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Abstract 

The study presented in this PhD thesis is focused on development of advanced numerical 

models to describe crack propagation and interface decohesion phenomena in laminate and 

sandwich structures. The general idea is to simulate crack tip motion by using a moving 

mesh methodology to reproduce quasi-static and fast crack propagation phenomena in 

layered structures. Without going into too much details, the nodes are moved to predict 

changes of the geometry produced by the crack motion allowing to avoid several 

remeshing and saving computational time. The thesis presents a series of numerical 

investigations, which are performed in order to validate the introduced features in the 

numerical methodology along the development process. 

The starting point of the research was the investigation of the interface crack propagation 

phenomena in multilayered structures simulated by using shear deformable beam elements. 

The theoretical formulation was based on Arbitrary Lagrangian and Eulerian (ALE) 

methodology and cohesive interface elements, in which weak based moving connections 

are implemented by using a finite element formulation. In this framework, only the nodes 

of the computational mesh of the interface region are moved on the basis of the predicted 

fracture variables, reducing mesh distortions by using continuous rezoning procedures. 

The use of moving mesh methodology in the proposed model allow us to introduce 

nonlinear interface elements in a small region containing the process zone, reducing the 

numerical complexities and efforts, typically involved in standard cohesive approach.  

Furthermore, this numerical methodology was developed to investigate the strategy 

commonly adopted to improve the interlaminar strength of composite laminate. Basically, 

in order to simulate the z-pins reinforced area, a set of discrete nonlinear springs fixed to 

material domain was introduced.  

As is well known, a very important feature that should have a numerical model is the 

capability to simulate both crack onset condition and coalescence phenomena in structures 

with initial perfect interfaces. To this end, proper script files were carried out to manage 

the steps involved in the procedure, regarding the geometry variation due to the crack 

onset, the debonding length definition and the mesh enrichment in the process zone. The 

numerical strategy could be solved in both static and dynamic frameworks, taking into 

account time dependent effects produced by the inertial characteristics of the structure and 
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the boundary motion involved by debonding phenomena. In both cases, the governing 

equations have been integrated by means of proper stop and restart conditions, to modify 

the computational mesh due to the onset of debonding phenomena. The ability of the 

proposed model has been verified by simulating several onset configurations, including 

the case, in which multiple debonding mechanisms with coalescence affect the interfaces. 

The research project has been focused on the study of the sandwich structure failure modes. 

From physical and mathematical viewpoints, two main issues are demanding a detailed 

understanding of the mechanical behaviour of sandwich panels: the propagation of internal 

macro-cracks in the core and the delamination at skin/core interfaces. To concern the 

delamination between skin and core, previous numerical strategy, already used in the 

framework of composite laminate, was generalized simply by modifying the relative 

displacement between skin (shear deformable beam) and core (2D plane stress 

formulation). 

In order to simulate the macro crack propagation in the core, the ALE approach has been 

generalized in two-dimensional framework. The approach has combined concepts arising 

from structural mechanics and moving mesh methodology, which was implemented in a 

unified framework to predict crack growth on the basis of Fracture Mechanics variables. 

In particular, moving computational nodes were modified starting from a fixed referential 

coordinate system on the basis of a crack growth criterion to predict directionality and 

displacement of the tip front. The use of rezoning mesh methods coupled with a proper 

advancing crack growth scheme has ensured the consistency of mesh motion with small 

distortions and an unaltered mesh typology. In addition, the moving grid was modified 

from the initial configuration in such a way that the recourse to remeshing procedures has 

been strongly reduced. Numerical formulation and its computational implementation have 

shown how the proposed approach can be easily embedded in classical finite element 

software. Numerical examples in presence of internal material discontinuities and 

comparisons with existing data obtained by advanced numerical approaches and 

experimental data have been proposed to check the validity of the formulation.  

