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Abstract 

The increasing frequency of flooding events in urban catchments related to an increase 

in impervious surfaces highlights the inadequacy of traditional urban drainage systems. Low-

impact developments (LIDs) techniques have proven to be valuable alternatives for stormwater 

management and hydrological restoration, by reducing stormwater runoff and increasing the 

infiltration and evapotranspiration capacity of urban areas. However, the lack of diffusion of 

adequate modelling tools represents a barrier in designing and constructing such systems. 

Mechanistic models are reliable and accurate tools for analysis of the hydrologic behaviour of 

LIDs, yet only a few studies provide a comprehensive numerical analysis of the hydrological 

processes involved and test their model predictions against field-scale data. Moreover, their 

widespread use among urban hydrologists suffers from some limitations, namely: complexity, 

model calibration and computational cost. This suggest that more research is needed to address 

these issues and examine the applicability of this kind of models. Thus, the main aim of this 

thesis was to investigate the benefits and the limitations in the use of mechanistic modelling 

for LIDs analysis. In this view, the mechanistic modelling approach has been used to simulate 

the hydraulic/hydrologic behaviour of three different LIDs installed at the University of 

Calabria: an extensive green roof, a permeable pavement and a stormwater filter. Each case 

study was used to examine a particular modelling aspect. The morphological and hydrological 

complexity of the green roof required the use of a three-dimensional mechanistic model, which 

was validated against experimental data with satisfactory results. The measured soil hydraulic 

properties of the soil substrate highlighted important characteristics, accounted in the 

simulation. The validated model was used to carry out a hydrological analysis of the green roof 

and its hydrological performance during the entire simulated period as well as during single 

precipitation events. Conversely, a one-dimensional mechanistic model was used to simulate 

the hydraulic behaviour of a permeable pavement, whose parameters were calibrated against 

experimental data. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo filtering 

highlighted the influence of the wear layer on the hydraulic behaviour of the pavement and 

identified the ranges of parameters generating behavioural solutions in the optimization 
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framework. Reduced ranges were then used in the calibration procedure conducted with the 

metaheuristic Particle swarm optimization (PSO) algorithm for the estimation of hydraulic 

parameters. The calibrated model was then validated against an independent set of data with 

good results. Finally, to address the issue of computational cost, the surrogate-based modelling 

technique has been applied to calibrate a two-dimensional mechanistic model used to simulate 

the hydraulic behaviour of a stormwater filter. The kriging technique was utilized to 

approximate the deterministic response of the mechanistic model. The validated kriging model 

was first used to carry out a Global Sensitivity Analysis of the unknown soil hydraulic 

parameters of the filter layer. Next, the Particle Swarm Optimization algorithm was used to 

estimate their values. Finally, the calibrated model was validated against an independent set of 

measured outflows with optimal results. Results of the present thesis confirmed the reliability 

of mechanistic models for LIDs analysis, and gave a new contribution towards a much broader 

diffusion of such modelling tools. 
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Chapter 1 Introduction 

“Sustainability” is not only a word, but a concept that is permeating our life in the last 

few decades. A concept that represents an abrupt and necessary change in our way of living; a 

change that is needed in order to not compromise the lives of the new generations:  

« Development that meets the needs of the present without compromising the ability of 

the future generations to meet their own needs». 

This is the basic definition of sustainable development proposed at the World’s first Earth 

Summit in Rio de Janeiro in 1992. Before that date, the concept of sustainability was something 

rather marginal in the society, focused on the economic growth and industrial development 

after the tragedies of the second World War. The exponential demographic growth, the 

technological progress and the wild globalization pushed the society towards a new model, 

where individual needs are multiplied. To deal with this change, Earth’s resources were 

exploited at an unsustainable rate, disregarding the negative impacts on the environment. Air, 

soil and water pollution became the most important threats to the global health, with the 

appearance of new contaminants. The sustainability concept emerged as the unique viable 

approach to counterbalance and mitigate the negative impacts of the current development 

model. 

1.1 Urban Drainage Systems: issues and new challenges 

Progressing urbanization of undeveloped land leads to an increasing amount of 

impervious surfaces at the expense of natural areas. Leopold (1968), while describing the 

effects of urbanization on the hydrological cycle, identified such major effects as reduced 
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infiltration and evapotranspiration, resulting in increased runoff and reduced groundwater 

recharge. Traditional stormwater management design focused on collecting stormwater in 

piped networks and transporting it off-site as quickly as possible. Increases in the incidence of 

flooding and combined sewer overflows (CSOs) in urban areas demonstrate that the traditional 

approach is inadequate for managing stormwater. Traditional urban drainage systems are 

unable to cope with a constant increase of surface runoff due to structural limitations. Drainage 

systems, especially in European cities, consist of facilities built in different epochs, and 

designed to manage considerably lower runoff volumes. In such circumstances, it is quite usual 

to have in the same cities flooded and non-flooded districts, depending on the structure of the 

drainage system. 

 

Figure 1.1 A schematic of the current stormwater management 
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In a context where the resiliency of urban areas under climate change becomes crucial, 

the inadequacy of traditional urban drainage systems can pose serious problems. Urbanized 

landscapes are one of the most sensitive systems to hydrological extremes, fluctuations and 

changes. The change of precipitation regime, which is likely to occur in the immediate future, 

will increase the frequency of extreme precipitation events (Lenderink and van Meijgaard, 

2008), known to be correlated with flash floods in urban areas. In such circumstances, it is 

necessary to treat the stormwater management as an urgent problem and find sustainable 

solutions able to cope with today’s and upcoming problems. 

1.2 Sustainable Stormwater Management 

As mentioned above, the combined effects of increased imperviousness and climate 

change is highlighting the inadequacy of traditional drainage systems in stormwater 

management. A theoretical alternative would be to replace existing piped networks with larger 

ones able to manage an increased surface runoff, but this poses economic and practical 

problems. Thus, it is necessary to shift the target to the reasons of runoff increase, namely the 

surface’s imperviousness, main cause of the alteration of the urban hydrological cycle. In this 

view, the sustainable stormwater management aims to preserve and restore natural features, 

minimize the imperviousness of urban catchments, and increase their infiltration and 

evapotranspiration capacities. 

The so-called “Sponge cities” focus on mimicking the hydrology that existed prior to the 

development through the use of micro-controls distributed throughout a developed site. These 

micro-controls are located near the source where runoff is generated and help deliver it back to 

its natural pathway (through permeable materials into the ground, or through evaporation into 

the air). Micro-controls can include stormwater filters, green roofs, wetlands, permeable 

pavements and other measures that reduce both runoff volume and speed. Rain can also be 

harvested in cisterns for landscape irrigation and other beneficial uses. Such practices are 
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commonly known as Low Impact Development (LID) techniques, or Green Infrastructures 

(GI). 

 

Figure 1.2 A schematic of a sustainable stormwater management 

 

Low-impact developments are able to reduce runoff volumes and pollutant loads and 

increase evapotranspiration. Green roofs were able to significantly reduce peak rates of 

stormwater runoff (Getter et al., 2007) and retain rainfall volumes with retention efficiencies 

ranging from 40 to 80% (Bengtsson et al., 2004). Bioretention cells were shown to reduce 

average peak flows by at least 45% during a series of rainfall events in Maryland and North 

Carolina (Davis, 2008). Permeable pavements offered great advantages in terms of runoff 

reduction (Carbone et al., 2014; Collins et al., 2008), water retention, and water quality 

improvement (Brattebo and Booth, 2003). 
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1.2.1 Modelling tools for LIDs analysis 

In spite of the large and well-known benefits of green roofs and other LID techniques, 

the transition to sustainable urban drainage systems is very slow. One of the key limiting factors 

in the widespread adoption of such systems is the lack of adequate analytical and modelling 

tools (Elliot and Trowsdale, 2007) able to simulate all the physical processes involved. Several 

models have been proposed in the literature; most of them focused on simulating the 

hydraulic/hydrologic behaviour of the system. 

Empirical models are models where the structure is determined by the observed 

relationship among experimental data. These models can be used to develop relationship for 

forecasting and describing trends, which are not necessarily mechanistically relevant. Typical 

examples of empirical models for LIDs analysis include relationships between the rain depth 

and the subsurface runoff coefficient, or between the antecedent dry periods and the surface 

runoff coefficient. The main drawback of this kind of models is the lack of generality. The 

accuracy of the empirical relation is strongly dependent on the size and characteristics of the 

sample used for the statistical analysis. For example, a relationship between the retention 

efficiency of a green roof in a continental climate, and the antecedent dry period will lead to 

inaccurate results if applied to a green roof in a mediterranean climate. Only by increasing the 

size and the variance of the sample, it would be possible to increase the robustness of the 

empirical model. However, even if the sample is statistically representative and significant, the 

uncertainty associated with the developed relationship could lead to biased conclusions. 

An alternative is represented by conceptual models. A conceptual model is a descriptive 

representation of a system that incorporates the modeler’s understanding of the relevant 

physical processes involved. In this type of modelling, the different components of the system 

are described using conceptual entities. For example, the hydraulic behaviour of a porous media 

is described using a reservoir with a sharp-crested weir, whose height represents the field 

capacity, and whose discharge rate represents its hydraulic conductivity. Conceptual models 

have been used extensively in the literature for the numerical analysis of LIDs, in particular for 

green roofs. Kasmin et al. (2010) developed a simple conceptual model of the hydrological 
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behaviour of green roofs during a storm event. The model input was the time series of 

precipitation events and the output was runoff. The water content in the green roof at any given 

time was between field capacity and the residual water content. Evapotranspiration was 

estimated using an empirical relationship accounting for the actual water contents, the storm 

event’s characteristics, and the antecedent dry weather period. During a precipitation event, the 

porous medium absorbed moisture until field capacity was reached. The addition of further 

moisture produced subsurface flow. Stovin et al. (2013) used a conceptual model to simulate 

the hydraulic behaviour of a green roof. In that model, the actual evapotranspiration is function 

of the potential evapotranspiration and substrate moisture content, and the retention capacity is 

conceptualized as a reservoir. While being quite fast and intuitive, conceptual models suffer 

from several limitations. Conceptualization of the physical processes involved often leads to 

simplification of the system and a reduction in numerical parameters. While in a physical model 

each parameter has its own meaning, in conceptual models, lumped parameters often 

incorporate different components of the described process. These lumped parameters are case 

sensitive and need to be calibrated against experimental data, implying a lack of generality of 

the model itself. These drawbacks could represent a barrier to the use of modeling tools among 

practitioners who need reliable and generally applicable models. 

Conceptual models represent a middle ground between empirical and mechanistic 

models. While empirical models are based on direct observation, measurement and extensive 

data records, mechanistic models are based on the mathematical description of physical, 

chemical, and biological processes involved. One of the main advantage of mechanistic 

approach is that each component has a clear physical meaning, and each parameter can be 

measured independently. In spite of being accurate and general, mechanistic models are not 

widely for the numerical analysis of LIDs. This is mainly due to some drawbacks, which are 

typical in mechanistic modeling: 

 Complexity: in the mechanistic approach, each process is analysed separately 

and characterized by a particular set of equations. The modeller must be 
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familiar with all the processes involved (i.e, infiltration, evaporation, 

transpiration, preferential flows, solute transport, heat transport, etc); 

 Model calibration: The calibration of mechanistic models can be quite 

challenging, and usually involves the optimization of several parameters. This 

requires the use of complex optimization algorithm and a careful 

quantification of the uncertainty associated with each estimated parameter; 

 Computational cost: Mechanistic models usually require the numerical 

resolution of nonlinear partial differential equations. Depending on the type of 

problem, the computational cost associated with a single model execution can 

be significantly high, especially if several physical processes are modelled 

simultaneously. This cost increases exponentially if the modelling framework 

includes the calibration of several parameters, making impractical the use of 

the model itself. 

1.3 Objectives and aim 

The main aim of the present thesis is to investigate the use of mechanistic modelling for 

the numerical analysis of LIDs. In particular, the present study focuses on the three main 

drawbacks of mechanistic modeling, namely: complexity, model calibration and computational 

cost. 

A mechanistic model is used to describe the hydraulic/hydrologic behaviour of three 

different LIDs installed at the University of Calabria: an extensive green roof, a permeable 

pavement and a stormwater filter. Each experimental site served as a case study to investigate 

the different aspects of mechanistic modelling. Specific laboratory measurements were used to 

support the modelling framework. Thus, the thesis is conceived and structured as a “cumulative 

thesis” composed of three different scientific papers, already published in international peer-

reviewed journals. 
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In Chapter 2, the software HYDRUS-3D is used to simulate the hydraulic behaviour of 

an extensive green roof. The soil hydraulic properties of the soil substrate are measured and 

analysed by using the simplified evaporative method. Both unimodal and bimodal soil 

hydraulic functions are used in the analysis. The estimated parameters are then used in the 

HYDRUS-3D model to simulate a 2-month period. Precipitation, irrigation, evaporation, and 

root water uptake processes were included in the numerical analysis. The model is validated 

against experimental data, and then used to carry out a hydrological analysis of the green roof 

and its hydrological performance during the entire simulated period as well as during single 

precipitation events. 

In Chapter 3, a mechanistic model is calibrated to simulate the hydraulic functioning of 

a permeable pavement. Two different scenarios of describing the hydraulic behavior of the 

permeable pavement system are analyzed: the first one uses a single porosity model for all 

layers of the permeable pavement; the second one uses a dual-porosity model for the base and 

sub-base layers. Measured and modeled month-long hydrographs are compared using the 

Nash-Sutcliffe efficiency (NSE) index. A Global Sensitivity Analysis (GSA) followed by a 

Monte Carlo filtering is used to investigate the sensitivity of different parameters and to 

identify the ranges of parameters generating behavioral solutions. Reduced ranges are then 

used in the calibration procedure conducted with the metaheuristic Particle swarm optimization 

(PSO) algorithm for the estimation of hydraulic parameters. The calibrated parameters are then 

validated against an independent set of experimental data. 

In Chapter 4, the benefit of surrogate-based modelling in the numerical analysis of LIDs 

is investigated. The kriging technique is used to approximate the deterministic response of the 

widely used mechanistic model HYDRUS-2D, which was employed to simulate the variably-

saturated hydraulic behaviour of a contained stormwater filter. The Nash-Sutcliffe efficiency 

(NSE) index is used to compare the simulated and measured outflows and as the variable of 

interest for the construction of the response surface. The validated kriging model is first used 

to carry out a Global Sensitivity Analysis of the unknown soil hydraulic parameters of the filter 

layer. Next, the Particle Swarm Optimization algorithm is used to estimate their values. The 
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surrogate-based optimized parameters are then validated against an independent set of 

experimental data. 

It must emphasized that a common issue of all modeling scenarios analyzed in the present 

thesis has been the limited information about the transient flow data. In particular, only 

measured inflows and outflows were available.  In such circumstances, the optimization 

problem can become ill-posed thus increasing the uncertainty in the estimated parameters.  For 

this reasons, advanced numerical techniques such as the Global Sensitivity Analysis and 

Particle Swarm Optimization have been used. Moreover, further laboratory analysis were 

carried out in order to obtain specific measurements in order to reduce the dimensionality of 

the problem and facilitate the modeling framework.  
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Chapter 2 A comprehensive analysis of the 

variably-saturated hydraulic behaviour of a green 

roof in a Mediterranean climate 

2.1 Introduction 

During the last few decades, the area of impervious surfaces in urban areas has 

exponentially increased as a consequence of the demographic growth. This long-term process 

has altered the natural hydrological cycle by reducing the infiltration and evaporation capacity 

of urban catchments, while increasing surface runoff and reducing groundwater recharge. 

Moreover, the frequency of extreme rainfall events, characterized by high intensity and short 

duration, is expected to increase in the near future as a consequence of global warming 

(Kundzewicz et al., 2006; Min et al., 2011).  

The combined effects of urbanization and climate change expose urban areas to an 

increasing risk of flooding. In this context, urban drainage systems play a fundamental role in 

improving the resilience of cities. In recent years, an innovative approach to land development 

known as a Low Impact Development (LID) has gained increasing popularity. LID is a 'green' 

approach to storm water management that seeks to mimic the natural hydrology of a site using 

decentralized micro-scale control measures (Coffman, 2002). LID practices consist of 

bioretention cells, infiltration wells/trenches, storm water wetlands, wet ponds, level spreaders, 

permeable pavements, swales, green roofs, vegetated filter/buffer strips, sand filters, smaller 

culverts, and water harvesting systems. LIDs are able to reduce runoff volumes and pollutant 
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loads and increase evapotranspiration. Green Roofs (GR) were able to significantly reduce peak 

rates of storm water runoff (Getter et al., 2007) and retain rainwater volumes with retention 

efficiencies ranging from 40% to 80% (Bengtsson et al., 2004). Bioretention cells were shown 

to reduce average peak flows by at least 45% during a series of rainfall events in Maryland and 

North Carolina (Davis, 2008). Permeable pavements offered great advantages in terms of 

runoff reduction (Carbone et al., 2014; Collins et al., 2008), water retention, and water quality 

(Brattebo and Booth, 2003). Considering that rooftops may represent as much as 40%–50% of 

the total impervious surfaces in urban areas, green roofs are among the key choices for 

hydrologic restoration and storm water management. 

One of the key limiting factors in the wide use of LIDs is the lack of adequate modeling 

tools (Elliot and Trowsdale, 2007) that could be used to design LIDs that function properly for 

particular climate conditions. LIDs modeling requires an accurate description of the involved 

hydrological processes, which are multiple and interacting. In recent years, researchers have 

focused their attention on applying and developing empirical, conceptual, and physically-based 

models for the LIDs analysis. In their review article, Li and Babcock (2014) reported that there 

were more than 600 papers published worldwide involving green roofs, with a significant 

portion of them related to modeling.  

Zhang and Guo (2013) developed an analytical model to evaluate the long-term average 

hydrologic performance of green roofs. Local precipitation characteristics were described 

using probabilistic methods, and the hydrological behavior of the system was described using 

the mass balance equations. Kasmin et al. (2010) developed a simple conceptual model of the 

hydrological behavior of green roofs during a storm event. The model input was the time series 

of precipitation events and the output was runoff. The water content in the green roof at any 

given time was between field capacity and the residual water content. Evapotranspiration was 

estimated using an empirical relationship accounting for the actual water contents, the storm 

event’s characteristics, and the antecedent dry weather period. During a precipitation event, the 
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porous media absorbed moisture until field capacity was reached. Addition of further moisture 

produced subsurface flow.   

She and Pang (2010) developed a physical model that combined an infiltration module 

(based on the Green-Ampt equation) and a saturation module (SWMM). The model calculates 

the water content in the GR in a stepwise manner from the initiation of precipitation until 

saturation. In simulating the hydraulic response of green roofs to precipitations, an infiltration 

module is used before the field capacity is reached and when no drainage is produced, while 

the saturation module is used after field capacity is reached and when drainage is produced. 

However, since runoff and infiltration can occur simultaneously during heavy precipitation, 

this stepwise approach may not be appropriate for a wide range of precipitation events. 

Although analytical and conceptual models represent a viable alternative to the numerical 

analysis of green roofs, their use suffers from several limitations. Conceptualization of 

involved physical processes often leads to simplification of the system and a reduction of 

numerical parameters. While in a physical model each parameter has its own meaning, in 

conceptual models, lumped parameters often incorporate different components of the described 

process. These lumped parameters are case sensitive and need to be calibrated against 

experimental data, implying a lack of generality of the model itself. These drawbacks could 

represent a barrier to the use of modeling tools among practitioners who need reliable and 

generally applicable models.  

Mechanistic models have proven to be a valid and reliable alternative to conceptual and 

analytical models for the analysis of green roofs and LIDs in general. Carbone et al. (2015) 

developed a one-dimensional finite volume model for the description of the infiltration process 

during rainfall events in green roof substrates. The model was based on the reduced advective 

form of the Richards equation, in which the soil water diffusivity was neglected. Metselaar 

(2012) used the SWAP software (van Dam et al., 2008) to simulate the one-dimensional water 

balance of a substrate layer on a flat roof with plants. Hilten et al. (2008) simulated peak flow 

and a runoff volume reduction of a 10-cm modular green roof (60×60 cm) using HYDRUS-1D 

(Šimůnek et al., 2008). In this study, only the values of field capacity and wilting point were 
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measured. These parameters, in conjunction with the soil bulk density and particle size 

distribution, were used to estimate the soil water retention curve using a pedotransfer function. 

Multiple 24 h storms were used to generate precipitation data and simulate runoff to describe 

the green roof’s hydrologic response. Li and Babcock (2015) used HYDRUS-2D to model the 

hydrologic response of a pilot 61 x 61 cm green roof system. Physical properties of the substrate 

were obtained using laboratory measurements on soil cores extracted from a green roof. The 

saturated hydraulic conductivity was measured using the falling head method, while the 

residual and saturated water contents were measured using the gravimetric method. The 

hanging water column method was used to estimate the shape parameters of the unimodal van 

Genuchten function (van Genuchten, 1980). The model was calibrated using water content 

measurements obtained with TDR (Time Domain Reflectometer) sensors. The calibrated 

model was then used to simulate the potential beneficial effects of irrigation management on 

the reduction of runoff volumes. 

Although physically based models have been widely and often successfully used, very 

few studies provided a comprehensive analysis of the hydrological behavior of a green roof 

and validated it against field-scale data. Moreover, studies that investigated the unsaturated 

hydraulic properties of green roof substrates were limited to the determination of some specific 

soil characteristics (e.g., field capacity, wilting point, or particle size distribution) and generally 

focused only on the soil water retention curves. 

For these reasons, the aim of this paper is to give an accurate and comprehensive analysis 

of the hydrological behavior of green roofs using the mechanistic model HYDRUS-3D to 

analyze an extensive green roof installed at the University of Calabria. The problem was 

addressed in the following way. First, the soil water retention curve and the unsaturated 

hydraulic conductivity of the green roof substrate were measured using a simplified 

evaporation method. Obtained soil hydraulic parameters were then used in HYDRUS-3D 

numerical simulations of the green roof function using precipitation, climate, and subsurface 

experimental data for a two-month long period. The model was validated by comparing the 
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modeled and measured subsurface flows using the Nash-Sutcliffe efficiency index (J. E. Nash 

and Sutcliffe, 1970). Finally, the validated model was used to evaluate the hydrologic behavior 

of the green roof and its hydraulic response to single precipitation events. 

 

2.2 Materials and Methods 

2.2.1 Green Roof and Site Description 

The University of Calabria is located in the south of Italy, in the vicinity of Cosenza 

(39°18′ N 16°15′ E). The climate is Mediterranean with a mean annual temperature of 15.5 °C 

and an average annual precipitation of 881.2 mm. The green roof is part of the “Urban 

Hydraulic Park,” which also includes a permeable pavement, a bioretention system, and a 

sedimentation tank connected to a treatment unit. An extensive green roof was installed on the 

existing rooftop of the Department of Mechanical Engineering. The original impervious roof 

was divided into four sectors. Two sectors are vegetated with native plants and differ from each 

other by the drainage layer. Another sector is characterized by bare soil with only few 

spontaneous plants. The last sector is the original impervious roof. The maximum depth of the 

soil substrate is 8 cm. This depth was selected to investigate both the energetic (heat fluxes) 

and hydrologic (water fluxes) behavior of a very thin extensive green roof under the 

Mediterranean climate. The soil substrate is composed of mineral soil with 74% of gravel, 22% 

of sand, and 4% of silt and clay. The soil has a measured bulk density of 0.86 g/cm3 and 8% of 

organic matter, which was determined in the laboratory using the Walkley-Black method. 

Three different plant species were selected and planted. Cerastium tomentosum and Dianthus 

gratianopolitanus are herbaceous plants suited for well drained soils; Carpobrotus Edulis is a 

succulent plant characterized by a high drought tolerance, largely due to the high leaf 

succulence and physiological adaptations such as CAM (Crassulacean Acid Metabolism) 

photosynthesis (Durhman et al., 2006). CAM plants have greater water use efficiency than C3 
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plants since transpiration per unit of CO2 is reduced due to stomata openings at night for CO2 

uptake (Sayed, 2001). 

 

 

Figure 2.1 A typical cross-section of the GR. 

