, ..., l, by convexity, we can equivalently
test (3.24) only over the simplex vertices. The above observation allows to
formulate the stabilizing control law design problem as

Problem 3.7. Find Qi, i = 1, ..., l, F (p) such that,

[

Q (p) ∗
[A(p) + B (p) F (p)]Q(p) Qi

]

> 0,∀p ∈ Σl, i = 1, ..., l

Qi > 0 i = 1, ..., l
(3.25)

In this case non-convexity may rise because of the term A(p)Q(p)+B(p)F (p)Q(p)
and can be relaxed in several ways. As shown in [14], this kind of approach
reveals to be efficient when using the following class of control laws (2.3):

u (ξ (k)) =

(

l
∑

i=1

pi (k) Fi

)





l
∑

j=1

pi (k) Qi





−1

x (k) =
(

F̃ (p(k))
)

(Q (p (k)))
−1

x (k)

(3.26)
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In fact, (3.25) simplifies into

[

Q (p) ∗
[

A (p)Q (p) + B (p) F̃ (p)
]

Qi

]

> 0,∀p ∈ Σl, i = 1, . . . , l

Qi > 0 i = 1, . . . , l

(3.27)

by using (3.26) and the dependence on the parameter p becomes quadratic.
The above considerations allow to formulate relaxed stabilizability condi-

tions which can be used to achieve less conservative control design methods
w.r.t. those achievable by Lemma 3.5.

Lemma 3.8. Under control laws of the form (3.26), the matrix inequality
(3.25) can be relaxed by exploiting the Half-sum convexification procedure, to
the following LMI conditions

[

Qi+Qj

2 ∗
AiQj+AjQi+BiFj+BjFi

2 Qs

]

> 0,
i = 1, ..., l,
j = i, ..., l.
s = 1, ..., l.

Qi > 0 i = 1, ..., l

(3.28)

Proof. The result can be proved by applying the standard Half-sum convexi-
fication procedure to (3.25). �

A slightly more sophisticated version of the above Lyapunov candidate, also
presented in [14], is given by

V (ξ (k)) = xT (k)

(

l
∑

i=1

pi (k) Gi

)−T ( l
∑

i=1

pi (k) Pi

)(

l
∑

i=1

pi (k) Gi

)−1

x (k) =

xT (k)
[

(G (p (k)))
−T

(P (p (k))) (G (p (k)))
−1
]

xT (k)

(3.29)
where

Gi ∈ ℜn, Pi ∈ ℜn, Pi = PT
i > 0, i = 1, . . . , l

rank {Gi} = n, i = . . . , l
(3.30)

Similarly to the previous case, a sufficient condition for V (ξ (k + 1)) −
V (ξ (k)) < 0 and (3.30) to hold true is that

[

(G(p (k)))
−T

P (p(k))(G (p (k)))
−1

∗

[A (p (k))+B (p(k))F (p(k))] G(p (k+1))
T
(P (p (k+1)))

−1
G(p (k+1))

]

> 0

Pi > 0 i = 1, . . . , l
rank {Gi} = n i = 1, . . . , l

(3.31)
hold true as well. By exploiting a congruence argument with the factor
diag{G(p(k)), I}, we obtain
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[

P (p (k)) ∗
[A(p (k))+B (p (k))F (p(k))]G (p(k)) GT (p(k+1)) (P (p(k+1)))G(p(k+1))

]

>0

Pi > 0 i = 1, ..., l
(3.32)

The possible nonlinearity in G (p (k + 1))
T

(P (p (k + 1)))
−1

G (p (k + 1)) can
be relaxed by means of the Dilation Lemma 3.4. Then, a sufficient condition
for (3.32) to hold true is given by
[

P (p (k)) ∗

[A(p (k))+B (p (k))F (p(k))]G (p(k)) G (p (k+1))
T
+G(p(k+1))−(P (p(k+1)))

]

>0

Pi > 0 i = 1, ..., l
(3.33)

Note that using the Dilation Lemma 3.4 the rank constraint also disappears
since GT + G − P > 0, P > 0 implies that rank {G} = n. By following the
same previous case technicalities, a corresponding control design method is
given by

Problem 3.9. Find Qi, i = 1, ..., l, F (p) such that,
[

P (p) ∗
[A(p) + B (p) F (p)]G (p) GT

i + Gi − Pi

]

> 0,
∀p ∈ Σl,

i = 1, . . . , l
Pi > 0 i = 1, ..., l

(3.34)

As previously seen, the non-convexity here could appear in the term A(p)G(p)+
B(p)F (p)G(p) and its convexification can be obtained, as shown in [14], by
adopting the following class of control laws (2.3) as a first step:

u (ξ (k))=

(

l
∑

i=1

pi (k) Fi

)





l
∑

j=1

piGi





−1

x (k)=
(

F̃ (p(k))
)

(G (p (k)))
−1

x (k)

(3.35)
Thanks to (3.35), inequality (3.34) simplify into

[

P (p) ∗
[

A(p)G(p) + B(p)F̃ (p)
]

GT
i + Gi − Pi

]

> 0,
∀p ∈ Σl

i = 1, . . . , l

Pi > 0 i = 1, . . . , l

(3.36)

The latter, coupled with some of the convexification methods described in Ap-
pendix A, allows to obtain LMI conditions which can be exploited to compute
a stabilizing control law. As an example, by using the Half-sum convexification
procedure, we obtain

Lemma 3.10. Under control laws of the form (3.35) and by exploiting the
Half-sum convexification procedure, (3.34) can be relaxed to the following LMI
conditions

[

Pi+Pj

2 ∗
AiGj+AjGi+BiFj+BjFi

2 GT
s + Gs − Ps

]

> 0,
i = 1, ..., l,
j = i, ..., l,
s = 1, ..., l

Pi > 0 i = 1, . . . , l

(3.37)
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3.2 Stabilizability Results for LPV Systems subject to
Bounded Parameter Variations

In this Section we propose stabilizability conditions for LPV systems sub-
ject to bounded parameter variations. While such results are known in the
continuous-time case [21], there is a lack in the literature for the discrete-time
case.

The Section is organized as follows. In the first subsection, we deal with
the stabilization of slowly varying systems by means of non-scheduled control
laws. Though obviously leading to more conservative results, their derivation
are of help to understand the approach which will be used to determine sim-
ilar conditions for scheduled control laws. Moreover, because no parameter
knowledge is used for feedback, such results can be directly applied to the
uncertain frameworks, where results on slowly varying systems are rare. In
the second subsection, stabilizability results for scheduled control laws will be
given, by exploiting some of the technicalities seen in the previous sections.

3.2.1 Non-scheduled Control Laws

Let us consider system (1.1) with bounded parameter variations and assume
that we want to stabilize its behavior by means of a linear state feedback
control law

u (k) = Fx (k) (3.38)

where F ∈ ℜn×m. We will exploit the following Lyapunov candidate function
(3.20):

V (ξ (k)) = xT (k)

(

l
∑

i=1

pi (k) Qi

)−1

x (k) = xT (k) (Q (p (k)))
−1

x (k)

(3.39)
where Qi ∈ ℜn×n, i = 1, . . . , l are positive definite matrices

Qi = QT
i > 0, i = 1, . . . , l (3.40)

By using (3.39), the Lyapunov difference

V (ξ (k + 1)) − V (ξ (k)) < 0. (3.41)

can be used to check the stability by ensuring that

[A(p(k))+B(p(k))F ]
T
(Q(p(k+1)))

−1
[A (p(k))+B (p(k))F ]− (Q(p(k)))

−1
<0

(3.42)
which, by Schur complements, can be rewritten as

[

(Q (p (k)))
−1

∗
[A (p (k)) + B (p (k))F ] Q (p (k + 1))

]

> 0 (3.43)
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and, by operating a congruence transformation operation over the previous
inequality

[

GT ∗
0 I

] [

(Q (p (k)))
−1

∗
[A (p (k)) + B (p (k))F (p (k))] Q (p (k + 1))

] [

G ∗
0 I

]

> 0 (3.44)

At last, we obtain

[

GT Q−1 (p (k))G ∗
[A (p (k))G + B (p (k))Y ] Q (p (t + 1))

]

> 0,
∀p (k + 1) ∈ Ψ (p (k))
∀p (k) ∈ Σl

,

Qi > 0 i = 1, . . . , l
(3.45)

where Y = FG. By means of the Dilation Lemma, a sufficient condition for
(3.45) to be true is

[

GT + G − Q (p (k)) ∗
[A (p (k))G + B (p (k))Y ] Q (p (t + 1))

]

> 0,
∀p (k + 1) ∈ Ψ (p (k))
∀p (k) ∈ Σl

Qi > 0 i = 1, . . . , l
(3.46)

Let us focus now on Q(p(k+1)), since we can write p (k + 1) = p (k)+∆p (k),
then

Q (p (k + 1)) =

(

l
∑

j=1

pi (k + 1)Qi

)

= Q (p (k + 1)) =

=

(

l
∑

j=1

[pi (k) + ∆pi (k)]Qi

)

=

(

l
∑

j=1

[pi (k) Qi] +
l
∑

j=1

∆pi (k) Qi

)

=

= Q (p (k)) + Q (∆p (k))

(3.47)

Then, the inequality (3.46) becomes

[

GT + G − Q (p (k)) ∗
[A (p (k))G + B (p (k))Y ] Q (p (k)) + Q (∆p (k))

]

> 0,
∀∆p(k)∈∆Υ (p (k))
∀p (k) ∈ Σl

,

Qi > 0 i = 1, . . . , l
(3.48)

where ∆Υ (p (k)) is a polytopic set containing all possible parameters varia-
tions

∆Υ (p (k)) =







∆p (k) ∈ ℜl

∣

∣

∣

∣

∣

∣





1T ∆p (k) = 0
−∆pi ≤ ∆pi (k) ≤ ∆pi

0 ≤ ∆pi (k) + p (k) ≤ 1











(3.49)

The framework is here complicated because of the explicit dependence of this
set on p (k). A possible way do deal with it is to relax this dependence by
defining a set ∆Υ out ⊇ ∆Υ (p (k)) , ∀p (k) ∈ Σl. This set could be defined as

∆Υ out =

{

∆p (k) ∈ ℜl

∣

∣

∣

∣

(

1T ∆p (k) = 0
−∆pi ≤ ∆pi (k) ≤ ∆pi

)}

(3.50)
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Such a relaxation allows to write the following sufficient conditions to satisfy
the inequality (3.48)

[

G + GT − Q (p (k)) ∗
[A (p (k))G + B (p (k))Y ] Q (p (k)) + Q (∆p (k))

]

> 0,
∀p (k) ∈ Σl

∀∆p (k) ∈ ∆Υ out

Qi > 0 i = 1, . . . , l
(3.51)

which are equivalent to the fulfilment of the following LMIs:

[

G + GT − Q (p (k)) ∗
[A (p(k))G+B(p(k))Y] Q (p (k)) + Q (∆p (k))

]

> 0,
∀p (k) ∈ vert {Σl}
∀∆p(k)∈vert{∆Υ out}

Qi > 0 i = 1, . . . , l
(3.52)

Finally, a possible way to find a stabilizing control law is given by the following
design procedure

Problem 3.11. Find Qi, i = 1, . . . , l, F such that ,

[

G + GT − Qi ∗
[AiG+BiY ] Qi + Q (∆p)

]

> 0,
i = 1, ..., l
∀∆∈vert{∆Υ out}

Qi > 0 i = 1, . . . , l
(3.53)

where Y = FQ

Remark 3.12. It is important to understand the implications behind the use
of ∆Υ out ⊇ ∆Υ (p (k)) , ∀p (k) ∈ Σl. In fact, even if this choice turns out to
be satisfactory for small increments ∆pi, some conservativeness is nonetheless
introduced.

Let us focus on the term

Q(p(k)) + Q(∆(p(k)) = Q(p(k) + ∆p(k))

and consider the simple case l = 2, ∆p1 = ∆p2 = ∆. Because such a term is
evaluated

∀p(k) ∈ vert{Σl}, ∀∆p(k) ∈ ∆Υ out

then the vector p(k + 1) = p(k) + ∆p(k) is defined as the convex combination
of the following 4 vertices of the parameter set

p11 =

[

1 + ∆
−∆

]

, p12 =

[

1 − ∆
∆

]

, p21 =

[

∆
1 − ∆

]

, p22 =

[

−∆
1 + ∆

]

where p11, p22 clearly do not belong to the unitary simplex Σ2. A geometrical
intuition of the above phenomena is given in Figure 3.1 where it is seen that,
the variation set ∆Ψout when applied on the simplex extremal points, is not
contained in the unitary simplex.
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1

p (k)

1

out

out

out

p (k)

p (k)

Fig. 3.1. Geometrical interpretation of ∆Υ out)

Some ideas on how to overcome the above problem are under investigation.
However, a hint for the l = 2 case is given in next Theorem 3.13. The main
idea is to find a set of vertices for all the possible occurrences of the extended
parameter vector [pT (k), pT (k+1)]T . The first step is to add 2 further degrees
of freedom to the definition of p(k), by considering Σ2 as the combination of
the following 4 vertices (instead of the sole two extreme points)

Σ2 = conv

{[

1
0

]

,

[

1 − ∆
∆

]

,

[

0
1

]

,

[

∆
1 − ∆

]}

(3.54)

Then, by applying all possible ∆Υ (p(k)) variations to the above four points,
we obtain 8 vertices for [pT (k), pT (k+1)]. By considering the above discussion,
we can prove the following result:

Theorem 3.13. Consider the case l = 2. The set of all possible vectors
[p (k) , p (k + 1)] for ∀p (k) ∈ Σ, ∀p (k + 1) ∈ Υ (p (k)) can be expressed as
the convex combination of 8 vertices, namely

{[

p (k)
p (k + 1)

] ∣

∣

∣

∣

∀p (k) ∈ Σ, ∀p (k + 1) ∈ Υ (p (k))

}

=

= conv























[

1
0

]

[

1
0

]









,









[

1
0

]

[

1 − ∆
∆

]









,









[

1 − ∆
∆

]

[

1
0

]









,









[

1 − ∆
∆

]

[

1 − 2∆
2∆

]









,









[

0
1

]

[

∆
1 − ∆

]









,









[

0
1

]

[

0
1

]









,









[

∆
1 − ∆

]

[

2∆
1 − 2∆

]









,









[

∆
1 − ∆

]

[

0
1

]























(3.55)
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Proof. See Appendix B.

The latter implies that this new formulation is equivalent to the original one
but, if we use a convex combination of the above eight vertices to consider
any occurrence ∀p (k) ∈ Σl,∀p (k + 1) ∈ ∆Υ (p(k)) into (3.46), the resulting
stability conditions don’t suffer of the problem depicted in Fig. 3.1 because
all vertices are now all contained within the unitary simplex.

3.2.2 Scheduled Control Laws

Here we will see how it is possible to design parameter scheduled control
laws able to stabilize LPV systems subject to bounded parameter variations
by means of the nonstandard Lyapunov functions introduced in Subsection
3.1.3. Let us consider for instance (3.20) as a Lyapunov candidate function.

To this end, we should proceed by following the same mathematical lines
presented in Section 3.1.3. In order to avoid repetitions, we will focus on
equation (3.24) as a suitable starting point. Such an equation allows us to
recast the stabilization problem as follows

Problem 3.14. Find Qi, i = 1, . . . , l, F (p (k)) such that

[

Q (p (k)) ∗
[A (p (k)) + B (p (k))F (p (k))]Q (p (k)) Q (p (k + 1))

]

> 0,

∀p (k + 1) ∈ Υ (p (k))
∀p (k) ∈ Σl

Qi > 0 i = 1, ..., l

(3.56)

Then, similarly as done in the previous subsection

Q(p(k + 1)) = Q(p(k)) + Q(∆(p(k))

and, in turn, (3.56) becomes

[

Q (p (k)) ∗
[A (p (k)) + B (p (k))F (p (k))]Q (p (k)) Q (p (t)) + Q (∆pk)

]

> 0,

∀∆p (k) ∈ ∆Υ (p (k))
∀p (k) ∈ Σl

Qi > 0 i = 1, . . . , l

(3.57)

Next, a sufficient condition for (3.57) to hold true is given by

[

Q (p(k)) ∗
[A (p(k))Q (p (k))+B (p (k))F (p (k))Q (p (k))] Q (p (k)) + Q (∆p (k))

]

> 0,

∀p (k) ∈ Σl

∆p (k) ∈ ∆Υ out

Qi > 0 i = 1, . . . , l
(3.58)
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which is equivalent to the following inequality
[

Q (p) ∗
[A(p)Q(p) + B(p)F (p)Q(p)] Q(p) + Q (∆p)

]

> 0,

∀p ∈ Σl

∀∆p ∈ vert {∆Υ out}
Qi > 0 i = 1, . . . , l

(3.59)

Once a suitable structure of the control law is chosen and the term A(p)Q(p)+
B(p)F (p)Q(p) is relaxed, the latter yield to a convex formulation. In partic-
ular, if a control law of the form (3.26) is chosen and the Half-sum convexifi-
cation procedure is used, the following result is achieved.

Lemma 3.15. Under control laws of the form (3.26) and by exploiting the
Half-sum convexification procedure, the inequality (3.59) can be relaxed to the
following LMI conditions

[

Qi+Qj

2 ∗
AiQ+AjQ+BiFj+BjFi

2
Qi+Qj

2 + Q(∆p)

]

> 0,
i = 1, ..., l,
j = i, ..., l,

∀∆p ∈ vert {∆Υ out} ,
Qi > 0 i = 1, ..., l.

(3.60)

Proof. By substituting (3.26) in (3.24) and applying Half-sum convexification
techniques. �

The above described procedure can also be applied when more complex Lya-
punov functions are used (3.29). In fact, consider again (3.33)

[

P (p (k)) ∗

[A(p (k))+B (p (k))F (p(k))]G (p(k)) G (p (k+1))
T
+G(p(k+1))−(P (p(k+1)))

]

>0

Pi > 0 i = 1, ..., l
(3.61)

By exploiting the linearity we have

P (p(k + 1)) = P (p(k) + ∆p(k)) = P (p(k)) + P (∆p(k))

G(p(k + 1)) = G(p(k) + ∆p(k)) = G(p(k)) + G(∆p(k))

Then, the problem of finding a parameter dependent stabilizing state feedback
matrix F (p) can be formalized as

Problem 3.16. Find Pi, Gi, i = 1, . . . , l, F (p (k)) such that,
[

P (p) ∗
[A (p) + B (p) F (p)]G (p) ΦGP (p (k)) + ΦGP (∆p)

]

> 0,

∀p ∈ Σl

∀∆p ∈ vert {∆Υ out} ,
Qi > 0 i = 1, . . . , l.

(3.62)

where ΦGP (p) = G (p) + GT (p) − P (p).
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Again, by choosing an appropriate class of control laws and relaxing all un-
knowns nonlinearity couplings several alternative but equivalent sufficient con-
vex conditions can be found that can be used for control design purposes. For
instance, if the class of control laws (3.35) is used:

Lemma 3.17. Under control laws of the form (3.35) and by exploiting the
Half-sum convexification procedure, the inequality (3.62) can be relaxed to the
following LMI conditions

[

Pi+Pj

2 ∗
AiGj+AjGi+BiFj+BjFI

2

Gi+Gj+GT
i +GT

j −Pi−Pj

2 + ΦGP (∆p)

]

> 0,

i = 1, ..., l,
j = i, ..., l,
∀∆p ∈ vert {∆Υ out} ,

Qi > 0 i = 1, . . . , l.

(3.63)

where ΦGP (p) = G (p) + GT (p) − P (p)

Example 3.18. The aim of this Example is to compare both stabilizing capabil-
ity and computational cost for the stabilizability results seen in this Chapter.
Consider the following LPV system

x(k + 1) =

2
∑

i=1

pi(k)Aix(k) +

2
∑

i=1

pj(k)Bju(k)

where

A1 =

(

1 −β
−1 −0.5

)

, B1 =

(

5 + β
2β

)

,

A2 =

(

1 β
−1 −0.5

)

, B2 =

(

5 − β
−2β

)

,

Such a benchmark system has been introduced in [14] to evaluate the perfor-
mance of LPV stabilizability results. The system is built in order to become
”harder” to be stabilized for growing β. The next Table summarizes the stabil-
ity regions (w.r.t. β) for each of the presented stabilizability algorithm based
on the semi-sum convexification procedures. Results can be refined further on
by means of better convexification procedures. Because a raw comparison of
the time needed to compute the control laws would be misleading (it strongly
depends on the specific plant under consideration), here the number of LMI
lines and scalar variables involved in the definition of each stabilization algo-
rithm is reported as a more significant index of the computational cost.
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Method β LMI Lines Variables

Lemma 3.2 [-1.68,1.68] n + 2nlc n2 + lnm
Lemma 3.5 [-1.76,1.76] n + 2nllc (l + 1)n2 + lnm
Lemma 3.8 [-1.87,1.87] n + 2nllc n2 + lnm
Lemma 3.10 [-2.04,2.04] n + 2nllc 2n2 + lnm
Lemma 3.10, ∆→0 [-2.15,2.15] n + 2nllcl∆Υ n2 + lnm
Lemma 3.17, ∆→0 [-2.55,2.55] n + 2nllcl∆Υ 2n2 + lnm
Non-scheduled (3.46), ∆=1 [-1.67,1.67] n + 2nl mn + (l + 1)n2

Non-scheduled (3.46), ∆→0 [-1.80,1.80] n + 2nll∆Υ mn + (l + 1)n2

Note that the use more complex stabilizability methods for general LPV sys-
tems introduces relevant performance improvements at the cost of a slight
increased computational burdens. Finally let us remark the sensible improve-
ments obtained for vanishing bounded parameter variation i.e. ∆ → 0. In this
case, anyway, the computational burdens grows more significatively because
of the l∆Υ terms, i.e. the number of vertices introduced by the one-step ahead
parameter variation.

Chapter Summary

In the first part of this Chapter, an overview of the stabilizability methods ex-
isting in literature for LPV systems without any limitation on their parameter
variations has been given. In the second part, new stabilizability results for
LPV systems subject to bounded parameter variations have been proposed.
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4

Constrained Control - Definitions

In this Chapter some constrained control design problems for LPV systems
are introduced together with the necessary mathematical tools.

The Chapter is organized as follows. In the first Section, constrained con-
trol problems for LPV systems are defined and the regulation problem to a
desired set point is discussed and detailed. In the second Section, relevant
set invariance notions are recalled and their use in constrained control de-
sign problems summarized. Finally, in the third Section, techniques for the
determination of invariant sets for LPV systems are investigated.

4.1 Constrained Control – An Introduction

The problem of handling constraints in control systems is a fundamental issue
to be taken into account in most real world problems. In fact, physical plants
are inherently subject to constraints (input saturations, physical limitations
and safety requirements) which need to be satisfied in order to ensure a correct
dynamical behavior.