Furthermore, the crack propagation in the core of sandwich structures has been analysed 

on the basis of fracture parameters experimentally determined on commercially available 

foams.  
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The (summary) thesis comprises the following: Chapter 1 - Introduction (thesis topics, 

literature review, aims and scope); Chapter 2 and 3 - present theoretical formulation and 

numerical implementation followed by results of the numerical methodology to describe 

crack onset, propagation and coalescence respectively; Chapters 4 - reports the numerical 

investigation about sandwich structure failure modes and the generalization of the ALE 

approach to simulate crack propagation in 2D continuum (core); Chapters 5 -presents the 

conclusions and future works 
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Abstract (Italian version) 

Lo studio presentato in questa tesi di dottorato è focalizzato sullo sviluppo di modelli 

numerici avanzati per la simulazione dei fenomeni di frattura e delaminazione interfacciale 

che posso avvenire nelle strutture multistrato e nei pannelli sandwich. L’idea generale è di 

simulare il movimento dell’apice della frattura usando la tecnica della moving mesh, che 

consente di riprodurre il fenomeno sia in ambito statico che dinamico. In particolare, la 

posizione dei nodi computazionali è modificata al fine di predire il cambiamento di 

geometria generato dall’avanzamento della frattura. Questo ha ripercussioni sulla 

riduzione degli eventi di remeshing, con conseguente riduzione della complessità 

computazionale. La tesi è corredata da una serie di investigazioni numeriche, le quali sono 

eseguite al fine di validare le peculiarità del modello numerico formulate ed introdotte 

durante le fasi di sviluppo. 

Nella prima fase, il progetto di ricerca si è incentrato sull’analisi dei fenomeni di 

propagazione della delaminazione in strutture multistrato, le quali sono state simulate 

utilizzando elementi trave deformabili a taglio. La formulazione teorica è basata 

sull’approccio ALE (Arbitrary Lagrangian and Eulerian) e un modello di interfaccia 

coesiva, i quali sono stati accoppiati adoperando un codice agli elementi finiti. In questo 

contesto, solo i nodi computazionali che si trovano all’interfaccia sono modificati sulla 

base del soddisfacimento di un appropriato criterio di propagazione della frattura. L’uso 

della moving mesh ci ha permesso di introdurre le non linearità soltanto intorno la zona di 

processo. Questa scelta ha avuto importati ripercussioni sulla riduzione della complessità 

numerica e dell’onere computazione. 

La metodologia numerica sopra descritta è stata adoperata anche per verificare il 

funzionamento delle tecniche oggi adoperate per migliorare la resistenza intralaminare dei 

laminati in composito. A tal fine i rinforzi intralaminari sono simulati utilizzando un set di 

molle non lineari fissate al dominio materiale. In questo contesto, il modello numerico è 

caratterizzato dalla presenza di due zone di interfaccia coesiva: la prima implementata nel 

dominio mobile (interfaccia), la seconda fissa al dominio materiale (z-pins). 

Come è noto, una caratteristica molto importante che dovrebbero avere i modelli numerici, 

è la capacità di simulare sia le condizioni di innesco della delaminazione che il fenomeno 

della coalescenza. A tal fine, un codice Matlab® è stato sviluppato per gestire i passaggi 
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necessari per garantire l’efficienza del modello numerico proposto. Il codice Matlab®, ha 

avuto come obiettivo l’automatizzazione di alcuni passaggi come: la variazione di 

geometria causata dall’avanzamento della frattura, la definizione della zona di processo e 

l’infittimento della mesh in zone precise. La strategia numerica può essere risolta sia in 

ambito statico che dinamico, semplicemente tenendo in considerazione gli effetti prodotto 

dalle caratteristiche inerziali e dal movimento della zona di processo. Il modello numerico 

è stato validato attraverso molte simulazioni numeriche e confronti con risultati presenti in 

letteratura: casi di delaminazione multipla e fenomeni di debonding nei quali si verificano 

fenomeni di coalescenza.  

Successivamente, il lavoro di ricercaha riguardato lo studio delle modalità di fallimento 

dei pannelli sandwich. Dal punto vista fisico e matematico, il modello numerico dovrebbe 

essere in grado di simulare le due principali modalità di fallimento dei pannelli sandwich: 

la propagazione della frattura nel core e la delaminazione all’interfaccia tra skin e core. 

Riguardo la delaminazione tra skin e core, la strategia già sviluppata nel contesto delle 

travi multistrato, è stata generalizzata modificando le equazioni per il calcolo dello 

spostamento relativo tra skin (simulata attraverso una trave deformabile a taglio) e core 

(simulato attraverso elementi 2D in stato piano di tensione). 