 

In this study, only one vegetated sector of GR is considered. Figure 2.1 displays a cross-

section of the GR; the considered sector has an area of 50 m2 and an average slope of 1%. The 

GR is divided into square elements of 50 x 50 cm (Fig. 2.2), with alternating vegetated and 

non-vegetated areas. The substrate has a maximum depth of 8 cm where plants are grown and 

a minimum depth of 4 cm where no vegetation is present (Fig. 2.1, Fig. 2.2). This design was 

meant to minimize the weight on the GR support structure. A highly permeable geotextile is 

placed at the bottom of the substrate to prevent soil from migrating into the underlying layers. 

The drainage layer is composed of a polystyrene foam and is characterized by a water storage 

capacity of 11 l/m2 and a drainage capacity of 0.46 l/s∙m2. Water accumulated in the drainage 

layer can be transferred back up to the substrate only by condensation on the geotextile. An 

anti-root layer and an impervious membrane complete the GR. 
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Figure 2.2 A schematic of the green roof, showing both vegetated (grey) and non-vegetated (white) areas. 

Irrigation drippers are indicated by a letter D. 

 

A drip irrigation system was installed to provide water to plants during drought periods. 

The irrigation system is connected with a reuse system, which collects outflow from the GR. 

Only reused water was used for irrigating the GR. The reuse system is composed of a storage 

tank and a pump. When the storage capacity of the tank (1.5 m3) is exceeded, water is directly 

discharged into the drainage system. Drippers are located at the center of each square and their 

distance from each other is approximately 50 cm. Drippers were also installed in non-vegetated 

areas in order to utilize water from the storage tank by using the evapotranspiration capacity of 

the GR. In this way, the volume of water discharged into the drainage system is reduced, and 
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the evaporative cooling effect of the GR on the building is expected to increase. The irrigation 

system is activated at predefined times by an electric valve, and the irrigation rate is measured 

by a water counter with an acquisition frequency of one minute. The total volume of irrigation 

for the selected time period was 142 mm. 

A weather station located directly at the site measured precipitation, velocity and 

direction of wind, air humidity, air temperature, atmospheric pressure, and global solar 

radiation. Precipitation was measured using a tipping bucket rain gauge with a resolution of 

0.254 mm and an acquisition frequency of one minute. Climate data were acquired with a 

frequency of five minutes. Data are processed and stored in a SQL database. 

A flow meter located at the base of the building, composed of a PVC pipe with a sharp-

crested weir and a pressure transducer, measured outflow from the GR. The pressure transducer 

(Ge Druck PTX1830) measured the water level inside the PVC pipe and had a measurement 

range of 75 cm, with an accuracy of 0.1 % of the full scale. The pressure transducer was 

calibrated in the laboratory using a hydrostatic water column, linking the electric current 

intensity with the water level inside the column. The exponential head-discharge equation for 

the flow meters was obtained by fitting the experimental data. The subsurface flow data were 

acquired with a time resolution of one minute and stored in a SQLITE database. 
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Figure 2.3 Measured precipitation (black), irrigation (top graph), and subsurface (gray) fluxes for a selected time 

period. 

 

A two-month data set was selected for analysis (Fig. 2.3). This particular time period, 

which started on 2015-09-01 and ended on 2014-10-30, was selected because it involved highly 

variable climatic conditions. Isolated precipitations occurred in September, which had a 

relatively high average temperature. These climatic conditions required the irrigation of the GR 

for one hour during the night. October was characterized by intense and frequent precipitations. 

The total recorded precipitation for the whole period was 431 mm with an average air 

temperature of 20.2 °C.  

Hourly reference evapotranspiration was calculated using the Penman-Monteith equation 

(Allen et al., 1998). An average value of albedo of 0.2 was used in calculations of net short-
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wave radiation, assuming that the albedo for vegetated areas was 0.23 (Lazzarin et al., 2005) 

and 0.17 for bare soil (Rosenberg et al., 1983). 

 

2.2.2 Soil Hydraulic Properties 

2.2.2.1 Evaporation Method 

Modeling of water flow in unsaturated soils by means of the Richards equation requires 

knowledge of the water retention function,  (h), and the hydraulic conductivity function, K(h), 

for each soil layer of the GR,  where  is the volumetric water content [L3L-3], h is the pressure 

head [L], and K is the hydraulic conductivity [LT-1]. A broad range of methods exists for the 

determination of soil hydraulic properties in the field or in the laboratory (Arya, 2002; Dane 

and Hopmans, 2002; Klute and Dirksen, 1986). The numerical inversion of transient flow 

experiments represents one of the most accurate ways to determine soil hydraulic properties 

(Šimůnek et al., 1998). Among these, the simplified evaporation method (Schindler, 1980) is 

one of the most popular methods. Peters and Durner (2008) conducted a comprehensive error 

analysis of the simplified evaporation method and concluded that it is a fast, accurate, and 

reliable method to determine soil hydraulic properties in the measured pressure head range, 

and that the linearization hypothesis introduced by Schindler (1980) causes only small errors. 

The evaporation method was further modified by Schindler et al. (2010a, 2010b) to 

significantly extend the measurement range to higher pressures. For a detailed description of 

the modified evaporation method, please refer to Schindler et al. (2010a, 2010b). 

A drawback of the evaporation method is that it is poorly suited for direct determinations 

of conductivities near saturation (Wendroth et al., 1993). The determination of hydraulic 

conductivities remains reliable only in the dry range, in which hydraulic gradients are more 

pronounced. To improve the characterization of the hydraulic conductivity function near 



2.2 Materials and Methods 39 

 

39 

 

saturation, alternative methods are required such as the multi-step outflow method (Peters and 

Durner, 2008). 

In this study, the simplified evaporation method with the extended measurement range 

(down to -9,000 cm) was used for the determination of the unsaturated hydraulic properties of 

the green roof substrate. For a complete description of the system, please refer to UMS GmbH 

(2015). The soil for the laboratory analysis was sampled directly from the GR using a stainless-

steel sampling ring with a volume of 250 ml. The soil sample was saturated from the bottom 

before starting the evaporation test. The measurement unit and tensiometers were degassed 

using a vacuum pump, in order to reduce the potential nucleation sites in the demineralized 

water. Since Peters and Durner (2008) suggested a reading interval for structured soils of less 

than 0.1 day, the reading interval was set to 20 minutes in order to have high resolution 

measurements. At the end of the experiment, the sample was placed in an oven at 105°C for 24 

hours and then the dry weight was measured. 

 

2.2.2.2 Parameter Estimation 

The numerical optimization procedure, HYPROP-FIT (Pertassek et al., 2015), was used 

to simultaneously fit retention and hydraulic conductivity functions to experimental data 

obtained using the evaporation method. HYPROP-FIT is a computer program designed to fit 

unimodal and multimodal retention functions to measured water retention data and to compute 

the corresponding relative hydraulic conductivity function. The fitting is accomplished by a 

non-linear optimization algorithm that minimizes the sum of weighted squared residuals 

between model predictions and measurements. The software uses the Shuffled Complex 

Evolution (SCE) algorithm proposed by Duan et al. (1992), which is a global parameter 

estimation algorithm. The software includes a corrected fit of the hydraulic functions by the 

“integral method” to avoid bias in hydraulic properties near saturation (Peters and Durner, 

2006), an Hermitian spline interpolation of the raw measured data to obtain smooth and 

continuous time series of measured data, and an automatic detection of the validity range of 
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conductivity data near saturation, where the hydraulic gradients become too small to yield 

reliable data.  

Two different models were evaluated for the description of soil hydraulic properties. The 

unimodal van Genuchten–Mualem (VGM) model (van Genuchten, 1980) was used first: 
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where is the effective saturation (-),  is a parameter related to the inverse of the air-entry 

pressure head (L-1), θs and θr are the saturated and residual water contents, respectively (-), n 

and m are pore-size distribution indices (-), Ks is the saturated hydraulic conductivity (LT-1), 

and L is the tortuosity and pore-connectivity parameter (-). 

Since the unimodal VGM model cannot always describe the full complexity of measured 

data, the bimodal model of Durner (1994), which constructs the retention and hydraulic 

conductivity functions by a linear superposition of two or more van Genuchten-Mualem 

functions, was used next: 
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where w is a weighing factor and i refers to the ith pore system.   

Although the Ks value is commonly fixed to the measured value of the saturated hydraulic 

conductivity, some studies showed that this can introduce bias in the unsaturated hydraulic 

conductivity function when using the traditional VGM model. Schaap and Leij (1999) and 

Schaap et al. (2001) confirmed that fixing Ks  to a measured value of the saturated hydraulic 

conductivity led to a systematic overestimation of hydraulic conductivity at most pressure 

heads. Furthermore, Schaap et al. (2001) demonstrated that the hydraulic conductivity 

estimated by fitting Ks provided a much better description of the hydraulic conductivity at 

negative pressure heads than fixing it at the measured saturated hydraulic conductivity. In 

addition, Schaap and Leij (1999) found that the fitted value of the tortuosity L was often 

negative with an optimal value of -1. For these reasons all the parameters were initially included 

in the optimization. 

The goodness-of-fit was evaluated in terms of the Root Mean Square Error (RMSE), 

while the Akaike information criterion (AIC) (Hu, 1987) was used to choose between different 

hydraulic conductivity functions with different numbers of optimized parameters. The software 

also provides 95% confidence intervals to assess the uncertainty in parameter estimation.  
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2.2.3 Modeling Theory 

2.2.3.1 Water Flow and Root Water Uptake 

The HYDRUS-3D software (Šimůnek et al., 2008) was used to describe the 

morphological complexity of the green roof, which simultaneously includes multiple soil 

depths, both vegetated and non-vegetated areas, and drip irrigation. The green roof consists of 

four square elements, which are regularly repeated (Fig. 2.2). The hydrologic response of the 

entire GR can be well described as a superposition of the behavior of these four elements.  

HYDRUS-3D is a three-dimensional model for simulating the movement of water, heat, 

and multiple solutes in variably-saturated porous media. HYDRUS-3D numerically solves the 

Richards equation for multi-dimensional unsaturated flow: 

SzhK
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where S is a sink term [L3L-3T-1], defined as a volume of water removed from a unit volume of 

soil per unit of time due to plant water uptake. Feddes et al. (1978) defined S as: 

 (6) 

where a(h) is a dimensionless water stress response function that depends on the soil pressure 

head h and has a range of values between 0 and 1, and Sp is the potential root water uptake rate. 

Feddes et al. (1978) proposed a water stress response function, in which water uptake is 

assumed to be zero close to soil saturation (h1) and for pressure heads higher (in absolute 

values) than the wilting point (h5). Water uptake is assumed to be optimal between two specific 

pressure heads (h2, h3 or h4), which depend on a particular plant. At high potential transpiration 

rates (5 mm/day in the model simulation) stomata start to close at lower pressure heads (h3) (in 

absolute value) than at low potential transpiration rates (1 mm/d) (h4). Parameters of the stress 

response function for a majority of agricultural crops can be found in various databases (e.g., 

Taylor and Ashcroft, 1972; Wesseling et al., 1991). 

pShahS  )()(
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As explained above, GR plants were selected to suit Mediterranean climate conditions. 

Hanscom and Ting (1978) conducted a comprehensive experimental campaign on the behavior 

of succulent plants under water stress. They observed that during time periods with water and 

salt stress, plants closed their stomata and, as a consequence, little or no transpiration occurred 

even during day hours. Thus, the plants were capable of withstanding extended periods of 

drought. In the same study, well-watered plants exhibited normal C3-photosynthesys 

mechanisms with the maximum CO2 uptake occurring during the day. This behavior was 

reported also in Starry et al. (2014). Considering that the combined effects of irrigation and 

precipitation is limited the drought periods, it appears reasonable to assume that a normal C3-

mechanism occurred. For these reasons, parameters reported in Wesseling et al. (1991) for 

pasture were slightly modified in this study. In particular, h1 and h2 were set to -1 and -10 cm, 

respectively, to increase actual transpiration for near-saturated conditions. Parameters used in 

the water stress response function are reported in Table 2.1. 

 

Table 2.1 Feddes’ parameters for the water stress response function used in numerical simulations. 

Feddes’ parameters Pressure Head (cm) 

h1 -1 

h2 -10 

h3 -200 

h4 -800 

h5 -8000 

 

The local potential root water uptake Sp was calculated from the potential transpiration 

rate Tp. The Beer’s equation was first used to partition reference evapotranspiration, calculated 

using the Penman-Monteith equation (Allen et al., 1998), into potential transpiration and 

potential soil evaporation fluxes (e. g., Ritchie, 1972). The Leaf Area Index (LAI) is needed to 

partition evaporation and transpiration fluxes. In this study, a LAI value of 2.29 as reported by 
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Blanusa et al. (2013) for a sedum mix was used in vegetated areas. For a detailed explanation 

of evapotranspiration partitioning, please refer to Sutanto et al. (2012).  

As described above, the vegetated and non-vegetated GR elements alternate, while plants 

are located in the center of vegetated areas. HYDRUS-3D allows for the consideration of a 

spatially variable root distribution. A cylinder with a radius of 20 cm and a depth of 8 cm, in 

the center of the vegetated area, was used to model the root zone. The root density was assumed 

to be uniform inside of the cylinder and zero in the remaining part of the numerical domain. 

The total potential transpiration flux from a transport domain is in HYDRUS equal to potential 

transpiration Tp multiplied by the surface area associated with vegetation. This total potential 

transpiration flux is then distributed over the entire root zone for the computation of the actual 

root water uptake.  

 

2.2.3.2 Numerical Domain and Boundary Conditions 

The two main elements that form a GR are the soil substrate and the drainage layer. While 

the role of the substrate is well-known because it governs the dynamics of infiltration and 

evapotranspiration, the importance of the drainage layer for the hydraulic behavior of the GR 

is only partially described in the literature, especially with respect to the modeling of its 

function. The drainage layer is frequently modeled as an open reservoir (e.g., Locatelli et al., 

2014; Vesuviano et al., 2014). Once the drainage layer’s storage capacity is reached, the excess 

water is drained through holes into outflow drains. This guarantees a high permeability of the 

system and avoids the formation of ponding on top of the substrate layer even for intense 

precipitations. An open space of 1 cm separates the soil substrate and drainage holes (Fig. 2.1, 

Fig. 2.4). 
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Figure 2.4 Details of the drainage layer, where d is the thickness of the open space between drainage holes, and 

the geotextile supporting the GR substrate. 

 

Water accumulated in the drainage layer can return to the soil substrate only by 

evaporation and subsequent condensation on the geotextile at the bottom of the soil. In this 

small air-space, potential evaporation is expected to be limited due to microclimatic conditions, 

to which water in the drainage layer is exposed. The enclosed airspace is expected to be 

characterized by relatively high humidity, considering the combined effects of soil moisture 
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and the vicinity of the water table of the drainage layer. Moreover, radiation and air turbulence 

can be considered negligible in this enclosed airspace. The only factors that can thus produce 

evaporation are the air temperature and air humidity. However, the above considerations 

suggest that the effects of evaporation and micro-condensation can be neglected, especially at 

the field scale. This implies that variations of the water level in the drainage layer are limited 

and, consequently, the storage capacity of the drainage layer has only a limited effect on GR 

outflow. For these reasons, only the soil substrate is modeled in this study.  

 

Figure 2.5 Spatial distribution of considered boundary conditions. 

 

While precipitation and potential evaporation (different in vegetated and bare areas, see 

Table 2.2) were uniformly distributed on the soil surface, the drip irrigation was modeled in 

predefined surface points. Drippers can be idealized as point sources with a specified irrigation 

flux. However, if the irrigation flux is applied to a single boundary node and this flux exceeds 
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the infiltration capacity of this node, problems with numerical convergence can occur. To avoid 

such numerical problems, the irrigation flux should be distributed over a larger surface area, 

which should ideally represent the wetting radius. This area must be large enough to avoid 

surface ponding. In this study, the irrigation flux was distributed over a circular area with a 

radius of 5 cm, located in the center of each element. As a result, no ponding was observed 

during numerical simulations. 

The surface of the green roof was thus exposed to precipitation, evaporation, and 

irrigation. As a result, three different boundary conditions were specified at the surface of the 

modeled domain, and two boundary conditions at its bottom (Fig. 2.5). Table 2.2 summarizes 

various fluxes considered in various types of used boundary conditions. 

 

Table 2.2 Fluxes considered in different types of boundary conditions. 

BCs Flux 

Atmospheric 
Precipitation, potential evaporation (=ET0f †), and potential 

transpiration (=ET0(1-f)) 

Variable flux 1 Precipitation and potential evaporation 

Variable flux 2 Precipitation, irrigation, potential evaporation (=ET0 f), and  

potential transpiration (=ET0(1-f)) 

Seepage face Seepage 

Zero flux No flux 

† ET0 - reference evapotranspiration, f - distribution coefficient dependent on LAI (Ritchie, 1972) 

 

The “Atmospheric” boundary condition, which was assigned to areas under vegetation, 

can exist in three different states: (a) precipitation and/or potential evaporation fluxes, (b) a 

zero pressure head (full saturation) during ponding when both infiltration and surface runoff 

occurs, and (c) an equilibrium between the soil surface pressure head and the atmospheric water 

vapor pressure head when atmospheric evaporative demand cannot be met by the substrate. 

The threshold pressure head, which was set to -30,000 cm, divides the evaporation process 
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from the soil surface into two stages: (1) a constant rate stage when actual evaporation, equal 

to potential evaporation, is limited only by the supply of energy to the surface, and (2) the 

falling rate stage when water movement to the evaporating sites near the surface is controlled 

by subsurface soil moisture and the soil hydraulic properties and when actual evaporation, 

calculated as a result of the numerical solution of the Richards equation, is smaller than 

potential evaporation. 

A special option of HYDRUS-3D was used to treat the “Variable Flux” boundary 

conditions as the “Atmospheric” boundary conditions (i.e., with the limiting pressure heads 

described above). The “Variable Flux 1” boundary conditions included precipitation and 

potential evaporation and was assigned to bare soil areas. Since no vegetation was present in 

these areas, the reference evapotranspiration was not partitioned as for the “Atmospheric” 

boundary condition, but was fully assigned to potential evaporation. This approach shares some 

similarities with the “dual” crop coefficient introduced in FAO-56 (Allen et al., 1998): 

)(0 ecbc KKETET   (7) 

where ETc is the actual crop evapotranspiration, ETc is the reference evapotranspiration, Kcb is 

the basal crop coefficient, and Ke is the empirical soil evaporation coefficient, which accounts 

for multiple factors affecting soil evaporation, such as soil texture and available soil moisture. 

In case of bare soil, Kcb becomes zero since no vegetation is present and ETc is related only to 

the soil evaporation coefficient (Torres and Calera, 2010). In HYDRUS, soil evaporation is 

modeled using the two stage model with the threshold pressure head (described above), which 

directly accounts for factors affecting soil evaporation and which thus does not require the use 

of Ke. 

The “Variable Flux 2” boundary condition, which involved precipitation, irrigation, and 

evaporation, was applied to the circular areas with a radius of 5 cm where drippers were located.  

A seepage face boundary condition was specified at the bottom of the soil substrate under 

vegetated areas since the geotextile is exposed to the atmospheric pressure. A seepage face 

boundary acts as a zero pressure head boundary when the boundary node is saturated and as a 
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no-flux boundary when it is unsaturated. In non-vegetated elements, a zero flux boundary 

condition was applied, except in small circular areas, which represented drainage holes (Fig. 

2.1, Fig. 2.4). Three circular areas, each with a radius of 0.5 cm at the bottom of the non-

vegetated elements, were modeled as seepage faces. Considering the occurrence of high 

nonlinearities and fluxes around these drainage holes, finite element mesh was refined here (to 

0.5 cm) to guarantee a good accuracy of the numerical solution. “No flux” boundary conditions 

were used at the remaining boundaries. 

The initial pressure head was assumed to be constant in the entire domain and was set 

equal to -330 cm, which is usually assumed to be the field capacity. The numerical model is 

expected to only be sensitive to the initial condition during the first few simulated days. 

The three-dimensional simulated domain had a surface area of 1 m2, a maximum height 

of 8 cm, and a total volume of 0.06 m3. The domain was discretized into three-dimensional 

prismatic elements using the MESHGEN Plus tool of HYDRUS-3D. No mesh stretching was 

used and the finite element (FE) mesh was isotropic. The generated FE mesh had 10,709 nodes 

and 49,027 three-dimensional elements. The quality of the FE mesh was assessed by checking 

the mass balance error reported by HYDRUS-3D at the end of the simulation. Mass balance 

errors, which in this simulation were always below 1%, are generally considered acceptable at 

these low levels. 

 

2.2.4 Statistical Evaluation 

The Nash-Sutcliffe Efficiency (NSE) index (J. E. Nash and Sutcliffe, 1970) was used to 

evaluate the agreement between measured and modeled hydrographs: 
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where T is the total number of observations, Qi
obs is the ith measured value, Qi

mod is the ith 

simulated value, and Qmean
obs is the mean value of observed data. The NSE index ranges 

between -∞ and 1.0, is equal to 1 in case of a perfect agreement, and generally, values between 

0.0 and 1.0 are considered acceptable (Moriasi et al., 2007). The NSE index was used because 

it is often reported to be a valid indicator for evaluating the overall fit of a hydrograph (Sevat 

et al., 1991). 

 

2.3 Results and Discussion 

2.3.1 Soil Hydraulic Properties 

Soil hydraulic properties measured using the evaporation method are displayed in Figure 

2.6. The soil water retention curve is well described across the entire water content range (Fig. 

2.6). The retention data point close to log (h)=4 (h in cm) was obtained by using the air-entry 

pressure head of the ceramic. At the first inspection, the behavior of the retention curve appears 

not to be perfectly sigmoidal, which may indicate the presence of a secondary pore system 

(Durner, 1994). Measured points of the hydraulic conductivity function are concentrated in the 

dry range between 10 and 30% of the volumetric water content. This is common when the 

evaporation method is used to measure soil hydraulic properties of coarse textured soils such 

as the substrate of the green roof.  
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Figure 2.6 Measured and modeled values of the retention curve  (log10 (h)) (left) and the hydraulic conductivity 

functions K(log10 (h)) (center) and K( ) (right). The measured values are scatter points, the full and dashed lines 

are the fitted bimodal and unimodal functions, respectively. 

 

The measured data were imported into the HYPROP-FIT software to fit the analytical 

hydraulic property functions. The unimodal van Genuchten-Mualem model (van Genuchten, 

1980) was fitted first. The RMSE values for retention and conductivity functions were 0.02 

(cm3cm-3) and 0.13 (in log K, cm/day), respectively. An AIC of -874 was obtained when L was 

included in the optimization. The unimodal function introduced a high bias, especially in the 

hydraulic conductivity function. The bimodal Durner (1994) model (eqs. 3-4) was fitted next. 

The RMSE values for retention and conductivity functions were 0.005 (cm3cm-3) and 0.07 (in 

log K, cm/day), respectively. An AIC of -1298 was obtained when the value of L was fixed to 

0.5, as this is the value usually assumed in the literature for many soils. Figure 2.6 displays a 

comparison between measured data and their fit using the unimodal and bimodal retention 

functions. The estimated soil hydraulic parameters with their confidence intervals are reported 

in Table 2.3. 
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Table 2.3 Estimated soil hydraulic parameters and their confidence intervals (CIs) for the unimodal and bimodal 

hydraulic functions. 

Parameter Unimodal CIs Bimodal CIs 

Residual water content, r (-) 0 0.05 0.070 0.007 

Saturated water content, s (-) 0.551 0.01 0.562 0.003 

Air-entry pressure head index for the first pore system,  (1/cm) 0.13 0.03 0.843 0.07 

Pore-size distribution index for the first pore system, n1 (-) 1.25 0.06 1.24 0.04 

Saturated hydraulic conductivity, KS (cm/day) 4700 3500 12600 3700 

Air-entry pressure index for the secondary pore system 2 (1/cm) - - 0.01 0.001 

Pore-size distribution index for the secondary pore system n2 (-) - - 1.97 0.08 

Weight coefficient w2 (-) - - 0.422 0.01 

Tortuosity and pore connectivity parameter, L (-) 0.53 0.02 0.5 - 

 

It is evident that the bimodal function provides a more accurate description of the 

retention curve. A significant difference between unimodal and bimodal functions emerges in 

the dry range between log (h)= 4 and 6, where the unimodal function estimates lower water 

contents.  The unimodal function overestimates the water contents in the range between log 

(h)= 0 and 2 (h in cm). This is confirmed by the RMSE values, which are higher for the 

unimodal function, especially for the hydraulic conductivity function, for which the RMSE 

value is twice as large as for the bimodal function. The AIC value is higher (in absolute values) 

for the bimodal function, indicating that the model is better suited to describe the soil hydraulic 

properties of the evaluated soil than the unimodal model. Figure 2.6 displays measured data 

and the fitted multimodal retention and conductivity curves. 