In the past, sub-optimal approaches have been used to deal with con-
straints satisfaction, mainly consisting in artificial limitations on system tran-
sients and steady-states. Even if in some cases successful (especially when
dealing with non-critical plants and when there is no need to push up the sys-
tem performance), this practice it is anyway a “risky business” in the sense
that strong requirements are neglected and the plant cannot be able to recover
from potentially avoidable dangerous situations.

Obviously such approaches fail when the control task requires large and
fast system transients to achieve prescribed high performance. For those rea-
sons in the last decade relevant efforts (see [22]-[23]-[24] for a survey) have
been devoted to constrained control problems.

Typical limitations affecting a real plant can be bring back to input sat-
urations and state constraints. Input saturations usually may arise from the
fact that command signal input values always cannot go further prescribed
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limits that are related to the particular physical actuator taken into consider-
ation. This phenomenon can be easily understood when thinking to standard
actuators: voltage regulators have a maximum output voltage [25], engines
can provide only a limited torque [26], valves in chemical plants have a max-
imum and a minimum displacements (full open and full closed) [27], surfaces
and rudders in aeronautical and naval applications have only a limited angle
of deflection [28], etc...

Limitations on state trajectories may depends on several causes, including
physical saturation phenomena (e.g. the maximum grip between two surfaces
[29], fluid phase transition curves [30], safety and plant integrity issues (e.g.
maximum heat dissipation without components damaging [33], ranges of tem-
perature/pressure that have to be guaranteed in chemical reactors to ensure a
safe behavior [31], etc. . . ) and comfort/human limitations reasons (e.g. maxi-
mum acceleration a pilot can stand without problems [34] or the range of roll
and pitch a passenger can tolerate without feeling uncomfortable [35]).

In literature many aspects of the constrained control design problem have
been addressed, including regulation (see for instance [36]) and tracking prob-
lems [37] for linear and nonlinear plants [38]-[39], robust formulations [40],
and so on.

Here we focus on the regulation problem for LPV systems subject to sym-
metric convex input and state constraints. Namely, the problem we want to
address is

Problem 4.1. (Constrained LPV) Consider a polytopic LPV system

x (k + 1) = A (p (k))x (k) + B (p (k))u (k) (4.1)

[

A (p (k)) B (p (k))
]

=

l
∑

i=1

pi (k)
[

Ai Bi

]

(4.2)

where
[

Ai Bi

]

, i = 1, ..., l are the the plant vertices. The parameter vector

p (k) =
[

p1 (k) ... pl (k)
]

belongs to the l-dimensional unit simplex Σl and it
is possibly subject to bounded parameter variations i.e.

p (k) ∈ Υ (p (k − 1)) ≡ {p ∈ Σl s.t. |pi − pi (k − 1)| < ∆pi} (4.3)

where ∆pi > 0 is the maximum one-step variation of the i-th entry of the
parameter vector. The following input saturation/ state constraints are pre-
scribed

u (k) ∈ U, k = 0, 1, 2, . . . (4.4)

x (k) ∈ X, k = 1, 2, .... (4.5)

with

X = {x ∈ ℜn| |(Cx)i| ≤ yi,max i = 1, ..., p} (4.6)

U = {u ∈ ℜm| |ui| ≤ ui,max i = 1, ...,m} (4.7)
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Given the information vector ξ (0) =
[

x (0)
T

p (0)
T

0
]T

at time k = 0, com-

pute an information vector based control strategy

u (k) = u (ξ (k)) (4.8)

such that constraints (4.4) and (4.5) are ensured, the closed loop system is
asymptotically stable and a convenient performance index J (x (k) , u (·)) is
minimized.

Remark 4.2. A performance index which will be used hereafter is the standard
linear quadratic (LQ) cost

J (x (0) , u (·)) =

∞
∑

k=0

‖x (k)‖
2
Rx

+ ‖u (k)‖
2
Ru

(4.9)

4.2 Set Invariance, Lyapunov Theory and Constrained
Control

Since its introduction ([41]), the notion of invariant set has been exploited in
many analysis and synthesis problems. In particular it has been shown to be a
fundamental tool to deal with systems subject to state/input constraints (see
[42] for a survey). For such a reason, this section is devoted to introduce the
foundations of the set invariance control theory.

Definition 4.3. Given an autonomous system

x (k + 1) = f (x (k) , k) , x(k) ∈ ℜn (4.10)

the time-varying set E (k) ⊂ ℜn is said positively invariant if for all x (k) ∈
E (k), the solution x (k + τ) ∈ E (k + τ) , τ > 0

Definition 4.4. Given the following system driven by an exogenous input

x (k + 1) = f (x (k) , w (k) , k) , x(k) ∈ ℜn, w(k) ∈ ℜd (4.11)

with w(k) ∈ W , where W ⊂ ℜd denotes a closed and bounded set, the time-
varying E (k) ⊂ ℜn is said robustly positively invariant if for all x (k) ∈ E (k),
and for all w (k + τ) ∈ W, τ ≥ 0 the solution x (k + τ) ∈ E (k + τ) for τ > 0

The relevance of the above definitions for constrained control can be easily
understood. Let us consider an autonomous dynamical system whose state
variables are subject to state constraints

x (k) ∈ X, k ≥ 0 (4.12)

Then (see [43]-[44]), constraint violations are avoided if and only if the state
x (0) at time k = 0 belongs to a positive invariant set E (k) such that
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E (k) ⊆ X, k ≥ 0.

Given an initial state x (0), we can then recast the constrained stabilization
problem for

x (k + 1) = f (x (k) , k, u (k)) (4.13)

subject to state constraints

x (k) ∈ X, k ≥ 0 (4.14)

u (k) ∈ U, k ≥ 0 (4.15)

as the problem of finding a stabilizing control strategy

u (k) = u (x (k) , k) (4.16)

such that a positive invariant set E for the resulting closed loop system
x (k + 1) = f (x (k) , k, u (x (k) , k)) exists and satisfies

x (0) ∈ E(0) (4.17)

E (k) ⊆ X, k ≥ 0 (4.18)

UE ⊆ U (4.19)

where UE = {u ∈ ℜm|u=u (x, k) ,∀x∈ E (k) , k=0, 1, . . .}. The main difficul-
ties behind the above approach is related to the derivation of efficient algo-
rithms capable to compute, or at least suitably approximate at each time
instant, E(k). In the next two subsections this problem will be addressed for
two cases of interest.

4.2.1 Time-Invariant Control Laws

Let us consider the time-invariant system

x (k + 1) = f (x (k) , u (k)) (4.20)

and a stationary control law

u (k) = u (x (k)) (4.21)

A possible constructive way to derive E(k) is by resorting to Lyapunov theory
which implicitly allows the definition of positive invariant sets. In fact, as well
known, Lyapunov functions capture and generalize the concept of “energy
of the system” and the stability results by showing that such an “energy”
is monotonically decreasing along the system trajectories. As a consequence,
given a Lyapunov function, its level curves represent the boundaries of posi-
tively invariant sets. More formally we can state the following result
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Lemma 4.5. Consider an autonomous (controlled) dynamical system

x (k + 1) = f (x (k) , u (x (k))) . (4.22)

If there exists a Lyapunov function V (x (k)) > 0, ∀x ∈ ℜn−{0} , V (x (k)) =
0, x = 0 such that

V (x (k + 1)) − V (x (k)) ≤ 0, ∀x (k) ∈ ℜn, (4.23)

then every set {x ∈ ℜn |V (x) ≤ γ } for γ ≥ 0 is a positively invariant set for
(4.22).

Lemma 4.6. Consider an autonomous (controlled) dynamical system

x (k + 1) = f (x (k) , u (x (k)) , w (k)) . (4.24)

where w(k) ∈ W denotes an exogenous input and W is a closed and bounded
set. If there exists a Lyapunov function V (x (k)) > 0, ∀x ∈ ℜn−{0} , V (x (k)) =
0, x = 0 such that

V (x (k + 1)) − V (x (k)) ≤ 0, ∀x (k) ∈ ℜn,∀w (k) ∈ W (4.25)

then every set {x ∈ ℜn |V (x) ≤ γ } for γ ≥ 0 is a robust positively invariant
set for (4.24).

The problem of constrained stabilization can then be recast as follows

Problem 4.7. Consider a system in form

x (k + 1) = f (x (k) , u (k) , w (k)) (4.26)

subject to state and input saturation constraints

x (k) ∈ X, k ≥ 0 (4.27)

u (k) ∈ U, k ≥ 0 (4.28)

Find, if they exist, a control law u (k) = u (x (k)), a Lyapunov function
V (x (k)) and a scalar γ > 0 such that

V (x (k + 1)) − V (x (k)) ≤ 0, k ≥ 0 (4.29)

V (x (0)) ≤ γ (4.30)

{x ∈ ℜn | V (x) ≤ γ } ⊆ X (4.31)

{u ∈ ℜm|u = u (x) , ∀x : V (x) ≤ γ} ⊆ U (4.32)
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4.2.2 Time-Varying Control Laws

The second case of interest is when the system is time-invariant and the control
strategy assumes the following structure

u (x (k) , k) =

{

u (x (k) , k) k = 0, ..., N − 1
u (x (k)) k ≥ N

(4.33)

that is, it is allowed to be time-variant for the first N time steps, with N
arbitrary but finite, and then is stationary for all subsequent instants. Let us
define the following recursion of state prediction sets

X̂ (0|0) = {x (0)}

X̂ (k + 1|0) =
{

x+|x+ = f (x, u (x, k) , w) , ∀x ∈ X̂ (k|0) , ∀w ∈ W
} (4.34)

If a positive invariant set E for the autonomous system

x (k + 1) = f (x (k) , u (x (k)) , w (k)) (4.35)

exists and if X̂ (N |0) ⊆ E , then the following time-varying set

E (k) =

{

X̂ (k|0) k = 0, 1, ..., N − 1
E k > N

(4.36)

is a robustly positive invariant set for the autonomous system

x (k + 1) = f (x (k) , u (x (k) , k) , w (k)) . (4.37)

As a consequence, the constrained control problem can be reformulated as
follows

Problem 4.8. Consider a system in form

x (k + 1) = f (x (k) , u (k)) (4.38)

subject to state and input saturation constraints

x (k) ∈ X, k ≥ 0 (4.39)

u (k) ∈ U, k ≥ 0 (4.40)

Find, if there exist, a control strategy (4.33), a Lyapunov function V (x (k))
and a scalar γ > 0 such that

X̂ (k|0) ⊆ X, k = 0, 1, ..., N (4.41)
{

u|u = u (x, k) ,∀x ∈ X̂ (k|0)
}

⊆ U, k = 0, 1, ..., N (4.42)

V (x (k + 1)) − V (x (k)) ≤ 0, k ≥ N (4.43)

V (x) ≤ γ, ∀x ∈ X̂ (k + N |0) (4.44)

{x ∈ ℜn | V (x) ≤ γ } ⊆ X (4.45)

{u ∈ ℜm|u = u (x) , ∀x : V (x) ≤ γ} ⊆ U (4.46)
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4.2.3 Set invariance and Lyapunov functions for LPV systems

Here the set invariance concept will be specialized for the LPV systems case
(eq. (1.1)) in order to apply the previous section results.

Lemma 4.9. Consider Lyapunov function of the form

V (ξ (k)) = x (k)
T

V (p (k))x (k) . (4.47)

with V (p (k)) ∈ ℜn is positive definite ∀p (k) ∈ Σl and such that

V (ξ (k + 1)) − V (ξ (k)) < 0,
∀x (k) ∈ ℜn − {0},∀p (k) ∈ Σl,∀p (k + 1) ∈ Υ (p (k))

(4.48)

If no bounded variations on p (k) are prescribed (i.e. Υ (p (k)) = Σl), then, for
each γ > 0, the set

E =
{

x ∈ ℜn|xT V (p (0))x < γ
}

(4.49)

is a robustly positive invariant set.

Proof. Exploiting (4.48) we have recursively that

x (k)
T

V (p (k))x (k) ≤ x (0)
T

V (p (0))x (0)
∀p (k) ∈ Σl, k = 0, 1, ...

(4.50)

Since p (k) can be any point into the unitary simplex Σl then also the following
inequality holds true

x (k)
T

V (p (0))x (k) ≤ x (0)
T

V (p (0))x (0) k = 0, 1, 2, .... (4.51)

As a consequence if x (0) ∈ E ⇒ x (k) ∈ E , k = 0, 1, 2, .... �

Remark 4.10. Up to our best knowledge, the above definitions of invariant set
for LPV systems under Parameter Dependent Lyapunov function seems new
and here introduced for the first time. The approaches proposed in literature
(see [45]) typically discards the knowledge of the initial parameter p (0) by
resorting to the invariant formulation defined for the uncertain framework
[46]:

E =
{

x ∈ ℜn|xT V (p) x < γ,∀p ∈ Σ
}

. (4.52)

It is worth to note that the same definition of invariant set does not hold
under bounded parameter variations. In fact (4.50) would become

x (k)
T

V (p (k))x (k) < x (0)
T

V (p (0))x (0) ,
∀p (k + 1) ∈ Υ (p (k)) , k = 1, 2, ...

(4.53)

and problems arise because in general p (0) /∈ Υ (p (k)) , k > 2. This property
is depicted in Figure 4.1 for the case l = 2 where dots represent possible
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p (2)

p (0)

(p(0))

(p(1))

(p(2))

0 1

p2

1

p (1)

p1

Fig. 4.1. Geometrical interpretation of set Υ (p(k) for LPV systems subject to
bounded parameter variation

occurrences of parameters p(0), p(1), p(2) whereas curly brackets represent
Υ (p(i)), i = 0, 1, 2. Clearly, p (0) /∈ Υ (p (2)) . The reason is that, as continu-
ously stressed in this dissertation, whenever dealing with bounded parameter
variations, the vector p (k) is not memoryless and it can be regarded as an
additional state variable instead. A possible definition of an invariant set for
this case is therefore given by

E =
{

[

xT , pT
]T

∈ ℜn × Σl

∣

∣xT V (p) x ≤ γ
}

(4.54)

The main drawback of the above definition is however that it does not seem to
be easily employable within a convex optimization machinery. Further studies
are in progress on the topic.

Chapter Summary

In this Chapter, the constrained control problem for LPV systems has been
introduced and set invariance theory used to derive workable control design
methods for the problems recalled in the first two Sections. Finally, in the last
Section, the definition of invariant set for LPV systems has been introduced.
Such a definition seems to be new in literature in the case of Parameter
Varying Lyapunov functions.
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Prediction Sets

In this chapter we introduce the notion of prediction sets for LPV systems
and investigate how their structure becomes when the system is controlled by
a specific class of control strategies to be used in MPC contexts.

The Chapter organization is as follows. In Section 1 and 2, the character-
ization of Information Vector Prediction Set is given for the family of control
strategies of interest. Subsequent Sections deal with computational aspects Fi-
nally, in the last Section, a novel class of control strategies based on prediction
set ideas is discussed.

5.1 Prediction Set Definition

The information characterizing the actual conditions of an LPV system in-
cludes both state and parameter values. For such a reason, to predict the set
of all the possible future system states we cannot simply focus on the state
vector but we need to take into account the trajectories of the whole infor-
mation vector ξ, as defined in Section 1.2. More formally, we can define the
information vector prediction set as follows:

Definition 5.1. Let a LPV system (1.1) be given, possibly subject to bounded
parameter rate of change i.e. p(k) ∈ Υ (p(k − 1)), with Υ (·) defined in (1.4).
Consider also a given control strategy u(k) = u(ξ(k)), k ≥ 0 and let the value
of the information vector ξ(0) be known at time k = 0.Then, the k-step ahead
information vector prediction set is recursively defined as follows

Î (0|0) , {ξ (0)}

Î (k|0) ,















ξ̂(k|0) =





x̂(k|0)
p̂(k|0)

k





∣

∣

∣

∣

∣

∣

∣

∣

x̂(k|0) =
l
∑

i=1

pi (Aix + Biu(ξ))

p̂(k|0) ∈ Υ (p)

∀ξ = [pT , xT , k − 1]T ∈ Î(k − 1|0)















,

k = 1, 2, . . .

(5.1)
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On the basis of the above definition, it is of interest to define three particular
prediction sets will be useful in future. First, we introduce the state prediction
set as the projection of (5.4) on the state space :

X̂ (0|0) , {x (k)}

X̂ (k|0) ,







x̂ (k|0)

∣

∣

∣

∣

∣

∣

x̂ (k|0) =
l
∑

i=1

pi (Aix + Biu(ξ))

∀ξ = [xT , pT , k − 1]T ∈ Î(k − 1|0)







,

k = 1, 2, . . .

(5.2)

Then, by exploiting the definition of Υ (p) in (1.4) we can also define the
projection of Î (k|0) on the parameter space that results

P̂ (k|0) , {p ∈ Σl | |pi − pi (0)| < k ∆pi , i = 1, . . . , l} , k = 0, 1, 2, . . . (5.3)

Finally, it is of interest to define the input prediction set, i.e. the set of possible
future input

Û (k|0) ,

{

û(k|0) = u (ξ)
∣

∣

∣
∀ξ ∈ Î(k|0)

}

,

k = 0, 1, . . .
(5.4)

It is evident that the adopted control strategy plays a fundamental role in the
definitions of Î(k|0), X̂(k|0) and Û(k|0). On the contrary, the set P̂ (k|0) is
independent on the control strategy and assumes always the form (5.3). For
such a reason, in the next Sections, we will focus on the computation Î(k|0),
X̂(k|0) and Û(k|0).

Remark 5.2. Note that Î (0|0) is by definition a singleton. As a consequence,
X̂(1|0) is a singleton too and contains the vector

x̂ (k + 1|k) =

l
∑

i=1

pi (k) Aix (k) +

l
∑

i=1

pi (k) Biu (ξ(k)) . (5.5)

The exact knowledge of the one-step ahead state prediction is one of the
peculiar and interesting properties of the LPV framework and will be often
recalled. Moreover, note that one-step ahead information set Î (k + 1|k) is
given by:

Î(1|0) =







ξ̂(1|0) =





x̂(1|0)
p̂(1|0)

1





∣

∣

∣

∣

∣

∣

p̂(1|0) ∈ P̂ (1|0)







Because Î (k|0) , k > 0 is a nonsingular set, any set depending on it will be
in general nonsingular as well. This means that both X̂ (k|0) , k > 1 and
Û (k|0) , k > 0 are nonsingular.
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5.2 Control Strategies

Hereafter, we consider control strategies based on the whole information vector
ξ(k), i.e. the command u(t) is not only computed on the basis of the state
and parameter vectors x(k) and p(k) but also on the actual time k.

Even if many possible control strategies can be defined, only the ones
mostly used in LPV-MPC literature (see [47], [48],[49], etc. . . ) are here of
interest, which fall in the following family

u (ξ (k)) =

{

uk (x (k) , p (k)) k = 0, ..., N − 1
uN (x (k) , p (k)) k ≥ N

(5.6)

where N is the control horizon. Observe that the first N control actions can
be expressed by control laws belonging to the family (2.1)

uτ (x (k) , p (k)) =

l
∑

i=1

pi (k) uτ
i (x (k)) = (5.7)

=

l
∑

i=1

pi (k)
[

F k
i x (k) + ck

i

]

whereas the last one, referred to as the terminal controller in MPC literature,
is a state-feedback control law in the form (2.1) or eventually (2.3).

For reasons which will be clarified later, it is of interest to have a convex
description of the prediction set Î (k|0) , k = 0, ..., N or, at least, to be able
to compute suitably convex outer approximations. This problem will be faced
in the next Sections. In order to proceed systematically and for the sake of
clarity we will treat separately the following three relevant possible cases.

1. Non-scheduled control laws, i.e.

F k
i = F k, ck

i = ck, i = 1, ..., l, k = 0, ..., N − 1 (5.8)

2. Scheduled control laws for LPV systems without bounded parameter vari-
ations

3. Scheduled control laws for LPV systems subject to bounded parameter
variations

5.3 Nonscheduled Control Strategies

Consider the following control strategy (5.6)-(5.7)

u (ξ (k)) =

{

F kx(k) + ck k=0, ..., N−1
uN (x (k) , p (k)) k≥N

(5.9)
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to be applied to a LPV system possibly subject to bounded parameter varia-
tions. The closed-loop one-step ahead state prediction is given by

x (k + 1) =
l
∑

i=1

pi (k)
[

Ai x (k) + Bi

(

F kx (k) + ck
)]

= f (ξ (k)) (5.10)

where f (ξ (k)) is introduced to be used as a shorthand hereafter.

In Section 1.2, LPV systems subject to bounded parameter variation have
been shown to hide a nonlinearity which introduce a sort of ”parameter mem-
ory effect”. Such a nonlinearity strongly complicates the structure of the in-
formation set Î(k|0) and the machineries to compute exactly the prediction
sets. Then, in order to obtain manageable sets, we need to look for convex
outer polytopic approximations of Î(k|0).

A suitable way to obtain such an outer approximation is by relaxing the
dependence between the state vector x and the parameter vector p. Then, the
following set results:

ˆ̄I(k|0) =







ξ(k|0) =





x̂(k|0)
p̂(k|0)

k





∣

∣

∣

∣

∣

∣

x̂(k|0) ∈ ˆ̄X(k|0)

p̂(k|0) ∈ P̂ (k|0)







(5.11)

where P̂ (k|0) is the set defined in (5.3) and ˆ̄X(k|0) is an outer approximation
of X̂(k|0) recursively defined as follow

ˆ̄X(0|0) = {x(0)}

ˆ̄X(k|0) =

{

x̂ = f([xT , pT , k − 1]T )

∣

∣

∣

∣

∣

x ∈ ˆ̄X(k − 1|0)

p ∈ P̂ (k − 1|0)

}

(5.12)

Remark 5.3. Note that, in the case of parameter variations not subject to
bounds, the parameter vector and the state vector are already independent,

then ˆ̄I(k|0) exactly coincides with Î(k|0).