Al fine di simulare la propagazione della macro-frattura nel core, l’approccio ALE è stato 

generalizzato in ambito bidimensionale. Il modello numerico combina la meccanica 

strutturale e la metodologia delle moving mesh, che sono accoppiate in un singolo modello 

per predire la propagazione della frattura sulla base di un criterio consistente con la teoria 

della Meccanica della Frattura. 

I nodi computazionali vengono modificati da un sistema di riferimento referenziale sulla 

base di un criterio di avanzamento della frattura capace di rilevare la direzione e lo 

spostamento dell’apice della cricca. Al fine di garantire l’efficienza numerica del metodo, 

un ruolo fondamentale viene giocato dai metodi di Smoothing e Rezoning, che accoppiati 

con un appropriato schema di avanzamento della frattura evitano il ricorso ed onerosi 

eventi di remeshing. La formulazione numerica e la sua implementazione mostrano come 

l’approccio proposto sia facilmente implementabile in un codice agli elementi finiti. 

Numerosi esempi numerici in presenza di discontinuità interne e confronti con dati 

sperimentali sono stati eseguiti al fine di controllare e validare la formulazione proposta. 
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Infine, la propagazione della frattura nel core dei pannelli sandwich è stata analizzata sulla 

base di parametri sperimentali determinati testando core semi-rigidi comunemente 

adoperati per nella fabbricazione dei pannelli sandwich. 

Il sommario della tesi comprende quanto segue: Capitolo 1 - Introduzione (argomenti 

trattati, revisione della letteratura, obiettivi e scopi); Capitoli 2 e 3 - presentano la 

formulazione teorica e l’implementazione numerica seguita da risultati numerici della 

metodologia numerica per descrivere i fenomeni di innesco, propagazione e coalescenza; 

Capitolo 4 - riporta le analisi numeriche riguardo i pannelli sandwich e la generalizzazione 

dell’approccio ALE per simulare la prolazione del crack in un continuo bidimensionale 

(core); Capitolo 5 - presenta le conclusioni ed i possibili sviluppi futuri. 
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 Introduction 

In this chapter, a review of the state-of-the-art of numerical methodologies utilized to 

predict fracture phenomena in multi-layered structures is reported. In particular, 

numerical methods able to describe interfacial delamination phenomena in layered 

structures will be discussed. Moreover, theoretical and numerical approaches to simulate 

the effect of interlaminar reinforcements will be presented. Finally, some considerations 

about the failure modes and their numerical description in the framework of sandwich 

structures will be shown. 
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1.1 Thesis topics 

Failure analysis of layer composite structures has attracted a great deal of interest in recent 

years due to the increased application of composite materials in a wide range of high 

performance structures (Fig. 1.1). Extensive experimental and theoretical studies have 

concentrated to report delamination toughness data of new composite materials; others 

dealt with various delamination test and numerical simulations. A particular class of layer 

structures are the sandwich panels. Throughout the 20th and 21st century, sandwich 

structures have received increasing attention, because of their excellent structural 

properties that pioneer the lightweight construction design. sandwich structures owe their 

exceptional structural performance is generated using two thin layers of a stiff and strong 

material (skins) separated and bonded together by a light and compliant material (core). 

Due to their layered nature, sandwich structures can experience a variety of different failure 

modes of which some are unique in that are unique to sandwich structures not encountered 

in more commonly used structural elements. The stiffness and thermal mismatch between 

the face-sheets and core material can lead to local stress states that in some cases can lead 

to damaging and premature failure. Further, the bonding of the face-sheets to the core 

material is crucial for the structural integrity of the sandwich, and this may be 

compromised due to the complexity of the manufacturing process. In the case where plies 

are separated by weak interfaces their layered nature may lead to separation of the layers. 

Sandwich structures are sensitive to localized damage in one or more of their constituents 

as well as the interfaces between the face-sheets and the core, and this may lead to initiation 

of damage and consequently loss of structural integrity.  