The change in the slope of the retention curve near saturation is reflected in the hydraulic 

conductivity function. However, this decrease in the hydraulic conductivity is not highly 

pronounced. Significant differences between the two hydraulic conductivity models occur only 

near saturation and in the dry range. The unimodal model estimates significantly lower 

hydraulic conductivity values close to saturation than the bimodal model. While the fitted 
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saturated water contents s are almost the same for both models, significant differences exists 

in the residual water contents r. Fitted values of r are 0.0 and 0.062 for the unimodal and 

bimodal models, respectively. The value estimated by the unimodal model seems 

unrealistically low and it could indicate inaccuracy in the description of soil hydraulic 

properties in the dry range.  

Both models indicate a soil characterized by a very high permeability, which corresponds 

well with the textural composition of the GR substrate. This characteristic is well suited for GR 

substrates, which must guarantee fast drainage and avoid water ponding on the surface even 

during intense precipitations. The volumetric water contents corresponding to the field capacity 

and the wilting point were 21 and 10 % for the bimodal model and 21 and 8% for the unimodal 

model, respectively. 

The maximum correlation between optimized parameters for the bimodal model was 0.88 

for r and n1, a result that is quite common when only few points are measured in the dry range. 

However, only five correlation coefficients were higher than 0.8, indicating a generally well-

posed problem. On the other hand, the maximum correlation coefficient for the unimodal model 

was 0.97 for r and n, which indicates ill-posedness of the optimization problem. Narrow 

confidence intervals for parameters r, s, n1, 2, n2, and w2 indicate high confidence in their 

estimation. The fitted saturated hydraulic conductivity Ks and the parameter for the first pore 

system exhibited the largest uncertainties. As explained above, the evaporation method is not 

accurate for the determination of the hydraulic conductivity near saturation, and this fact is 

reflected in the estimation of Ks. To improve the accuracy in the estimation of the hydraulic 

conductivity near saturation, other methods should be used.  

The above discussed analysis suggests that the bimodal model could provide a slightly 

better description of the soil hydraulic properties than the unimodal model. 
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2.3.2 Model Validation 

Parameters obtained with the evaporation method were used in HYDRUS-3D to describe 

the soil hydraulic properties of the GR substrate. Figure 2.7 shows a comparison between 

measured and simulated outflows from the GR when using both unimodal and bimodal 

functions of soil hydraulic properties. 
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Figure 2.7 A comparison between measured and simulated outflows versus time and against each other (in the 

insert). The full and dashed lines in the insert are bisector and linear regression lines, respectively. 

 

The NSE indices for measured and simulated GR outflows were 0.74 and 0.8 when the 

unimodal and bimodal functions were used, respectively. These values indicate that both 

models were able to accurately describe the hydraulic behavior of the GR, while a higher 
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accuracy was achieved by the bimodal model. It is evident from Figure 2.7 that the unimodal 

model failed in reproducing small outflows after irrigations, which were observed at the 

beginning and at the end of September. The inserts of Figure 2.7 show simulated against 

measured GR outflows. The same plot also shows a bisector line, which indicates a perfect 

agreement between simulated and measured outflows, and a linear regression line. The good 

performance of the models are confirmed by the determination coefficient R2= 0.85 and 0.82 

of the linear regressions for the bimodal and unimodal models, respectively. The comparison 

between bisector and regression lines indicates that both models slightly overestimated the 

outflow.  

A further analysis of the fit between measured and simulated GR outflows was carried 

out by the analysis of the residuals, which is displayed in Figure 2.8 using a lag plot. The lag 

plot is constructed by comparing neighboring residuals with respect to time (i and i-1), where 

i is time with a measured value. A lag plot is useful for examining the dependency of the error 

terms. Any non-random pattern in a lag plot suggests that the variance is not random. No 

particular pattern emerges from the analysis of the lag plot, suggesting that the errors are 

random for both the unimodal and bimodal functions (Fig. 2.8). 
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Figure 2.8 A lag plot of the residuals between measure and simulated outflows. Results are for the HYDRUS 

model with the unimodal (left) and bimodal (right) functions of soil hydraulic properties. 

 

The bimodal model performs well during both dry and wet periods. In September, which 

is characterized by sparse precipitations, significant evapotranspiration, and daily irrigation, 

the model is able to reproduce both the fast response of the GR to precipitations and the small 

response to drip irrigation. This also indicates good accuracy in the estimation of daily 

fluctuations of soil water contents due to the combined effects of both evaporation and root 

water uptake. 

The overestimation of the peak flux values (Fig. 2.7) can be related to the combined 

effects of uncertainties in measured precipitations and estimated unsaturated hydraulic 

conductivity. During large precipitation events, a significant part of the domain near the 

geotextile (a seepage face) becomes saturated or near-saturated, and in such conditions the 

hydraulic conductivity plays a fundamental role in the infiltration process. Considering the 

uncertainty and a possible bias introduced by the evaporation method for values of the 

hydraulic conductivity near saturation, it is reasonable to assume that the errors in predicted 

peak fluxes are related to this uncertainty. A more accurate description of the hydraulic 
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conductivity close to saturation should help in improving the accuracy of the model. Moreover, 

some uncertainty also arises from the evaluation of the soil depth in non-vegetated areas. 

Although an average depth of 4 cm was assumed, a slightly higher value may also be realistic 

considering the structure of the GR (Fig. 2.1, Fig. 2.4), and this would slightly modify the 

hydraulic response of the simulated GR. 

It can be concluded that HYDRUS with both unimodal and bimodal functions of soil 

hydraulic properties can accurately describe the hydraulic behavior of the considered GR. The 

NSE indices are high and residuals are randomly distributed for both models, with a slightly 

better performance with the bimodal functions. Since the bimodal model has proven to be more 

accurate in reproducing the real behavior of the GR under small inflows, such as irrigation (Fig 

2.7), it was selected for further analysis. 

 

2.3.3 Hydrological Analysis of the Green Roof 

Cumulative inflow and outflow fluxes of the GR are reported in Figure 2.9. The GR, 

coupled with the reuse system, was able to reduce the runoff volume by 25% during the 

considered period. Considering that the volume of water stored in the GR substrate was only 

16 mm (3% of the total inflow), evapotranspiration was the main factor in reducing the runoff 

volume. The steep gradients in cumulative outflow (Fig. 2.9) indicate that the GR had a fast 

response to precipitations with a negligible delay in the hydrograph. This aspect is directly 

related to the limited thickness of the GR, which reduces the possible delay effect. On the other 

hand, cumulative outflow appeared flat when the irrigation was applied. This behavior is 

particularly evident in September when only negligible outflow fluxes were observed. At the 

beginning of October, cumulative outflow started to exhibit an increasing trend, caused by 

variations in actual evapotranspiration, as confirmed by the model.  Figure 2.10 shows 

simulated actual root water uptake and evaporation from vegetated areas. 
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Figure 2.9 A comparison between cumulative inflow and outflow from the GR, simulated by HYDRUS-3D. 

 

The first part of September (Fig. 2.10) was characterized by relatively high 

evapotranspiration, which lowered water contents in the soil substrate. As a consequence, only 

negligible outflow was produced by irrigation. The evapotranspiration rate dropped during the 

rain events between 2015-09-09 and 2015-09-11 due to the combined effects of high air 

humidity and low solar radiation. At the end of September, due to the irrigation and lower 

evapotranspiration rates, the soil water contents were higher and actual transpiration lower. 

This behavior is shown in detail in Figure 2.13. Between 2015-09-25 and 2015-09-30 the water 

content in vegetated areas ranged between 0.45 and 0.50, which corresponded to a pressure 

head range between -10 and -3 cm. In this pressure head range, plants transpiration is limited 

because of anaerobic conditions induced by high soil water contents (see the Feddes parameters 

in Table 2.3). Under these conditions, significant outflow was measured after irrigations (Fig. 
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2.3). This indicates that the model reproduced the dynamics of evapotranspiration in the GR 

with good accuracy, and that the parameters chosen for the water stress function are reasonable.  

 

Figure 2.10 Simulated actual root water uptake (top) and evaporation (bottom) from vegetated areas of the green 

roof. 

 

The comparison between pressure heads at the bottom of vegetated and non-vegetated areas 

of the GR helps in identifying the different hydraulic responses of these two sections (Fig. 
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2.11). Before irrigation started, the bottom pressure head in the non-vegetated section was 

higher (in absolute value) than in the vegetated section. This indicates that the non-vegetated 

section dried out more and faster than the vegetated section due to its very low thickness. As 

irrigation started, the pressure head quickly increased in the non-vegetated section, reaching 

the seepage condition and producing outflow. On the other hand, in the vegetated section, the 

pressure head only approached the seepage condition without generating outflow. This 

indicates that only the non-vegetated section of the GR was responsible for outflow after 

irrigation, and that the irrigation system could be optimized to avoid the formation of outflow 

after irrigations. 

 

Figure 2.11 Pressure heads at the bottom of the vegetated (black) and non-vegetated (red) sections of the GR 

simulated by HYDRUS-3D. The yellow rectangular area in the top figure is expanded in the bottom figure. The 

dashed line represents a seepage condition. 
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2.3.4 Hydrological Performance during Precipitation Events 

The hydrological response to single precipitation events is an important characteristic in 

the analysis of GRs and LIDs in general. The measures such as peak flow reduction Pred (%), 

the peak flow delay tdel (min), and the volume reduction Vred (%), provide information about 

the hydrological benefits of the LID system to the urban drainage system. Four distinct rainfall 

events of a significant magnitude, one in September and three in October, were identified for 

further analysis of the hydrological performance of the green roof for single precipitation 

events. Figure 2.12 shows precipitation, measured and modeled outflow fluxes for each 

precipitation event, as well as the total volume of the entire precipitation event Vprec (mm) and 

measures Pred  and Vred. 
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Figure 2.12 Precipitation (dark area), modeled (grey area) and measured (red line) outflow for four selected 

rainfall events in the analysis of the hydrological performance of the GR during single precipitation events. 

 

It is evident from Figure 2.12 that the model exhibited good accuracy in reproducing the 

GR hydraulic response also for single precipitation events. Modeled Vred and Pred are in 

agreement with information reported in the Model Validation section. The model tended to 
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overestimate the peak flow especially for precipitations characterized by an early peak (7 

October 2015 and 10 October 2015), while the accuracy was very high for precipitations with 

a delayed peak (9 September 2015 and 21 October 2015). Modeled volume reductions were 

sufficiently accurate. Only the analysis of the precipitation even on October 21 exhibited a 

significant deviation between the measured and modeled volume reductions. 

The hydrological response of the GR varied considerably for different precipitation 

events. Delay time tdel was on the order of 15 minutes in all events, indicating that the delay 

effect was limited due to the limited thickness of the substrate. The largest Pred  and Vred were 

observed for the event of October 7. In this event, the precipitation peak occurred at the 

beginning of the event, which was preceded by more than two days of a dry period since 

irrigation was stopped on October 5. Under these conditions, peak flow was partially attenuated 

by the relatively low initial water content of the soil substrate (Fig. 2.13). The effective volume 

reduction of the precipitation event  (Veff) was 13 mm. 

 

 

Figure 2.13 Simulated water contents in the vegetated section of the GR at a depth of 4 cm. 
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Although the precipitation event of October 10 was also characterized by an early peak, 

the measured peak reduction of 45% was lower than the one measured on October 7. This can 

be attributed to the higher water content at the beginning of the event. While on October 7 the 

initial water content was about 0.32, it was about 0.39 on October 10. The higher water content 

on October 10 resulted in a lower attenuation capacity of the substrate.  For the events of 

September 9 and 21, Pred was only 7%. In both events, peak flow was preceded by low intensity 

precipitation, which increased the soil water content and as a consequence lowered the capacity 

of the GR to attenuate the peak of precipitation. The effective volume reduction for the event 

(Veff) of October 21 was 20.4 mm, which was the highest among all of the other evaluated 

precipitation events. Before this event started, the water content of the substrate reached the 

lowest value of 0.2, significantly increasing the soil storage capacity. 

It can be concluded that the GR response to precipitation, during the analyzed period, 

was influenced primarily by the antecedent substrate moisture and secondarily by the 

precipitation pattern. Positively-skewed and leptokurtic precipitation distributions tended to 

exhibit the largest peak flow reduction, while negatively-skewed and platykurtic precipitation 

distributions were likely to cause smaller peak reductions. The volume retained by the GR was 

mainly determined by the initial substrate moisture and it was independent of the precipitation 

pattern. It must be emphasized that these conclusions are not general, but restricted to the 

specific investigated GR. The validated model could be used in a sensitivity analysis, in which, 

together with other factors (e.g., substrate moisture, slope, substrate depth, etc.), the effect of 

the precipitation pattern on the GR response can be investigated using synthetically designed 

storms (Carbone et al., 2015b).  

 

2.4 Conclusions 

The goal of this study was to provide a comprehensive numerical analysis of the 

hydrological behavior of a green roof. The widely used mechanistic model HYDRUS-3D was 
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used to model the GR installed at the University of Calabria’s hydrological responses to 

precipitation, evapotranspiration, and irrigation fluxes. The GR was characterized by a high 

degree of complexity; it included different soil depths, vegetated and non-vegetated areas, and 

non-uniformity in the boundary conditions.  

Moreover, considering the lack of studies with regards to the unsaturated hydraulic 

properties of soil substrates in GRs, the simplified evaporation method was used to determine 

both the soil water retention curve and the unsaturated hydraulic conductivity function of the 

soil used in the GR. The soil exhibited a bimodal pore structure, characterized by a weakly 

pronounced secondary pore system and a high hydraulic conductivity. The bimodal functions 

proposed by Durner (1994) best represented the hydraulic properties of the substrate. The 

unimodal van Genuchten-Mualem relationships were also tested, but their description of 

unsaturated hydraulic properties was less accurate, especially for the unsaturated hydraulic 

conductivity.  

Soil hydraulic parameters obtained from the evaporation method were then used in 

HYDRUS-3D to model the hydrological behavior of the green roof during a two month time 

period. Both the unimodal and bimodal functions of soil hydraulic properties were used in the 

analysis. The numerical simulation considered precipitation, evaporation, root water uptake, 

and irrigation. The Feddes model was used to represent the water stress response function of 

plants installed on the green roof. The Feddes’ parameters were adjusted by taking into account 

the behavior of succulent plants such as Carpobrotus Edulis under different soil water content 

regimes. The Nash-Sutcliffe efficiency index was used to compare the simulated and measured 

outflows. The NSE indices were 0.74 and 0.8 for the model predictions with the unimodal and 

bimodal functions, respectively, indicating a good accuracy. Both models slightly 

overestimated some outflow fluxes. The randomness of the residuals was confirmed by the 

absence of evident patterns in the lag plot. The main difference between the two models was 

in the description of the hydraulic behavior of the GR after irrigations. While the unimodal 

model failed in reproducing small measured outflows, the bimodal model gave a more accurate 
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description. This further confirmed the accuracy of this model. The validated model with 

bimodal functions was used to analyze the hydrological performance of the GR during the 

entire simulation period and to investigate its hydrological response to single precipitation 

events. About 25% of the total inflow volume was returned to the atmosphere by evaporation 

and transpiration. The analysis of simulated pressure heads revealed that the non-vegetated 

section of the GR was responsible for small outflow fluxes following irrigations. This suggests 

that the irrigation system could be further optimized. The analysis of the hydrological response 

of the GR to single precipitation events highlighted the importance of the initial soil moisture 

for the volume and peak flow reductions. Furthermore, the analysis revealed that positively-

skewed and leptokurtic precipitation distributions are likely to exhibit the largest peak flow 

reduction. The volume reduction is mainly influenced by the initial soil moisture and is 

insensitive to the precipitation pattern.   

The performance of the model can be improved by a better description of the soil 

hydraulic properties, especially near saturation, considering that during intense precipitation 

events significant portions of the domain become saturated. Moreover, uncertainties in rainfall 

measurements and in geometric characteristics of the GR can introduce a further bias to the 

simulated results. A sensitivity analysis followed by an uncertainty analysis can help in 

identifying the most sensitive parameters and address the source of uncertainty  (e.g., Brunetti 

et al., 2016a). Nevertheless, it can be concluded that the use of measured soil hydraulic 

properties with a mechanistic model can represent a valuable tool for the analysis of green roofs 

and other LIDs, and can boost the widespread adoption of such systems as a viable alternative 

to traditional urban drainage systems. 
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Chapter 3 A comprehensive numerical analysis of 

the hydraulic behavior of a permeable pavement 

3.1 Introduction 

Progressing urbanization, connected with the demographic growth of the last decades, 

has led to an increase in impervious surfaces in urban catchments at the expense of natural 

areas. This long-term process has resulted in the alteration of the natural hydrological cycle by 

reducing the infiltration and evaporation capacity of urban catchments, increasing surface 

runoff, and reducing groundwater recharge. While some studies highlighted a decrease of 

recharge as a result of an increase of impervious surfaces, other studies identified an increase 

in recharge due to the leakage of water from an urban infrastructure, such as sewer and water 

supply systems. The effect of urbanization on groundwater recharge is discussed in detail by 

Price (2011). 

Another important factor is that the frequency of extreme rainfall events, characterized 

by high intensity and short duration, is expected to increase in the near future as a consequence 

of climate change (Kundzewicz et al., 2006; Min et al., 2011). For example, a recent study of 

Wasko and Sharma (2015) identified a strong correlation between intense precipitation peaks 

and high temperatures. They concluded that the expected global warming could lead to an 

increase of short-duration floods. The correlation between atmospheric temperature and 

extreme rainfall intensities was also confirmed in other studies (e.g., Westra et al., 2014). This 

will be accompanied by a more frequent occurrence of flooding events in urban areas (Carbone 

et al., 2015b).  
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The traditional approach to urban drainage systems focuses on collecting stormwater in 

piped networks and transporting it off-site as quickly as possible. The increasing frequency of 

flooding events proves that a new design paradigm for drainage systems is needed. This 

approach must aim to restore the natural hydrological cycle of urban catchments by increasing 

their evapotranspiration and infiltration capacity. In recent years, Low Impact Development 

(LID), an innovative approach to land development, has gained increasing popularity. LID is a 

'green' approach for stormwater management that seeks to mimic the natural hydrology of a 

site using decentralized micro-scale control measures (Coffman, 2002). LID practices consist 

of bioretention cells, infiltration wells/trenches, stormwater wetlands, wet ponds, level 

spreaders, permeable pavements, swales, green roofs, vegetated filter/buffer strips, sand filters, 

smaller culverts, and water harvesting systems. Several studies have evaluated the benefits of 

LIDs. For example, Newcomer et al. (2014) used a numerical model to demonstrate the benefits 

of LIDs, in particular of an infiltration trench, on recharge and local groundwater resources for 

future climate scenarios. In another paper, Berardi et al. (2014) demonstrated how green roofs 

may contribute to the development of more sustainable buildings and cities. Environmental 

benefits included ecological preservation, mitigation of air and water pollution, enhancement 

of urban hydrology, a decrease of urban heat island effects, a reduction of energy consumption, 

etc. Furthermore, green roofs were able to significantly reduce storm-water runoff and retain 

rainfall volume with retention efficiencies ranging from 40% to 80% (Bengtsson et al., 2004); 

bioretention cells were shown to reduce average peak flows by at least 45% during a series of 

rainfall events in Maryland and North Carolina (Davis, 2008). Even though the results of 

available studies are encouraging, more research is needed to precisely assess the impact of 

LIDs on the hydrological cycle. 

Most impervious surfaces in urban catchments consists of roofs, roads, parking lots and 

road shoulders. The development of any large impervious surface commonly leads to multiple 

impacts on stream systems. These impacts include higher peak stream flows, which cause 

channel incision, bank erosion, and increased sediment transport (Trimble, 1997; Whipple et 
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al., 1981). Another consequence of these impervious surfaces is the reduction of infiltration, 

which lowers groundwater recharge (Rose and Peters, 2001) and potentially also stream base 

flow (DeWalle et al., 2000; Simmons and Reynolds, 1982). Permeable pavements represent 

one solution to the problem of increased stormwater runoff and decreased stream water quality. 

They  can consist of a surface concrete layer, a filter layer made of sand and other materials, a 

stony base, and sub-base layers. Permeable pavements offer great advantages in terms of runoff 

reduction (Collins et al., 2008), water retention, and water quality (Brattebo and Booth, 2003). 

In spite of many well-known benefits of permeable pavements and other LID practices, 

the transition to sustainable urban drainage systems is very slow. One of the key limiting factors 

in the widespread adoption of such systems is the lack of adequate analytical and modeling 

tools (Elliot and Trowsdale, 2007). The availability of an effective LID modeling software 

could encourage a wider adoption of LID principles. Although several stormwater models can 

be applied to the LID analysis (Elliot and Trowsdale, 2007), most of them do not incorporate 

accurate descriptions of hydrological processes involved, which leads to inaccurate predictions. 

Moreover, existing tools do not incorporate automatic parameter optimization techniques and 

sensitivity analysis routines, which have proven to be fundamental when the model includes 

multiple parameters. In recent years, researchers have focused their attention on applying and 

developing physically-based models for the LID analysis (Carbone et al., 2015a), however 

more research is still needed in this direction.  

For example, the HYDRUS software suite (Šimůnek et al., 2008) has been widely used 

in the literature for the description of the hydraulic behavior of green roofs (Hilten et al., 2008; 

Li and Babcock, 2015; Newcomer et al., 2014; Palla et al., 2009), with excellent agreement 

between numerical simulations and experimental data. Newcomer et al. (2014) investigated the 

effects of LIDs on recharge. In their study, the HYDRUS-2D software was used to simulate 

flow from an infiltration trench and an irrigated lawn installed at the San Francisco State 

University. While the model was calibrated by comparing the simulated and measured 

recharge, only few details were given about the calibration procedure. The calibrated model 

was then used to simulate the behavior of LIDs for future precipitation scenarios. Hilten et al. 
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(2008) used HYDRUS-1D to study the effectiveness of green roofs in mitigating stormwater. 

Simulations were run using HYDRUS-1D for a 24-h design storm to determine peak flow, 

retention, and detention time of runoff.  Li and Babcock (2015) used HYDRUS-2D to model 

the hydrologic response of a pilot green roof system. The root-mean-square error deviation 

(RMSD) between the modeled water contents and field measurements ranged between 0.38 

and 1.74%. This suggests that the use of mechanistic models, such as HYDRUS, represents 

one of the most valuable alternatives to empirical and conceptual models for the LID analysis. 

Among all LID practices, permeable pavements are the practices that are most lacking 

modelling tools capable of describing their hydraulic behavior. The heterogeneity of materials 

that compose a permeable pavement, together with the high infiltration rates (Brattebo and 

Booth, 2003), which may lead to preferential flow and especially in the base and sub-base 

layers, pose complex problems in the numerical modeling of these systems. Very few modeling 

tools exist in the literature for permeable pavements. One of them is included in the Storm 

Water Management Model (SWMM) (Gironás et al., 2010). However, results obtained by 

SWMM have proven to be inaccurate, especially in the description of the effects of base and 

sub-base layers on the infiltration processes (Zhang and Guo, 2015). HYDRUS has also been 

used for the description of variably-saturated flow in permeable pavements. Illgen et al. (2007) 

used HYDRUS-2D for the numerical analysis of a permeable pavement and calibrated the 

model against experimental data collected at a laboratory test facility. The calibrated model 

was then used to simulate different scenarios not investigated during the laboratory campaign. 