Because of (5.10), ˆ̄X results to be a polytope whose vertices can be easily
obtained in a recursive fashion. In fact, if we denote by P̂k,ik

∈ ℜl, ik = 1, ..., lk

the lk vertices of P̂ (k|0), then the vertices of ˆ̄X(1|0), ˆ̄X(2|0), ..., ˆ̄X(k|0) are
given by:

x̂(1|0) = f
(

[

x̂T (0), pT (0), 0
]T
)

,

x̂i1(2|0) = f

(

[

x̂T (1|0), P̂T
1,i1

, 1
]T
)

, i1 = 1, ...., l1

...

x̂i1,i2,...,ik−1
(k|0) = f

(

[

x̂T
i1,i2,...,ik−2

, P̂T
k−1,ik−1

, k − 1
]T
)

,
i1 = 1, ...., l1,

...
ik−1 = 1, ...., lk−1

(5.13)
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The above vertices formulation will be very useful when time-varying control
strategies will be applied to LPV systems subject to constraints. Moreover,
if we define the outer approximation to the input prediction set U(k|0) as
follows

ˆ̄U(k|0) =

{

û(k|0)

∣

∣

∣

∣

û(k|0) = F kx̂(k|0) + ck

∀x̂(k|0) ∈ ˆ̄X(k|0)

}

(5.14)

Then, vertices (5.13) allows us to rewrite ˆ̄U(k|0) as a convex combination of
vertices

ˆ̄U(k|0) = conv







{

ûi1,...,ik−1

}

l1
...

lk−1

i1 = 1
...

ik−1 = 1







(5.15)

where ûi1,i2,...,ik−1
(k|0) are

ûi1,i2,...,ik−1
(k|0) = F kx̂i1,i2,...,ik−1

(k|0) + ck,
i1 = 1, ..., l1
...
ik−1 = 1, ..., lk−1

(5.16)

Finally note that, by simply applying the above definitions, it is possible
to obtain the relationships between the prediction set computed with the
information vector available at time 0 and those computed in the subsequent
time instants. Those relationship are resumed by the following lemma

Lemma 5.4. Set inclusions ˆ̄X(k|1) ⊆ ˆ̄X(k|0), ˆ̄U(k|1) ⊆ ˆ̄U(k|0) result for the

above sets. Moreover, if p(1) is known, the vertices of ˆ̄X(k|1) and ˆ̄U(k|1) can

be obtained from the vertices of ˆ̄X(k|0) and ˆ̄U(k|0) as follows

x̂i2,...,ik−1
(k|0) =

l1
∑

i1=1

θi1 x̂i1,i2,...,ik−1
(k|0),

i2 = 1, ..., l2,
...

ik−1 = 1, ..., lk−1.
(5.17)

ûi2,...,ik−1
(k|0) =

l1
∑

i1=1

θi1 ûi1,i2,...,ik−1
(k|0),

i2 = 1, ..., l2,
...

ik−1 = 1, ..., lk−1.
(5.18)

where θ = [θ1, ..., θl1 ]
T ∈ Σl1 is such that

l1
∑

i1=1

θi1 P̂1,i1 = p(1) (5.19)

5.4 Scheduled Control Strategies - No bounds on
parameter variations

If a scheduled control strategy (5.6)-(5.7) is used, the closed-loop one-step
ahead predictions for the system (1.1) becomes
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x (k + 1) =

l
∑

i=1

pi (k)



Ai x (k) + Bi

l
∑

j=1

uτ
j (x (k))





= f (ξ (k)) (5.20)

where f(ξ(k)) is used hereafter as a shorthand. As already seen in Section 2.2,
the set of states reachable from x(k) for any possible parameter occurrence
is in general nonconvex. As a consequence, if a scheduled control strategy is
employed, even in the case that no bounds on the parameter variations are
prescribed, Î(k|0) is not convex for k ≥ 2.

For many interesting applications shown successively in this thesis, we
would like to deal with polytopic prediction sets (possibly expressed in the
form of convex hulls of its vertices) and use scheduled control strategies, be-
cause their use strongly improves the control performances. Because this is
not directly achievable, suitable outer approximations of the exact prediction
sets have to be introduced.

To proceed in this direction, let us focus on the information vector predic-
tion set. If no hypotheses on the parameter variations are assumed, then the
information vector prediction set is given by

Î (0|0) , {ξ (0)}

Î (k|0) ,







ξ̂(k|0) =





x̂(k|0)
p̂(k|0)

k





∣

∣

∣

∣

∣

∣

x̂(k|0) = f(ξ)
p̂(k|0) ∈ Σl

ξ ∈ Î(k − 1|0)







,

k = 1, 2, . . . , N

(5.21)

Because x̂(k|0) and p̂(k|0) are independent each other, the above set can be
furtherer simplified into

Î (0|0) , {ξ (k)}

Î (k|0) ,







ξ̂(k|0) =





x̂(k|0)
p̂(k|0)

k





∣

∣

∣

∣

∣

∣

x̂(k|0) ∈ X̂(k|0)
p̂(k|0) = ei, i = 1, ..., l







,

k = 1, 2, . . . , N

(5.22)

where ei represents the i-th vector of the canonical basis of ℜl and X̂(k|0) is
recursively defined as

X̂ (1|0) =
{

x̂(1|0) = f([x(0)T , p(0)T , 0]T )
}

(5.23)

X̂ (k|0)=

{

x̂ (k|0)

∣

∣

∣

∣

x̂(k|0) = f([xT , pT , k])

x ∈ X̂ (k|0) , p ∈ Σl

}

(5.24)

Then, the problem of the convexification of Î(k|0) simplifies into the problem
of finding a polytopic outer approximation for X̂ (k + τ |k). By taking advan-
tage of the convexifications seen in subsection 2.2.4, an outer approximations
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can be obtained by considering the following one-step ahead variation

x (k + 1) =

lc
∑

i=1

p̄i (k)
[

Āix (k) + B̄iū
k (x (k))

]

=

= f̄ (x (k) , p̄ (k), τ)

where Āi ∈ ℜn×n, B̄i ∈ ℜn×(lm), i = 1, ..., lc are proper matrices, ūτ =
[(ūτ

1)T , ..., (ūτ
l )T ]T and p̄ ∈ Σlc is the new parameter vector resulting from the

convexification. f̄ (x (k) , p̄ (k), τ) is again introduced as a shorthand. Then,
an outer polytopic approximation for X̂(k|0) can be defined as follows

ˆ̄X (1|0) = X̂ (1|0) (5.25)

ˆ̄X (k|0) =

{

x̂ (k|0)

∣

∣

∣

∣

x̂(k|0) = f̄(x, p, k))

x ∈ ˆ̄X (k|0) , p ∈ Σl

}

(5.26)

whose vertices can be recursively defined as follows

x̂ (1|0) = f (ξ(0))
x̂i1 (2|0) = f̄ (x̂ (1|0) , ēi1 , 1) , i1 = 1, . . . , lc
x̂i1,i2 (3|0) = f̄ (x̂i1 (2|0) , ēi2 , 2) , i1 = 1, . . . , lc, i2 = 1, . . . , lc
. . .
x̂i1,...,ik−1

(k|0)=f̄
(

x̂i1,i2,...,ik−2
(k − 1|0),ēik−1

, k − 1
)

, i1 =1,. . .,lc,. . .,ik−1 =1,. . .,lc
(5.27)

where by ēi, i = 1, ..., lc are denoted the lc vectors of the standard basis of ℜlc .
For reasons which will be clear in the next Chapter, is convenient to formulate,
on the basis of the above vertices formulation, an outer approximation for the
input prediction set U(k|0) that is ”chorded” with X̂(k|0) vertices. To this
end, let us define

ˆ̄U(k|0) =























û(k|0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

û(k|0) =
lc
∑

i=1

ˆ̄pi(k|0)Mi





F1x̂(k|0) + ck
1

. . .
Flx̂(k|0) + ck

l





∀ ˆ̄p(k|0) ∈ Σlc

∀x̂(k|0) ∈ ˆ̄X(k|0)























(5.28)

where, with reference to (2.22)-(2.23) , M̄i ∈ ℜm×(ml), i = 1, ..., lc are the
mapping matrices between the extended input ū ∈ ℜml and the real input
u ∈ ℜm

M̄i =
[

Im×m ... Im×m

]

(Πi ⊗ Im×m) , i = 1, ..., lc. (5.29)

The latter, coupled with vertices (5.27) allow us to easily obtain

ˆ̄U(k|0) = conv







{ûi1,...,ik
}

lc
...

lc

i1 = 1
...

ik = 1







(5.30)
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where vertices ûi1,i2,...,ik
(k|0) are

ûi1,i2,...,ik
(k|0) = Mik





F1x̂i1,i2,...,ik−1
(k|0) + ck

1

. . .
Flx̂i1,i2,...,ik−1

(k|0) + ck
l ,





i1 = 1, ..., lc,
...
ik = 1, ..., lc.

(5.31)

Finally note that, by simply exploit the above prediction set structures, we
can state the following results

Lemma 5.5. Set inclusions ˆ̄X(k|1) ⊆ ˆ̄X(k|0), ˆ̄U(k|1) ⊆ ˆ̄U(k|0) result for the

above sets. Moreover, if p(1) is known, the vertices of ˆ̄X(k|1) and ˆ̄U(k|1) can

be obtained from the vertices of ˆ̄X(k|0) and ˆ̄U(k|0) as follows

x̂i2,...,ik−1
(k|0) =

lc
∑

i1=1

θi1 x̂i1,i2,...,ik−1
(k|0),

i2 = 1, ..., lc,
...
ik−1 = 1, ..., lc.

(5.32)

ûi2,...,ik
(k|0) =

lc
∑

i1=1

θi1 ûi1,i2,...,ik
(k|0),

i2 = 1, ..., lc,
...
ik = 1, ..., lc.

(5.33)

where θ = [θ1, ..., θl1 ]
T ∈ Σlc is such that

l1
∑

i1=1

θi1 ēi1 = ρ(p(1)) (5.34)

and ρ(p) is the mapping function defined in (2.24)

5.5 Scheduled Control Strategies - Bounded parameter
variations

The problem of computing the information vector prediction set strongly com-
plicates when we apply a parameter dependent control strategy to an LPV
systems subject to bounded parameter variations. This is due to both the
nonlinearities coming from the ”parameter memory effect” introduced when
dealing with bounded parameter variations and to the quadratic dependencies
arising with self-scheduled control strategies. Then, in order to obtain poly-
topic outer approximation for the prediction set, we need to relax both the
nonlinearities.

The quadratic parameter dependence can be relaxed by means of the one-
step ahead state prediction outer approximation introduced in Chapter 2 ob-
taining

x (k + 1) =

lc
∑

i=1

p̄i (k)
[

Āix (k) + B̄iū
τ (x (k))

]

=

= f̄ (x (k) , p̄ (k), k) (5.35)
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where the parameter vector is mapped through p̄ (k) = ρ̄ (p (k)) as defined in
(2.24). Then, by using the latter one-step ahead state prediction machinery
and by relaxing state-parameter dependence, we can define the following outer
approximation for the information vector prediction set:

ˆ̄I (0|0) = {ξ(0)}

ˆ̄I (k|0) =

{

ξ̂(k|0)

∣

∣

∣

∣

∣

ξ̂(k|0) = [x̂(k|0)T , p̂(k|0), k]

x̂(k|0) ∈ ˆ̄P (k|0)p̂(k|0) ∈ P̂ (k|0)

}

(5.36)

with P̂ (k|0) defined in (5.3) and ˆ̄X(k|0) defined as follows

ˆ̄X (0|0) = {x (0)}
ˆ̄X (1|0) =

{

x̄ (1) = f([x(0)T , p(0)T , 0])
}

ˆ̄X (k|0) =







x̄ (k)

∣

∣

∣

∣

∣

∣

x̄ (k) = f(xT , p̄, k)

x ∈ ˆ̄X (k − 1|0)
p̄ ∈ Ῡ (P (k|0))







(5.37)

where f(·) is defined in (5.20), f̄(·) is defined in (5.35) and Ῡ (P (k|0)) is a
polytopic set such that

∀p ∈ P (k|0) ⇒ ρ (p) ∈ Ῡ (P (k|0)) (5.38)

mapping the set P (k|0) into Σlc .

Note that, if we can explicitly compute the Υ (P (k|0)) vertices, denoted here-
after as Υk,i, i = 1, ..., lc,k, the vertices of X̂(k|0) can be recursively obtained
as follows

x̂ (1|0) = f(ξ(0))
x̂i1 (2|0) = f̄

(

x̂ (1|0) , Ῡ1,i1 , 1
)

, i1 = 1, . . . , lc,1

x̂i1,i2 (3|0) = f̄
(

x̂i1 (2|0) , Ῡ2,i2 , 2
)

,
i1 = 1, . . . , lc1,
i2 = 1, . . . , lc,2

. . .

x̂i1,i2,...ik−1
(k|0)=f̄

(

x̂i1,i2,...,ik−2
(k−1|0),Ῡk−1,ik−1

,k−1
)

,
i1 =1,. . .,lc,1,
. . .
ik−1 =1,. . .,lc,k−1.

(5.39)
If we define an outer approximation of the input prediction set as follows:

ˆ̄U(k|0) =























û(k|0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

û(k|0) =
lc
∑

i=1

ˆ̄pi(k|0)Mi





F1x̂(k|0) + ck
1

. . .
Flx̂(k|0) + ck

l





∀ ˆ̄p(k|0) ∈ Ῡ (P̂ (k|0))

∀x̂(k|0) ∈ ˆ̄X(k|0)























(5.40)

where Mi, i = 1, ..., lc are defined in (5.29), vertices (5.39) allows one to refor-
mulate the input prediction set as a convex combination of vertices



64 5 Prediction Sets

ˆ̄U(k|0) = conv











{

ûi1,...,ik−1

}

lc,1
...

lc,k

i1 = 1
...

ik = 1











. (5.41)

where ûi1,i2,...,ik
(k|0) can be obtained as follows

ûi1,i2,...,ik
(k|0) =

lc
∑

j=1

(Ῡk,ik
)jMj





F1x̂i1,i2,...,ik−1
(k|0) + ck

1

. . .
Flx̂i1,i2,...,ik−1

(k|0) + ck
l





i1 = 1, ..., lc,1

...
ik−1 = 1, ..., lc,k−1,
ik = 1, ..., lk.

(5.42)
and (Ῡk,ik

)j denotes the j-th entry of the ik-th vertex of Ῡ (P̂ (k|0)). Finally

note that Lemma 5.6 characterizing ˆ̄X(k|1) and ˆ̄U(k|1) can be easily rewritten
as follows

Lemma 5.6. Set inclusions ˆ̄X(k|1) ⊆ ˆ̄X(k|0), ˆ̄U(k|1) ⊆ ˆ̄U(k|0) result for the

above sets. Moreover, if p(1) is known, the vertices of ˆ̄X(k|1) and ˆ̄U(k|1) can

be obtained from the vertices of ˆ̄X(k|0) and ˆ̄U(k|0) as follows

x̂i2,...,ik−1
(k|0) =

lc
∑

i1=1

θi1 x̂i1,i2,...,ik−1
(k|0),

i2 = 1, ..., lc,
...
ik−1 = 1, ..., lc.

(5.43)

ûi2,...,ik
(k|0) =

lc
∑

i1=1

θi1 ûi1,i2,...,ik
(k|0),

i2 = 1, ..., lc,
...
ik = 1, ..., lc.

(5.44)

where θ = [θ1, ..., θl1 ]
T ∈ Σlc is such that

l1
∑

i1=1

θi1 Ῡk,ik
= ρ(p(1)) (5.45)

and ρ(p) is the mapping function defined in (2.24)

Example 5.7. In order to give a geometrical intuition of the parameter ma-
nipulations shown in this section let us suppose to have an LPV plant with
l = 2. Let p (k) = [ 0.5 0.5 ]T and ∆pi = 0.1, i = 1, 2. The prediction set of the
parameter vector will be

P̂ (k + 1|k) =

=

{

p =

[

p1

p2

]

∈ R2

∣

∣

∣

∣

[

p1 (k) − ∆p1

p2 (k) − ∆p2

]

≥

[

p1 0
0 p2

]

>

[

p1 (k) + ∆p1

p2 (k) + ∆p2

]}

∩ Σ2 =

= conv

{[

0.4
0.6

]

,

[

0.6
0.4

]}

as depicted in Figure 5.1. As a consequence Ῡ (P (k + 1|k)) can be written
(for instance) as follows
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p2

p2

p1 p1
1

p1(t)

p2(t)

t|1tP̂

1 p1

p2

Fig. 5.1.

.

Ῡ
(

P̂ (k+1|k)
)

=
{

p̄=

[

p̄11

p̄22

p̄12

] ∣

∣

∣

∣

∣

[

p̄11 (k)−∆p2

1

p̄22 (k)−∆p2

2

p̄12 (k)−2∆p1∆p2

]

≤

[

p̄11 0 0
0 p̄22 0
0 0 p̄12

]

≤

[

p̄11 (k)+∆p2

1

p̄22 (k)+∆p2

2

p̄12 (k)+2∆p1∆p2

]}

∩Σ3

Performing this intersection, it results that its solution is a polytope composed
by l1 = 5 vertices:

Ῡ
“

P̂ (k+1|k)
”

=

= conv

8

<

:

Ῡ1,1 =

2

4

0.16
0.16
0.68

3

5,Ῡ1,2 =

2

4

0.16
0.36
0.48

3

5,Ῡ1,3 =

2

4

0.32
0.36
0.32

3

5 , Ῡ1,4 =

2

4

0.36
0.16
0.48

3

5,Ῡ1,5 =

2

4

0.36
0.32
0.32

3

5

9

=

;

as depicted in Figure 5.2.

Remark 5.8. In Figure 5.2 it has been reported the real locus of P̂ (k + 1|k)
into the (p̄11, p̄22, p̄12) space. It is worth to note that such a reparameteriza-
tion is very conservative and can be refined by the intersection with further
condition in order to have a tighter outer approximation of P̂ (t + 1|t) pro-
jection. In the above case, for instance, it would allow one to discard vertices
Ῡ1,3 and Ῡ1,4.
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Fig. 5.2.

.

5.6 Prediction Set based Control Strategies

In this Section we introduce a different class of control strategy based on the
idea to exploit the prediction set structure seen in the previous Sections. Such
a kind control strategy was first introduced by Pluymers in [50] for the robust
polytopic framework. Here a generalization is presented by adding the capa-
bility to deal with bounded parameter variations and to exploit the actual
parameter knowledge. Up to our best knowledge, this class of control strate-
gies has never been used within the LPV framework.

Hereafter, for the sake of clarity, we will first introduce and discuss nonsched-
uled prediction set based control strategies, then we will move to the more
complex case of scheduled control laws.
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5.6.1 Nonscheduled case

In Section 5.3 it has been shown that an outer approximation to the state
prediction set con be obtained by means a convex combination of vertices

ˆ̄X (k|0) = conv







{

x̂i1,...,ik−1
(k|0)

}

l1
. . .

lk−1

i1 = 1
. . .

ik−1 = 1







, k = 1, . . . , N (5.46)

where each vertex x̂i1,...,ik−1
(k|0) (see (5.13)) is given by

x̂i1,...,ik−1
(k|0)=

=
l
∑

j=1

(

P̂k−1,ik−1

)

j

[

Aj x̂i1,...,ik−2
(k − 1|0)+Bju

k
(

x̂i1,...,ik−2
(k − 1|0)

)]

,

k = 1, ..., N
(5.47)

where by (P̂k−1,ik−1
)j is denoted the j-th entry of the ik−1-th vertex of

P̂ (k − 1|0).

The idea behind prediction set based control strategy is that of substitut-
ing, for the first N time steps, the state dependent input uτ

(

x̂i1,...,iτ−1
(k + τ |k)

)

in
(5.47) with a static input chorded with indices i1, ..., iτ−1 obtaining the fol-
lowing new vertices

x̂i1,...,ik−1
(k|0)=

=
l
∑

j=1

(

P̂k−1,ik−1

)

j

[

Aj x̂i1,...,ik−2
(k − 1|0)+Bj ûi1,...,ik−2

(k − 1|0)
]

,

k = 1, ..., N

(5.48)

By resorting to Section 5.3 results, the latter is clearly equivalent to a control

strategy defined by means of the input prediction set ˆ̄U(k|0) vertices for k =
0, ..., N − 1 that, by exploiting Lemma 5.4, assumes the form of a control
strategy whose first N moves depend on the parameter occurrence history:

u (k) =











l1
∑

i1=1

θ1,i1 ....
lk−1
∑

ik−1=1

θk−1,ik−1
ûi1,i2,...,ik−1

(k|0), k = 0, .., N − 1

uN (x (k) , p (k)) , k ≥ N

(5.49)
where θτ = [θτ,1, ..., θτ,lτ ]T ∈ Σlτ is such that

lτ
∑

iτ=1

θτ,iτ
P̂τ,iτ

= p(τ), τ = 0, ..., k − 1

Such a control strategy has proven to yield to very interesting results in terms
of control system performances, because, as it follows from its definition, it
also contains control strategies in form (5.9). The main drawback is in terms
of the computational effort needed to manage it: the number of its variables,
in fact, grows with the number of the vertices of the prediction sets.
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5.6.2 Scheduled case

To build a prediction set based control strategy capable to make use of the
parameter knowledge, we have to complicate a bit the above definition. By
referring to Section 5.5 notations and results, also in this case the polytopic

outer approximation of the state prediction set ˆ̄X(k|0) can be seen as the
convex combination of vertices. By combining equations (5.20) and (5.39),
those vertices assume the form

x̂i1,...,ik−1
(k|0) =

lc
∑

i=1

p̄i (k)
[

Āixi1,...,ik−2
(k − 1|0) + B̄iū

τ
(

xi1,...,ik−2
(k − 1|0)

)]

(5.50)
Then to get a prediction set based control strategy we can substitute the term
ūτ
(

xi1,...,ik−2
(k − 1|0)

)

with a chorded vector ˆ̄ui1,...,ik−2
(k − 1|0), obtaining

x̂i1,...,ik−1
(k|0) =

lc
∑

i=1

p̄i (k)
[

Āixi1,...,ik−2
(k − 1|0) + B̄i ˆ̄ui1,...,ik−2

(k − 1|0)
]

.

(5.51)
The main conceptual difference between this case and the nonscheduled one
is that, because of ū(k) = [uT

1 (k), ..., uT
l (k)]T , this prediction strategy is

not based on the vertices of the ”real” input prediction set but it makes
use of the extended input vector introduced in Section 2.2.4. If we denote
by
(

ˆ̄ui1,...,ik−2
(k − 1|0)

)

[j]
∈ ℜm the j-th m-dimensional vector composing

ˆ̄ui1,...,ik−2
(k − 1|0), an explicit representation of the scheduled prediction set

based control strategy is given by

u (k) =











l1
∑

i1=1

θ1,i1 ....
lk−1
∑

ik−1=1

θk−1,ik−1

l
∑

j=1

pj(k)
(

ˆ̄ui1,i2,...,ik−1

)

[j]
, k = 0, .., N − 1

uN (x (k) , p (k)) , k ≥ N

(5.52)
where θτ = [θτ,1, ..., θτ,lτ ]T ∈ Σlτ is such that

lτ
∑

iτ=1

θτ,iτ
P̂τ,iτ

= p(τ), τ = 0, ..., k − 1

Remark 5.9. Note that the elements of the above control law are strictly linked
with the input prediction set vertices. In fact, by recalling equation (5.42), the
vertices of the input prediction set can be obtained by means of the following
linear transformation

ûi1,...,ik
(k|0) =

lc
∑

j=1

(Ῡk,ik
)jMj ˆ̄ui1,...,ik

, i1 = 1, ..., lc,1. . . . , i1 = 1, ..., lc,k

where Mi, i = 1, ..., lc is defined in (5.29)
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Chapter Summary

In this Chapter, the notion state information prediction set has been intro-
duced and applied to the several classes of control strategies. It has been show
that the use of bounded parameter variations complicates the construction of
the prediction sets. Convexification approaches to relax the problem and ar-
rive to convex formulations have been shown. Finally, the prediction set based
control strategy proposed by Pluymers in [50] has been generalized, for the
first time at the best of our knowledge, to the LPV case.