1.2 Layered structures 

Layer structures, such as composite laminates or reinforced concrete beams strengthened 

with FRP materials, typically exhibit a low resistance to damage with respect to 

interlaminar damage mechanisms. In particular, such materials are typically composed of 

layers connected through interfaces, in which material discontinuities due to production 

processes or high interlaminar stresses may be generated. In the following subsections, 

critical review about strategies to model interfacial delamination phenomena and 

interlaminar strength are reported. 
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Fig. 1.1: Composite materials, field of application. 

1.2.1 Modelling of interfacial delamination phenomena 

Debonding phenomena may affect several classes of structures ranging from thin film, 

layered materials, composite laminates or strengthened reinforced concrete beams. In any 

cases, damage phenomena strongly reduce the structural integrity, leading to catastrophic 

failure mechanics, which are essentially of dynamic nature. In literature, several 

approaches and formulations able to predict crack growth in layered structures ranging 

from micro-, meso- and macro- scales are proposed.  

A distinction should be made concerning existing formulations available from literature, 

since explicit or implicit crack representations could be used to simulate interfacial defects 

[1]. Implicit crack formulations are essentially based on continuum models, in which 

constitutive relationships are introduced in the governing equations to predict stiffness 

reductions. However, such modelling does not provide any information about the length 

scale, which is much important to describe fracture phenomena; moreover, it is unable to 

capture the formation of few dominant cracks leading to failure mechanisms. In this 

framework, an accurate choice of the mesh discretization is required, which is typically 

adopted in such a way that the mesh spacing coincides with the internal length involved 

by the material discontinuities.  

As a consequence, in the literature discrete or explicit models are preferred to continuum 

approaches. In the explicit representations, the internal discontinuities are considered as 

geometrical entities of the model, which should be updated as far as their shape is modified. 
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In this framework, constrained or arbitrary shape methods are well known in literature. In 

the former approach node-decoupling or node splitting techniques are easily endorsed in 

standard Finite Element Method (FEM) or Boundary Element Method (BEM) 

formulations, since the crack path is known in advance [2]. However, more advanced 

formulations are proposed in the case of arbitrary shape approaches, in which the initial 

discontinuities have no restrictions on both size and shape during their evolution. To this 

aim, meshless based methodologies, which do not require any spatial discretization or node 

connectivity, are proposed, since the local approximation is mainly governed by 

interpolation functions defined on a fixed mesh outline. Intrinsic complexities arise in 

order to reproduce essential boundary conditions for complex structures or to achieve the 

required local accuracy of the fracture variables at the near-tip level. Additional 

formulations, based on adaptive FEM/BEM methods, propose an explicit description of 

the micro-cracks in structures by updating the current mesh to the evolving cracked 

geometry [3]. Such models require an efficient treatment of both mesh functions and 

discretization processes, since, during the crack advance from the internal to boundary 

edges, the element topology of the structure must be guaranteed [4].  

It is worth noting that previous models defined above, in order to simulate debonding 

phenomena in both initiation and evolution phases, require specific formulations and 

numerical tools to quantify the corresponding fracture parameters. To this end, the crack 

growth can be expressed as a function of Fracture Mechanics (FM) variables such as Stress 

Intensity Factor (SIF) or Strain Energy Release Rate (SERR), whose definition requires 

the existence of an initial cracked length and a small region in which separation phenomena 

take place [5]. As far as the crack length vanishes, the ERR is not defined and the stresses 

are not affected by the classical singularity behaviour. However the inability to reproduce 

crack initiation can be circumvented by proper crack criteria, that utilize coupled 

relationships described in terms of energy and stress variables and evaluate the applied 

loading, crack onset and evolution [6, 7].  

Alternatively, cohesive models propose an easy way to simulate debonding phenomena 

including crack onset. The cohesive approach was firstly developed, alternatively, to FM, 

by introducing the possibility to mitigate stress singularity and to simulate large scale 

decohesion phenomena. To this end, distributed or discrete interface elements are 

introduced between continuum elements based on traction separation damage laws [8]. In 

terms of modelling, Cohesive Zone Method (CZM) is widely used to reproduce fracture 
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phenomena, in which interface elements with a softening constitutive relationship are 

inserted in the finite element mesh [2]. In this framework, several models are proposed in 

the literature, which are mainly classified as either non-potential or potential-based models 

[9]. 