The Illgen et al. (2007) study provided only limited details about the calibration of soil 

hydraulic parameters and their uncertainty and sensitivity. The occurrence of preferential flow 

in the permeable pavement was also not investigated. Moreover, the model was used to 

simulate a laboratory test facility, the behavior of which may differ from a field scale 

experimental facility. On the other hand, Carbone et al. (2014) used HYDRUS-1D to model a 

permeable pavement at the field scale. The HYDRUS-1D model was calibrated against four 

different rainfall events with optimal results. In this study, the permeable pavement was 
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modeled as a single homogeneous layer and the differences between hydraulic properties of 

different layers were neglected. Furthermore, the numerical simulations were event-based. In 

both studies, calibration of soil hydraulic properties was carried out manually without taking 

advantage of more recent global optimization algorithms. This indicates that research in this 

direction is limited, with only inconclusive results that need to be further investigated.  

The lack of studies that provide a comprehensive description of the hydraulic behavior 

of a permeable pavement at the field scale and that propose a general methodology for the 

estimation of its hydraulic parameters suggests that research is particularly needed in the 

development and identification of accurate modeling tools for the analysis of LID practices, 

especially for permeable pavements. The aim of this study is to investigate the suitability of 

the HYDRUS mechanistic model to correctly describe unsaturated flow in typical permeable 

pavement, installed at the experimental site of the University of Calabria. Multiple uniform and 

nonequilibrium flow models included in HYDRUS-1D, such as single- and dual-porosity 

models, are used to describe the hydraulic behavior of the permeable pavement. The problem 

is addressed in the following way. First, a Global Sensitivity Analysis (GSA) is carried out to 

prioritize hydraulic parameters and identify those that are non-influential. Results of the GSA, 

combined with a Monte Carlo filtering approach, are used to investigate the parameter space 

and identify behavioral regions. These regions are then used in the calibration process 

conducted with the Particle Swarm Optimization (PSO) algorithm. The use of PSO for the 

determination of unsaturated hydraulic properties represents a new important application of 

this method.  Finally, the calibrated model is validated on an independent set of measurements. 
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3.2 Materials and Methods 

3.2.1 Site Description 

The University of Calabria is located in the south of Italy, in the vicinity of Cosenza 

(39°18′ N 16°15′ E). The climate is Mediterranean with a mean annual temperature of 15.5 °C 

and an average annual precipitation of 881.2 mm. The permeable pavement is part of the 

“Urban Hydraulic Park,” which also includes an extensive green roof, a bioretention system, 

and a sedimentation tank connected with a treatment unit. The permeable pavement has an area 

of 154 m2, an average slope of 2%, and a total depth of the profile of 0.98 m. Figure 3.1 shows 

a schematic of the permeable pavement, consisting of 5 layers. 

 

Figure 3.1 A schematic of the permeable pavement. 

The surface wear layer consists of porous concrete blocks characterized by high 

permeability. Base, sub-base and bedding layers were constructed by following the suggestions 

of the Interlocking Concrete Pavement Institute (ICPI), which recommends certain ASTM 
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stone gradations. The ASTM numbers and corresponding gradations can be found in ASTM D 

448, Standard Classification for Sizes of Aggregate for Road and Bridge Construction. The 

ASTM No57, used for the base layer, is characterized by a porosity of about 30-35%.  The 

ASTM No2 is used in the sub-base layer for its stability and a high volumetric porosity of about 

40%. The ASTM No8 is used for the bedding layer and the protection layer and has a porosity 

of about 20% of volume. The bedding layer is composed of a mixture of sand, glass sand, and 

zeolite to improve the pollutant removal efficiency of the permeable pavement for typical 

contaminants of stormwater runoff. A high permeability geotextile with a fiber area weight of 

60 g/m2 is placed at the interface between the bedding layer and the base layer to prevent sand 

from migrating into the bottom layers. An impervious membrane is placed at the bottom of the 

profile to prevent water from percolating into deeper horizons. The protection layer which is 

composed of coarse sand is placed between the sub-base layer and the impervious membrane. 

The baseflow is collected in a horizontal drain, which consists of a perforated PVC pipe, and 

is conducted to a manhole for quantity and quality measurements. 

A weather station located directly at the site measures precipitation, wind velocity and 

direction, air humidity, air temperature, atmospheric pressure, and global solar radiation. Rain 

data are measured by a tipping bucket rain gauge with a resolution of 0.254 mm and an 

acquisition frequency of one minute. Climatic data are acquired with a frequency of five 

minutes. Data are processed and stored in the SQL database. 

Two flow meters, composed of a PVC pipe with a sharp-crested weir and a pressure 

transducer, measure baseflow and runoff from the permeable pavement. The pressure 

transducer (Ge Druck PTX1830) measures the water level inside the PVC pipe and has a range 

of measurement of 75 cm with an accuracy of 0.1 % of the full scale. The pressure transducers 

were calibrated in the laboratory by using a hydrostatic water column, linking the electric 

current intensity with the water level inside the column. The exponential head-discharge 

equations for the two PVC flow meters were obtained by fitting the experimental data with a 

coefficient of determination R2=0.999 for both devices. Runoff and baseflow data were 
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acquired with a time resolution of 1 minute and stored in the SQL database. No measurements 

of pressure heads or volumetric water contents inside the pavement were taken. 

Two month-long data sets were selected for further analysis (Fig. 3.2). The first data set, 

which started on 2014-01-15 and ended on 2014-02-15, was used for parameter optimization 

and sensitivity analysis. Total precipitation and total potential evapotranspiration for the first 

data set were 274 mm and 43 mm, respectively. The second data set, which started on 2014-

03-01 and ended on 2014-03-31, was used for model validation. Total precipitation and total 

potential evapotranspiration for the second data set were 175 mm and 81 mm, respectively. 

The second data set was selected so that it had significantly different meteorological data than 

during the first period. The optimization set is characterized by multiple rain events with few 

dry periods. The validation set has fewer rain events, which are concentrated at the beginning 

and end of the time period and separated by a relatively long dry period between. Surface runoff 

was not observed during these time periods. 
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Figure 3.2 Precipitation and subsurface flow during the optimization (top) and validation (bottom) time periods. 

 

Potential evaporation was calculated using the Penman-Monteith equation (Allen et al., 

1998). The permeable pavement was installed in 2013 and has been constantly exposed to 

atmospheric conditions and traffic since then that has altered the surface roughness and color. 
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For these reasons, an albedo of 0.25 was used as suggested by Levinson and Akbari (2002) for 

weathered gray cement. 

3.2.2 Theory 

Water flow simulations were conducted using the HYDRUS-1D software (Šimůnek et 

al., 2008). HYDRUS-1D is a one-dimensional finite element model for simulating the 

movement of water, heat, and multiple solutes in variably-saturated porous media. HYDRUS-

1D implements multiple uniform (single-porosity) and nonequilibrium (dual-porosity and dual-

permeability) water flow models (Šimůnek and van Genuchten, 2008). In this study, two 

different conceptual models were used to represent flow in the permeable pavement (Table 

3.1). 

Table 3.1 Conceptual models representing water flow in the permeable pavement. 

Soil Layer Scenario I Scenario II 

Wear Single Porosity Single Porosity 

Bedding Single Porosity Single Porosity 

Base Single Porosity Dual Porosity – MIM 

Sub-base Single Porosity Dual Porosity – MIM 

Protection Single Porosity Single Porosity 

 

Scenario I assumed that water flow in all five soil layers of the permeable pavement can 

be described using the classical single-porosity approach (SPM). Unsaturated water flow is 

then described using the one-dimensional Richards equation: 
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where   is the volumetric water content [-], h is the soil water pressure head [L], K(h) is the 

unsaturated hydraulic conductivity [LT-1], t is time [T], and z is the soil depth [L]. The soil 
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hydraulic properties are described by the van Genuchten – Mualem relation (van Genuchten, 

1980): 
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where θr [-] is the residual water content, θs [-] is the saturated water content, Ks [LT-1] is the 

saturated hydraulic conductivity, n is a pore-size distribution index [-], α is a parameter related 

to the inverse of the air-entry pressure [L-1], L indicates the tortuosity and is usually assumed 

to be 0.5 for many soils, and ϴ is the effective saturation [-]. In order to simplify the model (to 

lower the number of unknown parameters), the residual water content of all layers was fixed. 

In particular, the residual water content for the wear and bedding layers was assumed to be 

0.045 and 0.03, respectively, while the residual water content for both the base and sub-base 

layers was assumed to be 0.0, considering that they were composed of crushed stones. 

Furthermore, considering that the bedding layer and the protection layer had the same stone 

gradation, ASTM No8, the same set of parameters was used for both. Despite of all these 

considerations, this scenario still involves 16 parameters (θs, α, n, and Ks for 4 soil layers). 

Scenario II assumes a single-porosity model for the wear layer, the bedding layer, and 

the protection layer, and a dual-porosity model for the base and sub-base layers. This 

configuration was selected in order to consider the occurrence of preferential flow in the coarse 

layers of the pavement. 
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The base and sub-base layers are composed of crushed stones, with particle size 

diameters ranging from 2.5 to 37 mm in the base layer and from 20 to 75 mm in the sub-base 

layer. Crushed stones were washed before installation in order to remove fine particles. This 

narrow gradation provides a high volume of voids and increases the water storage and 

infiltration capacities of these two layers. From a physical point of view, the structure of the 

base and sub-base materials closely resembles fractured aquifers (Barenblatt et al., 1960). 

Fractured aquifers are represented by a blocky matrix system intercepted by fractures. Open 

and well-connected fractures represent high permeability pathways that are many orders of 

magnitude more permeable than the porous rock matrix. At the same time, one of the 

characteristics of a fractured aquifer is that the fractures occupy a much smaller volume than 

the pores of the rock matrix. Traditionally, fractured porous media are thus represented by two 

separate flow domains: the high permeability (mobile) domain, the network of connected 

fractures characterized by advective flow, and the low permeability (immobile) domain, 

dominated by diffusion. The rock matrix also provides storage capacity because of its 

significantly larger volume than the fracture system. Typical breakthrough curves for a 

fractured aquifer are characterized by early breakthrough and long tailing (Geiger et al., 2010). 

This is due to the fact that the matrix has a delayed response to pressure head changes that 

occur in the surrounding fractures. The resulting pressure difference induces matrix-fracture 

interflow. This flow takes place after initial fracture flow and before the matrix and fracture 

pressures equilibrate (Bai et al., 1994). Several studies have demonstrated the long tailing from 

permeable pavements in discharge hydrographs (e.g., Brattebo and Booth, 2003; Fassman and 

Blackbourn, 2010) and attributed this effect to the storage and flow through the base and sub-

base layers.  

The classical approach to model water flow in fractured porous media is the so-called 

“dual-porosity” or "mobile-immobile water" (MIM) approach (Barenblatt et al., 1960; van 

Genuchten and Wierenga, 1976; Warren and Root, 1963). This approach assumes that flow 

occurs only in the mobile fracture domain, for which an effective permeability must be known, 
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while water in the matrix domain is immobile. Both domains are connected by a simple first-

order transfer function, which accounts for the exchange of fluid across the boundary of the 

two domains. 

In the dual-porosity approach, the liquid phase is divided into two domains: 

mf  
 (12) 

where subscript f refers to the (mobile) fracture system, and subscript m refers to the immobile 

matrix domain. The dual-porosity water flow formulation is based on a modified Richards 

equation for flow in fractures and a mass balance equation for moisture dynamics in the matrix: 
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where Γw  is the mass transfer between two domains, which is assumed to be proportional to 

the difference in effective saturations of the two regions (Šimůnek and van Genuchten, 2008; 

Simunek et al., 2003): 
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where ω is a first-order coefficient [T-1]. Compared to assuming a pressure head based driving 

force for the mass transfer, the dual-porosity model based on (7) requires significantly less 

parameters since one does not need to know the retention function (and corresponding 

parameters) for the matrix region explicitly, but only its residual and saturated water contents 

(Simunek et al., 2003). The residual water content for the mobile domain of both the base and 

sub-base layers is assumed to be 0.0 (Simunek et al., 2003). The tortuosity factor, L, is again 

assumed to be 0.5 for all layers. Scenario II thus includes 20 parameters (additionally also ω 

and θs of the immobile domain for the base and subbase layers). 
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3.2.2.1 Numerical Domain and Boundary Conditions 

The numerical domain representing the stratigraphy of the permeable pavement was 

divided in 5 layers. The bedding layer and the protection layer had the same properties since 

they were constructed using the same ASTM No8 stone gradation. A relatively fine, finite 

element mesh with a constant element size of 0.5 cm was used in order to minimize mass 

balance errors and avoid non-convergent runs during sensitivity analysis and parameter 

optimization. An atmospheric boundary condition was applied at the pavement surface using 

(a) precipitation and potential evaporation fluxes, (b) a prescribed zero pressure head 

(saturation) during ponding, and (c) equilibrium between the pavement surface water content 

and atmospheric water vapor when atmospheric evaporative demand could not be met by the 

wear layer. A seepage face boundary condition was specified at the bottom of the protection 

layer. A seepage face boundary acts as a zero pressure head boundary when the bottom 

boundary node is saturated and as a no-flux boundary when it is unsaturated. The initial 

conditions were specified in terms of the soil water pressure head and were set to linearly 

increase with depth, from -90 cm at the top of the flow domain (z = 0) to -0.5 cm at the bottom 

(z = -98). The surface layers are assumed to be drier than the bottom layers since they are 

directly exposed to evaporation.  

 

3.2.2.2 Objective Function 

The Nash-Sutcliffe Efficiency (NSE) index (J E Nash and Sutcliffe, 1970) is used for 

evaluating the agreement between hydrographs: 
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where Qi
obs is the ith measured value, Qi

mod is the ith simulated value, and Qmean
obs is the 

mean value of observed data. The NSE coefficient ranges between -∞ and 1.0, is equal to 1 in 

case of a perfect agreement, and, generally, values between 0.0 and 1.0 are considered 

acceptable (Moriasi et al., 2007). The NSE has been used because it is often reported to be the 

best measure for evaluating the overall fit of a hydrograph (Sevat et al., 1991). 

 

3.2.2.3 Global Sensitivity Analysis 

Most existing environmental models include a high number of parameters. This aspect 

creates a major problem in their application, as the parameter estimation becomes a high-

dimensional and mostly nonlinear problem. To solve this problem, several optimization 

algorithms were developed (Beven and Binley, 1992; Duan et al., 1992; Poli et al., 2007; Vrugt 

et al., 2003). Moreover, environmental optimization studies are often affected by the 

equifinality problem (Beven, 2006) when multiple sets of parameters can produce similar 

results. This problem is exacerbated when the number of parameters is significant and only 

limited information about their interactions and their effects on the output is available. 

However, it is not always necessary to include all model parameters in the optimization process 

because some of them could be measured or estimated, and some may have negligible effects 

on the output of the model for a particular application. A sensitivity analysis (SA) can identify 

the most influential parameters and their interactions and how these parameters affect the 

output (Saltelli et al., 2005).  

The principal steps of a SA are: Factors Prioritization (FP), Factors Fixing (FF), Variance 

Cutting (VC), and Factors Mapping (FM) (Saltelli and Tarantola, 2004). The aim of FP is to 

identify factors that one should measure in order to obtain the greatest reduction in the 

uncertainty of the output. Conversely, FF identifies factors that are non-influential. By applying 

these two settings, the modeler is able to reduce the dimension of the optimization problem and 

have a complete appreciation of the parameters’ influences and interactions. 
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Most SAs performed in the literature of environmental sciences are the so-called 'one-at-

a-time' (OAT) sensitivity analyses, performed by changing the value of parameters one-at-a-

time while keeping the others constant (Cheviron and Coquet, 2009; Houska et al., 2013; 

Rezaei et al., 2015). However, when the model includes interactions between parameters, 

results of the OAT analysis are inaccurate because parameter interactions can be identified only 

by changing multiple parameters simultaneously. For this reason, when the property of a model 

is a priori unknown, a Global Sensitivity Analysis (GSA) is always preferred (Saltelli and 

Annoni, 2010). Practitioners call this analysis a model-free setting.  

One of the most widespread algorithms for the GSA is the variance-based Sobol’ method 

(Sobol', 2001). Variance-based methods aim to quantify the amount of variance that each 

parameter contributes to the unconditional variance of the model output. For the Sobol’ 

method, these amounts are represented by Sobol’s sensitivity indices (SI’s). These indices give 

quantitative information about the variance associated with a single parameter or related to 

interactions of multiple parameters. For a more complete explanation about the Sobol’ method, 

please refer to Sobol' (2001).  

Sobol’s sensitivity indices are expressed as follows: 
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where Vi is the variance associated with the ith parameter and V is the total variance. The 

first-order index, Si, is denoted in the literature as the “main effect”. This index can be described 

as the fraction of the model output variance that would disappear when parameter Xi is fixed. 

When the model is additive, i.e., when it does not include interactions between input factors, 
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then the first-order index is sufficient for decomposing the model’s variance. For additive 

models, the following relation is valid: 
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Even when the model includes interactions between parameters, the first-order index 

remains the measure to use for FP (Saltelli and Tarantola, 2004). On the other hand, the total 

effect index, ST, gives information about a non-additive part of the model. A significant 

difference between ST and Si indicates an important role of an interaction for the parameter 

considered. Essentially, the total effect index, STi, gives a fraction of the total variance that 

would be left when all factors but Xi were fixed. STi = 0 is a condition necessary and sufficient 

for Xi to be non-influential. Therefore, Xi can be fixed at any value within its range of 

uncertainty without affecting the output unconditional variance. The total effect is the measure 

to use for FF. 

Considering that environmental models are generally highly nonlinear, it is almost 

impossible to calculate the variances using analytical integrals. Hence, Monte Carlo integrals 

are often applied, which are based on sampling the parameter space in q samples. Obviously, 

the accuracy in the estimation of integrals becomes more accurate as the number of samples 

increases, which also increases the computational cost of the SA. For an accurate description 

of the calculation of Sobol’s indices please refer to Saltelli (2010). 

Basically, the calculation of Sobol’s indices requires q∙(2p+1) model evaluations, where 

p is the number of input factors. However, Saltelli (2002) introduced a method that requires 

only q∙(p+2) model evaluations. To sample the parameters' space we used Sobol’s quasi-

random sampling technique (Sobol', 2001). 

One of the most important aspects of the GSA is the choice of the number of samples, q. 

An increase in the number of samples will increase the accuracy of Sobol’s indices. However, 

a high q implies a higher number of model evaluations. The number of samples is case-

sensitive; it depends on the structure of the model and on the type of simulations performed. A 

convergence analysis of Sobol’s indices is the recommended procedure for estimating q. 
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However, this approach is time consuming because it needs to repeat the GSA several times 

by increasing the number of samples until the variability of indices between two consecutive 

analyses is below a threshold value for all parameters. 

In a recent study, Nossent et al. (2011) gave a comprehensive description of the influence 

of q on the accuracy of a GSA for an environmental model that included 26 parameters. Nossent 

et al. (2011) reported that for most parameters, less than 5000 samples were sufficient to reach 

a stable solution. An extensive review of the GSA in hydrological models is reported in Song 

et al. (2015). Here, we report the number of model runs for each GSA performed, together with 

the type of GSA, the number of parameters of the model, and the objective function used. For 

the GSA based on Sobol’s method, the number of model runs rarely exceeds 100,000. Due to 

considerations discussed above, a value of q=5000 was chosen in our study. Table 3.2 

summarizes the characteristics of the GSA for the two scenarios considered. 

Table 3.2 Number of parameters and HYDRUS-1D runs for both scenarios. 

Scenario Number of parameters Model runs 

I 16 90000 

II 20 110000 

 

In order to assess the accuracy of estimations of the sensitivity indices, the bootstrap 

confidence intervals (BCIs) (Efron and Tibshirani, 1986) were estimated. The basic idea of the 

bootstrapping is that, in absence of any other information about the distribution, the sample 

contains all the available information about the underlying distribution. In our particular case, 

we were interested in computing the uncertainty of estimated sensitivity indices. However, 

since their distribution is unknown it is not possible to compute the confidence intervals 

analytically. The rationale of the bootstrap method is to replace the unknown distribution with 

its empirical distribution and to compute the sensitivity indices using a Monte Carlo simulation 

approach where samples are generated by resampling the original sample used for the 
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sensitivity analysis. In our case, the q samples used for the model evaluation were sampled 

1000 times with replacement, whereby Sobol’s indices were calculated for each resampling. In 

this way, 95% confidence intervals are constructed by using the percentile method and the 

moment method (Archer et al., 1997). 

The sensitivity analysis was conducted using the programming language Python and in 

particular, the Sensitivity Analysis Library (SALib) (Usher et al., 2015). An elaborated script 

overwrites the input file containing the parameters for different materials at each iteration. The 

script then executes HYDRUS-1D, which usually runs less than one second. If the HYDRUS-

1D run is not finished after 15 seconds, it is considered non-convergent; the script then 

terminates the process and attributes a large negative value to the objective function. The same 

negative value is attributed when the length of the modeled hydrograph is shorter than one 

month, which indicates that the run was unsuccessful. Values of the objective function are 

stored in a one-dimensional array for the subsequent computation of sensitivity indices. Table 

3.3 reports the initial range of all evaluated parameters in the two scenarios. The initial 

conditions were not included in the GSA because their effects on the hydrograph for a month-

long simulation are assumed to be limited to only the first few days. 

 

 

 

Table 3.3 Ranges of parameters used in the GSA for both scenarios. 

 Scenario I Scenario II 

Parameter Initial range 

θs1 [-] 0.2-0.5 0.2-0.5 

a1 [1/cm] 0.001-0.3 0.001-0.3 

n1 [-] 1.1-4.5 1.1-4.5 

Ks1 [cm/min] 1.0-20.0 1.0-20.0 

θs2 [-] 0.2-0.5 0.2-0.5 

a2 [1/cm] 0.001-0.3 0.001-0.3 
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n2 [-] 1.1-4.5 1.1-4.5 

Ks2 [cm/min] 1.0-20.0 1.0-20.0 

θs3 [-] 0.01-0.40 0.001-0.1 

a3 [1/cm] 0.001-0.3 0.001-0.3 

n3 [-] 1.1-4.5 1.1-4.5 

Ks3 [cm/min] 1.0-100.0 1.0-100.0 

θs,im3 [-] - 0.15-0.4 

ω3 [1/min] - 0.00001-0.009 

θs4 [-] 0.01-0.4 0.001-0.1 

a4 [1/cm] 0.001-0.3 0.001-0.3 

n4 [-] 1.1-4.5 1.1-4.5 

Ks4 [cm/min] 1.0-100.0 1.0-100.0 

θs,im4 [-] - 0.15-0.4 

ω4 [1/min] - 0.00001-0.009 

 

3.2.2.4 Monte Carlo Filtering 

In the context of an optimization framework, results of the GSA can be used to extract 

useful information about the problem structure. The GSA preliminarily identifies the subset of 

input factors that drive most of the variation in the model output; to establish their optimal 

values, these sensitive parameters can be further investigated by using a Monte Carlo filtering 

approach. Filtering techniques are used to explore the parameter space pertaining to the single 

or multiple optima. This is particularly relevant when dealing with mechanistic models that 

almost always contain ill-defined parameters and are thus referred to as over-parameterized 

models (Draper and Smith, 1981). 

The Monte Carlo filtering is often coupled with the regionalized sensitivity analysis 

(RSA) (Hornberger and Spear, 1981). The RSA generally requires two tasks: (a) a qualitative 

description of the system behavior, and (b) a binary classification of the model output that 
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divides solutions into two behavioral and non-behavioral groups. However, the main drawback 

of the RSA is that no higher-order analysis is performed and thus interactions between 

parameters are not investigated. In the GSA, a complete description of main effects and 

interactions is given. The GSA has been combined effectively with the GLUE analysis (Beven 

and Binley, 1992) in the context of the parameter optimization (Ratto et al., 2001). In Ratto et 

al. (2001), the sample generated for the GLUE analysis is also used for the computation of 

variance-based sensitivity indices. 

In this study, the GSA is coupled with a basic Monte Carlo filtering. The aim of this step 

is to identify behavioral regions in the parameter space and to reduce the uncertainty in the 

following parameter estimation step by using the same sample and runs of the GSA. For each 

parameter set used in the GSA, a value of the objective function is calculated. Potential 

solutions are divided into two groups: behavioral, solutions with NSE >0.0, and non-

behavioral, solutions with NSE ≤ 0.0. Two different types of analysis were performed on the 

filtered sample: a) Kernel density estimation and b) correlation analysis. 