6

Constrained Control of LPV systems

In this Chapter we focus on the control problem for LPV systems and we
show how it is possible to reformulate many constrained LPV control design
methods as convex optimization problems solvable in polynomial time.

The Chapter is divided into two Sections. Both of them deal with con-
strained regulation: the first via the use of time-invariant control laws whereas
the second by means of time-depending control strategies.

6.1 Time-invariant Control Laws

By exploiting the set invariance properties of Chapter 4, a quite general re-
formulation of the Constrained LPV design problem is given in the following
Problem 6.1 in the case of unbounded parameter variations and for a general
class of time-invariant control laws.

Problem 6.1. Let a LPV system (1.1) be given. Then, determine on the basis
of the actual information vector ξ(0) a time-invariant control law

u (k) = u(ξ(k)) = u (x(k), p(k)) , k ≥ 0,

a Lyapunov function
V (ξ(k)) , k ≥ 0

and a robustly positive invariant set E such as the following conditions are
satisfied

a) Lyapunov stability. V (ξ (k + 1)) − V (ξ (k)) ≤ 0, k ≥ 0
b) The initial state x (0) belongs to the invariant set, i.e. x(0) ∈ E
c) {u ∈ ℜm|u = u (x, p) , ∀x ∈ E ,∀p ∈ Σl} ⊆ U
d) {x+ ∈ ℜn |x+ = (A (p) + B (p) F (p))x, . ∀x ∈ E ,∀p ∈ Σl} ⊆ X
e) A convenient upper-bound to the cost J(x(k), u(·)) defined in (4.9) is min-

imized.
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In the next subsections we will show how the above conditions can be trans-
lated into several convex conditions by making use of the Lyapunov function
machineries introduced in Chapter 3. While the reformulations for the case of
standard quadratic Lyapunov functions are well known in literature (see [47]
and [48]), workable derivations for Parameter Varying Lyapunov functions
have received less attention and an approach presented in [45] is detailed. Fi-
nally, novel and original design methods achievable by the use of nonstandard
Lyapunov functions are presented here, at the best of our knowledge, for the
first time.

In order to proceed systematically the following preliminary result, com-
mon to all the approaches that will be presented, is introduced.

Theorem 6.2. If parameter-depending state-feedback control laws

u (ξ(k)) = F (p(k)) x(k), k ≥ 0 (6.1)

and Lyapunov functions

V (ξ (k)) = xT (k) V (p (k))x (k) , k ≥ 0 (6.2)

are employed, then providing a solution to Problem 6.1 consists in determining
(if exist) a parameter dependent feedback matrix F (p) ∈ ℜn×m, a parameter
dependent square matrix V (p) ∈ ℜn×n, a square matrix X ∈ ℜm×m and a
positive scalar γ that solve the following optimization problem

min
γ,V (·),F (·),X

γ

subject to matrix inequalities

[A (p) + B (p) F (p)]
T

V (p+) [A (p) + B (p) F (p)] − V (p) ≤

≤ −
[

Rx + F (p)
T

RuF (p)
]

, ∀p ∈ Σl,∀p+ ∈ Σl
(6.3)

V (p) > 0,∀p ∈ Σl (6.4)

xT (0)V (p (0))x (0) ≤ γ,∀p ∈ Σl (6.5)
(

F (p)
(

1
γ V (p (0))

)−1

F (p)
T

)

≤ X, ∀p ∈ Σl

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.6)

(

Ci[A (p)+B (p)F (p)]
(

1
γV (p (0))

)−1
[

At (p)+FT (p)PT (p)
]

CT
i

)

≤y2
i,max

i = 1, . . . , ny, ∀p ∈ Σl

(6.7)

Proof. We need to prove that the above conditions (6.3)-(6.7) satisfy a),b),c),d),e)
in Problem 6.1.
Conditions a) b) and e)
Let (6.4) and the following inequality
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x (p (k + 1))
T

V (p (k + 1))x (p (+1)) − x (p (k))
T

V (p ())x (p (k)) ≤
−
[

xT (k) Rxx (k) + xT (k) FT (p (k))RuF (p (k))x (k)
]

∀p (k) ∈ Σl,∀p (k + 1) ∈ Σl

(6.8)

hold true. Ru > 0, Rx > 0, (6.4) and (6.8) are sufficient conditions for asymp-
totical stability. Then, because lim

k→∞
x (k) = 0, if we sum all the terms of (6.8)

for i = 0, . . . ,∞ we obtain

max
p(k)∈Σl

∞
∑

k=0

‖x (k)‖
2
Rx

+ ‖u (k)‖
2
Ru

< x (0)
T

V (p (0))x (0) (6.9)

Then, x (0)
T

V (p (0))x (0) is an upper-bound to the cost (4.9). By introducing
a slack variable γ, the minimization of such an upper-bound is achieved by
imposing that

min γ (6.10)

Subject to matrix inequalities (6.3), (6.4), (6.5)

where (6.3) is obtained by direct manipulation of (6.8). Finally, note that
condition (6.5) coincides with the state inclusion into the invariant set
E = {x ∈ ℜn|xT V (p (0))x ≤ γ} defined by the Lyapunov function.

Condition c)
If the set E is a robustly positive invariant set for the closed-loop system and
x (0) ∈ E , then the following inequalities hold true

max
k≥0

‖uj (k|0)‖
2

= max
k≥0

∥

∥

∥(F (p (k))x (k))j

∥

∥

∥

2

≤

≤ max
x : xT

“

1
γ

V (p (0))
”

x < 1

p ∈ Σl

∥

∥

∥(F (p) x)j

∥

∥

∥

2 (6.11)

Via simple manipulations we also obtain

max
k≥0

‖uj (k|0)‖
2
≤

≤ max
x : xT

“

1
γ

V (p (0))
”

x < 1

p ∈ Σl

∥

∥

∥

∥

∥

(

F (p)
(

1
γ V (p (0))

)−1/2 (
1
γ V (p (0k))

)1/2

x

)

j

∥

∥

∥

∥

∥

2

≤

max
p∈Σl

∥

∥

∥

∥

∥

(

F (p)
(

1
γ V (p (0))

)−1/2
)

j

∥

∥

∥

∥

∥

2

2

=

=

(

F (p)
(

1
γ V (p (0))

)−1

FT (p)

)

jj

≤ u2
j,max p ∈ Σl

(6.12)
If matrix X = XT > 0 is introduced such that Xjj ≤ u2

j,max, then we achieve
the conditions (6.6) ensuring
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max
i≥0

‖uj (k|0)‖
2
≤ y2

jmax
, j = 1, ...,m k = 0, 1, 2, ....

Condition d)
The state constraints we are considering here are in the form

‖(Cx (k))i‖2 ≤ yi,max, k = 1, 2, ...,∞, i = 1, ..., ny (6.13)

Let us focus on the term

(Cx (k))i =









C1

...
Cp



x (k)





i

= Cix (k) (6.14)

where Ci ∈ ℜ1×n is a vector. Inequality (6.13) can be rewritten as

‖Cix (k)‖
2
2 ≤ y2

i,max, k = 1, 2, ...,∞, i = 1, ..., ny (6.15)

Let us consider a single constraint. If we shift k, (6.15) can be rewritten as

‖Ci[A(p(k)) + B (p (k))F (p (k))]x (k)‖
2
2 ≤ y2

i,max

k = 0, 1, ...,∞.
(6.16)

Because x (k) ∈ E , k = 0, 1, . . . ,∞, we can use the same procedure as in the
input case

max
k≥0

‖uj (k|0)‖
2

≤ max
x:xT V (p(0))x<γ

‖Ci [A (p (k)) + B (p (k))F (p (k))]x‖
2
2

≤ max
x : xT

“

1
γ

V (p (0))
”

x < 1

p ∈ Σl

‖Ci [A (p) + B (p) F (p)]x‖
2

=

= max
x : xT

“

1
γ

V (p(0))
”

x<1

p ∈ Σl

∥

∥

∥

∥

∥

(

Ci[A(p)+B (p)F (p)]
(

1
γV (p (0))

)−1/2(
1
γ V (p(0))

)1/2

x

)

j

∥

∥

∥

∥

∥

2

≤

max
p∈Σl

∥

∥

∥

∥

Ci [A (p) + B (p) F (p)]
(

1
γ V (p (k))

)−1/2
∥

∥

∥

∥

2

2

=
(

Ci[A(p)+B (p)F (p)]
(

1
γ V (p(k))

)−1
[

AT (p) + FT (p) PT (p)
]

CT
i

)

≤ y2
i,max

∀p ∈ Σl.

Remark 6.3. It is important to note that the above conditions are considered
for invariant sets in the form (4.49). Often, for technical reasons, we will make
use of the invariant sets as in (4.52). In such a case, the above conditions can
be simply translated by substituting p(0) with p,∀p ∈ Σl.

Hereafter, we customize the above general results for the various specific Lya-
punov functions of interest. Because from any of the approaches we present in
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the sequel it is possible to derive different formulations, we will present first
a quite general prototype design method, not necessarily convex, which will
be successively customized by adding further specifications on the form and
structure of the selected control laws and Lyapunov functions. As a result,
several convex formulations of control design problems will be obtained and
presented in form of Lemmas.

6.1.1 Quadratic Lyapunov Functions

If quadratic Lyapunov functions

V (ξ(k))) = xT (k)Px(k), k ≥ 0 (6.17)

and scheduled state-feedback control laws

u(k) = F (p(k))x(k), k ≥ 0 (6.18)

are employed, where F (p(k)) depends somehow, not necessarily in a linear
or affine way, on the parameter vector, then Theorem 6.2 translates into the
following result

Theorem 6.4. The control design problem underlying Theorem 6.2 is solv-
able, for control laws (6.18) and Lyapunov functions (6.17), if exist a square
matrix Q ∈ ℜn×n, a parameter dependent matrix Y (p) ∈ ℜm×n depending on
the parameter vectors p ∈ Σl, a square matrix X ∈ ℜm×m and a scalar γ
which jointly solve the following not necessarily convex optimization problem

min
γ,Q,Y (·),X

γ (6.19)

subject to matrix inequalities









Q ∗ ∗ ∗
A (p) P−1 + B (p) Y (p) Q ∗ ∗

R
1/2
x Q 0 γI ∗

R
1/2
x Y (p) 0 0 γI









≥ 0, ∀p ∈ Σ

Q > 0

(6.20)

[

1 x (0)
T

x (0) Q

]

> 0 (6.21)

[

X Y (p)
Y T (p) Q

]

> 0, p ∈ Σl

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.22)

[

y2
i,max Ci [A (p) Q + B (p)Y (p)]
∗ Q

]

> 0, p ∈ Σl, i = 1, ..., ny (6.23)

where Q = γP−1 and Y (p) = F (p) Q
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Proof. The proof is divided in three parts.
1. Condition (6.20)
If V (p (k)) = P , (6.3) is given by

P − ΦT (p) PΦ (p) − Rx − F (p)
T

RuF (p) ≥ 0 (6.24)

where Φ(p) = A(p) + B(p)F (p). By Schur transformations, it becomes

[

P − ΦT (p) PΦ (p) − Rx F (p)
T

R
1/2
u

R
1/2
u F (p) I

]

≥ 0 (6.25)

Because the term P − ΦT (p) PΦ (p) − Rx has to be positive definite, by iter-
atively applying Schur complements one arrives to









P ∗ ∗ ∗
Φ (p) P−1 ∗ ∗

R
1/2
x 0 I ∗

R
1/2
x F (p) 0 0 I









≥ 0 (6.26)

Finally by the congruence transformation diag{γ1/2P−1, γ1/2I, γ1/2I, γ1/2I},
we obtain (6.20).

2. Condition (6.21)
Equation (6.5) can be written as

x (0)
T

Px (0) ≤ γ (6.27)

which finally becomes the LMI (6.21) by Schur complements

3. Conditions (6.22) and (6.23)
Equation (6.6) can be rewritten

(

F (p)

(

1

γ
P

)−1

FT (p)

)

≤ X, p ∈ Σl (6.28)

Then, via Schur complements

[

X F (p)
FT (p) 1

γ P

]

> 0, p ∈ Σl. (6.29)

Finally, by means of the congruence transformation diag
{

I, γP−1
}

, (6.22) is
obtained. By following the same lines, also (6.23) is obtained.

Notice that if a nonscheduled control laws

u(k) = Fx(k), k ≥ 0
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is chosen, the above problem become an LMIs optimization problem. Other-
wise, if a scheduled control laws is used, relaxation methods shown in Ap-
pendix A can be used to obtain convex formulations. As an example, the
following convex optimization problem is achieved by using the Half-sum con-
vexification procedure

Lemma 6.5. Let the initial state x(0) be given and a scheduled control law in
the form

u(k) =

l
∑

i=1

pi(k)Fix(k), k > 0 (6.30)

be chosen. Then, the control design method of Theorem 6.4 can be relaxed into
the following LMI optimization problem to be solved by determining, if exist,
a square matrix Q ∈ ℜn×n, a set of matrices Yi ∈ ℜn×m, i = 1, ..., l, a square
matrix X ∈ ℜm×m and a scalar γ such that

min
γ,Q,Yi,X,i=1,...,l

γ (6.31)

subject to matrix inequalities











Q ∗ ∗ ∗
Ai+Aj

2 Q +
BiYj+BjYi

2 Q ∗ ∗

R
1/2
x Q 0 γI ∗

R
1/2
x

Yi+Yj

2 0 0 γI











≥ 0
i = 1, . . . , l
j = i, . . . , l

Q > 0

(6.32)

[

1 x (0)
T

x (0) Q

]

> 0 (6.33)

[

X Yi

Y T
i Q

]

> 0, i = 1, ..., l

X > 0, Xww ≤ u2
w,max w = 1, ...,m

(6.34)

[

y2
s,max Cs

[

Ai+Aj

2 Q +
BiYj+BjYi

2

]

∗ Q

]

> 0
i = 1, . . . , l
j = i, . . . , l
s = 1, . . . , ny

(6.35)

where Q = γP−1 and Yi = FiQ

Proof. This is directly achievable by using Half-sum convexification proce-
dure.

Remark 6.6. Because, as reported in Appendix A, there are many ways to
relax the quadratic dependence on the parameter, many other possible convex
reformulations are possible. Moreover, at least in principle, other classes of
scheduled control laws could be used. However, this freedom does not seem
to yield to interesting results.
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6.1.2 Parameter Dependent Lyapunov Functions

As a first result of this Section we show how it is possible to formulate Theo-
rem (6.2) in the case that we make use of a Parameter Dependent Lyapunov
function, i.e. a Lyapunov function in form (6.2) with

V (p(k)) = P (k) =
l
∑

i=1

pi(k)Pi (6.36)

and a scheduled control law (6.18) is chosen.

Theorem 6.7. The control design problem underlying Theorem 6.2 is solv-
able, for control laws (6.18) and Lyapunov functions V (x(k)) = xT (k)V (p(k)x(k)
with V (p(k)) as in (6.36), if exist square matrices Pi ∈ Rn×n, i = 1, ..., l, G ∈
ℜn×n, a parameter dependent state feedback matrix F (p) ∈ ℜn×m, a square
matrix X ∈ ℜm×m and a scalar γ which jointly solve the following not neces-
sarily convex optimization problem

min
γ,P1,...,Pl,F (·),G,X

γ

subject to matrix inequalities









GT P (p) G ∗ ∗ ∗
A (p) G + B (p) F (p) G P−1

i ∗ ∗

R
1/2
x G 0 I ∗

R
1/2
u F (p) G 0 0 I









≥ 0, ∀p ∈ Σ, i = 1, ..., l

Pi > 0 i = 1, ..., l

(6.37)

[

γi x (0)
T

x (0) 1
pi(0)

P−1
i

]

> 0 i = 1, ..., l (6.38)

l
∑

i=1

γi ≤ γ (6.39)

[

X F (p) G

GT FT (p) GT
(

1
γ P (p (0))

)

G

]

> 0, ∀p ∈ Σl

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.40)

[

y2
i,max [Ci [A (p) + B (p) F (p)]]G

∗ GT
(

1
γ P (p (0))

)

G

]

> 0, ∀p ∈ Σl, i = 1, ..., ny (6.41)

Proof. The proof is divided in three parts.
1. Condition (6.37)
Matrix inequality (6.37) can be obtained by applying iteratively Schur com-
plements to (6.3) and by using the congruence transformation diag{G, I, I, I}.
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2. Condition (6.38) and (6.39)
Matrix inequality (6.5) becomes

x (0)
T

P (p (0))x (0) =

l
∑

i=1

pi(0)
(

x (0)
T

Pix (0)
)

≤ γ. (6.42)

By introducing slack variables γi, i = 1, ..., l, the latter inequality can be
reformulated as follows.

pi(0)
(

x (0)
T

Pix (0)
)

≤ γi (6.43)

l
∑

i=1

γi ≤ γ (6.44)

Finally by using Schur complements (6.38) is achieved.

3. Conditions (6.40) and (6.41)
Because V (p) assumes form (6.36), matrix inequality (6.6) becomes

(

F (p)

(

1

γ
P (p (0))

)−1

FT (p)

)

≤ X. (6.45)

By applying Schur complements we have:

[

X F (p)
FT (p) 1

γ P (p (0))

]

> 0, p ∈ Σl (6.46)

Finally, by using the congruence transformation diag {I, γG} inequality (6.40)
is obtained. After similar lines used above we arrive to (6.41) from (6.7).

Note that, once a control law is chosen, to obtain convex optimization
formulations we need to relax GT P (p)G. A possible way to do that is via the
Dilation result presented in Lemma 3.4. Moreover, the quadratic parameter
dependencies B (p) F (p) have to be relaxed too.
As an example, if a control law of the form

u(k) =

l
∑

i=1

pi(k)Fix(k), k > 0 (6.47)

is selected, the control design method of Theorem 6.7 can be relaxed into the
following quasi-LMI optimization problem

Lemma 6.8. Let the initial state x(0) be given and a scheduled control law in
the form (6.47) be chosen. Then, the control design method of Theorem 6.7
can be relaxed into the following quasi-LMI optimization problem to be solved
by determining, if exist, square matrices Qi ∈ ℜn×n, i = 1, ..., l, G ∈ ℜn×n, a
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set of matrices Yi ∈ ℜn×m, i = 1, ..., l, a square matrix X ∈ ℜm×m and scalars
γi ∈ ℜ, i = 1, ..., l, γ ∈ ℜ such that

min
γ, γi, Qi, Yi, G

i = 1, ..., l

γ

Subject to










GT + G −
Qi+Qj

2 ∗ ∗ ∗
Ai+Aj

2 G +
BiYj+BjYi

2 Qs ∗ ∗

R
1/2
x G 0 Iγ ∗

R
1/2
x

Fi+Fj

2 G 0 0 Iγ











≥ 0,
i = 1, ..., l
j = i, ..., l
s = 1, ..., l

Qi > 0 i = 1, ..., l

(6.48)

[

γγi γx (0)
T

γx (0) 1
pi(0)

Qi

]

> 0 i = 1, ..., l (6.49)

l
∑

i=1

γi ≤ γ (6.50)





X Yi

Y T
i GT + G −

l
∑

s=1
ps (0)Qs



 > 0, i = 1, .., l

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.51)







y2
w,max

[

Cw

[

Ai+Aj

2 G +
BiYj+BjYi

2

]]

∗ GT + G −
l
∑

s=1
ps (0)Qs






> 0,

i = 1, ..., l
j = i, ..., l
w = 1, ..., ny

(6.52)

where
Qi = γP−1

i , Yi = FiG

Proof. Consider inequality (6.37). By using the congruence transformation

diag
{

γ−1/2, γ1/2, γ1/2, γ1/2
}

and the Half-sum convexification procedure we obtain










1
2GT γ−1PiG + 1

2GT γ−1PjG ∗ ∗ ∗
Ai+Aj

2 G +
BiFj+BjFi

2 G γP−1
s ∗ ∗

R
1/2
x G 0 Iγ ∗

R
1/2
u

Fi+Fj

2 G 0 0 Iγ











≥ 0,
i = 1, ..., l
j = i, ..., l
s = 1, ..., l

Pi > 0 i = 1, ..., l

Then, by a direct application of the Dilation lemma, we obtain (6.48). Inequal-
ity (6.49) is derived by applying congruence transformation diag{γ1/2, γ1/2I}
to (6.38) Finally, the families of Matrix Inequalities (6.51), (6.52) can be
trivially obtained by applying the Dilation lemma to (6.40) and (6.41), re-
spectively.
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Though solvable in polynomial time, the use of the above quasi-LMI can
result in several numerical problems. A possible way to further simplify things
and obtain an LMI formulation, is by making use of the invariant set (4.52)
instead of (4.49), used in [45]. The following further result can be proved

Lemma 6.9. Let the initial state x(0) be given and a scheduled control law in
the form (6.47) be chosen. Then, the control design method of Theorem 6.7
can be relaxed into the following LMI optimization problem to be solved by
determining, if exist, square matrices Qi ∈ ℜn×n, i = 1, ..., l, G ∈ ℜn×n, a set
of matrices Yi ∈ ℜn×m, i = 1, ..., l, a square matrix X ∈ ℜm×m and a scalar
γ such that

min
γ,Qi,Yi,G

γ

Subject to











GT + G −
Qi+Qj

2 ∗ ∗ ∗
Ai+Aj

2 G +
BiYj+BjYi

2 Qs ∗ ∗

R
1/2
x G 0 Iγ ∗

R
1/2
u

Fi+Fj

2 G 0 0 Iγ











≥ 0,
i = 1, ..., l
j = i, ..., l
s = 1, ..., l

Qi > 0 i = 1, ..., l

(6.53)

[

1 x (0)
T

x (0) Qi

]

> 0 i = 1, ..., l (6.54)

[

X Yi

Y T
i GT + G − Qi

]

> 0, i = 1, .., l

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.55)

[

y2
w,max

[

Cw

[

Ai+Aj

2 G +
BiYj+BjYi

2

]]

∗ GT + G −
Qi+Qj

2

]

> 0, , w = 1, ..., ny (6.56)

where
Qi = γP−1

i , Yi = FiG

Proof. If we choose as a new invariant set

E =
{

x ∈ ℜn|xT Pix ≤ γ, i = 1, ..., l
}

it is enough to note that (6.38) becomes

[

γ x(0)
x(0) P−1

i

]

≥ 0, i = 1,...,l

Then, by a congruence transformation based on diag
{

γ−1/2, γ1/2I
}

LMI
(6.54) is obtained. Inequalities (6.55) and (6.55) result by following the same
lines.
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6.1.3 Nonstandard Lyapunov Functions - 1

In this subsection, the class of nonnstandad Lyapunov functions (6.2) are
considered where

V (p (k)) =

(

l
∑

i=1

pi (k) Qi

)−1

= (Q (p (k)))
−1

(6.57)

Then, Theorem 6.2 becomes

Theorem 6.10. The control design problem underlying Theorem 6.2 is solv-
able, for control laws (6.18) and Lyapunov functions V (x(k)) = xT (k)V (p(k)x(k)
such that V (p(k)) is as in (6.57), if exist square matrices Qi ∈ ℜm×m, i =
1, ..., l, a parameter dependent state feedback matrix F (p) depending on the
parameter vector p ∈ Σl, a square matrix X ∈ Rem×m and a scalar γ which
jointly solve the following not necessarily convex optimization problem

min
γ,Q(·),F (·),X

γ

subject to matrix inequalities









Q (p) ∗ ∗ ∗
A (p) Q (p) + B (p) F (p) Q (p) Q (p+) ∗ ∗

R
1/2
x Q (p) 0 I ∗

R
1/2
x F (p) Q (p) 0 0 I









≥ 0, ∀p ∈ Σ,∀p+ ∈ Σ

Qi > 0, i = 1, ..., l

(6.58)

[

γ x (0)
T

x (0) Q (p (0))

]

> 0 (6.59)

[

X γF (p) Q (p (0))
γQ (p (0))FT (p) γQ (p (0))

]

> 0, ∀p ∈ Σl

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.60)

[

y2
i,max γCi [A (p) + B (p) F (p)]Q (p (0))
∗ γQ (p (0))

]

> 0, ∀p ∈ Σl, i = 1, ..., ny(6.61)

Proof. This proof is divided in three parts.
1. Condition (6.58)
By substituting the prescribed Lyapunov function into (6.3)and by iteratively
applying Schur complements the following inequality is reached











Q (p)
−1

∗ ∗ ∗
A (p) + B (p) F (p) Q (p+) ∗ ∗

R
1/2
x 0 I ∗

R
1/2
x F (p) 0 0 I











≥ 0, ∀p ∈ Σ,∀p+ ∈ Σ (6.62)

By congruence transformation diag {Q (p) , I, I, I}, the latter becomes (6.58).
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2. Condition (6.59)
The inclusion of x (0) into the invariant set can be written as

x (0)
T

(Q (p (0)))
−1

x (0) ≤ γ (6.63)

By applying Schur complements, inequality (6.59) results.