Non potential-based cohesive interaction models are relatively simple to develop, because 

a symmetric system is not required. However, these models do not guarantee consistency 

of the constitutive relationship for arbitrary mixed-mode conditions, because they do not 

account for all possible separation paths. For potential-based models, the traction-

separation relationships across fracture surfaces are obtained from a potential function, 

which characterizes the fracture behaviour. Note that the existence of a potential for the 

cohesive constitutive relationship is addressed in conjunction with the non-negative work 

for closed processes. Due to the nature of a potential, the first derivative of the fracture 

energy potential provides the traction (cohesive interactions) over fracture surfaces, and its 

second derivative provides the constitutive relationship (material tangent modulus).  

Several potential-based models are available in the literature; such as, models with specific 

polynomial orders, models with exponential expressions, and a model with general 

polynomials. Each model possesses advantages and limitations. There are generally 

required characteristics for cohesive constitutive relationships, which are summarized as 

follows: 

 the traction separation relationship is independent of any superposed rigid body 

motion.  

 the work to create a new surface is finite, and its value corresponds to the fracture 

energy, i.e., area under a traction separation curve.  

 the mode I fracture energy is usually different from the mode II fracture energy.  

 a finite characteristic length scale exists, which leads to a complete failure 

condition, i.e., no load-bearing capacity.  

 the cohesive traction across the fracture surface generally decreases to zero while 

the separation increases under the softening condition, which results in the negative 

stiffness.  

 a potential for the cohesive constitutive relationship may exist, and thus the energy 

dissipation associated with unloading/ reloading is independent of a potential.  
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As reported in [9], the Cohesive traction-separation relationships may be obtained by 

employing theoretical, experimental and computational techniques. For example, based on 

the J-integral approach, a traction-separation relation was obtained for double cantilever 

beam specimens [10]. Inverse analyses were employed to calibrate a traction-separation 

relationship so that the best predicted global load-displacement curve was achieved [11, 

12]. Based on a measured local displacement field, digital image correlation techniques 

and inverse analysis were employed to estimate fracture parameters and determine 

traction-separation relationships [13, 14]. Additionally, macroscopic traction-separation 

relationships were also obtained by considering microstructure in conjunction with 

multiscale analysis [15]. Several constitutive relationships of the cohesive zone model 

have been developed on the basis of an effective displacement ( ) and an effective traction 

(   max/T  ). The effective displacement and traction easily define various cohesive 

relations such as cubic polynomial [16], trapezoidal [17], smoothed trapezoidal [18], 

exponential [19], linear softening [2] and bilinear softening [20] functions, as shown in 

Fig. 1.2.  

 

Fig. 1.2: Effective traction-separation relationships: (a) cubic polynomial, (b) trapezoidal, (c) smoothed 

trapezoidal, (d) exponential, (e) linear softening, and (f) bilinear softening [9]. 

However, the cohesive approach shows some numerical limitations. Such modelling is 

strictly dependent from the mesh discretization since the direction of crack propagation is 

restricted by the element size and orientation adopted by the user. Moreover, the presence 
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of an initial finite stiffness may produce in brittle solids an excess of compliance and in 

those cases in which a high stiffness is introduced spurious traction oscillations [8]. Such 

problems may be partially circumvented by introducing a very fine discretization at the 

crack tip front to obtain a high resolution of the characteristic fracture length of the 

interface [21]. The resulting model is affected by computational complexities, because of 

the large number of variables and nonlinearities involved along the interfaces. To this end 

is needed combines the CZM modelling together a numerical scheme able to decrease the 

computational efforts by keeping the advantages earlier mentioned. 

 

1.2.2 Modelling of interlaminar reinforcement systems 

The structural systems in the form of laminates are typically affected by several kind of 

failure modes, such as debonding, interlaminar cracks, affecting matrix, fiber or 

fiber/matrix interfaces, which produce relevant loss of toughness and catastrophic collapse 

mechanisms [22]. In order to improve the performance against debonding or delamination 

failure modes, several techniques are proposed [23], in which FRP or advanced materials 

are utilized effectively in straight or arched structure [24-26]. Alternatively, Through-The-

Thickness (TTT) elements, such as rods or z-pins, are introduced prior to resin infusion in 

textile laminates or in uncured pre-preg materials as shown in 3D weaving, stitching 

methods or Z-pinning techniques [27], leading to an improved debonding resistance. In 

particular Z-pinning approach is widely used in several structural applications ranging 

from aerospace to automotive. Pins may be used for the wide-area reinforcement of 

damage tolerant panels or used in selective areas requiring local reinforcement, such as 

structural bonds, stiffener attachments, stress concentrations and holes. 