3.2.2.5 Kernel Density Estimation (KDE) 

The KDE plots have been used to identify regions with a high density of behavioral 

solutions. The KDE is a non-parametric estimator of the probability density function (PDF) of 

a random variable (Silverman, 1981). A kernel is a special type of PDF with an added property 

that it must be even. The KDE bi-variate plots have been used because they give a smooth 

qualitative representation of PDFs in a bi-dimensional space. The uni-variate KDE has also 

been computed for each parameter. The KDE plots have been calculated using a Gaussian 

kernel and the Scott procedure for the determination of a bandwidth (Scott, 1992). 
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3.2.2.6 Correlation Analysis 

The correlation analysis helps to identify particular interaction structures between 

parameters. Detecting high values of correlation coefficients suggests a way to reduce the input 

factor space. In particular, when the coefficient is positive, the couple of parameters acts in the 

model as a quotient/difference, and when it is negative, the parameters act as a product/sum.  

 

3.2.2.7 Particle Swarm Optimization 

Inverse modeling is a procedure to estimate unknown parameters of the model from 

experimental data. One of the major reasons to apply inverse modeling is to estimate 

parameters that cannot be directly measured for various reasons. Numerous applications of 

inverse modeling for the estimation of soil hydraulic properties exist in the literature 

(Abbaspour et al., 2004; Hopmans et al., 2002; Vrugt et al., 2008, 2004). The gradient methods 

(Marquardt, 1963) have been used  most widely among hydrologists and soil scientists. 

However, these methods are sensitive to the initial values of optimized parameters, and the 

algorithm often remains trapped in local minima, especially when the response surface exhibits 

a multimodal behavior. These considerations inspired researchers to develop and use global 

optimization techniques such as the annealing-simplex method (Pan and Wu, 1998), genetic 

algorithms (Ines and Droogers, 2002), shuffled complex methods (Vrugt et al., 2003), and ant-

colony optimization (Abbaspour et al., 2001), among many others. 

In this paper, a global search method based on Particle Swarm Optimization (PSO) 

(Kennedy and Eberhart, 1995) is used. PSO has been used in multiple studies involving inverse 

modeling with complex environmental models (Gill et al., 2006; Jiang et al., 2010; Zambrano-
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Bigiarini and Rojas, 2013). However, so far it has not been used for the determination of 

unsaturated hydraulic properties. PSO is a relatively new algorithm for evolutionary 

computation methodology, but its performance has proven to be comparable to various other, 

more established methodologies (Kennedy and Spears, 1998; Shi and Eberhart, 1999). One of 

the main advantages of PSO is the easiness of its implementation (Liang et al., 2006). PSO is 

characterized by an algorithm based on a social-psychological metaphor involving individuals 

that interact with each other in a social world. PSO was inspired by the behavior of schools of 

fish or flocks of birds as they seek food or other resources. In PSO, collections of “particles” 

explore the search space, looking for a global or near-global optimum. Particles in PSO keep 

track of their best positions thus far obtained in the search space and the best positions obtained 

by their neighboring particles. The global best position is what all particles tend to follow. A 

detailed description of the PSO algorithm is given in Shi and Eberhart (1998). 

The most important parameters in the PSO are: c1, c2, and w. c1 and c2 are constant 

parameters known as the cognitive and social parameters, respectively, and w is the inertia-

weight, which plays a key role in the optimization process by providing balance between 

exploration and exploitation. A large w facilitates a global search while a small one facilitates 

a local search. The w parameter is very similar to the “temperature” parameter in the simulated 

annealing algorithm. While several strategies have been used in the literature for the inertia 

weight, in this study, a constant value of w has been used (Shi and Eberhart, 1998). 

In PSO, each particle is influenced by its σ nearest neighbors. The arrangement of 

neighbors that influence a particle is called the topology of the swarm. Different types of 

neighborhoods are reported in the literature (Akat and Gazi, 2008). In this study, the all 

topology is used, in which the neighborhood encompasses the entire swarm. The PSO 

parameters used in this study for both scenarios are reported in Table 3.4 and are as suggested 

by Pedersen (2010). 

Table 3.4 Parameters used in the PSO optimization. 

N c1 c2 w 

69 -0.267 3.395 -0.444 
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A modified version of the PySwarm Python Library was used for the PSO analysis. 

Similar to the GSA, a Python script has been written for the optimization process. The script 

overwrites the input file of HYDRUS-1D containing the hydraulic parameters for the different 

layers, runs the executable module, and retrieves the value of the objective function. A large 

negative value of NSE is attributed to non-convergent runs, as defined above. 

 

3.3 Results and Discussion 

3.3.1 Sensitivity Analysis – Scenario I 

As discussed above, the basic outcome of Sobol’s SA are the first-order (S1) and total 

(ST) sensitivity indices. Table 3.5 presents these two indices and their relative bootstrap 

confidence intervals (BCI). In the left part of Table 3.5 (S1), it can be seen that only two 

parameters exhibit a significant direct influence on the output’s variance, the pore-size 

distribution index n1 and the air-entry pressure parameter a1 . The third most influential 

parameter, the saturated hydraulic conductivity Ks1, has the effect, which is only half of the 

second most influential parameter, a1. Ten parameters have a first-order index lower than 1%, 

which indicates that their main effect on the output variance is negligible. Table 3.5 also shows 

that the sum of all first-order indices is less than 1, which means that the model is non-additive. 

Only 56% of variance is attributable to the first-order effects, which indicates that interactions 

between parameters play a fundamental role. 

 

Table 3.5 First-order (S1) and total (ST) effect indices (in decreasing order) with their bootstrap 

confidence intervals (BCI) for parameters of Scenario I. 
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Parameter S1 S1 (BCI)  Parameter ST ST (BCI) 

n1 [-] 0.298 0.054  n1 [-] 0.745 0.042 

a1 [1/cm] 0.102 0.040  a1 [1/cm] 0.508 0.032 

Ks1 [cm/min] 0.051 0.040  Ks1 [cm/min] 0.421 0.032 

θs3 [-] 0.023 0.024  θs1 [-] 0.247 0.025 

a4 [1/cm] 0.020 0.023  n4 [-] 0.224 0.146 

a2 [1/cm] 0.017 0.022  Ks3 [cm/min] 0.210 0.127 

n3 [-] 0.014 0.029  n3 [-] 0.194 0.035 

Ks4 [cm/min] 0.009 0.025  a3 [1/cm] 0.181 0.024 

n4 [-] 0.009 0.035  a2 [1/cm] 0.176 0.024 

θs1 [-] 0.009 0.028  n2 [-] 0.176 0.028 

n2 [-] 0.007 0.023  a4 [1/cm] 0.170 0.033 

Ks3 [cm/min] 0.004 0.022  θs3 [-] 0.167 0.031 

θs4 [-] 0.001 0.022  θs2 [-] 0.151 0.030 

a3 [1/cm] -0.001 0.024  Ks2 [cm/min] 0.138 0.023 

θs2 [-] -0.004 0.019  Ks4 [cm/min] 0.138 0.038 

Ks2 [cm/min] -0.005 0.016  θs4 [-] 0.136 0.022 

Sum 0.563    > 1.0  

 

The right part of Table 3.5 (ST) shows that almost 75% of variance in simulated outflow 

is caused by n1, either by the variation of the parameter itself (30%) or by interactions with 

other parameters. Together with a1 (51%) and Ks1 (42%), it is the most influential parameter 

for simulated flow. It can be noted that the saturated hydraulic conductivity, Ks1, has a relatively 

low main effect but a relatively high total effect. That indicates that this parameter has a limited 

direct effect on the variance of the objective function, but it has an effect in interactions with 

other parameters.  

The effect of the sub-base layer on the output is less significant, while the wear layer 

strongly conditions the output. That behavior is in agreement with results reported in the 

literature. Illgen et al. (2007), in his laboratory campaign, confirmed that the wear layer has the 

major influence on the infiltration capacity of the permeable pavement, while the base and sub-
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base layers have a minor impact and act as a storage tank. The total index is always greater 

than zero, which implies that all parameters influence the output variance either directly or by 

their interactions, and thus no parameter can be fixed without affecting the uncertainty of the 

output. 

Scatter plots for the plain Monte Carlo runs for the two most sensitive parameters, a1 and 

n1, are displayed in Figure 3.3. The scatter plots show that there is no clear pattern of factors 

driving bad solutions. Particular trends in the solutions were further identified by the regression 

lines. They indicate that there is a trend for parameter a1, with admissible solutions in the left 

part of the plot. On the other hand, the distribution of values for parameter n1 is flat, and thus 

no conclusions can be made about the position of a denser region of behavioral solutions in the 

high-dimensional space. 

 

Figure 3.3 Scatter plots for pair relations a1-NSE (left) and n1-NSE (right) for Scenario I. The red line is a 

regression line. 
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3.3.2 Monte Carlo Filtering – Scenario I 

A Monte Carlo Filtering procedure was applied to the runs of the GSA. The threshold 

value of NSE = 0.0 produced a filtered sample composed of 1,452 behavioral solutions. Figure 

4 shows the univariate and bivariate KDE plots and the correlation plots for the wear layer. 
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Figure 3.4 Bivariate KDE plots (below diagonal), univariate KDE plots (diagonal), and correlation plots (above 

diagonal) for Scenario I. 
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The maximum Pearson correlation coefficient (in absolute values) was 0.42 between 

parameters a1 and n1. It is also evident from Figure 4 that a moderate negative correlation is 

present for parameters s1-a1, and a positive correlation for parameters s1- n1, while for the 

other parameters, the correlation is negligible. The univariate KDEs for parameters s1, n1, and 

Ks1 indicate a platykurtic distribution of behavioral solutions characterized by multimodality. 

Parameter a1 exhibits a leptokurtic distribution, for which a denser region of good solutions is 

clearly identifiable in the range of 0.001-0.1. 

This behavior is more clear in the bivariate KDE plots. The bivariate KDE for a1-n1 

highlights the presence of a denser region for values of n1 in the range 2.5-4.5, a behavior that 

was not evident from the univariate KDE. The comparison between univariate and bivariate 

plots reveals that the latter gives a much more comprehensive description of the response 

surface. This aspect is exacerbated when the model is governed by interactions between 

parameters, which is clearly highlighted by Sobol’s indices. In such a case, the high-

dimensional inspection of the parameter space provides significant information.  

The saturated hydraulic conductivity, Ks1, for which the univariate KDE indicates a 

multimodal behavior, exhibits a denser region in the range of 10.0-20.0; this region is clearly 

identifiable in the bivariate plot of K1- n1. 

 

3.3.3 Sensitivity Analysis – Scenario II 

Results of the GSA for Scenario II are reported in Table 3.6. Also for Scenario II, 

parameters a1 and n1 exhibit the highest main effects on the output’s variance (about 35%). For 

Scenario II, the differences are even more evident than for Scenario I. Parameters n1 and a1 

have a first-order index of 30% and 5%, respectively, while all remaining parameters remain 

well under 5%. Nine parameters have a first-order index lower than 1%. The main effects 

represent 53% of the output variance, which clearly indicates both that the model output is 

again (similarly as for Scenario I) partially driven by interactions between parameters, and that 

the model is non-additive. 
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Table 3.6 First-order (S1) and total (ST) effect indices (in decreasing order) with their bootstrap confidence 

intervals (BCI) for parameter of Scenario II. 

Parameter S1 S1 (BCI)  Parameter ST ST (BCI) 

n1 [-] 0.302 0.026  n1 [-] 0.640 0.023 

a1 [1/cm] 0.054 0.029  a1 [1/cm] 0.387 0.027 

θs3 [-] 0.030 0.045  n3 [-] 0.383 0.020 

n3 [-] 0.026 0.024  θs3 [-] 0.294 0.027 

Ks3 [cm/min] 0.018 0.022  a3 [1/cm] 0.291 0.022 

a4 [1/cm] 0.018 0.020  θs1 [-] 0.271 0.019 

θs2 [-] 0.017 0.018  a4 [1/cm] 0.269 0.019 

θs4 [-] 0.014 0.022  Ks1 [cm/min] 0.259 0.018 

a3 [1/cm] 0.013 0.025  n4 [-] 0.256 0.013 

Ks2 [cm/min] 0.012 0.026  a2 [1/cm] 0.229 0.017 

Ks4 [cm/min] 0.011 0.031  Ks3 [cm/min] 0.222 0.017 

θs1 [-] 0.007 0.023  n2 [-] 0.217 0.022 

θs,im3 [-] 0.006 0.017  θs4 [-] 0.201 0.017 

a2 [1/cm] 0.005 0.016  Ks2 [cm/min] 0.195 0.023 

Ks1 [cm/min] 0.001 0.022  Ks4 [cm/min] 0.186 0.021 

ω4 [1/min] -0.001 0.027  θs2 [-] 0.185 0.018 

n2 [-] -0.001 0.026  θs,im3 [-] 0.149 0.016 

ω3 [1/min] -0.003 0.021  ω3 [1/min] 0.143 0.016 

θs,im4 [-] -0.004 0.020  θs,im4 [-] 0.138 0.013 

n4 [-] -0.006 0.017  ω4 [1/min] 0.125 0.020 

Sum 0.534    > 1.0  
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The right part of Table 3.6 (ST) shows that the output variance is largely influenced by 

n1, either directly (30%) or by interactions with other parameters (64%). Similar to Scenario I, 

parameters a1 and n1 are the most influential parameters, and the model’s output is mainly 

driven by the wear layer. Four of the first eight most influential parameters are related to the 

wear layer. The main difference between Scenarios I and II is the influence of the base and 

sub-base layers on the model’s output. This is evident from Figure 5, in which the average ST 

for each layer is reported for both scenarios. For both scenarios, modeling results are most 

sensitive to the wear layer, which strongly influences the output’s variance. However in 

Scenario II, the influence of the wear layer is partially reduced and redistributed to other layers. 

It is evident that the adoption of the dual-porosity model for the unsaturated hydraulic 

properties significantly affects the influence of the base and sub-base layers on the model’s 

output. The dynamics of sensitivity indices between the two scenarios suggest that the physical 

description of unsaturated flow in the sub-base layer is an important element in numerical 

simulations. 

 

Figure 3.5 The average total index, ST, for different layers for both scenarios. 
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Similar to scenario I, all parameters influence the model’s output, either by the variation 

of the parameters themselves or by their mutual interactions. The condition for FF is never 

achieved for all parameters. 

Scatter plots for the plain Monte Carlo runs for the two most sensitive parameters, a1and 

n1,  are displayed in Figure 6. It can be seen that there is again no clear pattern of factors driving 

bad solutions. The regression lines indicate that there is a slight trend, which is higher for 

parameter a1, to have admissible solutions in the left part of the plot. The optimum appears flat, 

however. 

 

Figure 3.6 Scatter plots for pair relations a1-NSE (left) and n1-NSE (right) for Scenario II. The red line is a 

regression line. 

 

3.3.4 Monte Carlo Filtering – Scenario II 

A Monte Carlo Filtering procedure was again applied to the runs of the GSA. The filtered 

sample now consisted of 28,107 behavioral solutions. The filtered sample of behavioral 

solutions for Scenario II was considerably larger than for Scenario I. This indicates that the 

implementation of the dual-porosity model leads to higher values of the objective function.  
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Figure 3.7 Bivariate KDE plots (below diagonal), univariate KDE plots (diagonal), and correlation plots (above 

diagonal) for Scenario II. 

 

Figure 7 shows the univariate and bivariate KDE plots as well as the correlation plots for 

parameters of the wear layer. It is evident that no clear correlation exists between various 

parameters (Fig. 7), except for a negative correlation trend between parameters a1 and n1, but 
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only with a small magnitude. The maximum correlation coefficient, in absolute values, was -

0.531 between parameters a4 and n4.  

The univariate KDE for parameters s1-Ks1 indicates a platykurtic distribution of 

behavioral solutions without a clear identification of a denser region across the parameter 

space. On the other hand, for parameters a1 and n1, the univariate KDEs indicate a more 

leptokurtic distributions, especially for n1, for which a denser region of solutions between1.1-

2.8 is identifiable.  

The bivariate KDEs give a better description of the location of behavioral regions in the 

bidimensional parameter space than the univariate KDEs. The bivariate KDE for the two most 

sensitive parameters, a1 and n1, indicate the presence of a denser region in the range of n1=(1.1, 

2.8), and a1=(0.01,0.15 1/cm). The bivariate plots, s1- a1 and s1- n1, indicate the presence of 

a denser region in the range of s1=(0.25, 0.40), a region that was not clearly indicated by the 

univariate plot for s1. The saturated hydraulic conductivity, Ks1, exhibits a multimodal 

behavior characterized by several potential regions of interest. A potential behavioral region 

may be identified in the range of Ks1=(7.0, 15.0 cm/min). 

 

3.3.5 Particle Swarm Optimization 

The results and conclusions from the coupled GSA-Monte Carlo filtering analysis were 

used to reduce the ranges of parameters for the PSO. The reduction was applied only for 

parameters that exhibited well identifiable behavioral regions in multivariate plots. The 

original ranges were kept for parameters that displayed  high multimodality, in order to avoid 

the convergence of PSO to the local optimum. Table 3.7 reports the new ranges for all 

parameters. 
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Table 3.7 Reduced ranges of optimized parameters for the optimization process. 

 Scenario I Scenario II 

Parameter Reduced range 

θs1 [-] 0.2-0.5 0.2-0.4 

a1 [1/cm] 0.001-0.1 0.001-0.15 

n1 [-] 3.0-4.5 1.1-2.8 

Ks1 [cm/min] 10.0-20.0 1.5-20.0 

θs2 [-] 0.25-0.5 0.2-0.4 

a2 [1/cm] 0.2-0.3 0.1-0.2 

n2 [-] 1.1-4.5 1.1-4.5 

Ks2 [cm/min] 1.0-20.0 3.0-20.0 

θs3 [-] 0.20-0.40 0.001-0.05 

a3 [1/cm] 0.001-0.05 0.001-0.05 

n3 [-] 1.1-4.5 1.5-4.5 

Ks3 [cm/min] 1.0-100.0 20.-100.0 

θs,im3 [-] - 0.2-0.4 

ω3 [1/min] - 0.00001-0.009 

θs4 [-] 0.01-0.2 0.001-0.05 

a4 [1/cm] 0.15-0.3 0.15-0.3 

n4 [-] 2.0-4.0 1.5-3.5 

Ks4 [cm/min] 1.0-100.0 1.0-100.0 

θs,im4 [-] - 0.15-0.3 

ω4 [1/min] - 0.00001-0.009 

 

 

Figure 8 compares measured and modeled hydrographs for the two scenarios. The PSO 

for Scenarios I and II resulted in NSE values of 0.43 and 0.81, respectively. Both NSE values 

of the objective function are higher than zero and thus admissible (Moriasi et al., 2007). 

However, the implementation of the dual-porosity model for the base and sub-base layers in 

Scenario II provides a more accurate description of the hydraulic behavior of the permeable 
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pavement. In particular, the dual-porosity model is able to accurately reproduce the fast 

hydraulic response of the permeable pavement and the long-tailing behavior of the measured 

hydrograph. The modeled hydrograph for Scenario I appears less accurate in reproducing the 

dynamics of the observed hydrograph, especially the fast response of the pavements to 

precipitation. 

 

Figure 3.8 Comparison between the modeled and measured hydrographs for Scenarios I (top) and II (bottom) for 

the optimization process. 
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Optimized parameters for the two scenarios are reported in Table 3.8. Significant 

differences emerge between the two scenarios in terms of estimated values of the saturated 

water contents, θs1 and a1; differences between estimated values of the saturated hydraulic 

conductivities, Ks1 and n1, are less pronounced. For layer 2, while estimated values of saturated 

water contents are very similar, huge differences arise between estimated pore-size distribution 

indices, n2, which for Scenario I is less than half of its value for Scenario II. Also, Ks2 is 

considerably lower for Scenario II than for Scenario I. Estimated vaues of dual-porosity 

parameters confirm the assumptions made about the fractured nature of the base and subbase 

layers. While the saturated water content for the mobile domain is very low, the porous matrix 

possesses a high storage capacity as indicated by the large value of the immobile saturated 

water content. In particular, the overall porosity of the base layer is about 40% and 30% for the 

subbase layer. The result for the base layer is slightly higher than the prescriptions of ICPI, 

which recommends a porosity of 30-35%. The estimated porosity for the subbase layer is 30%, 

which is lower than the prescribed porosity of about 40%. This difference can be related to the 

simplifications made in the mobile-immobile dual porosity model for the description of 

preferential flow and uncertainties related to the effective graduation of the stone material used. 

However, the significant increase in the accuracy between the single-porosity model and the 

dual-porosity model suggests that the hydraulic behavior of the base and subbase layers is 

strongly affected by fast preferential flows in interconnected fractures and the accumulation of 

water in the rock matrix. This behavior is in agreement with results reported in the literature. 

For example, Illgen et al. (2007) reported that the water contents in the base and sub-base layers 

only marginally increased during rainfall events, and that the lower layers act as a storage tank. 

 

Table 3.8 Optimized soil hydraulic parameters for both scenarios. 

Scenario I 

Layer θr [-] θs [-] a [1/cm] n [-] Ks [cm/min] L [-] θr,im [-] θs,im [-] ω [1/min] 

Wear 0.045 0.2 0.002 3.0 10 0.5 - - - 

Bedding 0.03 0.3 0.3 4.47 20 0.5 - - - 
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Base 0 0.2 0.023 2.85 68.7 0.5 - - - 

Sub-base 0 0.01 0.27 2.41 96.7 0.5 - - - 

Protection 0.03 0.3 0.3 4.47 20 0.5 - - - 

Scenario II 

Wear 0.045 0.287 0.03 2.67 7.33 0.5 - - - 

Bedding 0.03 0.298 0.113 3.04 3.87 0.5 - - - 

Base 0 0.044 0.021 4.33 93.2 0.5 0 0.35 0.00017 

Sub-base 0 0.001 0.247 2.17 56.3 0.5 0 0.29 0.0013 

Protection 0.03 0.298 0.113 3.04 3.87 0.5 - - - 

 

Both scenarios exhibit low values of porosity for the base and sub-base layers. For 

scenario II, the total porosity is divided between the mobile and immobile domains. Flow is 

restricted only to highly conductive and interconnected fractures, which represent a relatively 

small part of the domain, while the immobile domain provides the storage capacity. While 

Scenario II assumes overlapping and interacting continua, Scenario I assumes a single 

continuum approach for all layers. When the optimized value of porosity is very low, such as 

for the sub-base layer, it is necessary to interpret the optimized values differently than for 

typical Richards’ type flow. In such case, especially for flow in crushed stones, the model tends 

to approximate a combination of film flow and fingering that likely occur in this layer. This 

hydraulic behavior is similar to the one reported, for example, by Hodnet and Bell (1990) for 

unsaturated flow in a medium composed largely of chalk cobbles. In their study, Tokunaga and 

Wan (1997) analyzed the influence of film flow on unsaturated flow in fractures. High 

velocities of film flow measured in their study suggested that film flow contributed 

significantly to preferential flow in fractured rocks. Our model, based on a macroscopic 

description of this fast unsaturated flow, shares some similarities with the active fracture model 

proposed by Liu et al. (1998). This approach divides the pore space into two parts, active and 

inactive. Flow and transport occurs only within the active pore space, with the inactive part 

simply bypassed. Liu et al. (1998) further assumed that van Genuchten (1980) relations are 
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approximately valid for the active pore space. In a separate study, Liu et al. (2003) reports 

values of porosity between 0.01 and 0.03 for the pore space used with the active fracture model. 

 

3.3.6 Confidence Regions 

Since parameter estimation involves a variety of possible errors, including measurement 

errors, model errors, and numerical errors, an uncertainty analysis of the optimized parameters 

constitutes an important part of parameter estimation. In order to evaluate the uncertainty 

associated with the estimated parameters, a confidence region around the best solutions 

optimized with PSO were calculated using HYDRUS-1D. HYDRUS-1D uses the linear 

approximation method to identify the confidence region around estimated parameters , 

resulting in ellipsoid contours centered at .  