3. Conditions (6.60) and (6.61)
If the prescribed Lyapunov function is used, (6.6) becomes

F (p (0)) γQ (p (0))FT (p) > 0, p ∈ Σl (6.64)

By applying Schur complements, the latter is equivalent to

[

X F (p)

FT (p) 1
γ Q (p (0))

−1

]

> 0, p ∈ Σl (6.65)

Finally, by making use of the congruence transformation diag {I, γQ (p (0))},
inequality (6.60) is obtained. The same procedure enables us to obtain in-
equality (6.61).

Even if many way to relax the above non convex optimization problem can
be applied, the most convenient way is by making use of the following control
law

u (k) = F̃ (p (k))Q (p (k))
−1

x (k) (6.66)

coupled with the more conservative invariant set (4.52). In this case the above
problem can be relaxed into the following

Lemma 6.11. Let the initial state x(0) be given and a scheduled control law in
the form (6.66) be chosen. Then, the control design method of Theorem 6.10
can be relaxed into the following LMI optimization problem to be solved by
determining, if exist, square matrices Q̄i ∈ ℜn×n, i = 1, ..., l, a set of matrices
F̄i ∈ ℜn×m, i = 1, ..., a square matrix X ∈ ℜm×m and a scalar γ such that

min
γ, Q̄i, F̄i, X

i = 1, ..., l

γ (6.67)

subject to matrix inequalities
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









Q̄i+Q̄j

2 ∗ ∗ ∗
AiQ̄j+AjQ̄i+BiF̄j+Bj F̄i

2 Q̄s ∗ ∗

R
1/2
x

Q̄i+Q̄j

2 0 I ∗

R
1/2
x

F̄i+F̄j

2 0 0 I











≥ 0,
i = 1, ..., l
j = i, ..., l
s = 1, ..., l

Q̄i > 0, i = 1, ..., l

(6.68)

[

1 x (0)
T

x (0) Q̄i

]

> 0, i = 1, ..., l (6.69)

[

X F̄i

∗ Q̄i

]

> 0, i = 1, . . . , l

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.70)

[

y2
w,max γCw

[

AiQ̄j+AjQ̄i+BiF̄j+Bj F̄i

2

]

∗
Q̄i+Q̄j

2

]

> 0,
i = 1, ..., l
j = i, ..., l
w = 1, ..., ny

(6.71)

where F̄i = γF̃i, Q̄i = γQi

Proof. If the invariant set (4.52) is employed, then the dependencies on p(0)
in Theorem 6.10 have to be substituted with p,∀p ∈ Σl.
Because of the use of control laws (6.66), terms F (p)Q(p) simplifies into

F (p)Q(p) = F̃ (p)(Q(p))−1Q(p) = F̃ (p).

By substituting the latter into (6.59)-(6.61) a quadratic dependence on the
parameter vector results. Then, by applying Semi-sum convexifications and
opportune congruence transformations, inequalities (6.68)-(6.71) follow.

Remark 6.12. Exactly like in the other cases, other convexifications may apply
by using, for instance, different quadratic relaxations as those reported in
Appendix A.

6.1.4 Nonstandard Lyapunov Function - 2

If a Lyapunov function (6.2) such that

V (p (k)) =

(

l
∑

i=1

piGi

)−T ( l
∑

i=1

piPi

)(

l
∑

i=1

piGi

)−1

=

= (G (p (k)))
−T

(P (p (k))) (G (p (k)))
−1

(6.72)

is employed then the following holds true

Theorem 6.13. The control design problem underlying Theorem 6.2 is solv-
able, for control laws (6.18) and Lyapunov functions V (x(k)) = xT (k)V (p(k)x(k)
such that V (p(k)) is (6.72), if exist square matrices Gi ∈ ℜn×n, Pi ∈ ℜn×n, a
parameter dependent state feedback matrix F (p) depending on the parameter
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vector p ∈ Σl, a square matrix X ∈ ℜm×m and a scalar γ which jointly solve
the following not necessarily convex optimization problem

min
γ,P (·),G(·),F (·),X

γ (6.73)

rank {Gi} = n, i = 1, ..., l (6.74)

Pi > 0, i = 1, ..., l (6.75)










P (p) ∗ ∗ ∗

A(p)G (p)+B(p)F (p)G(p) (G (p+))
T

(P (p+))
−1

G (p+) ∗ ∗

R
1/2
x G (p) 0 I ∗

R
1/2
x F (p) G (p) 0 0 I











≥ 0

∀p ∈ Σ,∀p+ ∈ Σ

(6.76)

[

γ x (0)
T

x (0) GT (p (0))P−1 (p (0))G (p (0))

]

> 0 (6.77)

[

X F (p) G (p (0))
GT (p (0))FT (p) 1

γ P (p (0))

]

> 0, ∀p ∈ Σl

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.78)

[

y2
i,max [Ci[A (p)+B(p)F (p)]]G(p(0))
∗ 1

γ P (p (k))

]

> 0,∀p ∈ Σl, i = 1, ..., ny (6.79)

Proof. This proof is divided in four parts.
1. Condition (6.74) and (6.75)
By resorting to (6.4) we need to guarantee

V (p) = G−T (p)P (p)G−1(p) > 0,∀p ∈ Σl.

The latter straightforwardly implies (6.74) and (6.75).

2. Condition (6.76)
Let substitute Lyapunov function (6.72) into (6.3). By iteratively apply Schur
complements inequality (6.76) is obtained.

3. Condition (6.77)
The inclusion x (0) ∈ E is equivalent to

x (0)
T

G (p (0))
−T

P (p (0))G (p (0))
−1

x (0) ≤ γ. (6.80)

By applying Schur complements to the latter, inequality (6.77) is achieved.

4. Conditions (6.78) and (6.79)
By substituting Lyapunov function (6.72) into (6.6), we get the following in-
equality
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(

F (p)

(

1

γ
(G (p (0)))

−T
(P (p (0))) (G (p (0)))

−1

)−1

F (p)
T

)

≤ X, p ∈ Σl

(6.81)
By using Schur complement, the latter is equivalent to

[

X F (p)

FT (p) 1
γ G (p (0))

−T
P (p (0))G−1 (p (0))

]

> 0, ∀p ∈ Σl (6.82)

If we finally use the following congruence transformation
[

I 0
0 GT

] [

X F (p)

FT (p) 1
γ G (p (0))

−T
P (p (0))G−1 (p (k))

] [

I 0
0 G

]

> 0, ∀p ∈ Σl

(6.83)
(6.78) is obtained. Inequalities (6.79) can be achieved by following the same
lines.

There exists many way to turns the above optimization into a convex
optimization problem. The fist step is , by making use of dilation Lemma 3.4,
to relax GT (p)P (p)G(p) nonlinearities relaxed and the rank constraint (6.74).
The following simpler (but still not convex) problem is obtained.

min
γ,P (·),G(·),F (·),X

γ











γP (p) ∗ ∗ ∗

γ(A(p) G(p) γ+B(p) F (p)G (p)) γ
(

G (p+)
T

+G (p+)−P (p+)
)

∗ ∗

R
1/2
x γG (p) 0 Iγ ∗

R
1/2
x γF (p) G (p) 0 0 Iγ











≥ 0

∀p ∈ Σ,∀p+ ∈ Σ
Pi > 0, i = 1, ..., l

(6.84)

[

1 x (0)
T

x (0) γGT (p (0)) + γG (p (0)) − γP (p (0))

]

> 0 (6.85)

[

X γF (p) G (p (0))
γGT (p (0))FT (p) γP (p (0))

]

> 0,∀p ∈ Σl

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.86)

[

y2
i,max γ [Ci [A(p)+B(p)F (p)]]G (p(0))
∗ γP (p (0))

]

> 0,∀p ∈ Σl, i = 1, ..., ny (6.87)

While many relaxation are possible we want to give two interesting way to
proceed.

The first is obtained by making use of the following special control law

u (k) = F̃ (p (k))G (p (k))
−1

x (k) (6.88)

coupled with the more conservative invariant set (4.52). It allows us to obtain
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Lemma 6.14. Let the initial state x(0) be given and a scheduled control law
in the form (6.88) be chosen. Then, the control design method of Theorem
6.13 can be relaxed into the following LMI optimization problem to be solved
by determining, if exist, square matrices P̄i ∈ ℜn×n, Ḡi ∈ ℜn×ni = 1, ..., n, a
set of matrices F̄i ∈ ℜn×m, i = 1, ..., a square matrix X ∈ ℜm×m and a scalar
γ such that

min
γ, P̄i, Ḡi, F̄i, X

i = 1, ..., l

γ











P̄i+P̄j

2 ∗ ∗ ∗
AiḠj+AjḠi+BiF̄j+Bj F̄i

2 ḠT
s + Ḡs − P̄s ∗ ∗

R
1/2
x

Ḡi+Ḡj

2 0 γI ∗

R
1/2
u

F̄i+F̄j

2 0 0 γI











≥ 0,

i = 1, ..., l
j = i, ..., l,
s = 1, ..., l

P̄i > 0, i = 1, ..., l

(6.89)

[

1 x (0)
T

x (0) ḠT
i + Ḡi − P̄i

]

> 0, i = 1, ..., l (6.90)

[

X F̄i

∗ P̄i

]

> 0, i = 1, ..., l

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.91)

[

y2
i,max Cw

[

AiḠj+AjḠi+BiF̄j+Bj F̄i

2

]

∗
P̄i+P̄j

2

]

> 0,
i = 1, ..., l
j = i, ..., l
w = 1, ..., ny

(6.92)

where
Ḡ = γG, F̄i = γF̃i, P̄i = γPi, i = 1, ..., l

Proof. If the invariant set (4.52) is employed, then the dependencies on p(0)
in Theorem 6.10 have to be substituted with p,∀p ∈ Σl.
Because of the use of control laws (6.88), terms F (p)G(p) simplifies into

F (p)G(p) = F̃ (p)(G(p))−1G(p) = F̃ (p).

By substituting the latter into inequalities (6.84)-(6.87) a simple quadratic
dependence on the parameter vector results. Then, by simply applying Semi-
sum convexifications, (6.68)-(6.71) are obtained.

The second method we want to propose here is using control law (6.88), and
by imposing G1 = G2 = ... = Gl = G that implies G (p) = G. Such an
assumption allows us to use invariant set (4.49) in the following way

Lemma 6.15. Let the initial state x(0) be given and a scheduled control law
in the form (6.88) be chosen. Then, the control design method of Theorem
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6.13 can be relaxed into the following LMI optimization problem to be solved
by determining, if exist, square matrices P̄i ∈ ℜn×n, i = 1, ..., n, Ḡ ∈ ℜn×n, a
set of matrices F̄i ∈ ℜn×m, i = 1, ..., a square matrix X ∈ ℜm×m and a scalar
γ such that

min
γ, P̄i, Ḡ, F̄i, X

i = 1, ..., l

γ











P̄i+P̄j

2 ∗ ∗ ∗
AiḠ+AjḠ+BiF̄j+Bj F̄i

2 ḠT + Ḡ − P̄s ∗ ∗

R
1/2
x

Ḡ+Ḡ
2 0 γI ∗

R
1/2
u

F̄i+F̄j

2 0 0 γI











≥ 0,

i = 1, ..., l
j = i, ..., l,
s = 1, ..., l

P̄i > 0, i = 1, ..., l

(6.93)

[

1 x (0)
T

x (0) ḠT + Ḡ − P̄ (p(0))

]

> 0, i = 1, ..., l (6.94)

[

X F̄i

∗ P̄ (p(0))

]

> 0, i = 1, ..., l

X > 0, Xjj ≤ u2
j,max j = 1, ...,m

(6.95)

[

y2
i,max Cw

[

AiḠ+AjḠ+BiF̄j+Bj F̄i

2

]

∗ P̄ (p(0))

]

> 0,
i = 1, ..., l
j = i, ..., l
w = 1, ..., ny

(6.96)

where
Ḡ = γGi, F̄i = γF̃i, P̄i = γPi, i = 1, ..., l

Proof. By substituting control law (6.88) into (6.84)-(6.87) and by assuming,
G1 = G2 = ... = Gl = G, the following simplifications apply:

G(p(0)) = G

F (p)G(p) = F̃ (p)

F (p)G(p(0)) = F̃ (p)

then by simply resorting Semi-sum convexification, the statement is proved.

Example 6.16. In this Example we will compare four different approaches to
constrained stabilizabiliy proposed in this Chapter. Namely we will compare
the use of the LMI methods obtained in:

• Lemma 6.5 via Standard Quadratic Lyapunov Function,
• Lemma 6.9 via Parameter Varying Lyapunov Function,
• Lemma 6.11 via Nonstandard Lyapunov Function (6.57),
• Lemma 6.15 via Nonstandard Lyapunov Function (6.72).
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Hereafter, for the sake of simplicity, we will refer to the above methods by
means of the Lemmas in which they are defined.
The following two vertices LPV system is considered

x(k + 1) =

2
∑

i=1

pi(k)Aix(k) +

2
∑

i=1

pj(k)Bju(k)

where

A1 =

(

2 −0.1
0.5 1

)

, B1 =

(

1
−0.3β

)

,

A2 =

(

1 0.1
2.5 1

)

, B2 =

(

0.7
0.1

)

.

The input signal is constrained to be

|u(k)| < 1, k = 0, ...,∞

and weighting matrices Rx = I,Ru = 1 are introduced. In Figure 6.1 the
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x
1

x 2

Lemma 6.5
Lemma 6.9
Lemma 6.11
Lemma 6.15

Fig. 6.1. Attraction Regions

attraction regions, i.e. the sets of states for which a feasible solution exists,
are reported for the four methods under consideration. It results that the use
of more complex constrained stabilizability conditions enlarge the attraction
basin. Please note that Lemma 6.11 and Lemma 6.9 regions overlap. In fact,
even if both of them can be proved to be less conservative then Lemma 6.5,
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it is not possible to state a priori which of them provides larger attraction
regions. Lemma 6.15, instead, always outperform the other three approaches
here presented. In the following Table the value of the upper bound to the
cost γ∗ for each method, starting from an initial point x0 = [0.1 − 5]T , is
reported together with the number of LMI lines and scalar variables involved
into the optimization procedure.

Method γ∗ LMI Lines Variables

Lemma 6.5 300.3496 (lc(3n + m) + 2n + 1 + l(n + m)) n2 + lnm + 1
Lemma 6.9 287.3586 l(lc(3n + m) + 2n + 1 + l(n + m)) (l + 1)n2 + lnm + 1
Lemma 6.11 266.3646 l(lc(3n + m) + 2n + 1 + l(n + m)) ln2 + lnm + 1
Lemma 6.15 226.1538 l(lc(3n + m) + 2n + 1 + l(n + m)) (2l)n2 + lnm + 1

The above results show an evident improvement in terms of cost values. Such
an improvement is payed at the cost of a slightly increased computational
complexity. The improvements are evident also in Figure 6.2-6.4 where the
state components dynamics and the input signal are shown.
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6.2 Time-Varying Control Strategies

In Chapter 4, a specific formulation of the general constrained control problem
for time-varying control strategies of the form

u (k) = u (ξ (k)) =

{

uk (x (k, p(k))) k = 0, ..., N − 1
uN (x (k) , p (k)) k ≥ N

(6.97)

has been discussed. It was pointed out that constrained control problems can
be solved by ensuring that all states of the prediction set for the first N − 1
steps always satisfy the constraints and all possible state predictions at time
N belong to a (robust) positive invariant set E .

On the basis of the above arguments, two possible approaches can be
employed.

• When considering a frozen terminal control law, the input uN (x(k), p(k))
and its associate positive invariant set E are a-priori known and only the
first N moves of the control strategy have to be computed.

• If a free terminal control law is instead considered, the term uN (x(k), p(k)
is an additional variable which has to be determined along with uk(x(k), p(k)), k =
0, ..., N − 1.

By recalling the above prediction sets definitions and when a frozen ter-
minal control law approach is employed, a possible LPV constrained control
design problem recasting is:

Problem 6.17. Let a stabilizing terminal control laws uN (x (k) , p (k)) and
the associated positive invariant set E be given. Then, on the basis of the
actual information vector ξ (0), compute the first N moves of a time-varying
control strategy (6.97) so that

X̂ (k|0) ⊆ X, k = 1, ..., N − 1 (6.98)

Û (k|0) ⊆ U, k = 0, ..., N − 1 (6.99)

X̂ (N |0) ⊆ E (6.100)

are satisfied and a suitable upper-bound to

J (x (0) , u (·)) = max
p(k)

N−1
∑

k=0

‖x (k + 1)‖
2
Rx

+ ‖u (ξ (k))‖
2
Rx

(6.101)

is minimized.

A convenient way to address free terminal control law algorithms is by
resorting to previous Section results by means of the following reformulation
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Problem 6.18. Determine on the basis of the actual information vector ξ (0),
a time-varying control strategy in the form

u (k) = u (ξ (k)) =

{

uk (x (k) , p(k)) , k = 0, ..., N − 1
FN (p (k))x (k) , k ≥ N

and a Lyapunov function

V (ξ (k)) = x (k)
T

V (p (k))x (k) , k ≥ N

such that the following conditions are satisfied

• (6.98),(6.99),(6.100)
• (6.3),(6.4),(6.6),(6.7) if p (0) is substituted with ∀p̂ (k|0) ∈ P̂ (N |k)
• An upper-bound to (6.101) is minimized.

The terminal invariant set is given by

E =
{

x ∈ ℜn
∣

∣

∣
xT V (p̂ (N |0))x < γ,∀p̂ (N) ∈ P̂ (N |0)

}

. (6.102)

This approach differs from the frozen one only for the terminal control law
and the invariant set structure which need to be recomputed together with the
first N control actions at each instant. Because this feature can be obtained
by simply adapting Section 6.1 results, we will hereafter focus on the frozen
approach.

The remainder of the Section is organized as follows. First, some additional
general properties of the prediction sets are investigated. Then, some of the
strategies known in literature are selected and some novel strategies presented.
At the end of the Chapter we will discuss in detail how a frozen terminal
control law strategy can be converted into a free terminal control law.

6.3 Time-Varying Control– Prediction sets and convexity

Our goal is to obtain a strategy (6.97) such that (6.98),(6.99),(6.100) hold
true and a suitable upper-bound to (6.101) is minimized.

Let us focus on the three set inclusions. Conditions (6.98),(6.99),(6.100)
cannot be easily satisfied in general. However, under the following assump-
tions:

1. E ,X,U convex
2. X̂ (k|0) , Û (k|0) are polytopic sets

The above conditions can be rewritten as

xv ∈ X, ∀xv ∈ vert
{

ˆ̄X (k|0)
}

(6.103)

uv ∈ U, ∀uv ∈ vert
{

ˆ̄U (k|0)
}

(6.104)

xv ∈ E , ∀xv ∈ vert
{

ˆ̄X (k|0)
}

(6.105)
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To obtain polynomial in time computational machineries, it is necessary
that the above conditions are convex with respect to the control strategy
unknown coefficients to be computed. In order to guarantee such a property
it is sufficient to use control strategies having the feature that each vertex of
ˆ̄X (k|0) , ˆ̄U (k|0) depends linearly on the control strategy decision variables.

6.4 Time-Varying Control– One-step strategies

One of the first time-varying control strategy introduced characterized by a
single move on a single step (N = 1) horizon. Such an input term is assumed to
be a free vector, with no dependencies neither from the state nor the parameter
vector

u (k) = u (ξ (k)) =

{

u0, k = 0
u1 (p (k))x (k) , k ≥ 1

(6.106)

Moreover, the single move u0 ∈ ℜm is assumed to be the only decision variable
to be determined.

This kind of control strategy has been proposed for the first time in [49]
and it is strongly based on the so-called LPV hypothesis. In fact since ξ (0) is
known, the one-step ahead state prediction set is the singleton

X̂ (1|0) = {x̂ (1|0)}

and in particular such a singleton is a linear function of the decision variable
u0:

x̂ (1|0) =
l
∑

i=1

pi (k) Aix (0) + Biu
0.