Z-pins act as fine nails that lock the laminate plies together by a combination of friction 

and adhesion (Fig. 1.3). Thin metal rods were first used to reinforce laminates in the 1970s, 

although the pins were inserted individually using a labour-intensive manual process that 

is not practical for large-scale production [27]. Various methods are used to manufacture 

z-pinned laminates, with the most common method being the   process that involves 

inserting z-pins into an uncured prepreg stack using an ultrasonic tool. The process starts 

by placing a polymer foam carrier containing z-pins over the prepreg (Fig. 1.4). Z-Pins are 

made from extruded metal wire or fibrous composite produced by pulling a continuous 
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fibre tow through a resin bath and then pultruding it through a circular die. The metal wire 

or composite strand is then cut to length and inserted into the foam carrier.  The foam is 

used to ensure an even spacing between the z-pins and to provide them with lateral support 

during insertion. The foam carrier does not form part of the final composite product, and 

is discarded after the z-pins have been inserted. z-Pins are driven from the foam carrier 

into the prepreg using an ultrasonically actuated tool that can be operated in a manual hand-

held mode by a trained operator or controlled using an automated system (Fig. 1.4b). The 

ultrasonic horn generates high frequency compressive waves that are transmitted into the 

foam carrier, which collapses under the pressure that drives the z-pins into the prepreg. 

The stress waves also cause moderate heating of the prepreg that softens the resin matrix 

which eases insertion of the pins. z-Pins are inserted progressively by moving the 

ultrasonic tool over the foam carrier several times until all the pins have penetrated the 

prepreg stack (Fig. 1.4c). The compressed foam carrier and any excess length of z-pin 

protruding the prepreg is shaved off using a blade to ensure a smooth surface finish (Fig. 

1.4d) [27]. 

With the purpose to define they structural performance, the behaviour of z-pins was 

extensively investigated in the literature from both experimental and numerical points of 

view. Improvements provided by Through-The-Thickness (TTT) reinforcements are quite 

dependent from the geometry and their interaction with the host material [28]. Moreover, 

the benefits provided by the external reinforcements are observed only in those cases in 

which debonding phenomena are triggered and, consequently, pull-out or shear forces 

applied to TTT elements are activated [29]. 

 
Fig. 1.3: (a) Photograph showing the size of a typical z-pin and (b) z-pins inside a prepreg composite [27]. 
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Fig. 1.4: Schematic application process of z-pins[27]. 

Therefore, crack initiation, growth and interlaminar strengthening effects should be 

described accurately by using coupled modelling to reproduce correctly the actual 

behaviour. In this framework there are two issues: the strategy adopted to simulate the 

effects of z-pins and the and the modelling of the interfacial delamination. To this end, 

distributed cohesive elements reproducing z-pins behaviour with averaging bridging forces 

over the whole interfacial areas have been proposed [30]. Such modelling provides good 

results mainly for low z-pin spacing step. To this end, discrete interface elements with 

nonlinear traction separation laws are developed in the literature to simulate the individual 

behaviour of a single z-pin. In both cases, under a mode I loading condition, the traction 

forces are quite dependent from the pull-out mechanism, which is influenced mainly by z-

pin characteristics, i.e. matrix/host material frictional contact and strength [31]. Moreover, 

under a mode II loading case, the traction forces, in proximity of the crack surfaces, are 

dominated by local shear bond integrity [32]. The generalization of the above referred 

analyses to mixed mode cases requires the evaluation of coupled relationships, in which 

the traction separation laws based on equivalent sliding and normal stress-strain 

relationship should be introduced to identify accurately the z-pin bridging response. 

Refined models based on micromechanics analyse complex phenomena concerning 

frictional sliding at the interface, resin deformation and z-pin failure mechanisms on a RVE 

containing a single z-pin [33, 34].  