 

Table 3.9 Confidence intervals (CI) for optimized parameters for both scenarios. 

 Scenario I  Scenario II 

Parameter Value CI  Value CI 

θs1 [-] 0.2 0.057  0.287 0.007 

a1 [1/cm] 0.002 0.0006  0.029 0.0008 

n1 [-] 3 0.783  2.67 0.058 

Ks1 [cm/min] 10 4.4  7.33 0.272 

θs2 [-] 0.3 0.072  0.29 0.009 

a2 [1/cm] 0.3 0.062  0.11 0.002 

n2 [-] 4.47 1.08  3.04 0.052 

Ks2 [cm/min] 20 6.5  3.87 0.084 

θs3 [-] 0.2 0.048  0.044 0.001 

a3 [1/cm] 0.023 0.003  0.021 0.0005 

n3 [-] 2.85 0.537  4.33 0.139 

Ks3 [cm/min] 68.73 19.7  93.2 3.172 
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θs,im3 [-] - -  0.35 0 

ω3 [1/min] - -  0.00017 0.000003 

θs4 [-] 0.01 0.002  0.001 0.00003 

a4 [1/cm] 0.27 0.018  0.247 0.004 

n4 [-] 2.41 0.121  2.17 0.039 

Ks4 [cm/min] 96.7 9.2  56.3 1.051 

θs,im4 [-] - -  0.288 0 

ω4 [1/min] - -  0.0013 0.00002 

 

Although restrictive and only approximately valid for nonlinear problems, an uncertainty 

analysis provides a means to compare confidence intervals between parameters, thereby 

indicating which parameters should be independently measured or estimated. Confidence 

intervals have been calculated using the Student’s t distribution with a confidence level of 95%. 

It is evident from Table 9 that confidence intervals are narrower for Scenario II, and that the 

most uncertain parameters are the saturated hydraulic conductivities for different layers. 

 

3.3.7 Model Validation 

In order to evaluate the reliability of the estimated parameters, the model has been 

validated on another independent set of experimental data. Figure 10 shows a comparison 

between measured and modeled hydrographs for the two scenarios during the validation period. 
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Figure 3.9 Comparison between the modeled and measured hydrograph for the two scenarios for the validation 

period. 

 

The value of the objective functions are NSE = 0.43 for Scenario I and NSE = 0.86 for 

Scenario II. For Scenario I, the value of the objective function remains the same, which 

confirms the reliability of the calibrated model. Although the simulated hydrograph provides 

an overall sufficiently accurate description of the hydraulic behavior of the pavement, it is less 

accurate during rainfall events, which may be a time period of main interest. For Scenario II, 

the value of the objective function actually increased and reached the value NSE = 0.86, which 
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is very high and reflects the accuracy of the modeled hydrograph. Also the description of the 

hydraulic behavior of the pavement during rainfall events is optimal. This capability of the 

calibrated model is important when dealing with the analysis of combined traditional drainage 

systems and LID techniques. A correct description of the hydrograph during precipitation gives 

information about the lag time and the intensity of peak flow, which are fundamental for both 

a comprehensive hydraulic analysis of drainage systems, and for the evaluation of benefits of 

LIDs implementation. The initial part of the hydrograph appears to be underestimated, which 

may be related to the influence of the unknown initial conditions. The model was not able to 

reproduce outflow induced by the precipitation event on March 15. This may be related to an 

overestimation of potential evaporation calculated using a literature value of albedo, which 

could result in an overestimation of the storage capacity of the pavement at the beginning of 

the precipitation event, which had a total volume of 6 mm. As a result, the model predicted that 

the pavement retained all the precipitation volume. A better characterization of evaporation 

could help in increasing the accuracy of the model, which is already high. 
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Figure 3.10 Comparison between the modeled and measured outflows for the two scenarios for the validation 

period. 

 

Figure 10 directly compares the measured outflows with those calculated by the two 

modeling scenarios. The red bisector line represents conditions when modeled and measured 

outflows are perfectly matched. Linear regression lines are reported for both scenarios. Since 

the Scenario I tends to overestimate the outflow fluxes, the difference between the bisector and 

the linear regression line (gray) for scenario I is substantial. On the other hand, Scenario II 

tends to only slightly underestimate the outflow fluxes, and thus the slopes of the bisector and 

the linear regression line (black) for Scenario II are similar. The simulated hydrographs for 

both scenarios tend to introduce some bias in the estimation of peak flows. This aspect is related 

to the choice of the NSE as the objective function for the optimization. The NSE is focused on 

the general behavior of the hydrograph rather than on particular components such as peak 

flows. A multi-objective optimization that would include an objective function targeted to peak 

flow estimates could represent a more appropriate approach if estimates of peak flows were the 

main goal of calibration. However, even of great interest, the multi-objective optimization is 
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out of the scope of this paper. Overall, the validation process demonstrated the reliability of 

the calibrated models for both scenarios. 

 

3.4 Conclusions 

 In this paper, we investigated the suitability of the mechanistic model, HYDRUS-1D, 

to correctly describe the hydraulic behavior of a permeable pavement installed at the University 

of Calabria. We considered two different scenarios in describing the system. In Scenario I, we 

assumed that flow on all layers can be described using a single-porosity model, while in 

Scenario II, we assumed that a dual-porosity mobile-immobile model is needed to describe 

flow in the base and subbase layers. The widely used Nash-Sutcliffe efficiency index was used 

to assess the models. A Global Sensitivity Analysis, coupled with a Monte Carlo filtering 

procedure, was carried out before the model calibration. Sensitivity analysis results suggested 

that the model is non-additive and mainly driven by parameter interactions in both scenarios. 

The first-order effects only accounted for 56% of output variance for Scenario I and 53% for 

Scenario II. Sensitivity analysis also revealed that the wear layer mainly influenced the 

hydraulic behavior of the pavement. A subsequent Monte Carlo filtering procedure was applied 

to the runs performed during the sensitivity analysis in order to identify the behavioral regions 

and to reduce parameter uncertainty. Both univariate and bivariate Kernel Density Estimation 

plots were used to inspect the response surfaces and identify the behavioral regions. This 

analysis revealed the high multimodality of the response surfaces, which suggested the use of 

a global optimization algorithm for parameter estimation. Correlation coefficients of the 

filtered sample were also computed, indicating a general low correlation between parameters. 

Based on the results of the Monte Carlo filtering, a heuristic global optimization method based 

on the Particle Swarm algorithm was used for parameter estimation. The calibrated model for 

Scenario I exhibited an optimum NSE = 0.43, while for Scenario II, it reached NSE=0.81. The 
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optimized parameters were then validated against an independent set of experimental data, 

resulting in NSE = 0.43 for Scenario I and NSE = 0.86 for Scenario II. The results of 

optimization and validation clearly indicated that the implementation of the dual-porosity 

model for the base and subbase layers produced more accurate results than the single-porosity 

model and described much better the hydraulic behavior of pervious pavement. Results also 

confirmed the validity of the assumption that the hydraulic behavior of the base and subbase 

layers was similar to the behavior of a fractured rock, which is characterized by the highly 

permeable interconnected fractures and the highly storative rock matrix. The main advantage 

in using a simple, dual-porosity, mobile-immobile model with a saturation-based mass transfer 

is that this model requires only two additional parameters compared to the single-porosity 

model. Further significant improvements could be obtained by characterizing the hydraulic 

properties of the wear layer in the laboratory, as suggested by the sensitivity analysis. 
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Chapter 4 On the use of surrogate-based modeling 

for the numerical analysis of Low Impact 

Development techniques 

4.1 Introduction 

During the last few decades, stormwater management has become a major component of 

the prevention of floods in urban areas and for the preservation of water resources. An increase 

of impervious surfaces, connected with demographic growth, has altered the natural 

hydrological cycle by reducing the infiltration and evaporation capacity of urban catchments 

while also increasing surface runoff. In their report, the Organization for Economic Co-

operation and Development (OECD) (2013) identified an expected increase in flash and urban 

floods in large parts of Europe as one of the major issues for the future.  

In this context, urban drainage systems play a fundamental role in improving the 

resilience of cities. In recent years, an innovative approach to land development known as a 

Low Impact Development (LID) has gained increasing popularity. A LID is a 'green' approach 

to storm water management that seeks to mimic the natural hydrology of a site using 

decentralized micro-scale control measures (Coffman, 2002). LID practices consist of 

bioretention cells, infiltration wells/trenches, storm water wetlands, wet ponds, level spreaders, 

permeable pavements, swales, green roofs, vegetated filter/buffer strips, sand and gravel filters, 

smaller culverts, and water harvesting systems. Several studies have evaluated the benefits of 

LIDs. For example, Newcomer et al. (2014) used a numerical model to demonstrate the benefits 

of LIDs, and an infiltration trench in particular, on recharge and local groundwater resources 

for future climate scenarios. In another paper, Berardi et al. (2014) demonstrated how green 
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roofs may contribute to the development of more sustainable buildings and cities. Green Roofs 

(GR) were able to significantly reduce peak rates of storm water runoff (Getter et al., 2007) 

and retain rainfall volumes with retention efficiencies ranging from 40% to 80% (Bengtsson et 

al., 2004). Permeable pavements offered great advantages in terms of runoff reduction 

(Carbone et al., 2014; Collins et al., 2008), water retention, and water quality (Brattebo and 

Booth, 2003). Even though the results of available studies are encouraging, more research is 

needed to precisely assess the impact of LIDs on the hydrological cycle. 

As pointed out by several authors (e.g., Elliot and Trowsdale, 2007; Wong et al., 2006), 

there is a strong demand for predictive models that can be applied across a range of locations 

and conditions to predict the general performance of a range of stormwater treatment measures. 

In recent years, researchers have focused their attention on applying and developing empirical, 

conceptual, and physically-based models for LIDs analysis. In their review article, Li and 

Babcock (2014) reported that there were more than 600 papers published worldwide involving 

green roofs, with a significant portion of them related to modeling. Several studies 

demonstrated that physically-based models can provide a rigorous description of various 

relevant processes such as variably-saturated water flow, evaporation and root water uptake, 

solute transport, heat transport, and carbon sequestration. Brunetti et al. (2016) used a 

mechanistic model, HYDRUS-3D (Šimůnek et al., 2016, 2008), to analyze an extensive green 

roof in a Mediterranean climate. The model, previously validated against field scale 

measurements, was used to investigate the hydraulic response of a green roof to single 

precipitation events and its hydrological behavior during a two-month period. Metselaar (2012) 

used the SWAP model (van Dam et al., 2008) to simulate the one-dimensional water balance 

of a substrate layer on a flat roof with plants. Li and Babcock (2015) used HYDRUS-2D to 

model the hydrologic response of a pilot green roof system. The model was calibrated using 

water content measurements obtained with TDR (Time Domain Reflectometer) sensors. The 

calibrated model was then used to simulate the potentially beneficial effects of irrigation 

management on the reduction of runoff volumes. The VFSMOD model (Munoz-Carpena and 
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Parsons, 2004) was extensively used for the analysis of the hydraulic behavior and solute 

transport of vegetated filter strips (Abu-Zreig et al., 2001; Dosskey et al., 2002). 

However, physically-based modeling often involves highly nonlinear, partial, differential 

equations that are solved using various numerical approximation methods, requiring a high 

computational cost. Moreover, a comprehensive simulation framework includes model 

calibration, sensitivity analysis, and uncertainty quantification aimed at enhancing confidence 

in the model and its ability to describe real world systems. These tasks require running the 

simulation model hundreds or thousands of times and thus the computational cost exponentially 

increases.  

Surrogate modeling focuses on developing and using a computationally inexpensive 

surrogate of the original model. The main aim is to approximate the response of an original 

simulation model, which is typically computationally intensive, for various quantities of 

interest (Razavi et al., 2012). Surrogate models have been widely applied in various water-

related and environmental modeling problems. Khu and Werner (2003) used artificial neural 

networks (ANN) in conjunction with genetic algorithms (GA) to reduce the computational 

budget required in the uncertainty quantification framework of the rainfall-runoff model 

SWMM. The GA was first used to identify the areas of higher importance in the parameter 

space and ANNs were then used to approximate the response surface in these areas (Khu and 

Werner, 2003). Borgonovo et al. (2012) tested a surrogate model for the estimation of the 

sensitivity indices of an environmental model. Zhang et al. (2009) evaluated ANN and Support 

Vector Machine (SVM) for approximating the Soil and Water Assessment Tool (SWAT) 

model in two watersheds. Keating et al. (2010) used a surrogate model to carry out a 

comparison between the null-space Monte Carlo sampling (NSMC) and the DiffeRential 

Evolution Adaptive Metropolis (DREAM) algorithm for parameter estimation and uncertainty 

quantification. In another study, Laloy et al. (2013) used Polynomial Chaos Expansion (PCE) 

to emulate the output of a large-scale flow model. The surrogate model was used in a Bayesian 

analysis framework to derive the posterior distribution of different parameters. In their study, 

Younes et al. (2013) used a surrogate model to estimate three soil hydraulic parameters from a 
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drainage experiment. In particular, PCE was used to run a Monte Carlo Markov Chain 

(MCMC) analysis. However, although the widespread diffusion of surrogate modeling tools 

could drastically reduce computational budgets, their use for physically-based modeling of 

LIDs is still unexploited. 

The primary objective of this paper is to investigate the suitability of surrogate modeling 

for the numerical analysis of LIDs techniques by analyzing data from a real case study. The 

mechanistic model HYDRUS-2D is first used to simulate the hydraulic behavior of a 

Stormwater Filter (SF) at the University of Calabria, Italy. The surrogate model, based on 

kriging, is then used to carry out a Global Sensitivity Analysis (GSA) and a Global 

Optimization of soil hydraulic parameters. The use of a surrogate model for the sensitivity 

analysis of model outputs to soil hydraulic properties represents a new application of this 

technique that can provide a significant contribution in this field.  

The problem is addressed in the following way. First, the evaporation method is used to 

measure the soil hydraulic properties of the vegetated substrate above the gravel filter, for 

which the hydraulic properties were unknown. The measured soil hydraulic properties of the 

vegetated substrate and the selected ranges of parameters of the filter layer are then used in 

HYDRUS-2D to set up the model. A Latin Hypercube Sampling (LHS) plan is used to build a 

first trial of the surrogate model. Before continuing with the other tasks, the surrogate model is 

validated and improved by using specific infill criteria. Once validated, the surrogate model is 

first used for the GSA based on Sobol’s method to compute the sensitivity measures, and then 

for the inverse parameter estimation carried out using the Particle Swarm Optimization (PSO) 

algorithm. Finally, estimated parameters are used in the original mechanistic model for the 

validation purpose. 
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4.2 Materials and Methods 

4.2.1 Stormwater Filter and Site Description 

The University of Calabria is located in the south of Italy, in the vicinity of Cosenza 

(39°18′ N 16°15′ E). The climate is Mediterranean with a mean annual temperature of 15.5 °C 

and average annual precipitation of 881.2 mm. The stormwater filter (SF) has a surface area of 

125 m2, an average slope of 2%, and a total profile depth of 0.75 m. Figure 1 shows a schematic 

of the SF. 
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Figure 4.1 A schematic of the experimental site (top) and a typical cross-section (bottom) of the 

stormwater filter. 

 

The filter layer is covered by a vegetated soil substrate with a measured bulk density of 

1.59 g/cm3. A high permeability geotextile with a fiber area weight of 60 g/m2 is placed at the 

interface between the soil substrate and the filter layer to prevent fine particles from migrating 

into the underlying layer. The filter layer is composed of a gravelly material characterized by 
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a high permeability. An impervious membrane is placed at the bottom of the profile to prevent 

water from percolating into deeper horizons.  

The SF is used to treat stormwater runoff from the adjoining impervious parking lot, 

which is characterized by an area of 220 m2. Stormwater runoff from the parking lot is first 

conveyed into a manhole and then to an instrumented channel where the flow rate is measured 

by a flow meter composed of a rectangular, sharp crested weir coupled with a pressure 

transducer. The pressure transducer (Ge Druck PTX1830) measures the water level inside the 

channel and has a range of measurements of 75 cm with an accuracy of 0.1% of the full scale. 

The pressure transducer was calibrated in the laboratory using a hydrostatic water column, 

linking the electric current intensity with the water level inside the column. An exponential 

head-discharge equation for the flow meter was obtained by fitting the experimental data.  

Measured runoff is next conveyed into a 14 m long, horizontal perforated pipe where it 

is distributed on the top of the filter layer (Fig. 1). As shown in Figure 1, the soil substrate is 

not used to treat stormwater runoff, which is directly routed into the filter, but only to increase 

the retention and evapotranspiration capacity of the system itself. The baseflow is collected in 

a horizontal drain, which consists of a perforated PVC pipe, and is conducted to a manhole for 

quantity and quality measurements. A second flow meter, composed of a PVC pipe with a 

sharp-crested weir and a pressure transducer, measures the flow rate. Runoff and baseflow data 

were acquired with a time resolution of one minute and stored in a SQL database. No 

measurements of pressure heads or volumetric water contents inside of the filter were taken. 

A weather station located directly at the site measures precipitation, wind velocity and 

direction, air humidity, air temperature, atmospheric pressure, and global solar radiation. Rain 

data are measured using a tipping bucket rain gauge with a resolution of 0.254 mm and an 

acquisition frequency of one minute. Climatic data are acquired with a frequency of five 

minutes. Data are processed and stored in the SQL database. 

Two month-long data sets were selected for the analysis (Fig. 2). The first data set, which 

started on 2014-01-15 and ended on 2014-02-15, was used for obtaining the surrogate model. 

The second data set, which started on 2014-03-01 and ended on 2014-03-31, was used for 
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model validation. The precipitation totals for the first and second data sets were 274 and 174 

mm, respectively. The second data set was selected because it had significantly different 

meteorological dynamics than during the first period. The optimization set is characterized by 

multiple rain events with few dry periods. The validation set has fewer rain events, which are 

concentrated at the beginning and end of the time period and separated by a relatively long dry 

period. 
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Figure 4.2 Precipitation (black line) and subsurface flow (grey line) for the optimization (top) and validation 

(bottom) periods, respectively.  

 

Hourly reference evapotranspiration was calculated using the Penman-Monteith equation 

(Allen et al., 1998). Considering that vegetation mainly consisted of herbaceous plants, an 

average value of albedo of 0.23 was assumed in calculations of net short-wave radiation 

(Breshears et al., 1997). 
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4.2.2 Evaporation Method and Parameter Estimation 

4.2.2.1 Evaporation Method 

Modeling of water flow in unsaturated soils by means of the Richards equation requires 

knowledge of the water retention function, (h), and the hydraulic conductivity function, K(h), 

for each soil layer of the SF, where  is the volumetric water content [L3L-3], h is the pressure 

head [L], and K is the hydraulic conductivity [LT-1]. In order to reduce the dimensionality of 

the optimization problem, the soil hydraulic properties of the soil substrate were measured in 

the laboratory using a simplified evaporation method with an extended measurement range 

(down to -9,000 cm), as proposed by Schindler et al. (2010a, 2010b). For a detailed description 

of the modified evaporation method, please refer to Schindler et al. (2010a, 2010b). 

Peters and Durner (2008) conducted a comprehensive error analysis of the simplified 

evaporation method and concluded that it is a fast, accurate, and reliable method to determine 

soil hydraulic properties in the measured pressure head range, and that the linearization 

hypothesis introduced by Schindler (1980) causes only small errors. The above cited method 

has already been used in the LIDs analysis for the determination of the unsaturated soil 

hydraulic properties of a green roof substrate (Brunetti et al., 2016b). In that study, the 

measured soil hydraulic properties were used in HYDRUS-3D to simulate the hydraulic 

behavior of a green roof and validated by providing optimal correspondence between simulated 

and measured outflows. The simplified evaporation method was similarly used in this study for 

the determination of the unsaturated hydraulic properties of the soil substrate. For a complete 

description of the system, please refer to UMS GmbH (2015).  

The soil for the laboratory analysis was directly sampled from the SF using a stainless-

steel sampling ring with a volume of 250 ml. The soil sample was saturated from the bottom 

before starting the evaporation test. The measurement unit and tensiometers were degassed 

using a vacuum pump, in order to reduce the potential nucleation sites in the demineralized 

water. Since Peters and Durner (2008) suggested a reading interval for structured soils of less 
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than 0.1 day, the reading interval was set to 20 minutes in order to have high resolution 

measurements. At the end of the experiment, the sample was placed in an oven at 105°C for 24 

hours, and then the dry weight was measured. 

4.2.2.2 Parameter Estimation 

The numerical optimization procedure, HYPROP-FIT (Pertassek et al., 2015), was used 

to simultaneously fit retention and hydraulic conductivity functions to experimental data 

obtained using the evaporation method. Fitting was accomplished using a non-linear 

optimization algorithm that minimizes the sum of weighted squared residuals between model 

predictions and measurements. The software uses the Shuffled Complex Evolution (SCE) 

algorithm proposed by Duan et al. (1992), which is a global parameter estimation algorithm. 

The goodness-of-fit was evaluated in terms of the Root Mean Square Error (RMSE), while the 

Akaike information criterion (AIC) (Hu, 1987) was used to choose between different hydraulic 

conductivity functions. The software also provides 95% confidence intervals to assess the 

uncertainty in parameter estimation. In order to calculate the parameter uncertainties a linear 

approximation of the covariance matrix for each estimated parameter is calculated. The 

confidence interval for the i-th parameter is then computed by combining the covariance matrix 

and the upper a/2 quantile of the Students t-distribution, where a is set to 0.05 for the 

computation of the 95% confidence intervals. 

 

4.2.3 Modeling Theory 

4.2.3.1 Water Flow and Root Water Uptake 

The HYDRUS-2D software (Šimůnek et al., 2008) was used to model the hydraulic 

behavior of the SF. HYDRUS-2D is a two-dimensional model for simulating the movement of 



126 On the use of surrogate-based modeling for the numerical analysis of Low Impact 

Development techniques 

 

126 

 

water, heat, and multiple solutes in variably-saturated porous media. HYDRUS-2D 

numerically solves the Richards equation for multi-dimensional unsaturated flow: 
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where t is time (T), z is the vertical coordinate (L), and S is a sink term (L3L-3T-1), defined as a 

volume of water removed from a unit volume of soil per unit of time due to plant water uptake. 

The unimodal van Genuchten–Mualem (VGM) model (van Genuchten, 1980) was used to 

describe the soil hydraulic properties of the two layers: 
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where is the effective saturation (-),  is a shape parameter related to the inverse of the 

air-entry pressure head (L-1), θs and θr are the saturated and residual water contents, respectively 

(-), n and m are pore-size distribution indices (-), Ks is the saturated hydraulic conductivity (LT-

1), and L is the tortuosity and pore-connectivity parameter (-).  

While the soil hydraulic properties of the soil substrate were determined using the 

simplified evaporation method, those of the filter were optimized in the surrogate analysis 

framework. However, not all parameters were included in the optimization process. The 

residual water content θr was fixed to 0, considering that the filter is composed of coarse gravel, 
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and the tortuosity L was set to 0.5, which is a common value in the literature. The initial range 

of the investigated parameters is reported in Table 4.1. 

Table 4.1 Ranges of investigated parameters for the surrogate-based analysis. 

Parameter Range 

θs [-] 0.1-0.3 

 [1/cm] 0.001-0.3 

n1 [-] 3.0-7.0 

Ks1 [cm/min] 30.0-100.0 

 

Feddes et al. (1978) defined S as: 

 (24) 

where a(h) is a dimensionless water stress response function that depends on the soil pressure 

head h and has a range of values between 0 and 1, and Sp is the potential root water uptake rate. 

Feddes et al. (1978) proposed a water stress response function in which water uptake is assumed 

to be zero close to soil saturation (h1) and for pressure heads larger (in absolute values) than 

the wilting point (h5). Water uptake is assumed to be optimal between two specific pressure 

heads (h2, h3 or h4), which depend on a particular plant. At high potential transpiration rates (5 

mm/day in the model simulation) stomata start closing at lower pressure heads (h3) (in absolute 

value) than at low potential transpiration rates (1 mm/d) (h4). Parameters of the stress response 

function for a majority of agricultural crops can be found in various databases (e.g., Taylor and 

Ashcroft, 1972; Wesseling et al., 1991). Considering that the vegetation cover was mainly 

constituted of herbaceous plants, parameters reported for grass in Wesseling et al. (1991) were 

used in this study.  