Then, we can reformulate the constrained stabilization problem as the follow-
ing simple convex optimization problem

min
u

x̂ (1|0)
T

Rxx (1|0) + uT Rxu

x̂ (1|0) =
l
∑

i=1

pi (k) Aix (k) + Biu

−ui,max ≤ ui ≤ ui,max, i = 1, ...,m
−yi,max ≤ Cix̂ (1|0) ≤ yi,max, i = 1, ..., ny

x̂ (1|0) ∈ E

,

6.5 Time-Varying Control– N-step strategies

The one-step strategy has been partially extended in [47], [51] into a N -step
strategy by the use of
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u (k) = u (ξ (k)) =







(

l
∑

i=1

pi (k) F k
i x (k)

)

+ ck, k = 1, ..., N − 1

uN (x (k) , p (k)) k ≥ N
(6.107)

A further generalization is the strategy introduced in Section 5.2 where the
”free moves” terms ck are scheduled

u (k) = u (ξ (k)) =







(

l
∑

i=1

pi (k) F k
i x (k) + ck

i

)

, k = 1, ..., N − 1

uN (x (k) , p (k)) k ≥ N
(6.108)

The properties of the prediction sets related to this class of control strate-
gies have been widely shown in Chapter 5. In particular, it has been ob-
served that it is possible to obtain recursively the vertices x̂i1,...,ik−1

(k|0) and
ûi1,...,ik

(k|0) for both state and input (or their outer approximations) predic-
tion sets. Those vertices characterizations allow us to easily employ conditions
(6.103),(6.104),(6.105) to solve the control design problem. Let us focus now
on the cost function

J (x (0) , u (·)) = max
p(0),...,p(k+N−1)

N−1
∑

k=0

‖x (k + 1)‖
2
Rx

+ ‖u (ξ (k))‖
2
Rx

In [47], the following upper-bound has been determined

J (x (0) , u (·)) = max
p(0),...,p(k+N−1)

N−1
∑

k=0

‖x (k + 1)‖
2
Rx

+ ‖u (ξ (k))‖
2
Rx

≤

N−1
∑

k=0

max
p(k)

‖x (k + 1)‖
2
Rx

+ ‖u (ξ (k))‖
2
Rx

≤
N−1
∑

k=0

Jk

where
max
p(k)

‖x (k + 1)‖
2
Rx

+ ‖u (ξ (k))‖
2
Rx

≤ Jk

that finally becomes

‖x (k + 1|0)‖
2
Rx

+
∥

∥

∥u
(

ξ̂ (k|0)
)∥

∥

∥

2

Rx

≤ Jk, ∀ξ̂ (k|0) ∈ Î (k|0)

By applying iteratively Schur complements we can obtain the following LMIs







1 ∗ ∗

R
1/2
x x (k + 1|0) Jk 0

R
1/2
u u (k|0) 0 Jk






> 0, ∀p (k)

An upper-bound to the minimization of (6.101) becomes then the following
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min

N−1
∑

k=0

Jk







1 ∗ ∗

R
1/2
x x̂i1,...,lk (k + 1|0) Jk 0

R
1/2
u ûi1,...,lk (k|0) 0 Jk






> 0, (6.109)

i1 = 1, ..., l1, ...., ik = 1, ..., lk

Here we propose an alternative cost reformulation which can be proved to be
less conservative. Let us consider

J (x (0) , u (·)) = max
p(0),...,p(N−1)

N−1
∑

k=0

‖x (k + 1)‖
2
Rx

+ ‖u (ξ (k))‖
2
Rx

it is enough to consider the following inequality

N−1
∑

k=0

‖x (k + 1)‖
2
Rx

+ ‖u (ξ (k))‖
2
Rx

< J,

for all possible parameter sequences (p(0), ..., p(N − 1)) By applying recur-
sively Schur complements the above conditions become



















1 ∗ ... ∗ ∗ ∗

R
1/2
x x (1) J 0 ... ∗ ∗

R
1/2
u u (0) 0 J 0 ... ∗

... ... ... ... ... ...

R
1/2
x x (N) 0 ... 0 J ∗

R
1/2
u u (N − 1) 0 0 ... 0 J



















> 0,

On the basis of discussions reported in Chapter 5, we can prove that for
each feasible parameter sequence (p (0) , ..., p (N − 1)), there exists a certain
sequence of parameters (θ (p (0)) , ..., θ (p(N − 1))) such that

x (k) =

l1
∑

i1=1

....

lk−1
∑

ik−1

θi1(p(0))....θik−1
(p(k − 1))x̂i1,...,ik−1

(k|0), k = 1, ..., N

u (k) =

l1
∑

i1=1

....

lk
∑

ik−1

θi1(p(0))....θik
(p(k))ûi1,...,ik

(k|0), k = 0, ..., N − 1

Then, an upper-bound to the minimization of (6.101) can be obtained as
follows
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min J




























1 ∗ ... ∗ ∗ ∗ ∗ ∗

R
1/2
x x̂ (1|0) J ... ∗ ∗ ∗ ∗ ∗

R
1/2
u û (0|0) 0 J ... ∗ ∗ ∗ ∗

R
1/2
x x̂i1 (2|0) 0 0 J ... ∗ ∗ ∗

R
1/2
u ûi1 (1|0) 0 0 0 J ... ∗ ∗

... ... ... ... ... ... ... ...

R
1/2
x x̂i1,...,iN−1

(N |0) 0 0 ... 0 0 J ∗

R
1/2
u ûi1,...,iN−1

(N − 1|0) 0 0 0 ... 0 0 J





























> 0,

i1 = 1, ..., l1, i2 = 1, ..., l2, ...iN−1 = 1, ..., lN−1

(6.110)

On the basis of the above discussions, we are able to write conditions
(6.98),(6.99), (6.100), (6.101) as convex functions of the state predictions set
vertices.

As already pointed out, the latter derivations are not a sufficient to ar-
rive to a convex optimization problem instrumental to the design of a control
strategy. In particular, it is worth noticing that, if we consider a control strat-
egy in the form (6.107) with variables uk

i , F k
i , i = 1, ..., l, k = 0, ..., N − 1 to

be determined, then the overall convex optimization procedure is not convex.
This is easily shown by considering even the simple case l = 1

x (k + 1|k) =
(

A + BF 0
)

x (k)

x (k + 2|k) =
(

A + BF 1
)

x (k + 1|k) + c1 = (6.111)

=
(

A + BF 1
) [(

A + BF 0
)

x (k) + Bc0
]

+ Bc1

where we can see that F 1 multiplies terms containing F 0 and c0.
The above simple example suggests that if matrices F 0, ..., FN−1 are a

priori known instead and c0, ..., cN−1 are the only optimization variables, the
dependence of x̂ (k|0) on the optimization variables is linear. Because all de-
scriptions of the prediction vertices are always in a form similar to (6.111),
we can conclude:

Theorem 6.19. Let a the terminal law uN (x (k) , p (k)) and the associate
positive invariant set E be given such that the constraints are satisfied. If a
control strategy of the form (6.107) is employed such that

• F 1
i , ..., FN−1

i , i = 1, ..., l are a priori fixed;
• c1

i , ..., c
N−1
i , i = 1, ..., l are the unknown variables to be determined;

then a solution of the LPV constrained design problem can be found by deriving
(if there exist) vectors c1

i , ..., c
N−1
i , i = 1, ..., l that are solutions of the following

convex optimization problem

min
J, ck

i ,

i = 1, ..., l

k = 0, ..., N − 1

J

subject to (6.103),(6.104),(6.105),(6.110)
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6.6 Time-Varying Control– Prediction Set based control
strategies

Following the same lines of the previous Section, it is possible to use predic-
tion set based control strategies to solve the constrained LPV control design
problem. In this case the solution is even simpler, because not only the predic-
tion sets are known but also the control strategy itself is computed by means
of the convex combinations of the input prediction set vertices.

Namely, when a nonscheduled prediction set based control strategy is em-
ployed, the vertices of X̂(k|0), x̂i1,...,ik−1

(k|0), depends linearly on the vertices

of Û(k|0), ûi1,...,ik−1
which are also the parameters to be chosen to characterize

the strategy. Then, if the vertices ûi1,...,ik−1
are the variables to be determined,

both the state and prediction vertices depend linearly on it.
On the contrary, when a scheduled prediction set based control strategy

is used, the vertices of X̂(k|0) and Û(k|0) are derived by means of a linear
relationship with the parameters vectors defining the strategy ˆ̄ui1,...,ik−1

∈
ℜml.

The following result can then be stated:

Theorem 6.20. Let a terminal control law uN (x (k) , p (k)) and the associate
positive invariant set E be given. If a control strategy

u (k) = u (ξ (k)) =

{

ups (ξ (k)) , k = 1, ..., N − 1
uN (x (k) , p (k)) k ≥ N

(6.112)

is employed such that ups (ξ (k)) , k = 1, ..., N−1 is a prediction set dependent
control strategy, then the variables to be determined are

• Nonscheduled Case

ûi1,...,ik−1
(k|0), i1 = 1, ..., l1, ..., ik−1 = 1, ...lk. , k = 0, ..., N − 1

• Scheduled Case

ˆ̄ui1,...,ik
, i1 = 1, ..., l1, ..., ik = 1, ...lk. , k = 0, ..., N − 1

and the constrained LPV control design problem can be solved by means of the
following convex optimization problem

min
ck
i ,

i = 1, ..., l

k = 0, ..., N − 1

J

subject to (6.103),(6.104),(6.105),(6.110)

Example 6.21. In this Example we will compare strategies in the form (6.107)
and (6.108) obtained by means of Theorem 6.19 with (scheduled) prediction
set based control strategies (6.112) computed by means of Theorem 6.20.
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The analysis of non-scheduled prediction set based control strategies will be
avoided because (at least in the LPV framework) it does not lead to interesting
results. The following LPV system is introduced:

x(k + 1) =

2
∑

i=1

pi(k)Aix(k) +

2
∑

i=1

pj(k)Bju(k)

where

A1 =

(

1 0.1
0.5 1

)

, B1 =

(

1
0β

)

,

A2 =

(

1 0.1
2.5 1

)

, B2 =

(

1
0

)

.

The input signal is constrained to be

|u(k)| < 1, k = 0, ...,∞

and moreover weighting matrices Rx = I,Ru = 1 are chosen. In Figure 6.5 the
attraction basins of the various methods under considerations are depicted by
assuming that the couple terminal set/terminal control law is

E =

{

x ∈ ℜ2 : xT

(

0.3153 0.0516
0.0516 0.0146

)

x < 1

}

,

u(ξ(k)) = p1(k)[−0.2586 − 0.1118]x(k) + p2(k)[−0.5228 − 0.1142]x(k).

The parameter vector at time k = 0 is assumed to be p(0) = [1 0]T . Note that,
if the prediction is performed over an N = 1 horizon, all the proposed methods
are equivalent to the computation of strategy (6.106) proposed in [49]. For
a prediction horizon N = 2, instead, the strategy (6.107) proposed by [51]
performs worse then both its modification with ”scheduled free moves” (6.108)
and the prediction sets based control strategy (6.112). Note that the last two
strategies have the same attraction region because, for N = 2, the associated
optimization procedures coincide. (6.112) performs better then (6.108) for
N > 2.
In order to ease the Figure comprehension the case with N = 3 has been
omitted (lines were too near to other attraction regions).
It is important to remark that the attraction basins strongly depend on the
chosen terminal region. If we consider a couple u(ξ), E with a smaller invariant
set:

E =

{

x ∈ ℜn : xT

(

198.79 73.70
73.70 53.65

)

x < 1

}

,

u(ξ(k)) = p1(k)[−1.1647 − 0.4609]x(k) + p2(k)[−1.8574 − 0.4583]x(k).

then, as depicted in Figure 6.6, the attraction regions evidently decrease. To
conclude the analysis let us consider, for a control horizon N = 4 the dynamic
behaviors of the above seen strategies for an initial state x(0) = [−1 1]T
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andweighting matrices Rx = I and Ru = 0.1.. In the next Table the obtained
optimal upper bounds to the cost J∗ are compared together with the number
of scalar variables involved in the computation

Method J∗ Variables

Strategy (6.107) 0.6602
N−1
∑

i=0

(nlic)+ Nm

Strategy (6.108) 0.6465
N−1
∑

i=0

(nlic)+ lNm

Strategy (6.112) 0.6459
N−1
∑

i=0

(nlic)+
N−2
∑

i=0

(mllic) + m + 1)

The number of LMI lines involved in the computation, instead, is the same
for any of the presented approaches and is equal to

♯LMI lines =

N−1
∑

i=0

(lic(m+2ny))+

N−2
∑

i=0

(mllic) + m + lNc (n + 1).

It is possible to note that the use of more complex prediction strategy (6.112)
is paid only in terms of a bigger number of variables. Anyway, because of the
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Fig. 6.6. Attraction Regions with a Smaller Terminal Set

dimension of the overall problem, those extra variables do not seem to affect
in a perceptible way the computational burdens. Figures 6.7-6.9 depict the
state evolution and the input signals.
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6.7 Free Terminal Control Law approaches

Before closing the discussion about the role of time-varying control strategies
for constrained control design problems, it is mandatory to briefly investigate
how the above technicalities can be converted into a free terminal control
strategies. It has been already explained that we focus on exploiting Section
6.1 results for N-step control horizons and that the main difference is in the
invariant set definition. A possible way to adapt the above results to the cases
of interest here is by means of invariant sets of the form
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E =
{

x ∈ ℜn
∣

∣

∣xT V (p̂ (N |0))x < γ,∀p̂ (N |0) ∈ P̂ (N |0)
}

Even if tricky conditions could be obtained because of such a structure set, an
easier solution can be found by considering, as an alternative, the following
set

E =
{

x ∈ ℜn
∣

∣xT V (p̂ (N |0))x < γ,∀p̂ (N |0) ∈ Σl

}

.

where the dependencies on p(N |0) disappear.

Chapter summary

In this Chapter several methods to solve the constrained LPV control design
problem have been shown. Four classes of methods for designing time-invariant
control laws have been shown: while the first two strategies are well known in
literature, the remaining seem to be new and are here proposed for the first
time.

The use of time-varying control strategies has been also discussed. Time-
varying control strategies with frozen terminal laws have been discussed: the
well known one-step approach and its generalization have been explained and
minor improvements proposed. Then, prediction set dependent control laws
for LPV systems have been proposed here for the first time. Finally, some
hints on the technicalities to adapt the frozen-terminal-law control strategies
into free-terminal-law ones have been given.





7

Model Predictive Control

Model Predictive Control (MPC), a.k.a. Receding Horizon Control (RHC) is
a class of control algorithms widely applied in industry which has gained in
popularity as an effective and efficient solution to deal with the control of
plants subject to constraints. A huge technical literature on this a topic has
been developed from the ‘70s until nowadays (see [24], [52], [53],[54]...).

It is important to point out that the with the acronym MPC one does not
designate a specific control method but rather an entire class of control al-
gorithms. The common denominator of such a family of control strategies
consists in an explicit use of the plant model to compute, at each time in-
stant, the control signal that minimizes a predefined objective function.

More precisely, MPC philosophy consists in computing, on the basis of ac-
tual state plant measurements, the “best” set of control moves such that plant
forecasts fulfil specific performance and/or constraints requirements. The ob-
tained control strategy is applied to the system until new plant measurements
are available and then a new set of virtual input moves is computed. A graph-
ical representation of the receding horizon ideas is depicted in Figure 7.1 and
7.2.

From the previous considerations it is clear that MPC has a strict algorithmic
essence and it is then natural to deal with it in a discrete time plant model
framework. A possible synthetic description of MPC could then be formalized
as

1. Generate, on the basis of the actual plant information, a virtual control
strategy u (k + τ |k) , τ = 0, ..., N − 1 such that plant predicted behavior
satisfies performance and/or constraints prescriptions;

2. Apply the first computed control move u (k) = u (k|k)
3. k = k + 1, goto 1
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Fig. 7.1. Receding Horizon Philosophy - Actual time k.

where u (k + τ |k) , τ = 0, ..., N − 1 denotes the control strategy computed
at time k and N is the control horizon length which can be either finite or
(implicitly) infinite.

On the basis the above description, it is important to understand that the
availability of an admissible virtual input sequence at a certain time does not
imply that a RHC algorithm is able to fulfil the required prescriptions for
each time instant. Three key points must be taken into consideration when
designing a RHC strategy:

• (feasibility) Existence at time k of an optimal virtual control strategy in
general does not imply the existence of an admissible control strategy at
future time instants;

• (stability) Even if the model predictions converge to the desired set point
the plant, under the action of an MPC control strategy, could become
unstable;

• (computability) The computing machinery used to generate the virtual
input strategy could be not able to perform the requested task within the
system sampling time.

For the above reasons the issues of (feasibility), (stability) and (computability)
must be taken into consideration when designing an MPC algorithm.
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On the basis of the above discussions, each control algorithm proposed
in the previous chapter could not be adapted in a RHC fashion. In the next
Sections we will give an overview of the methods which fit within such a
framework.

7.1 Time-Invariant Control Laws

In the first part of Chapter 6 several ways to obtain a time-invariant control
strategy able to solve the constrained stabilization problem have been dis-
cussed. All the approaches are based on the idea of build-up a control law and
a set of initial states such that the regulated plant trajectory does not violate
the prescribed constraints.

All those approaches can be easily adapted into a Receding Horizon algo-
rithm by simply computing, at each time instant k and on the basis of the
information vector ξ(k), a new control law by solving the associated optimiza-
tion problem. As seen, in order to obtain a workable strategy, feasibility and
stability must be properly addressed. We need to prove in fact that, if the
strategy has solution at time k, it will also have solution to time k + 1 and,
moreover, the closed loop system is stable.
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Then, for any possible approach, a feasibility and stability proof should be
given. To avoid tedious and repetitive technicalities we can give the following
result which is valid for several of the control strategies proposed in Chapter
6:

Theorem 7.1. Consider the optimization based control strategies described in
Lemma 6.5, Lemma 6.9, Lemma 6.11, Lemma 6.14.
Then, in a receding horizon scheme, if a solution at a generic time instant k
is available, an admissible solution exists at each future time instants and the
resulting MPC control input strategy yields an asymptotically stable closed-
loop system.

Proof. The proof is divided in two parts.
1. feasibility
Feasibility can be demonstrated by proving that the optimal solution at time
k is still admissible at the next time instant k +1. Note that the optimization
problems at time k and at time k + 1 differ in the LMIs (6.21),(6.54),(6.69)
and (6.90), respectively.
By using Schur complements, LMIs (6.21),(6.54),(6.69) are equivalent to

x(k)V (p|k)x(k) < γ,∀p ∈ Σl

where by V (·|k) the Lyapunov function ”inner matrix” computed at time k is
defined. Since this Lyapunov function is coupled with the stabilizing control
law applied at time k, it follows that

x(k + 1)V (p+|k)x(k + 1) < x(k)V (p|k)x(k) < γ,∀p ∈ Σl,∀p+ ∈ Σl.

then the solution found at time k, is still feasible at time k + 1. Similar
arguments can be used for (6.69) by noticing that equation (6.89) is a sufficient
condition to prove that

x(t + 1)
[

GT (p+) + G(p+) − P (p+)
]−1

x(t + 1) <
< x(t)

[

G−T (p)P (p)G−1(p)
]

x(t + 1) ≤

≤ x(t)
[

GT (p) + G(p) − P (p)
]−1

x(t) < γ

2. stability
It is sufficient to prove that

0 < x(k + 1)V (p(k + 1)|k + 1)x(k + 1) ≤ x(k + 1)V (p(k + 1)|k)x(k + 1) <
< x(k)V (p(k)|k)x(k) < γ, ∀p(k) ∈ Σl,∀p(k + 1) ∈ Σl,∀x(k) 6= 0

By construction, moreover we have

x(k + 1)V (p(k + 1)|k + 1)x(k + 1) − x(k)V (p(k)|k)x(k) ≤
≤ x(k + 1)V (p(k + 1)|k)x(k + 1) − x(k)V (p(k)|k)x(k) ≤
≤ −||x(k)||2Rx

− ||u(k)||2Ru
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If we sum for k = 0, 1, . . . ,∞ the previous inequality we obtain:

x(∞)V (p(∞)|∞)x(∞) − x(0)V (p(0)|k)x(0) ≤ −

[

∞
∑

k=1

||x(k)||2Rx
+ ||u(k)||2Ru

]

Therefore, because the sequence {x(k)V (p(k)|k)x(k)}
∞
k=0 is monotonically de-

creasing, the latter means

∞≥x(0)V(p(0)|k)x(0)−x(∞)V (p(∞)|∞)x(∞) ≥

[

∞
∑

k=1

||x(k)||2Rx
+ ||u(k)||2Ru

]

.

Because Rx > 0, Ru > 0, this implies

lim
k→∞

x(k) = 0,

lim
k→∞

u(k) = 0.

Remark 7.2. Note that the above result can be easily extended to all the dif-
ferent optimization-based constrained stabilization synthesis methods which
can be obtained from Lemmas 6.5, 6.9, 6.11 and 6.14 by using different con-
vexification methods (see Appendix A).

Remark 7.3. It is worth to remark that the above Theorem is not valid when
Lemma 6.8 and Lemma 6.14 are exploited into a Receding Horizon algorithm.
This is due to the dependence of p(k) which renders more difficult the proof.
Work is in progress on this kind of control strategies: it seems that feasibil-
ity and stability can still be proved by means of contraction and invariance
arguments but a formal proof has not (yet) been provided.

Example 7.4. Here we will show the behavior of the MPC algorithms obtained
by arranging Lemmas 6.5, Lemma 6.9, Lemma 6.11 and Lemma 6.14 results
into a Receding Horizon Scheme. Consider the system setting described in
Example 6.16. The attraction regions will remain the same shown in Figure
6.1. State trajectories and input signals are depicted in Figures 7.3-7.5 by
assuming an initial state x(0) = [0.6, 2]T . It is possible to note that the strat-
egy obtained by exploiting Lemma 6.15 performs better then the other three
approaches, and that, in this particular case, the strategy using Lemma 6.9
conditions performs better then the one based on 6.11. For different initial
conditions the contrary may happens. To better display the different MPC
algorithms performance, the upper bound on the cost γ∗ computed at each
time step is reported in Figure 7.6.

7.2 Time Varying Strategies - Frozen Approach

In Sections (6.4)-(6.6) three ”frozen” optimization based methods to com-
pute a time-varying control strategy able to solve the constrained stabilization
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problem for LPV system have been described. Those methods can be easily
adapted into an MPC algorithm. However, in order to ensure feasibility and
stability, some minor technical expedients have to be employed.

The main “sophistication” we need to build an effective Receding Horizon
strategy is concerned with some terminal law/prediction convexification re-
strictions and with the cost definition.
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The terminal law aspect is treated by restricting our attention to the
following control law

u (k) =

(

l
∑

i=1

pi (k)

)

x (k)

obtained by means of one of the methods described in the first part of Chapter
6 and such that the Lyapunov function used to compute it
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V (ξ (k)) = xT (k) V (p) x (k) = xT (k)

(

l
∑

i=1

pi (k)Pi

)

x (k)

is assumed to be known. Moreover, for reasons will be later clarified, it is
necessary to assume that the convexification procedure used to compute the
control law is the same used to build the state prediction set. For instance, if
we use Lemma 6.5 or Lemma 6.9 to compute the control law then the half-sum
convexification procedure needs to be used for the state prediction set.