In order to investigate the behaviour of z-pinned composite laminates, it is required to 

reproduce an accurate modelling not only in the definition of the z-pins but also to identify 

the interlaminar mechanisms arising from delamination or debonding phenomena. This 

point is of particular relevance, since the z-pin pullout mechanisms are triggered by the 
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internal discontinuities which could be in the structure as pre-existing due to manufactory 

processes or produced, during the structural service life, due to stress-concentration effects. 

The prediction of the crack growth in laminates requires efficient methods, that are able to 

reduce computational costs involved in the solving procedure, which are typically 

observed under dynamic loading because of the wave material characteristics [35-41]. 

Actually, traditional FEM based analyses, typically require remeshing/re-modelling 

procedures to predict evolving and propagating cracks [39, 42, 43]. In order to overcome 

such difficulties, several techniques, developed in the framework of the FEM, are 

proposed. In particular, CZM method takes into account interfacial discontinuities by 

introducing cohesive separation laws along possible crack paths, in which debonding 

phenomena may affect the structure [8]. Moreover, in presence of interlaminar 

reinforcements, homogenized constitutive relationships should be defined to reproduce 

discrete pull-out mechanisms arising from the presence of z-pin and distributed Traction 

Separation Laws (TSL) to predict debonding phenomena [44]. The prediction of crack 

initiation and growth is intrinsically achieved by the computational strategy based on the 

CZM approach, but the model requires a refined mesh to correctly evaluate the interfacial 

variables as well as proper numerical procedures to overcome numerical complexities 

involved by nonlinear  constitutive relationships [45]. Fracture Mechanics (FM) is able to 

reproduce crack growth on the basis of ERR or SIF, whose definition requires the existence 

of an initial cracked length and a small region, in which bridging phenomena may take 

place [46]. However, complexities may arise in the definition of the fracture variables 

during the transition of the crack tip to the region strengthened by the interlaminar 

reinforcements. Previous approaches require accuracy in the definition of the fracture 

variables by means of a proper mesh discretization in the region containing the process 

zone. The presence of interlaminar reinforcements introduces additional traction forces 

along the interfaces, which are triggered when material discontinuities reach z-pin 

elements. Moreover, interlaminar reinforcements introduce stress concentration effects, 

producing crack onset conditions along the interfaces, which should be accurately 

identified. 

1.2.3 Sandwich Structures 

Sandwich structures are a particular class of composites consisting of two thin face sheets 

made of stiff and strong materials such as metal or fiber reinforced composites bonded to 
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a thick and deformable core with low density [47]. They are able to ensure a good 

resistance under bending/shear loading, offering a great variety of lightweight structural 

systems. Unfortunately, sandwich panels are affected by both macroscopic and 

microscopic damage phenomena, mainly produced by the heterogeneity of the layered 

systems, which reduce the integrity of the composite structure, leading to catastrophic 

failure mechanisms [48].  

 

Fig. 1.5: Schematic representation of  two failure mode of Sandwich Structures: Crack Kinking and 

Skin/Core interface de-choesion. 

From physical and mathematical viewpoints, two main issues are demanding a detailed 

understanding of the mechanical behaviour of sandwich panels: the propagation of internal 

macro-cracks in the core [49] and the delamination at face/core interfaces [50]. In order to 

describe skin/core delamination (Fig. 1.5), several approaches have been proposed in 

literature. In particular, the analysis started by means of macroscale approaches, in which 

analytical and numerical formulations aimed to identify critical failure loads for design 

purpose were developed [51]. Specific modelling techniques are required to predict crack 

tip motion of internal material discontinuities. Interface elements based on Cohesive Zone 

Model (CZM) or Linear Elastic Fracture Mechanics (LEFM) are frequently used to predict 

crack tip evolution. Discrete or distributed interface elements can be easily incorporated 

into FEMs, by introducing constitutive traction forces between adherent internal surfaces 

[8]. These methodologies are frequently used in sandwich structures to predict the crack 

evolution at the core/skin interfaces, since the crack motion is expressed as a function of a 

linear positional variable coinciding typically with the interface coordinate. However, such 

modelling is affected by numerical problems due to mesh dependence, computing 

inefficiency, and sensitivity to the element aspect ratio. These issues may be partially 
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addressed by adopting a very fine discretization at the crack tip front, but numerical 

complexity remains, due to the high number of computational points requested.  