The local potential root water uptake Sp was calculated from the potential transpiration 

rate Tp. Beer’s equation was first used to partition reference evapotranspiration, calculated 

using the Penman-Monteith equation (Allen et al., 1998), into potential transpiration and 

potential soil evaporation fluxes (e. g., Ritchie, 1972). The partitioning of evapotranspiration 

pShahS  )()(
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into potential transpiration and potential evaporation allows the computation of different actual 

fluxes in the soil-vegetation system. The Leaf Area Index (LAI) is needed to partition 

evaporation and transpiration fluxes. In this study, a LAI value of 2.29 as reported by Blanusa 

et al. (2013) for a sedum mix was used, considering its similarity with the installed vegetation. 

For a detailed explanation of evapotranspiration partitioning, please refer to Sutanto et al. 

(2012). 

HYDRUS-2D allows for the consideration of a spatially variable root distribution. In this 

study, a homogeneous root zone within a depth of 15 cm was defined. The root density was 

assumed to be uniform inside the root zone and zero in the remaining part of the numerical 

domain. The total potential transpiration flux from a transport domain is equal in HYDRUS to 

potential transpiration Tp, multiplied by the surface length associated with vegetation. This total 

potential transpiration flux is then distributed over the entire root zone for the computation of 

the actual root water uptake. 

 

4.2.3.2 Numerical Domain and Boundary Conditions 

The two-dimensional domain had a length of 8.0 m and a depth of 0.75 m. The geotextile 

was not included in the model considering its negligible thickness, its limited hydraulic effect 

due to its high permeability, and that its sole function was to separate the soil substrate from 

the filter layer. The domain was discretized into two-dimensional triangular elements using the 

MESHGEN tool of HYDRUS-2D. The mesh was refined in the right part of the domain, where 

the effect of the surface runoff from the parking lot was simulated. This refinement was 

necessary in order to numerically accommodate the significant pressure head gradients 

generated by infiltration of runoff, and thus to reduce the mass balance errors. The generated 

FE mesh had 736 nodes and 1,350 two-dimensional elements. The quality of the FE mesh was 

assessed by checking the mass balance error reported by HYDRUS-2D at the end of the 



4.2 Materials and Methods 129 

 

129 

 

simulation. Mass balance errors, which in this simulation were always below 1%, are generally 

considered acceptable at these low levels. 

The surface of the SF was exposed to precipitation, evapotranspiration, and surface 

runoff from the impervious parking lot. As a result, in HYDRUS, two different boundary 

conditions were specified at the top of the modeled domain, as well as at its bottom (Fig. 4.3). 

 

 

Figure 4.3 The spatial distribution of applied boundary conditions. 

 

The “Atmospheric” boundary condition, which was assigned on the surface of the soil 

substrate (green line in Fig. 4.3), can exist in three different states: (a) precipitation and/or 

potential evaporation fluxes, (b) a zero pressure head (full saturation) during ponding when 

both infiltration and surface runoff occurs, and (c) an equilibrium between the soil surface 

pressure head and the atmospheric water vapor pressure head when atmospheric evaporative 

demand cannot be met by the substrate. The threshold pressure head, which was set to -10,000 

cm, divides the evaporation process from the soil surface into two stages: (1) a constant rate 

stage when actual evaporation, equal to potential evaporation, is limited only by the supply of 

energy to the surface, and (2) the falling rate stage, when water movement to the evaporating 

sites near the surface is controlled by subsurface soil moisture and the soil hydraulic properties. 

In such conditions, actual evaporation, calculated as a result of the numerical solution of the 

Richards equation, is smaller than potential evaporation. 



130 On the use of surrogate-based modeling for the numerical analysis of Low Impact 

Development techniques 

 

130 

 

The “Variable Flux” boundary condition, which included both precipitation and 

measured surface runoff, was used in the area under the perforated pipe (red line in Fig. 4.3). 

Evaporation was excluded since most of the surface was covered by the perforated pipe, which 

reduced the exposure of the surface to wind and solar radiation. 

A seepage face boundary condition (brown line in Fig. 4.3) was specified at the bottom 

left corner of the numerical domain to simulate the effect of the horizontal drain. A seepage 

face boundary acts as a zero pressure head boundary when the boundary node is saturated and 

as a no-flux boundary when it is unsaturated. A zero flux boundary condition (black line in Fig. 

4.3) was applied to all remaining boundaries of the domain to simulate the effect of the 

impervious membrane placed at the bottom and on the sides of the SF. 

The initial conditions were specified in terms of the soil water pressure head and were 

set to linearly increase with depth, from -90 cm at the top of the flow domain (z = 0) to -0.5 cm 

at the bottom (z = -75). The surface layers are assumed to be drier than the bottom layers since 

they are directly exposed to the atmosphere. The numerical model is expected to be sensitive 

to the initial conditions only during the first few simulated days. 

 

4.2.4 Surrogate Based Model 

4.2.4.1 Kriging 

There are two broad families of surrogate modeling techniques: Response Surface 

Surrogates (RSS) and Lower-Fidelity Surrogates (LFS). While RSS are data-driven techniques 

for approximating the response surface of high-fidelity (original) models based on a limited 

number of original model evaluations, LFS are essentially cheaper-to-run, alternative 

simulation models with different levels of accuracy (Razavi et al., 2012). As pointed out by 

Razavi et al. (2012) in their review paper, LFS outperforms RSS when the dimensionality of 

the problem is high and the response surface landscape is characterized by multimodality. In 
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such circumstances, RSS would need a higher number of original model runs to correctly 

approximate the response surface. O’Hagan (2006) highlighted how the same number of design 

sites can lead to different parameters space coverages depending on the dimensionality of the 

problem. However, when the problem is low-dimensional and the response surface is 

characterized by a low or moderate multimodality, RSS are preferred since a limited number 

of high-fidelity model runs is required to build a reliable surrogate model. 

The present study involves a SF model with four parameters to be investigated. 

Considering the low dimensionality of the problem, the kriging response surface approximation 

technique was used. Unlike other RSS, kriging models have their origins in mining and 

geostatistical applications involving spatially and temporaly correlated data. The kriging 

technique has also been referred to in the literature as a Gaussian Process (GP) prediction 

(Rasmussen and Williams, 2006; Sacks et al., 1989).  A Gaussian Process is formally defined 

as being a probability distribution over a (possibly infinite) number of variables, such that the 

distribution over any finite subset of them is a multi-variate Gaussian. As the Gaussian 

distribution is fully specified by its mean and covariance matrix, the GP is specified by a mean 

and a covariance function (Mackay, 1998). The mean is usually assumed to be zero, and, in 

such circumstances, the covariance function completely describes the GP behavior. One of the 

most attractive features of GP is that it treats the deterministic response of a computer model 

as the realization of a stochastic process, in particular a Gaussian random process, thereby 

providing a statistical basis for fitting. This capability provides a first approximation of 

uncertainty associated with each value predicted by the surrogate. Another advantage of kriging 

against other RSS techniques such as Artificial Neural Networks (ANN) or Support Vector 

Machines (SVM) is that kriging is an exact emulator. An exact emulator precisely predicts all 

design sites used to build the surrogate, while inexact emulators can introduce bias in such 

sites. As described by Razavi et al. (2012), an exact emulation is recommended for 

approximating the deterministic response of computer simulation models. Inexact emulators 

have smoothing capabilities that can help when the response surface is noisy (e.g., physical 
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experiments), however this feature can lead to poor approximation of the response surface 

when it is characterized by multiple local minima. 

 The kriging model is a combination of a polynomial model and a localized deviation 

model, which is based on a spatial correlation of samples (eq. 24): 

)()()( xZxfxy   (24) 

where y(x) is an unknown function of interest, f(x) is an approximation function, and Z(x) is the 

realization of a stochastic process with zero mean, the variance σ2, and nonzero covariance. 

While f(x) globally approximates the response surface through design sites, Z(x) creates 

localized deviations. The covariance matrix of Z(x) is given by eq. (25): 

)]),(([)](),([ 2 jiji xxRxZxZCov   (25) 

where Ψ is the p x p symmetric correlation matrix and R(xi, xj) is the correlation function 

between two of the p sampled data points. R(xi, xj) can assume different forms and is specified 

by the user. In this study, the Gaussian correlation function has been used (eq. 26): 
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where N is the number of parameters, τj are the unknown correlation parameters used to fit the 

model, and xk
i and xk

j are the kth components of the sample points xi and xj. Correlation 

parameters τj are estimated using the maximum likelihood methodology. The “best” kriging 

model is found by solving a j-dimensional, unconstrained, nonlinear optimization problem. In 

this study, the PSO global optimization algorithm has been used to identify kriging parameters. 

 

4.2.4.2 Design of Experiments 

The first step in the generation of a surrogate model is to sample the response surface at 

some specific design sites. This procedure is usually referred to in the literature as the Design 
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of Experiments (DoEs).  As pointed out by Razavi et al. (2012), a sufficiently large and well-

distributed set of initial design sites is crucial for a successful application of a metamodeling 

framework. There are several DoEs methods available in the literature. Factorial design 

(Gutmann, 2001), Latin Hypercube Sampling (LHS) (McKay et al., 1979), and Symmetric 

Latin Hypercube Sampling (SLHS) (Ye et al., 2000) are the most commonly used. In this study, 

the LHS has been used. The size of the DoEs sample is strongly dependent on the complexity 

of the original response surface and computational budget available. The kriging model 

requires at least N+1 design sites to fit, while additional sites will improve the accuracy of the 

surrogate. Several relations were proposed in the literature to choose the size p of the initial 

sample (e.g., Gutmann, 2001; Regis and Shoemaker, 2004). In this study, the relation proposed 

by Jones et al. (1998) has been used (eq. 27): 

Np 10  (27) 

Considering that the number of investigated parameters was 4, 40 sampling points were 

generated using the LHS. 

 

4.2.4.3 Approximation Uncertainty Framework 

The surrogate model fitted on a DoEs sample is only the first approximation of the 

original response function. Its accuracy can be improved using further original model runs 

(infill points) in addition to the initial sampling plan. The distribution of infill points strongly 

depends on the complexity of the original response surface and on the type of analysis 

conducted. When the purposes of the analysis of the surrogate model includes uncertainty and 

sensitivity analyses, it is necessary to have an accurate global approximation of the response 

surface. The adaptive-recursive framework relies on the assumption that the optimal solution 

of the surrogate represents well the original model. However, this is not always true, especially 

when the response surface is characterized by high multimodality. When the approximation of 

the response surface by the surrogate model is limited, this framework is not recommended for 
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the uncertainty and/or sensitivity analysis. Jones (2001) concluded that the adaptive-framework 

is helpful at best for local optimization. 

In this study, the approximation uncertainty framework was applied to address the 

shortcoming of the adaptive-recursive framework, which considers uncertainties associated 

with the approximation. RSS, such as kriging, explicitly provide a measure of uncertainty since 

they treat the deterministic response of a computer simulation as the realization of a stochastic 

process. The model can then be evaluated at points with the highest uncertainty, which can then 

be included among the design sites. Although globally convergent, such an approach requires 

an impractically large number of original function evaluations. An effective uncertainty based 

framework should balance exploitation (i.e., fine tuning of a good solution) and exploration 

(i.e., reducing the overall uncertainty of the surrogate). The expected-improvement approach 

(Schonlau, 1997) was used in this study. An expected-improvement is a measure that 

statistically quantifies the obtained improvement when a given point is evaluated by the 

original model and added to design sites. For a complete description of the expected-

improvement approach please refer to Schonlau (1997). 

In this study, the expected-improvement approach was used to add 15 infill points to the 

initial design sites. In order to have good accuracy, the surrogate was refitted after each new 

original model evaluation (Razavi et al., 2012). 

 

4.2.4.4 Surrogate Validation 

Validation of the RSS model is important for evaluating the reliability of the surrogate. 

Although exact emulators such as kriging exactly interpolate the response surface at design 

sites, their accuracy in unexplored regions of the parameter space must be evaluated. The 

validation can be conducted by evaluating the agreement between values of the variable of 

interest predicted by both the surrogate and original models on an independent set of sample 

points. Cross validation strategies such as k-fold and leave-one-out cross validation have also 
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been used in the literature (Wang and Shan, 2007). In the present study, an independent set of 

sample points was generated using the LHS and used to validate the model. Ten points were 

used to carry out the validation process. The determination coefficient R2 was used to assess 

the agreement between predicted and modeled values. As suggested by Forrester et al. (2008), 

a value of the correlation coefficient higher than 0.8 indicates a surrogate model with good 

predictive capabilities. 

 

4.2.5 Global Sensitivity Analysis (GSA) 

A sensitivity analysis (SA) can identify the most influential parameters, their interactions, 

and how these parameters affect the output (Saltelli et al., 2005). Most SAs performed in the 

literature of environmental sciences are the so-called 'one-at-a-time' (OAT) sensitivity 

analyses, performed by changing the value of parameters one-at-a-time while keeping the other 

parameters constant (Cheviron and Coquet, 2009; Houska et al., 2013; Rezaei et al., 2015). 

However, when the model includes interactions between multiple parameters, results of the 

OAT analysis are inaccurate because parameter interactions can be globally identified only by 

simultaneously changing multiple parameters. For this reason, when the property of a model is 

a priori unknown, a Global Sensitivity Analysis (GSA) is always preferred (Saltelli and 

Annoni, 2010). Practitioners call this analysis a model-free setting, which means that  a 

particular application does not depend on particular assumptions regarding the behavior of the 

model, such as linearity, monotonicity, etc (Saltelli and Annoni, 2010). 

Variance-based methods aim to quantify the amount of variance that each parameter 

contributes to the unconditional variance of the model output. In Sobol’s method, these 

measures are represented by Sobol’s sensitivity indices (SIs). These indices give quantitative 

information about the variance associated with a single parameter or with interactions of 

multiple parameters. For a more complete explanation about Sobol’s method, please refer to 

Sobol' (2001). Sobol’s sensitivity indices are expressed as follows: 
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where Vi is the variance associated with the ith parameter and V is the total variance. The 

first-order index, Si, is denoted in the literature as the “main effect.” When the model is 

additive, i.e., when it does not include interactions between input factors, the first-order index 

is sufficient for decomposing the model’s variance. For additive models, the following relation 

is valid: 
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(31) 

On the other hand, the total effect index, ST, gives information about a non-additive part 

of the model. STi = 0 is a condition necessary and sufficient for Xi to be non-influential. For an 

accurate description of the calculation of Sobol’s indices please refer to Saltelli (2010). 

When the model is nonlinear, as most environmental models are, Sobol’s indices are 

calculated using Monte Carlo integrals. Obviously, the accuracy in the estimation of integrals 

becomes more accurate as the number of samples increases, which also increases the 

computational cost of the SA. However, this limitation is avoided when using a surrogate 

model since the computational cost associated with the evaluation of a large number of samples 

is very low (O’Hagan, 2006; Oakley and O’Hagan, 2004). For this reason, 1000 samples for a 

total of 30,000 surrogate model runs were used in this study. To sample the parameters' space 

we used Sobol’s quasi-random sampling technique (Sobol', 2001). 

In order to assess the accuracy of the estimations of the sensitivity indices, the bootstrap 

confidence intervals (BCIs) (Efron and Tibshirani, 1986) were estimated. The basic idea of the 

bootstrapping is that the sample contains all available information about the underlying 
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distribution. In our particular case, we were interested in computing the uncertainty of 

estimated sensitivity indices. However, since their distribution is unknown it is not possible to 

compute the confidence intervals analytically. The rationale of the bootstrap method is to 

replace the unknown distribution with its empirical distribution and to compute the sensitivity 

indices using a Monte Carlo simulation approach where samples are generated by resampling 

the original sample used for the sensitivity analysis.  In our case, the samples used for the GSA 

were sampled 1000 times with replacement, whereby Sobol’s indices were calculated for each 

resampling. In this way, 95% confidence intervals are constructed using the percentile method 

and the moment method (Archer et al., 1997). 

 

4.2.6 Particle Swarm Optimization 

Numerous applications of inverse modeling for the estimation of soil hydraulic properties 

exist in the literature (Abbaspour et al., 2004; Hopmans et al., 2002; Vrugt et al., 2008, 2004). 

The gradient methods (Marquardt, 1963) have been most widely used among hydrologists and 

soil scientists. However, these methods are sensitive to the initial values of optimized 

parameters and the algorithm often remains trapped in local minima, especially when the 

response surface exhibits a multimodal behavior. These considerations inspired researchers to 

develop and use global optimization techniques such as the annealing-simplex method (Pan 

and Wu, 1998), genetic algorithms (Ines and Droogers, 2002), shuffled complex methods 

(Vrugt et al., 2003), and ant-colony optimization (Abbaspour et al., 2001), among many others. 

In this paper, a global search method based on Particle Swarm Optimization (PSO) 

(Kennedy and Eberhart, 1995) was used. This method simulates the behavior of a flock of birds 

collectively foraging for food (i.e., searching for the optimum of the objective function). In 

their recent study, Brunetti et al. (2016b) used PSO to estimate the soil hydraulic properties of 

a permeable pavement with satisfactory results. PSO is a relatively new algorithm for 

evolutionary computation methodology, but its performance has proven to be comparable to 

various other more established methodologies (Kennedy and Spears, 1998; Shi and Eberhart, 
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1999). One of the main advantages of PSO is the easiness of its implementation (Liang et al., 

2006). A detailed description of the PSO algorithm is given in Shi and Eberhart (1998). 

 In PSO, each particle represents a possible solution of the problem. First, particles are 

placed in the search space, each characterized by a particular value of the objective function. 

Each particle then changes its position after exchanging information about its own current and 

best positions with other members of the swarm. The next iteration starts after all particles have 

changed their positions. The most important parameters in the PSO are c1, c2, and w. c1 and c2 

are constant parameters known as the cognitive and social parameters, respectively, which 

drive the search behavior of the algorithm. Depending on the values of c1 and c2 the PSO can 

be more or less “responsive”. However, their values should be selected carefully because large 

values of these parameters can lead to instabilities in the algorithm. w is the inertia-weight, 

which plays a key role in the optimization process by providing balance between exploration 

and exploitation. In PSO, each particle is influenced by its nearest neighbors. The arrangement 

of neighbors that influence a particle is called the topology of the swarm. Different types of 

neighborhoods are reported in the literature (Akat and Gazi, 2008). In this study, the all 

topology is used, in which the neighborhood encompasses the entire swarm. The PSO 

parameters used in this study for both scenarios are reported in Table 4.2 and are as suggested 

by Pedersen (2010). 

 

Table 4.2 Parameters used in the PSO optimization. 

Swarm size c1 c2 w 

63 -0.73 2.02 -0.36 
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4.2.7 Objective Function 

The Nash-Sutcliffe Efficiency (NSE) index (J E Nash and Sutcliffe, 1970) was used to 

evaluate the agreement between measured and modeled hydrographs and as the variable of 

interest in the surrogate analysis: 

 

(32) 

where Qi
obs is the ith measured value, Qi

mod is the ith simulated value, and Qmean
obs is the mean 

value of observed data. The NSE index ranges between -∞ and 1.0, is equal to 1 in case of 

perfect agreement, and generally, values between 0.0 and 1.0 are considered acceptable 

(Moriasi et al., 2007). The NSE index was used because it is often reported to be a valid measure 

for evaluating the overall fit of a hydrograph (Sevat et al., 1991). 

It is important to emphasize that subsurface outflow from a LID system is among the 

most important outputs in the analysis of urban drainage systems. In our case, the stormwater 

filter was impervious at the bottom and hydraulically connected with the sewer system. An 

accurate numerical reconstruction of the subsurface hydrograph is thus fundamental in order 

to quantify its effect on the drainage system. 

 

4.3 Results and Discussion 

4.3.1 Evaporation Method 
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Figure 4.4 Measured values and modeled functions of soil water retention,  (log10(|h|)) (left) and the 

unsaturated hydraulic conductivity, K(log10(|h|)) (center) and K( ) (right). Symbols represent the 

measured values, and full lines the fitted VGM functions. 

 

Soil hydraulic properties measured using the evaporation method are displayed in Figure 

4.4. The retention data point close to log (|h|)=4 (h in cm) was obtained by using the air-entry 

pressure head of the ceramic cup of the tensiometers. Measured retention points were not 

available in the very dry range, between 2.7 and 3.8, since cavitation occurred in the 

tensiometers. The behavior of the retention curve appears to be sigmoidal and characterized by 

a clearly identifiable air-entry pressure head at log (|h|)=2 (h in cm). Below this pressure head, 

the soil quickly desaturated, indicating a narrow pore-size distribution. Measured points of the 

hydraulic conductivity function were sparser and concentrated in the dry range between 

volumetric water contents of 0.10 and 0.20. The measured soil porosity and bulk density were 

0.44 and 1.59 g/cm3, respectively.  

The unimodal van Genuchten-Mualem model (van Genuchten, 1980) was fitted to 

measured points using the HYPROP-FIT software. The RMSE values for retention and 

conductivity functions were 0.04 (cm3cm-3) and 0.6 (in log K, cm/day), respectively. The VGM 
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function (full lines in Fig. 4.4) described the retention data well, especially in the dry and 

medium-wet regions (volumetric water contents of 0.05-0.3), while it introduced some bias 

near saturation where it poorly described the sharp increase in water retention at the air-entry 

pressure head. However, the low RMSE value was considered acceptable for the purposes of 

the present study. The RMSE value for the hydraulic conductivity was higher, indicating a 

slightly worse performance of the VGM function in describing the hydraulic conductivity of 

the substrate. The estimated soil hydraulic parameters (reported with their confidence intervals 

in Table 4.3) were used in HYDRUS-2D to model the hydraulic behavior of the soil substrate.  

 

Table 4.3 Estimated soil hydraulic parameters and their confidence intervals for the soil substrate 

Parameter 2.5% Estimated value 97.5% 

r (-) 0.02 0.03 0.04 

s (-) 0.43 0.44 0.45 

 (1/cm) 0.021 0.025 0.029 

n (-) 1.84 1.97 2.10 

Ks (cm/day) 200 260 320 

L (-) -0.63 -0.44 -0.25 

 

4.3.2 Kriging Approximation of the Response Surface 

The DoEs sample, generated with the LHS technique, was used to build the first 

approximation of the response surface for the investigated soil hydraulic parameters. First, the 

HYDRUS-2D model was executed 40 times (Eq. 27), and the NSE index was computed for 

each run and stored in a 1D array. A single run of the original HYDRUS-2D model required 

almost 1 minute of CPU time on a laptop equipped with a CPU Intel ® Core i7-4700 MQ 2.40 

GHz processor and 8 GB of RAM. Next, the LHS sample and the NSE array were used in the 

PSO optimization framework to estimate the kriging parameters. To check its accuracy, the 
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obtained kriging model was validated on another independent sample generated with the LHS. 

As shown in Figure 4.5, the validation sample covered values of NSE ranging from 0.2 to 0.8, 

providing information about the response surface for both less and more accurate portions of 

the parameters space. 

 

Figure 4.5 Comparison between the HYDRUS-2D and kriging-predicted values of the NSE for the 

validation sample. The initial (grey diamonds) and infilled (red circles) kriging models are compared. 

A bisector (a black line) and regression lines for the initial (a dashed grey line) and infilled (a dashed 

red line) kriging models are reported. 

 

At the first inspection, the kriging model based on the initial sample exhibited a moderate 

accuracy. The determination coefficient R2 for the initial kriging model was 0.91, which 

already indicated an overall accuracy of the surrogate model (Forrester et al., 2008). This 

confirmed the good coverage of the DoEs sample. However, as shown in Figure 4.5, the 

surrogate, while being highly accurate for low values of the objective function, introduced a 

significant bias for high values of NSE, which are those of interest in an optimization 
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framework. The regression line for the initial surrogate (a dashed gray line in Fig. 4.5) almost 

overlapped the bisector (a black line in Fig. 4.5), which indicates a perfect agreement between 

the surrogate and the original model in the range of 0.2-0.4, while it underestimated values of 

the response surface in the region around 0.8. The underestimation of the response surface 

values in the region where optimal parameter values are likely located could influence the next 

surrogate-based optimization of soil hydraulic properties.  