The second “sophistication” we introduce is related to the performance
cost because it has to be carefully managed in order to guarantee stability.
Several different choices are possible and we present here a particular cost
function that can also be adapted in the free terminal law approach. The
main idea is that if we consider the cost function from N onwards, thanking
to the Chapter 6 results, we can state that

J (x (N) , u (·)) = maxp(·)

∞
∑

k=N

‖x (k)‖
2
Rx

+ ‖u (ξ (k))‖
2
Ru

≤

≤ xT (N) V (p (N))x (N) ≤ xT (N) V (p) x (N) ,∀p ∈ Σ.
(7.1)

where V (p) is a Lyapunov function used to compute the terminal law. The
previous inequality allows to define the following upper-bound to the whole
cost

J (x (0) , u (·)) = maxp(·)

∞
∑

k=0

‖x (k)‖
2
Rx

+ ‖u (ξ (k))‖
2
Ru

≤

≤ maxp(0),...,p(N−1)

[(

N−1
∑

k=0

‖x (k)‖
2
Rx

+‖u (ξ (k))‖
2
Ru

)

+xT (N) V (p) x (N)

]

,

∀p ∈ Σ.

By following the same procedures used to obtain (6.110) we can then obtain
the following

min J

J ≤ γi1,...,iN
+ Ji1,...,iN−1 (7.2)

x̂T
i1,...,iN−1

(N)



H̄iN





P1

...
Pl







 x̂i1,...,iN−1
(N) ≤ γi1,...,iN

i1 = 1, ..., lc,1, ...., iN = 1, ..., lc

(7.3)
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



























1 ∗ ... ∗ ∗ ∗ ∗ ∗

R
1/2
x x (0) Ji1,...,iN−1

... ∗ ∗ ∗ ∗ ∗

R
1/2
u û (0|0) 0 Ji1,...,iN−1

... ∗ ∗ ∗ ∗

R
1/2
x x̂ (1|0) 0 ... ... ∗ ∗ ∗ ∗

R
1/2
u ûi1 (1|0) 0 ... ... ... ∗ ∗ ∗

... ... ... ... ... ... ... ...

R
1/2
x x̂i1,...,iN−2

(N−1|0) 0 0 ... 0 0 Ji1,...,iN−1
∗

R
1/2
x ûi1,...,iN−1

(N−1|0) 0 0 0 ... 0 0 Ji1,...,iN−1





























≥0

i1 = 1, ..., lc,1, ...., iN−1 = 1, ..., lc,N−1.
(7.4)

where, by resorting to Section 2.2.4 notation, H̄i is a mapping matrix in the
form

H̄i = [In×n, ..., In×n] (πi ⊗ In×n) , i = 1, ..., lc.

Remark 7.5. Note that equation (7.3) is equivalent to

xT (k) V (p) x (k) ≤ γ,∀p.

The use H̄iN
it is just a trick to use the chorded index iN

By means of the previous assumption, the following result can be stated

Theorem 7.6. Let a terminal law

uN (x (k) , p (k)) =

(

l
∑

i=1

pi (k) FN
i

)

x (k) (7.5)

and the associated positive invariant set E be given. Moreover let assume
that (7.5) is computed by means of one of the Chapter 6 methods and that
(7.1) applies. If the same convexification used to compute uN (x (k) , p (k)) is
exploited to obtain state prediction sets and if the cost (7.2)-(7.4) is used
in place of (6.110), then feasibility and stability properties are guaranteed
if the optimization based procedure described in Theorem 6.19 (by imposing
FN

i = F k
i , i = 1, ..., l, k = 0, ..., N − 1) or in Theorem 6.20 is rephrased within

a receding horizon scheme.

Proof. The proof is divided in feasibility and stability proofs.

1. Feasibility
To prove feasibility it is sufficient to prove that the strategy computed at time
k is still feasible at time k + 1.

In the case a strategy in form (6.107) is used, suppose the strategy computed
at time 0 is

u (ξ (k) |0) =















l
∑

i=1

(

pi (k) FN
i x (k) + c

k|0
i

)

k = 0, ..., N − 1

l
∑

i=1

(

pi (k) FN
i

)

x (k) , k ≥ N
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where the notation c
k|0
i describes the “free move” applied in k, computed at

time 0. It is enough to note that the following strategy

u (ξ (k) |1) =















l
∑

i=1

(

pi (k) FN
i x (k) + c

k|1
i

)

k = 1, ..., N

l
∑

i=1

(

pi (k) FN
i

)

x (k) , k ≥ N + 1

where
c
k|1
i = c

k|0
i , k = 1, ..., N − 1

c
N |1
i = 0

is a feasible (tough not optimal) solution to the optimization problem.

When a state prediction set based control strategy is adopted, let suppose
to have a control strategy computed at time 0

u (ξ (k) |0) =







ups (ξ (k) |0) , k = 0, ..., N − 1

uN (x (k) , p (k)) =
l
∑

i=1

(

pi (k) FN
i

)

x (k) , k ≥ N

such that its input prediction set is

Ûu(ξ(k)|0) (k|0) , k = 0, ..., N − 1.

Moreover let us compute, on the basis of the terminal control law, the pre-
diction set Uu(ξ(k)|0) (N |0) . By exploiting Lemma 5.6, Ûu(ξ(k)|0) (k|1) , k =
1, ..., N can be also derived. By simply using prediction set based control strat-
egy properties and by exploiting the structure of the terminal law we are then
able formulate a feasible control strategy

u (ξ (k) |1) =







ups (ξ (k) |1) , k = 1, ..., N

uN (x (k) , p (k)) =
l
∑

i=1

(

pi (k) FN
i

)

x (k) , k ≥ N + 1

such that
Ûu(ξ(k)|1) (k|1) = Ûu(ξ(k)|0) (k|1) , k = 1, ..., N.

Finally note that such a kind of strategy is equivalent to

u (ξ (k) |1) =







ups (ξ (k) |0) , k = 1, ..., N − 1

uN (x (k) , p (k)) =
l
∑

i=1

(

pi (k) FN
i

)

x (k) , k ≥ N

2. Stability
The stability proof is common to the two approaches. Let us consider the
optimal sequence computed at time 0. The optimal cost will be
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J∗ (0) = max
i1,...,iN

Wi1,...,in
(0)

where
Wi1,...,iN

(0) = Ji1,...,iN−1
(0) + γi1,...,iN

(0) =

=

[

N
∑

i=0

∥

∥x̂i1,...,ik−1
(k|0)

∥

∥

2

Rx
+
∥

∥ûi1,...,ik−1
(k|0)

∥

∥

2

Ru

]

+

+x̂i1,...,iN−1
(N)

T



H̄iN





P1

...
Pl







 x̂i1,...,iN−1
(N |0) =

=

[

N
∑

i=1

∥

∥x̂i1,...,ik−1
(k|0)

∥

∥

2

Rx
+
∥

∥ûi1,...,ik−1
(k|0)

∥

∥

2

Ru

]

+

‖x (0)‖
2
Rx

+ ‖u (0)‖
2
Ru

+
∥

∥x̂i1,...,iN−1
(N |0)

∥

∥

2
»

H̄iN

»

P1
...

Pl

––

Let us use one of the feasible (though non optimal) input strategies seen above
and let us define J (1|0) as the prediction of J (1) obtained by means of the
information available at time 0. It can be computed as follows

J (1|0) = max
i1,...,iN+1

Wi1,...,iN+1
(1|0)

where

Wi1,...iN+1
(1|0) =

[

N+1
∑

i=1

∥

∥x̂i1,...,ik−1
(k|0)

∥

∥

2

Rx
+
∥

∥ûi1,...,ik−1
(k|0)

∥

∥

2

Ru

]

+

+ ‖x̂i1,...,iN
(N + 1|0)‖

2
»

H̄iN+1

»

P1
...

Pl

–– =

=

[

N
∑

i=1

∥

∥x̂i1,...,ik−1
(k|0)

∥

∥

2

Rx
+
∥

∥ui1,...,ik−1
(k|0)

∥

∥

2

Ru

]

+
∥

∥x̂i1,...,iN−1
(N)

∥

∥

2

Rx
+

+

∥

∥

∥

∥

∥

∥

M̄iN





F1

...
Fl



 x̂i1,...,iN−1
(N |0)

∥

∥

∥

∥

∥

∥

2

Ru

+ ‖x̂i1,...,iN
(N + 1|0)‖

2
»

H̄iN+1

»

P1
...

Pl

––

where M̄iN
is the one introduced in (5.29).

By construction and due to the same convexification procedure used both the
prediction set and the control law computation, (see Appendix C for details)
we have that, for any i1 = 1, ..., lc,1, ..., iN−1 = 1, ..., lc,N−1, iN = 1, ..., lc,N

‖̂xi1,...,iN
(N+ 1|0)‖

2
»

H̄iN+1

»

P1
...

Pl

–– ≤

∥

∥x̂i1,...,iN−1
(N |0)

∥

∥

2
»

H̄iN

»

P1
...

Pl

––−
∥

∥x̂i1,...,iN−1
(N |0)

∥

∥

2

Rx
−

∥

∥

∥

∥

∥

∥

M̄iN





F1

...
Fl



x̂i1,...,iN−1
(N |0)

∥

∥

∥

∥

∥

∥

2

Ru

(7.6)
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Then we can write

Wi1,...iN+1
(1|0) − Wi1,...iN

(0) ≤

≤
∥

∥x̂i1,...,iN−1
(N |0)

∥

∥

2

Rx
+

∥

∥

∥

∥

∥

∥

M̄iN





F1

...
Fl



 x̂i1,...,iN−1
(N |0)

∥

∥

∥

∥

∥

∥

2

Ru

+

+ ‖x̂i1,...,iN
(N+1|0)‖

2
»

H̄iN+1

»

P1
...

Pl

–– − ‖u (0)‖
2
Rx

− ‖x (0)‖
2
Rx

−
∥

∥x̂i1,...,iN−1
(N |0)

∥

∥

2
»

H̄iN

»

P1
...

Pl

–– ≤ −‖u (0)‖
2
Ru

− ‖x (0)‖
2
Rx

(7.7)

The following inequalities result to be true for each index occurrence

Wi1,...iN+1
(1|0) < Wi1,...iN

(0)

that implies

J∗(1)≤J (1)≤J(1|0)≤ max
i1,...,iN+1

Wi1,...iN+1
(1|0)< max

i1,...,iN+1

Wi1,...iN+1
(0)=J∗(0)

(7.8)
Combining (7.8) and (7.7)it follows that

J∗(k + 1) − J∗(k) ≤ −‖u (k)‖
2
Ru

− ‖x (k)‖
2
Rx

, k = 0, 1, ... (7.9)

Thanking to the non-increasing monotonicity property of the sequence {J∗(k)}∞k
and to the finiteness of J∗(0), obtained by construction, we have that

lim
k→∞

J∗(k) < ∞

Then, if we sum (7.9) for k = 0, ...,∞ we obtain

∞
∑

k=0

‖u (k)‖
2
Ru

+ ‖x (k)‖
2
Rx

< J∗(0) − J∗(∞) < ∞. (7.10)

Because Rx > 0 and Ru > 0, the latter implies

lim
k→∞

x(k) = 0

lim
k→∞

u(k) = 0
(7.11)

Example 7.7. Here we want to show the dynamical behavior of the algorithms
obtained by arranging Section 6.2 synthesis machineries into an MPC scheme
by means of Theorem 7.6. The same system setting shown in Example 6.21 is
assumed with an initial parameter value p(0) = [1 0]T and a control horizon
N = 4. In Figures 7.7-7.9 state trajectories and input signals are shown for an
initial state x(0) = [−1 1]T . Finally, In order to highlight the improvements
arising with the use of control strategies (6.108) and (6.112), the optimal
on-line upper bound on the cost J∗ is depicted in Figures 7.10-7.11.
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7.3 Time Varying Strategies - Free Terminal Law
Approach

The same results seen in the previous Section, can be easily extended in the
case of model predictive control algorithm that exploits constrained control
methods with free terminal law.

More precisely, in the case of state prediction set based control strategy,
under the same assumptions, feasibility and stability can be proved straight-
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forwardly by means of Theorem 7.6.

When a control strategy having the form (6.107) is taken instead into
consideration, the only difference is related to the feedback matrices F k

i , i =
1, ..., l, k = 0, ..., N − 1. In fact, in this case, the gain FN

i has to be derived
online and it cannot be used in place of F k

i , i = 1, ..., l, k = 0, ..., N − 1. A
possible choice to overcome this problem is to modify (6.107). Let us denote by

F
(N |k)
i , i = 1, ..., l the terminal law feedback matrix obtained at time instant

k. We can define the control strategy to be computed at time k as follows
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u(ξ(k+τ)|k)=















l
∑

i=1

(

pi (k + τ) F
(N |k+τ−N)
i x (k) + c

(k+τ |k)
i

)

, τ = 0, ..., N − 1

l
∑

i=1

(

pi (k + τ) F
(N |k)
i

)

x (k) , τ ≥ N

where F
(N |k)
i , i = 1, ..., l and c

(k+τ |k)
i , τ = 0, ..., N − 1, i = 1, ..., l are the

variables to be determined. By means of this change and under the same
assumptions seen in the previous Section, feasibility and stability follow from
Theorem (7.6).

Remark 7.8. Note that, at time k = 0, the gain matrices

F
(N |−N)
i , F

(N |−N+1)
i , ..., F

(N−1|−1)
i , i = 1, ..., l.

do not exist. A possible way to initialize the strategy is by choosing an arbi-
trary set of stabilizing feedback matrices.

Chapter Summary

In this chapter we introduced Model Predictive Control as a general control
scheme in which the various methods seen in the previous Chapter can be
adapted. Anyway, not all of them yield to control algorithms ensuring fea-
sibility and stability. Feasibility and Stability have been proved for many of
the seen approaches and slight changes needed to ensure satisfaction of such
structural properties have been pointed out.





8

Fast MPC algorithms for LPV Plants

A well known drawback of constrained MPC schemes is their lack of effective-
ness in terms of computational burdens. The MPC algorithms proposed in
the previous Chapter require a semidefinite optimization problem with a sig-
nificant numbers of variables/constraints to be solved. As an example, when
a time-invariant control law is considered, the number of LMIs grows at least
quadratically with the number of plant representation vertices. Furthermore,
time-varying control paradigms give rise to problem dimensions which are
exponential in the prediction horizon length.

For such a reason the evaluation of the on-line parts of traditional MPC
schemes can become computationally prohibitive in many practical situations.
Most of current research on MPC is devoted to reduce such a high computa-
tional burden while still ensuring the same level of control performance of the
traditional schemes. Many new algorithms have been introduced for uncertain
polytopic systems including, exact [55, 56, 57] and approximate [?] explicit
MPC schemes, efficient implementations of MPC via off-line computation of
ellipsoidal [58], [59], [60], [61] and polytopic [62], [63], [64] approximations of
exact controllable and viable sets.
By focusing on ellipsoidal schemes, in [60] a bank of nested ellipsoids and cor-
responding state-feedback gains with increasingly larger performance is com-
puted from the outset. On line, the smallest ellipsoid containing the currently
measured state is determined at each time instant and the corresponding
state-feedback gain put into the loop.
In [61] the same idea of pre-computing off-line a family of ellipsoidal sets (not
necessarily nested) is adopted by exploiting the viability arguments of [?] and
following a dynamic programming approach consisting of alternating min and
max optimization steps. They represent inner ellipsoidal approximations of
the viable controllable polyhedral sets, achieved with lighter computational
burdens at the expenses of a possibly reduction of the size of robustly con-
trollable regions and performance.
The goal of this Chapter is to propose two fast-MPC algorithms obtained by
adapting the above two schemes to the LPV framework.
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8.1 Invariant Sets Based Fast-MPC Algorithm

Here we present a fast-MPC scheme based on the positive invariant set asso-
ciated with the computation of stabilizing time-invariant control law for con-
strained systems. The idea behind this approach is explained as follows, let
u1(ξ(k)), ..., uN

c (ξ(k)) be a bank of Nc time-invariant stabilizing control laws
and E1, ..., ENc

be their associated positive invariant sets compatible with the
prescribed constraints. Moreover assume that the following nesting condition
holds true.

E1 ⊃ E1 ⊃ ... ⊃ ENc
.

The basic idea is that if a positive invariant set contains less states then the
associated control law can be chosen with less limitations. This means that
the control law associated with the smaller invariant set can be typically more
coercive and, generally, provides a better dynamic response. As a consequence,
if the state plant x(k) belongs at least to E1 then the ”best” control law we
can choose amongst the given set of control laws is the one whose associated
invariant set is the smaller containing x(k). Such an evaluation has to be re-
peated at each time step once the new state plant, x(k + 1), is available. The
algorithm proposed is as follows

Algorithm LPV-Fast RHC Off-line -

0.1 - Compute Nc stabilizing control laws u1(ξ(k)), ..., uN
c (ξ(k)) and their as-

sociated positive invariant sets E1, ..., ENc
complying with prescribed con-

straints and such that
E1 ⊃ E1 ⊃ ... ⊃ ENc

.

0.2 - Store them into a look-up table.

On-line -

1.1 - Find, by means of a binary search on the look-up table, the index i(k) :=
max{i : x(k) ∈ Ei}

1.2 - Apply u(k) = ui(ξ(k)); k := k + 1; goto 1.1;

An example of how this algorithm works is given in Figure 8.1 for a system
with state dimension 2. The initial state x(0) belongs to E1 and u1(ξ) is
applied. Such a law is applied for the next 3 steps, since the state always
belong to E1. At time k = 4, the state belongs both to E1 and to E2, then the
more performing control law u2(ξ) is adopted until time k = 6. Due to the fact
that x(6) is contained in E1,E2 and E3, the control law u3(ξ) is then chosen.
No inner invariant sets are then found and such a control law will be adopted
for k > 6, we have in fact that, thanking to the invariance condition, the
future state trajectory will always lie in E3. Such an algorithm could reveal an
effective choice to regulate the behavior of a constrained system to a desired
set point. The following result can be stated
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Fig. 8.1. A Geometrical Depiction of an LPV-Fast RHC Algorithm.

Theorem 8.1. If Algorithm LPV-Fast RHC has a solution at time k = 0
then, it has solution at each future time instant, satisfies the prescribed con-
straints and asymptotic stability of the regulated state trajectory is guaranteed.

Proof. Feasibility holds because of positive invariance: if x(0) ∈ Ei, then,
x(k) ∈ Ei,∀k ≥ 0, and then a control law to apply such that constraints
are not violated can always be obtained. Stability can be proven by simply
note that i(k) is monotonic nondecreasing and, due to this property, only a
finite number of switchings between stabilizing control laws is allowed. As a
consequence the overall system is asymptotically stable.

Note that, in the above algorithm, the procedure to compute the sequence of
couples control law/invariant set is not explicitly given. An off-line numerical
procedure to obtain such a set has been introduced first by [60] for polytopic
uncertain systems by using ellipsoidal invariant sets and classical LMI techni-
calities. In [16] the same approach is applied to LPV systems. A generalization
which exploits the various approaches seen in Section 6.1 can be obtained by
performing the following iteration.

for k = 1 : Nc

1 - Given a feasible state xin, compute, by means of one of the LMI methods
shown in Section 6.1 a time-invariant state feedback control law u(ξ) and
the associated invariant set in the form

E = {x : xT V (p)x < γ,∀p ∈ Σl}

with the further nesting constraints (ignored at r=1)

V (p)

γ
>

Vi−1(p)

γi−1
,∀p ∈ Σl



124 8 Fast MPC algorithms for LPV Plants

2 - Label E〉 = E ,Vi(p) = V (p),γi(p) = γ, ui(ξ) = u(ξ)
3 - Choose a new state xin such that xT

inV i(p)xin < γi

end for

Example 8.2. The aim of this Example is to evaluate both the computational
benefits and the loss of performance of the Fast-MPC algorithm presented in
this Section w.r.t. its On-line MPC counterpart. To this end let us consider
the system setting presented in Example 6.16 and let us assume the opti-
mization procedure shown in Lemma 6.5 is used both to compute Fast-MPC
algorithm invariant sets and to determine the control input applied at each
time step in the On-line MPC algorithm. Simulations have been performed
for an initial state x(0) = [−0.55 1.8]T and for p(k) = [1 0]T , k ≥ 0. Fig-
ure 8.2 and 8.3 show in which way the Fast-MPC algorithm runs: Figure 8.2
represents the state trajectory in the phase portrait together with the 20 pre-
computed ellipsoidal sets used by the algorithm. Figure 8.3, instead, depicts
the signal switches between the control laws associated to the invariant sets.
Figures 8.4-8.6 report input signal and state trajectories: it is interesting to
note that only a modest performance degradation is introduced by the use of
the Fast MPC algorithm. This is confirmed by Figure 8.7 where the cumulative
cost, i.e.

Jcum(k) =
k
∑

i=1

uT (i − 1)Ruu(i − 1) + xT (i)Rxx(i)

is shown. The improvement in term of reduction of computational burdens,
instead, are evident, as reported in the following table.

Algorithm On-line CPU time (seconds per step)
Fast-MPC 0.0019
Online-MPC 0.21

Remark 8.3. Note that, at each time step, the computational complexity is
logarithmic the look-up table elements size (and it can be eventually amelio-
rated by means of proper hashing functions). Moreover, the computational
cost is proportional to the number of operations necessary to test the inclu-
sion of x(k) into the invariant sets. The above consideration implies that, even
if most of the computation is carried out off-line, the use of a complex Lya-
punov function introduces a bigger online computational burdens due to the
testing conditions. On the other hand note that, because of the structure of
the the algorithm, the use of more time-consuming convexification procedures
to build up control laws, would not reflect into the online computations.

8.2 Ellipsoidal Viability Sets Based Fast-MPC Algorithm

In this Section an off-line Model Predictive Control (MPC) method based on
ellipsoidal calculus and viability theory is described in order to address control
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problems in the presence of state and input constraints for LPV systems.
Such a scheme is obtained as a generalization to the LPV framework of the
algorithm proposed in [61].

The main idea behind of this approach is to carry out off-line most of
the computations and to use closed-loop predictions in order improve the
control performance. This is done by recursively pre-computing suitable ellip-
soidal inner approximations of the exact controllable sets and solving on-line
a simple and numerically low-demanding optimization problem subject to a
set-membership constraint.
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We need to resort to a dual-mode scheme. First, a stabilizing control law
for (1.1) is achieved within a suitable neighborhood of the operating point (we
will assume to be 0). A robust invariant set E complying with constraints is
associated to such a control law.