To increase the accuracy of the kriging model, the approximation uncertainty framework 

was used next. As described in the methodology section, 15 infilled points were added to the 

initial design sites using the expected improvement approach. As shown in Figure 4.5 and as 

expected, the infilled kriging model outperformed the initial kriging model. The determination 

coefficient R2 increased to 0.98, indicating that the infilled kriging improved the description of 

the response surface. This behavior was confirmed by the regression line (a dashed red line in 

Fig. 4.5), which almost overlapped a bisector line. Moreover, the accuracy of the kriging model 

improved for high values of NSE, which are those of interest in an optimization process, while 

remaining similarly high for low values of NSE. This global accuracy of the surrogate is 

fundamental for the GSA, which explores the response surface landscape. No additional points 

were added to the design sites considering the relatively high accuracy of the surrogate, and 

the final surrogate was used for the GSA and optimization. 

 

4.3.3 Global Sensitivity Analysis 

The validated kriging model was next used in the GSA. Sobol’s sensitivity indices, with 

their confidence intervals for each parameter, are reported in Table 4.4. 
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Table 4.4 The first-order (S1) and total (ST) effect indices (in a decreasing order) with their bootstrap 

confidence intervals (BCI) for the soil hydraulic parameters. 

Parameter S1 S1 (BCI)  ST ST (BCI) 

 [1/cm] 0.93 0.24  0.94 0.05 

Ks [cm/min] 0.04 0.08  0.05 0.007 

n [-] 0.01 0.02  0.008 0.001 

θs [-] 0.002 0.01  0.001 0.001 

Sum ≈ 1.0   ≈ 1.0  

 

The sensitivity analysis revealed that the model was additive. This was confirmed by the 

sum of the first-order indices, which was almost 1, and by negligible differences between the 

first-order and total-effect indices for each parameter. An additive model Y=f(X1, X2,…, XN) 

can be decomposed into a sum of N functions, where N is the number of parameters. This means 

that the effects of interactions between model parameters on model results were negligible.  

As shown in Table 4.4, the most influential parameter was the shape parameter . Its 

first-order (S1) and total effect (ST) indices were more than an order of magnitude higher than 

corresponding indices for the second most influential parameter Ks. The pore-size distribution 

index n and the saturated water content θs exhibited the lowest sensitivity, indicating their 

marginal role on the output’s variance. Moreover, since their total effects were almost zero, 

these parameters can be fixed to any feasible value in the parameter space without affecting the 

value of the objective function, reducing the dimensionality of the inverse problem to only two 

parameters, and Ks. Such results are very useful in an optimization framework, since they 

can simplify the parameter estimation procedure. Some of the total effect indices were only 

slightly larger than the first order indices. This is mainly due to approximation in the numerical 

integration of the total unconditional variance (Sobol′, 2001).  

It must be emphasized that additivity is quite unusual for environmental models, which 

are generally characterized by high nonlinearity and interactions between parameters (Brunetti 
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et al., 2016a; Nossent et al., 2011). In our particular case, the dominant effect of the parameter 

on the hydrograph makes it difficult to identify interactions between parameters. This may also 

indicate that water flow in the filter layer deviates from the traditional Darcian behavior and 

involves other physical processes, such as preferential and film flows. In such circumstances, 

some parameters can exhibit a negligible effect on the model’s response. 

As mentioned in the methodology section, the GSA required 30,000 evaluations of the 

surrogate model. The computational cost of the kriging-based sensitivity analysis was limited 

to 1-2 seconds on a laptop equipped with a CPU Intel ® Core i7-4700 MQ 2.40 GHz processor 

and 8 GB of RAM. On the other hand, since a single HYDRUS-2D model run required 

approximately 1 minute, the same type of GSA performed using the original HYDRUS-2D 

model would have required approximately 21 days of continuous computation. This clearly 

represents one of the main advantages of surrogate-based modeling: performing the same type 

of analysis with negligible computation time and a similarly good level of accuracy. 

 

4.3.4 Kriging-Based Optimization 

Using the results of the GSA, only shape parameter and the saturated hydraulic 

conductivity Ks were optimized. The saturated water content θs and the pore-size distribution 

index n were assumed to be 0.15 and 3.2, respectively, considering that the filter layer consisted 

of coarse gravel, usually characterized by reduced porosity and narrow pore-size distribution. 

The soil hydraulic parameters of the filter layer, including the optimized parameters, are 

summarized in Table 4.5. The filter layer exhibited both a high value of the saturated hydraulic 

conductivity Ks (90 cm/min) and a very low value of the shape parameter 0.001 1/cm).  

The estimated parameters indicated that the hydraulic behavior of the filter layer was 

characterized by high flow rates and negligible retention capacity, which are both typical for 

coarse textured media. The optimized parameter values are similar to those reported in Brunetti 

et al. (2016b) for the base layer of a permeable pavement. In that study, the base layer consisted 
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of crushed stones and was modeled using either the classical VGM function or the dual-

porosity approach to account for preferential flow. Specifically, for the unimodal VGM 

function, the authors reported a value of 0.023 1/cm for the shape parameter and a saturated 

hydraulic conductivity Ks of 68.7 cm/min. Moreover, the plausible occurrence of film flow in 

the filter layer, which can support very high flow rates, especially at near-zero matrix potential 

(Tokunaga, 2009), needs to be contemplated. Under such circumstances, the hydraulic behavior 

of the material tends to deviate from the typical Richard’s type flow, and the optimized 

parameters attempt to approximate a combination of fingering and film flow that likely occur 

in this layer. 

 

Table 4.5 VGM parameters for the filter layer. The shape parameter  and the saturated hydraulic conductivity 

Ks were estimated using the PSO algorithm. 

Soil hydraulic parameters 

Layer θr (-) θs (-) (1/cm) n (-) Ks (cm/min) L (-) 

Filter 0 0.15 0.001 3.2 90 0.5 

 



4.3 Results and Discussion 147 

 

147 

 

 

Figure 4.6 A comparison between measured and simulated outflows versus time and against each other 

(in the insert) for the calibration period. The full and dashed lines in the insert are a bisector and linear 

regression line, respectively.  

 

Figure 4.6 shows a comparison between the measured and modelled hydrographs for the 

optimization period. The PSO resulted in the NSE value of 0.85, which confirmed the accuracy 

of the measured and estimated parameters. As reported by Moriasi et al. (2007), values of NSE 

between 0.75 and 1.0 indicate a very good agreement between hydrographs, and an adequate 

model calibration. The model was able to correctly reproduce the fast hydraulic response of 

the hydrograph during precipitations and to reasonably estimate peak flows. The insert of 

Figure 6 shows the simulated against measured SF outflows. The same plot also shows a 

bisector line, which indicates a perfect agreement between simulated and measured outflows, 
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and a linear regression line. The good performance of the model is confirmed by the 

determination coefficient R2= 0.85. The comparison between the bisector and regression lines 

indicates that, in general, the model slightly overestimated the outflow.  

A careful inspection of simulated fluxes revealed that the model tends to underestimate 

low flows (Fig. 4.6). This behavior could be related to the coarse nature of the filter layer, 

which closely resembles “fractured aquifers”. Typical breakthrough curves for fractured 

aquifers are characterized by early breakthrough and long tailing (Geiger et al., 2010). This is 

due to a delayed response in the matrix to pressure head changes that occur in the surrounding 

fractures. Brattebo and Booth (2003), Brunetti et al. (2016b), and Fassman and Blackbourn 

(2010) observed a similar behavior in permeable pavements, the base and sub-base layers of 

which are composed of crushed stones. In such circumstances, more complex models are 

needed to simultaneously describe fast preferential flow and the matrix-fracture interactions in 

the filter layer (Brunetti et al., 2016a). 

Since the computational time associated with a single surrogate model evaluation was 

negligible, the approximate response surface was investigated. Figure 4.7 shows the -Ks 

response surface obtained using a regular grid of 40,000 points. The darkest areas represent 

regions of the parameter space with high values of NSE. At the first inspection, the response 

surface was not characterized by multimodality. As shown in Figure 4.7, optimal solutions 

were concentrated in the left part of the plot for values of between 0.001 and 0.05. For 

values larger than 0.05, the objective function dropped quickly to 0.3-0.4. The NSE values 

slowly increased for values of >0.2. This can be expected since the parameter for gravels 

usually has relatively high values. However, in our case, high values of were not able to 

accurately reproduce the hydraulic behavior of the SF.  On the other hand, the response surface 

exhibited limited variability in the Ks direction, since high values of NSE were guaranteed for 

a broad range of saturated hydraulic conductivity values. 
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These results confirmed the findings of the GSA, which clearly indicated that the 

variance of the objective function was mainly driven by the shape parameter with only a 

limited influence of Ks. This behavior is shown in detail in Figure 4.8. 

 

Figure 4.7 The - Ks response surface obtained using a regular grid of 40,000 points. The red lines 

indicate the cross sections reported in Figure 4.8.  

 

Figure 4.8 shows horizontal (Ks = 90 cm/min) and vertical (= 0.001 1/cm) cross-

sections (red lines in Fig. 4.7) through the response surface. Yellow rectangular areas are 

expanded in the right part of the plot. With respect to Ks, the optimum was not clearly 

identifiable at the first inspection. The values of the objective function ranged between 0.8 and 
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0.85 in the entire range of the saturated hydraulic conductivity, indicating its limited effect on 

the response surface. The area around the PSO-optimized value of Ks (90 cm/min) is expanded 

in the bottom-right corner of Figure 4.8. From this plot, it is evident how the PSO algorithm 

well identified the optimal value Ks, even for a flat profile. 

Conversely, Figure 4.8 shows a completely different behavior for the -NSE profile, for 

which an optimal region was identified in the left part of the plot for low values of the 

parameter. While the gradient of the curve seemed to approach a maximum, it was not 

possible to clearly identify the optimum, which may have been outside of the range imposed 

on the parameter. As previously discussed, this behavior could be related to a deviation from 

the Darcian flow in the filter layer. The further analyzes of the response surface indicated that 

values of  over 0.01 1/cm corresponded to a marked decrease of NSE. This is evident from 

the expanded area in the top-right corner of Figure 4.8. This finding is in agreement with the 

results of the GSA, which identified as the most influential parameter. 
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Figure 4.8 Horizontal [Ks = 90 cm/min] (top), and vertical [= 0.001 1/cm] (bottom) response 

surface cross-sections. The yellow rectangular areas for both plots are expanded on the right.  

 

In order to verify whether additional soil hydraulic parameters, such as the saturated 

water content θs and the pore-size distribution index n, influenced the optimum, a surrogate-

based optimization, which considered four soil hydraulic parameters was carried out. The 

results of the optimization are listed in Table 4.6. 
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Table 4.6 VGM parameters for the filter layer. The saturated water content θs, the shape parameters and n, and 

the saturated hydraulic conductivity Ks were estimated using the PSO algorithm. 

Soil hydraulic parameters 

Layer θr (-) θs (-) (1/cm) n (-) Ks (cm/min) l (-) 

Filter 0 0.17 0.003 3.1 89 0.5 

  

As shown in Table 4.6, the newly estimated parameters are very similar to those 

estimated when θs and n were fixed. The saturated water content was 0.17, which is slightly 

higher than the previously fixed value . Conversely, the pore-size distribution index n was 

slightly lower, but the difference was again very small. The two most sensitive parameters  

and Ks  had some small changes, however overall results are in a good agreement with those 

reported previously. Again, the filter layer exhibited a relatively high permeability and a low 

value of the  parameter. These numerical differences could be related to the effects of 

interactions between parameters, which, even if small in magnitude as demonstrated by the 

GSA, can affect the optimization process. 

 

4.3.5 Model Validation 

In order to evaluate the reliability of the estimated parameters, the model was validated 

using another independent set of experimental data. Figure 4.9 shows a comparison between 

measured and modeled hydrographs during the validation period. 
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Figure 4.9 A comparison between measured and simulated outflows versus time and against each other 

(in the insert) during the validation period. The full and dashed lines in the insert are a bisector and 

linear regression line, respectively. 

 

The value of the objective function was NSE = 0.8, which again confirmed the adequacy 

of the estimated parameters. The description of the hydraulic behavior of the stormwater filter 

during rainfall events was satisfactory. This capability of the calibrated model to correctly 

describe the hydraulic behavior of the system is important when dealing with the analysis of 

combined traditional drainage systems and LID techniques. A correct description of the 

hydrograph during precipitation events gives information about the lag time and the intensity 

of peak flow, which are fundamental for both a comprehensive hydraulic analysis of drainage 

systems, and for the evaluation of benefits of LIDs implementations. The model was not able 
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to reproduce outflow induced by the precipitation event on March 15. This may be related to 

an overestimation of actual evapotranspiration calculated using values from the literature for 

albedo, LAI, and a hypothetical roots distribution, which could result in an overestimation of 

the storage capacity of the SF at the beginning of the precipitation event, which had a total 

volume of 6 mm. As a result, the model predicted that the SF retained all the precipitation 

volume. A better characterization of evapotranspiration could help in increasing the accuracy 

of the model, which was already high. 

 

4.4 Conclusions and Summary 

The aim of this study was to demonstrate the benefit of surrogate-based modeling in the 

numerical analysis of Low Impact Development techniques. In particular, the unsaturated 

hydraulic properties of a contained stormwater filter installed at the University of Calabria were 

evaluated in the study. The kriging technique was used to approximate the deterministic 

response of the widely used mechanistic model HYDRUS-2D, which was used to simulate the 

variably-saturated hydraulic behavior of the filter. In order to reduce the dimensionality of the 

inverse problem, the simplified evaporation method was used to determine the unsaturated soil 

hydraulic properties of the soil substrate placed on the top of the filter layer. The Nash-Sutcliffe 

efficiency index was used both to compare the simulated and measured outflows, and as the 

variable of interest for the construction of the response surface. 

The PSO heuristic algorithm was used to estimate the kriging parameters based on an 

initial set of design sites obtained using Latin Hypercube Sampling. The approximation 

uncertainty framework improved the accuracy of the surrogate model by using the expected-

improvement approach to select additional points to the initial design sites. The kriging model 

was validated against an unexplored set of points with satisfactory results. The obtained 

surrogate was then used to perform a global sensitivity analysis of the hydraulic parameters of 
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the filter layer based on Sobol’s method, with a negligible computational cost. The sensitivity 

analysis revealed that the model is additive, and that only two soil hydraulic parameters, the 

shape parameter  and the saturated hydraulic conductivity Ks, affect the hydraulic response of 

the filter layer. These two parameters were estimated using the PSO algorithm with a NSE 

value of 0.85, which indicated an good accuracy of the model. Moreover, the analysis of the 

response surface confirmed the results of the GSA, identifying as the most influential 

parameter. The reliability of the surrogate-based analysis was evaluated by validating the 

optimized parameters on an independent dataset of measured outflows. A NSE value of 0.8 

confirmed the reliability of the HYDRUS-2D model calibrated using the kriging technique. 

While the accuracy of mechanistic models is not in doubt, one of the most widespread 

criticism against their use is their computational cost, which limits their adoption. This study 

has demonstrated how a surrogate-based analysis can provide an effective solution in 

overcoming this limitation. In this paper, the kriging technique was used for highly expensive 

computational analyses, such as the GSA and the PSO, with good results.  

This novel study represents the first contribution towards the use of surrogates for LIDs 

analysis, which does not need to be limited only to the investigation of soil hydraulic properties. 

For example, potential applications can be also targeted to the optimization of the 

morphological characteristics of the LID itself (depth, slope, plants, etc) for a particular 

climate, to the optimization of the adsorption properties of filter layers, or for specific design 

aims. Such studies could help in providing a better understanding of LID techniques while 

promoting the widespread adoption of such systems.
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Chapter 5 Conclusions and future directions 

The main aim of this thesis was to investigate the use of mechanistic modelling for the 

numerical analysis of LIDs. The benefits and the limitations of mechanistic modelling were 

analysed in a comprehensive perspective to give a new contribution to the scientific 

community. The work included the application of numerical algorithms and laboratory 

techniques, which are rather new for urban hydrology. Three field-scale experimental facilities 

were used as case studies to investigate the use of mechanistic models. 

In Chapter 2, a mechanistic model was used to simulate the hydraulic/hydrologic 

behaviour of an extensive green roof. The numerical analysis included precipitation, drip 

irrigation, evaporation, transpiration, and infiltration. The combined morphological and 

hydrological complexity of the green roof required the application of a three-dimensional 

model. The Finite-Element software HYDRUS-3D has been used. The variably-saturated 

hydraulic behaviour of the green roof was described by solving numerically the Richards 

equation. Before simulation started, the soil water retention curve and the unsaturated hydraulic 

conductivity of the substrate were determined in the laboratory using the simplified evaporative 

method. Measured soil hydraulic properties highlighted the highly conductive behaviour of the 

substrate, which also exhibited a slightly bimodality in the pore-size distribution. The widely 

recognized unimodal and bimodal van Genuchten-Mualem relations were used to parameterize 

the substrate hydraulic properties, and then used in the numerical model. A two month-long 

period was simulated and validated against experimental data using the Nash-Sutcliffe 

efficiency index. Both the unimodal and bimodal model exhibited satisfactory values of the 

NSE, 0.74 and 0.8 respectively. The bimodal model produced better results, as it was able to 

accurately reproduce the hydraulic behaviour of the green roof under precipitations and 
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irrigation. The validated model was used to investigate different aspects of the hydraulic 

behaviour of the green roof. The hydrological performance of the green roof were analysed 

during the entire simulation period as well as at event scale, and linked to the dynamics of 

water contents and actual evapotranspiration. This application demonstrated how a mechanistic 

model can simultaneously handle the complexity and give extremely useful information about 

the hydraulic behaviour of a green roof. 

In Chapter 3, a mechanistic model was used to simulate the hydraulic behaviour of a 

permeable pavement. In contrast to green roof, the morphological and hydrological 

homogeneity allowed the used of one-dimensional model. However, the main difficulty resided 

in the accurate determination of soil hydraulic parameters for all the four different layers 

forming the pavement. Two different scenarios of describing the hydraulic behaviour of the 

permeable pavement system were analysed: the first one uses a single porosity model for all 

layers of the permeable pavement; the second one uses a dual-porosity model for the base and 

sub-base layers. The choice to use the dual-porosity model was made in order to investigate 

the possibility of preferential flows in the lower layers, which were hydraulically compared to 

fractured aquifers. In such circumstances, the two scenarios included 16 and 20 unknown 

parameters respectively. A Global Sensitivity Analysis followed by a Monte Carlo filtering 

highlighted the influence of the wear layer on the hydraulic behaviour of the pavement and 

identified the ranges of parameters generating behavioural solutions. Reduced ranges were then 

used in the calibration procedure conducted with the metaheuristic Particle swarm optimization 

(PSO) algorithm for the estimation of hydraulic parameters. The best fit value for the first 

scenario was NSE = 0.43; for the second scenario, it was NSE = 0.81, indicating that the dual-

porosity approach is more appropriate for describing the variably-saturated flow in the base 

and sub-base layers. Estimated parameters were validated using an independent, month-long 

set of measurements, resulting in NSE values of 0.43 and 0.86 for the first and second scenarios, 

respectively. The improvement in correspondence between measured and modeled 

hydrographs confirmed the reliability of the combination of GSA and PSO in dealing with 

highly dimensional optimization problems. Obtained results have demonstrated that PSO, due 
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to its easiness of implementation and effectiveness, can represent a new and viable alternative 

to traditional optimization algorithms for the inverse estimation of unsaturated hydraulic 

properties. It must be highlighted that both the sensitivity analysis and the PSO required 

thousands of model runs. While, in this particular case, the model execution was fast, 

mechanistic models are usually computationally expensive, making it impractical to perform 

Monte Carlo analysis and global optimizations. 

In Chapter 4, the issue related to computational cost of mechanistic model was 

investigated and addressed. The two-dimensional mechanistic model HYDRUS-2D was used 

to simulate the hydraulic behaviour of a stormwater filter. This application represented a 

middle ground between the previous ones. The application was focused on the calibration of a 

computationally intensive mechanistic model. To address the problem and give a new 

contribution in this direction, the surrogate-based modelling technique has been used. 

Surrogate modelling is focused on developing and using a computationally inexpensive 

surrogate of the original model. While having been previously applied to various water related 

and environmental modelling problems, no studies have used surrogate models for the analysis 

of LIDs. The aim of this research thus was to investigate the benefit of surrogate-based 

modelling in the numerical analysis of LIDs. The kriging technique was used to approximate 

the deterministic response of the widely used mechanistic model HYDRUS-2D, which was 

employed to simulate the variably-saturated hydraulic behavior of a contained stormwater 

filter. The Nash-Sutcliffe efficiency (NSE) index was used to compare the simulated and 

measured outflows and as the variable of interest for the construction of the response surface. 

The validated kriging model was first used to carry out a Global Sensitivity Analysis of the 

unknown soil hydraulic parameters of the filter layer, revealing that only the shape parameter 

α and the saturated hydraulic conductivity Ks significantly affected the model response. Next, 

the Particle Swarm Optimization algorithm was used to estimate their values. The NSE value 

of 0.85 indicated a high accuracy of estimated parameters. Finally, the calibrated model was 

validated against an independent set of measured outflows with a NSE value of 0.8, which 

again corroborated the reliability of the surrogate-based optimized parameters. This application 
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demonstrated how to address the problem of computational cost associated with mechanistic 

modelling of LIDs. 

As highlighted in the Introduction section, the lack of different types of measurements 

has been a common issue of all modeling scenarios. Only inflows and outflows were available 

to calibrate and/or validate models. To address this issue, a combination of advanced numerical 

techniques and laboratory tests has been used. The soil hydraulic properties of the green roof’s 

substrate have been measured in the laboratory using the evaporation method thus avoiding the 

need to optimize soil hydraulic properties against measured outflow. The same methodology 

has been used to reduce the dimensionality of the inverse problem addressed in the stormwater 

filter modeling. In that case, the evaporation method has been used to measure the soil 

hydraulic properties of the soil substrate thus reducing to four the number of parameters to be 

optimized against the measured outflow. Conversely, the Global Sensitivity Analysis has been 

used to gain important information about the hydraulic behaviour of the permeable pavement, 

identifying most influential parameters. Furthermore, results of the GSA were used to reduce 

the parameters hyperspace thus improving the convergence of the PSO. 

Summarizing, the present thesis demonstrated how mechanistic models represent a valid 

tool for the numerical analysis of LIDs. The combination of modern laboratory techniques and 

new numerical algorithms can help in obtaining accurate, reliable and computationally efficient 

mechanistic models, which offer undoubted benefits against traditional empirical and 

conceptual models. The widespread adoption of such models among practitioners is the key to 

boost the diffusion of LIDs in urban areas. A diffusion needed for a sustainable development 

of our cities. 

 

5.1 Future directions 

This thesis was not intended as an autoreferential and conclusive act, but on the contrary 

as an intermediate step towards new and more effective applications of LIDs modeling. 
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Merging concepts and techniques of other scientific fields is the key to succeed. Surrogate-

modeling, a technique of machine learning, is an example. In this study, it has been used to 

optimize parameters, but it must be not limited to that. For example, potential applications can 

be also targeted to the optimization of the morphological characteristics of the LID itself (depth, 

slope, plants, etc) for a particular climate, to the optimization of the adsorption properties of 

filter layers, or for specific design aims, similarly to what it’s done in aeronautical engineering.  

In this view, Model Order Reduction techniques represent a rather new and effective 

alternative. 

The inclusion of different types of measurements, such as volumetric water content 

and/or pressure head inside LIDs, could help in reducing the uncertainty in the estimated 

parameters and facilitate the calibration of mechanistic models for LIDs. In this view, the use 

of independent measurements of hydraulic properties could increase the reliability of 

mechanistic models in accurately describing the hydraulic behaviour of LIDs.  

Other potential applications of mechanistic models for LIDs can include the simulation 

of solute transport. Mineralization of organic matter in green roofs, inorganic contaminants 

transport in permeable pavements, and colloids transport in bioretention cells are just examples. 

A deep knowledge of these processes, not limited to empirical relations, can help in 

maximizing the efficiency of LIDs by exploiting the most modern numerical techniques.  
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