By resorting to well established arguments in literature (see ....), the al-
gorithm operating region is then extended by off-line computing the sets of
states that can be steered into the terminal set in a finite number of steps
despite uncertainty and disturbances. Given a robustly controlled-invariant
region E we could compute in principle the sets of states i-steps controllable
to E , regardless of disturbances and uncertainties acting on the system, via
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the following recursion:

T0 = E

Ti = {x ∈ ∃u(p) ∈ U : ∀p ∈ Σl, A(p) + B(p)u(p) ∈ Ti−1}

As a consequence, by induction, we have that Ti is the set of states that can be
steered into T within at most a number of i control moves. Many properties
of Ti have been investigated in [65] for the case u(p) does not depend on p,
i.e. u(p) = u. As also discussed in [61] and even considering the simpler case
u(p) = u, the shape of Ti grows in complexity as the index i grows and may
become computationally intractable after a small number of iterations. For
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this reason we define a variant of the recursion (8.1) which exploits ellipsoidal
inner approximations {Ei}

ī
i=0, thus allowing a constant number of parameters

at each iteration for their characterization. In particular, each member Ei

represents a compact set of states that can be steered using a parameterized
control move u(p), for each occurrence of p and without constraints violation,
into another set Ei−1, which is the “closer” w.r.t. Ei. After a finite number of
steps, ī, the regulated state trajectories is then confined into a suitable robust
terminal set. The following results has been proved in [61]:

Proposition 8.4. Let E ⊂ ℜn be a nonempty robustly invariant ellipsoidal
region under a certain state-feedback control law, then, the sequence of ellip-
soidal sets

E0 := E

Ei := In[{x : ∃u(p) ∈ U : ∀ p ∈ P, A(p)x + B(p)u(p) ∈ Ei−1}] (8.1)

if non-empty, satisfies Ei ⊂ Ti. In (8.5), with the notation In[·] we mean an
inner ellipsoidal approximation.

It is important to note that in the above proposition u(p) is an input that may
possibly depend from parameter vector p. The easiest way is to not consider
such a dependence, since it would complicate the one step prediction state
computation and the related machinery to derive those sets. Anyway it has
been proved that scheduled inputs outperform the nonscheduled one. The
simplest approach to deal with scheduled control laws is to consider u as a
convex combination of l vectors depending on the parameter p:

u(p) =

l
∑

i=1

piui.

As already stressed thorough the dissertation, this choice results in a quadratic
dependence from the parameter vector of the one step ahead predictions. By
resorting to Section 2.2.4 notation, we can relax such a dependence in several
way obtaining the following equivalent polytopic uncertain system.

x(k + 1) = Ā(p)x + B̄(p)u

where ū = [uT
1 , ...uT

l ]T and

Ā(p) =

lc
∑

i=1

p̄iĀi (8.2)

B̄(p) =

lc
∑

i=1

p̄iB̄i (8.3)

(8.4)

Then recursion (8.1) can be (conservatively) become



8.2 Ellipsoidal Viability Sets Based Fast-MPC Algorithm 129

Ē0 := E

Ēi := In[{x : ∃ ū = [uT
1 ∈ U, ..., uT

l ∈ U ] :

∀ p̄ ∈ Σlc , Ā(p̄)x + B̄(p̄)ū ∈ Ēi−1}] (8.5)

Remark 8.5. It is worth to observe that the maximum number ī of ellipsoidal
sets to be computed depends on the problem at hand. If x(0) is given, it suffices

that x(0) ∈
⋃ī

i=0 Ei. More generally,
⋃∞

i=0 Ei represents the attraction basin
of our algorithm, that is the set of all initial states for which we guarantee the
existence of a solution.

Since the latter recursion is based on a polytopic uncertain model, the ellip-
soids Ēi can be numerically derived, for instance, by means of LMIs proposed
in [61] for the robust case.

The above developments allow one to finally derive a Receding Horizon
Control strategy. On-line, at each time t, the smallest index i such that
x(t) ∈ Ei is first computed. Then, such a sequence of sets is used to enforce,
at each step, x̂(k + 1|k) ∈ Ei−1 in order to ensure contraction and viability to
the closed-loop trajectories. Then, the MPC algorithm is as follows:

Algorithm LPV-VS - Off-line -

0.1 - Compute a stabilizing control law u(ξ(k)) and the associated robustly
invariant ellipsoidal region E0 complying with state and input constraints

0.2 - Generate a sequence of N one-step controllable sets Ēi (8.5)
0.3 - Store u(ξ) and Ēi, i = 0, . . . , N.

On-line -

1.1 - Let i(k) := min{i : x(k) ∈ Ei}
1.2 - If i(k) = 0 then

u(k) = u(ξ(k))

1.3 - Else,
u(k) = arg minJi(k)(x(k), u(k))
subject to

A(p(k))x(k) + B(p(k))u(k)∈ In
[

Ei(k)−1

]

,
u(k) ∈ U ,

1.4 - Apply u(k); k := k + 1; goto 1.1;

Remark 8.6. One of the main merits of the LPV framework is that the one-
step ahead state prediction is exactly known at each time instant whereas in
the robust case the prediction would belong to a polyhedron. Such a feature
is particularly well exploited in the proposed algorithm during the on-line
phase, providing both a reduction in the computational cost and a control
performance improvement w.r.t. the algorithm proposed in [61]
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Observe that the cost Ji(k)(x(k), u) may depend on i(k) and be defined on
an infinite horizon if e.g. implicit dual-mode MPC schemes are of interest.
Otherwise, typical choices include

Ji(k)(x(k), u) = max
j

‖Ajx(k) + Bju‖
2
Q̃(i(k)−1)

where Ei = {x : x
′

Q̃(i)x ≤ 1}, or

Ji(k)(x(k), u) = ‖u‖2
Ru

, Ru > 0

if one is interested to approximate one-step minimum-time or, respectively,
one-step minimum-energy algorithms. Finally, due to the fact the optimization
problem in step 1.3 is always feasible, the following stability result holds true.

Proposition 8.7. Let the sequence of ellipsoids Ei be non-empty and x(0) ∈
⋃

i Ei. Then, the algorithm LPV-VS always satisfies the constraints and en-
sures robust stability. In particular, there exists a finite time instant k̄ such
that x(k) ∈ E0 for all k ≥ k̄.

Proof. The proof follows from Propositions 8.4. Convergence to E0 in a finite
time follows from the choice of a finite number ī of ellipsoids Ei.

Example 8.8. The aim of this example is to present results on the effective-
ness of the strategy presented in this Section. In particular the improvement
deriving from the use of both LPV hypothesis and different one-step convex-
ification procedures will be shown. To this end we make comparisons of the
proposed algorithm (both in the case half-sum convexification described in
Subsection 2.2.2 (LPV-SS) and the improved convexification introduced in
Subsection 2.2.3 (LPV-NS) are used) with the robust counterpart presented
in [61] (Robust). Consider the multi-model linear time-varying system

x(k + 1) =
2
∑

i=1

pi(k)Ai x(k) +
2
∑

i=1

pi(k)Bi u(k) (8.6)

with

A1 =

[

2 −0.1
0.5 1

]

, A2 =

[

1 0.1
2.5 1

]

, B1 =

[

1
−0.3

]

, B2 =

[

0.7
0.1

]

, (8.7)

and input saturation constraint |u(k)| ≤ 1, ∀k ≥ 0. The parameter vector
p(k) is assumed to be measurable at each time instant k. In particular the
time-varying parameter realization p(k) = [sin(k) 1 − sin(k)] and the initial
state x0 = [−0.7 1.5]T (admissible for all the strategies, see Fig. 8.8) have
been supposed. Then, a family of 50 ellipsoids has been generated for each
algorithm.
The basins of attraction for the three algorithms are depicted in Figure 8.8. As
it clearly results, an enlarged region of feasible initial states results for the case
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Fig. 8.8. State Attraction Region with input bound constraints - LPV-NS (Con-
tinuous line), LPV-SS (Dashed line), Robust (Dash-Dotted line)

Table 8.1. Numerical burdens: Overall CPU time (seconds)

Algorithm Off-line: Overall On-line: Average
CPU Time CPU time (seconds per step)

LPV-NS 17.297 0.0870

LPV-SS 16.282 0.0849

Robust 14.624 0.1854

a better convexification is used (continuous line). In Table 8.1 the CPU times
for the off-line phases have been reported. Essentially all the three algorithms
have similar computation times. The average on-line numerical complexity for
each algorithm is reported in Table 8.1. It is possible to observe that one order
of magnitude separates the LPV methods from the robust ellipsoidal scheme.
This is due to the fact that the robust case implies that the minimization
(Step 1.3 of the algorithm) is performed along the corners characterizing the
one-step ahead state prediction while it reduces to a single point in the LPV
framework.

Two cost to go function have been considered, the first is the minimum
time and the second one the minimum energy.
All the relevant results for the minimum time case are depicted in Figures
8.9-8.10. Figure 8.9 depicts the switching signal i(t) for all the contrasted
algorithms. This signal is important to show the level of contraction provided
by the control algorithm during the system evolution and it represents at each
time instant the smaller ellipsoid Ei of the pre-computed family containing the
state x(k). The state and command behaviors corresponding to this realization
are depicted in Figure 8.10.
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Under the minimum-time criterion, the two LPV strategies perform almost
identically, while a slight worst behavior is observed in the case of the robust
counterpart. In fact shorter settling times can be observed in Figure 8.10. This
is confirmed by the switching signal i(k) trend Figure 8.9.
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Fig. 8.9. Switching signals for the proposed strategy: one-step minimum-time.
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Fig. 8.10. Regulated state evolutions and commands: Minimum-time strategies.

Under the minimum-energy criterion, all the simulations are reported in
Figures 8.11-8.13. In this case, unlike the minimum-time criterion, the pro-
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posed LPV algorithm performs significantly better than the other two algo-
rithms (see Fig. 8.12).
The improvement of the proposed strategy becomes more evident when cu-
mulative input energy plots

∑k
i=0 u(i)2 are considered, see Fig. 8.13. In fact,

the steady-state value reached by the LPV-NS algorithm is evidently the
lowest w.r.t. the others.
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Fig. 8.11. Switching signals for the proposed strategy: one-step minimum-energy.
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Fig. 8.12. Regulated state evolutions and commands: Minimum-energy strategies
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Summary

In this chapter two new fast MPC algorithm for the LPV framework have been
presented. The first computes off-line a certain number of nested ellipsoidal
positive invariant sets and the associated state feedback control law. On-line,
the state is evaluated and the smaller invariant set that contains it is chosen
together with the corresponding linear feedback law. Such an algorithm has
been obtained by adapting [60] ideas to the LPV framework. The second one
is based on the idea to compute the ellipsoidal viable sets of the system. On-
line, a simple quadratic optimization on the one step prediction is performed
by imposing that, at the next time step, the state will belong to an inner set.
Such an algorithm is an extension of the one proposed in [61].







Conclusions and Direction for Future Research

The first part of this dissertation introduced and investigated several analysis
and synthesis tools needed to efficiently manage LPV systems, with particu-
lar regard to those can be exploited within classical Model Predictive Control
schemes. The problem of nonlinearities arising by the use of self-scheduled
control laws has been shown and a general interpretation of convexification
techniques given. Existing stabilizability techniques have been presented and
new stabilizability conditions for systems subject to slow parameter variations
proposed here for the first time.

In the second part of the thesis the constrained control problem has been
introduced. The formal tools to manage it have been introduced and cus-
tomized for the LPV framework. Several new constrained stabilizability results
have been provided by making use of nonstandard control laws and Lyapunov
functions. Moreover time varying control strategies that better exploit the
form of the prediction sets have been introduced. It has been discussed how
those results can be exploited within an MPC scheme. Finally two new com-
putationally low demanding MPC algorithms have been presented.

One of the main research direction arising from this thesis regards LPV
systems subject to slow parameter variations. In our opinion, such a class of
systems presents very interesting potentials as a formal tool to describe many
real systems and as a mean to enhance their control performances. However,
the ”hidden” nonlinearities it introduces, complicate the analysis and synthe-
sis tasks. Those complications have to be considered very carefully. Some of
the topics presented in this thesis, such as stabilizability results, can be re-
garded as starting points for further investigations.

Further research directions regard the use of nonstandard control laws in
open-loop predictions.





A

Relaxations for quadratic parameter
dependencies

In this Appendix we recall a (not exhaustive) list of the existing methods to
relax the following matrix inequality

l
∑

i=1

l
∑

j=1

pipjΨij > 0, ∀p = [p1, ...., pl]
T ∈ Σl (A.1)

where Ψij ∈ ℜn×n, i = 1, ..., l, j = 1, ..., l are square matrices.

A.1 Convexification based methods

Let us rewrite

l
∑

i=1

l
∑

j=1

pipjΨij =
[

In×n ... In×n

]





p1p1Ψ11 ... p1plΨ1l

... ... ...
plp1Ψl1 ... plp1Ψll









In×n

...
In×n



 =

= [1l ⊗ In×n]
T





[

ppT ⊗ In×n

]

•





Ψ11 ... Ψ1l

... ... ...
Ψ1l ... Ψll







 [1l ⊗ In×n] ≥ 0, ∀p ∈ Σl

where • stands for the entrywise product (also known as Hadamard or Schur
product), ⊗ for the Kronecker product and 1l = [1...1]T ∈ ℜl.

Then, by looking for matrix outer approximations of ppT (see Chapter 2)
and, specifically, for a certain number lc of matrices Πi, i = 1, ..., lc such that
{

pT p| ∀p ∈ Σl

}

⊆ conv
{

{Πi}, i=1,...,lc

}

, a sufficient condition which ensures

that (A.1) holds true is given by

lc
∑

i=1

p̄i [1l ⊗ In×n]
T



[Πi ⊗ In×n] •





Ψ11 ... Ψ1l

... ... ...
Ψ1l ... Ψll







 [1l ⊗ In×n] ≥ 0, ∀p̄i ∈ Σl

As a conclusion, it finally results that lc convex conditions have to be tested.
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[1l ⊗ In×n]
T



[Πi ⊗ In×n] •





Ψ11 ... Ψ1l

... ... ...
Ψ1l ... Ψll







 [1l ⊗ In×n] ≥ 0, i = 1, ...., lc

In Chapter 2, three different set convexification procedures have been pro-
posed which can be used in (A.1) to arrive to different LMI formulations of
the control design problem

• Näıve convexification
• Half-sum convexification [15]
• Improved convexification (see Subsection 2.2.3)

A.2 Kim and Lee Methods

In [17], two other methods to convexify (A.1) are reported and are briefly
recalled hereafter:

• The first follows by considering the following Linear Matrix Inequalities









Ψ11
Ψ12+Ψ21

2 .... Ψ1l+Ψl1

2
Ψ12+Ψ21

2 Ψ22

...
Ψ1l+Ψl1

2 Ψll









≥ 0

• The second, by relaxing the latter LMI with a set of slack matrices Xij ∈
ℜn×n. AS a result, the following LMIs are obtained to be jointly satisfied

Ψii ≥ Xii i = 1, ..., l
Ψij+Ψji

2 ≥ Xij , i = 1, ..., l, j = i, ..., l








X11 X12 .... X1l

X21 X22

...
Xl1 Xll









≥ 0

A.3 A Further Relaxation Method

A further relaxation technique for the general case of polynomial dependence
on the parameter vector p has been presented in [18] and is based on Sum of
Squares and polynomial algebra arguments. Here is not reported for brevity.
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Theorem 3.13 Proof

To prove Theorem 3.13 we need to prove that ∀p (k) ∈ Σ and ∀p (k + 1) ∈
Υ (p (k)) it exists a parameter vector

pnew = [pnew
11 , pnew

12 , pnew
21 , pnew

22 , pnew
31 , pnew

32 , pnew
41 , pnew

42 ]
T
∈ Σ8

such that
[

p (k)
p (k + 1)

]

=

pnew
11









[

1
0

]

[

1
0

]









+ pnew
12









[

1
0

]

[

1
0

]

+

[

−∆
∆

]









+ pnew
21









[

1 − ∆
∆

]

[

1 − ∆
∆

]

+

[

∆
−∆

]









+

+pnew
22









[

1 − ∆
∆

]

[

1 − ∆
∆

]

+

[

−∆
∆

]









+ +pnew
31









[

0
1

]

[

0
1

]

+

[

∆
−∆

]









+ pnew
32









[

0
1

]

[

0
1

]









+

+pnew
41









[

∆
1 − ∆

]

[

∆
1 − ∆

]

+

[

∆
−∆

]









+ pnew
42









[

∆
1 − ∆

]

[

∆
1 − ∆

]

+

[

−∆
∆

]









(B.1)
Moreover, we need to prove also that, for each possible combination of the

vertices shown in Theorem 3.13, the resulting vector

[

p
p+

]

is such that p ∈

Σl, p
+ ∈ Υ (p). Both the above properties are proved in the following Lemmas.

Lemma B.1. For each p (k) ∈ Σ2, p (k + 1) ∈ Υ (p (k)) there exists a vector
pnew ∈ Σ8 such that equation (B.1) holds true.

Proof. Let us introduce two vectors
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pext =
[

pext
1 pext

2 pext
3 pext

4

]

∈ Σ4,
p∆ =

[

p∆
1 , p∆

2

]

∈ Σ2

and let us assume that they are related to pnew as follows

pnew
ij = pext

i p∆
j , i = 1, ..., 4, j = 1, ..., 2

Three different cases have to be considered.
First, if

p (k) ∈ conv

{[

1 − ∆
∆

]

,

[

∆
1 − ∆

]}

(B.2)

then we have

p (k + 1) = conv

{

p (k) +

[

∆
−∆

]

, p (k) +

[

−∆
∆

]}

. (B.3)

Then, choose pext ∈ Σ4 such that

pext
1 = pext

3 = 0

[

pext
2

pext
4

]

=

[

1 − ∆ ∆
∆ 1 − ∆

]−1

p (k) .

If we substitute such a solution into the convex combination in (B.1), we
obtain

pext
2 p∆

1









[

1 − ∆
∆

]

[

1 − ∆
∆

]

+

[

∆
−∆

]









+ pext
2 p∆

2









[

1 − ∆
∆

]

[

1 − ∆
∆

]

+

[

−∆
∆

]









+

+pext
4 p∆

1









[

∆
1 − ∆

]

[

∆
1 − ∆

]

+

[

∆
−∆

]









+ pext
4 p∆

2









[

∆
1 − ∆

]

[

∆
1 − ∆

]

+

[

−∆
∆

]









=

= p∆
1





p (k)

p (k) +

[

∆
−∆

]



+ p∆
2





p (k)

p (k) +

[

∆
−∆

]





which proves that there exists a parameter choice such that (B.2) and (B.3)
hold true.
The second case is when

p (k) ∈ conv

{[

1
0

]

,

[

1 − ∆
∆

]}

In such a case, obviously

p (k + 1) ∈ conv

{[

1
0

]

, p (k) −

[

−∆
∆

]}
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Choose pext ∈ Σ4 such that

pext
3 = pext

4 = 0
[

pext
1

pext
1

]

=

[

1 1 − ∆
0 ∆

]−1

p (k) .

Then, by substituting again it we obtain

pext
1 p∆

1









[

1
0

]

[

1
0

]









+ pext
1 p∆

2









[

1
0

]

[

1
0

]

+

[

−∆
∆

]









+

+pext
2 p∆

1









[

1 − ∆
∆

]

[

1 − ∆
∆

]

+

[

∆
−∆

]









+ pext
2 p∆

2









[

1 − ∆
∆

]

[

1 − ∆
∆

]

+

[

−∆
∆

]









=

= p∆
1





p (k)

pext
1

[

1
0

]

+ pext
2

([

1 − ∆
∆

]

+

[

∆
−∆

])



+ p∆
2





p (k)

p (k) +

[

−∆
∆

]



 =

= p∆
1





p (k)
[

1
0

]



+ p∆
2





p (k)

p (k) +

[

−∆
∆

]





that proves the claim. The third case, i.e.

p (k) ∈ conv

{[

∆
1 − ∆

]

,

[

0
1

]}

follows by the same arguments and it is not detailed for brevity.

Lemma B.2. For any possible convex combination of the vertices shown in

Theorem 3.13, the resulting vector [p, p+]
T

always satisfies the following con-
ditions:

• p ∈ Σ2

• p+ ∈ Υ (p)

Proof. Set-memberships of p ∈ Σ2, p
+ ∈ Σ2 follow trivially because all ver-

tices belongs to the unitary simplex. Consider now a certain combination of
vertices. By exploiting the parameters defined in (B.1), it results





p

p + (pnew
12 + pnew

22 + pnew
42 )

[

−∆
∆

]

+ (pnew
21 + pnew

31 + pnew
41 )

[

∆
−∆

]





The latter, coupled with the fact p+ always belongs to the unitary simplex
Σ2, allows one to finally prove that

p+ ∈ conv

{

p +

[

∆
−∆

]

, p −

[

∆
−∆

]}

∩ Σ2





C

Inequality (7.6) proof

Lemma C.1. Under the hypothesis of Theorem 7.6, inequality (7.6) holds
true

Proof. It follows from the construction of the final control law.

Consider inequality (6.37). It is equivalent to









P (p) ∗ ∗ ∗
A (p) G + B (p) F (p) P−1

i ∗ ∗

R
1/2
x 0 I ∗

R
1/2
u F 0 0 I









≥ 0, i = 1...l,∀p ∈ Σl

If convexifications seen in Chapter 2 are used (see for instance Lemma 6.9),
then the above Matrix Inequality is relaxed as follows

































H̄ic





P1

...
Pl



 ∗ ∗ ∗

Āic
+ B̄ic





F1

...
Fl



 P−1
i ∗ ∗

R
1/2
x 0 I ∗

R
1/2
u M̄ic





F1

...
Fl



 0 0 I

































≥ 0, i = 1, ..., l

Via Schur arguments, the latter implies that



146 C Inequality (7.6) proof

[

Āic
+ B̄ic

]T
P (p+)

[

Āic
+ B̄ic

]

− H̄ic





P1

...
Pl



 ≤

≤ −Rx −



M̄ic





F1

...
Fl









T

Ru



M̄ic





F1

...
Fl







 ,

ic = 1, ..., l,∀p+ ∈ Σl

By pre and post multiply for x (k)
T

and x (k)

xT
ic

(k + 1)P (p+) xT
ic

(k + 1) − xT (k) H̄ic





P1

...
Pl



x (k) ≤

< −‖x (k)‖
2
Rx

− xT (k)



M̄ic





F1

...
Fl









T

Ru



M̄ic





F1

...
Fl







x (k)

ic = 1, ..., l,∀p+ ∈ Σl

Then finally

xT
ic

(k + 1)P (p+) xT
ic

(k + 1) − ‖x (k)‖

H̄ic

2

6

6

4

P1

...
Pl

3

7

7

5

≤

≤ −‖x (k)‖
2
Rx

−

∥

∥

∥

∥

∥

∥



M̄ic





F1

...
Fl







x (k)

∥

∥

∥

∥

∥

∥

2

Ru

ic = 1, ..., lc,∀p+ ∈ Σl

To end the prove it is enough to note that

{

P
(

p+
)

|∀p+ ∈ Σl

}

≡ conv

















H̄ic+1





P1

...
Pl











lc

ic+1=1











.
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