The considerations reported in the section 1.2.1, which are referred at the layered structures 

are valid also in the framework of the delamination at the skin/core interfaces of sandwich 

panels. 

1.2.3.1 Modelling of crack propagation phenomena in 2D solids 

Sandwich structures can be affected by macro-cracks in the core (Fig. 1.5). Quite complex 

scenarios are observed in presence of kinking phenomena of the crack, starting from the 

interfaces. In these cases, the crack growth requires more advanced numerical modelling 

techniques, since it needs to be expressed both in terms of angle of propagation and tip 

displacement. Computational fracture mechanics has been considered an active research 

area aimed to predict crack growth and failure scenarios in structural and mechanical 

systems. In particular, computational methods are frequently utilized to assess 

vulnerability and reliability of cracked structures, in terms of ultimate load capacity and 

evolution of pre-existing cracks. However, the arbitrariness of the crack path requires 

proper numerical procedures, since, numerical instability phenomena affect the structural 

system by means of stiffness reduction and fast crack propagation mechanisms.  

Most of the models available from the literature are developed by using the FEM because 

of its ability to model complex structures, ensuring accuracy in the prediction of interfacial 

variables between dissimilar materials. To begin with, crack propagation was simulated 

for prescribed or constrained crack representations by means of node-release or node-

decoupling techniques [52]. In this framework, CZMs were frequently utilized with large 

success, by introducing interface elements with a constitutive damage law, in the region 

affected by the crack evolution [8]. However, since the crack trajectory is not known “a 

priori”, interface elements require to be introduced in the whole structure or at least where 

the crack path is expected. Such problem produces a large increase of the computational 

costs and numerical complexities of the model [53, 54]. Moreover, due to the presence of 

nonlinearities involved in the constitutive laws, the governing equations are affected by 

ill-posed problems[2]. However, in those cases in which the crack path is arbitrary, FEM 

computational formulations require to modify the positions of the computational grid 

elements [55]  to simulate the evolution of the crack advance. Such task was achieved by 
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the use of adaptive mesh methods [56], which modify, according to the cracked geometry, 

the current computational points, ensuring consistency in the mesh element topology. 

Although, mesh refinement is enforced, locally, at the crack tip region, advanced numerical 

tools should be considered to avoid loss of accuracy during the mapping procedure. The 

recourse to remeshing procedures is quite cumbersome and typically produces high 

computation efforts during the transition procedure[57]. BEM could be utilized in Fracture 

Mechanics, in which only the boundaries of the structure are represented by using a mesh 

discretization and not the internal domains. Such hypothesis simplifies remeshing 

procedures, reducing the computational costs required to generate new elements. However, 

complexities still remain in the definition of singular integral [58]. Alternatively to 

FEM/BEM approaches, Meshfree methods are implemented with the purpose to eliminate 

the mesh discretization from the numerical model and to identify the solution in terms of 

nodal quantities [59]. The accuracy of the modelling is determined by the influence 

function and its dependence from the reference nodes. Meshfree methods avoid the use of 

remeshing procedure, since the current solution is expressed as a function of the nodal 

quantities only. However, such methodology is affected by intrinsic complexities in the 

definition of essential boundary conditions especially when Kronecker delta property is 

not verified, leading to high computational costs in the solving procedure [42].   

Previous formulations are classified in the literature as “geometrical representation” 

approaches, since an explicit definition of the cracked surface is required by the numerical 

models to evaluate fracture variables and subsequent crack propagation. In addition, 

specific updating procedures are needed to simulate the evolution of internal material 

discontinuities. Alternatively, formulations based on an implicit definition of the crack area 

are developed, in which constitutive relationships with softening damage or kinematic laws 

able to predict strain localization effects [60, 61]. The former, known as smeared crack 

representations, simulates the presence of material discontinuities by constitutive 

degradation models, which are supposed to affect mesh elements, when damage activation 

conditions are satisfied. Such methodologies are typically affected by mesh-dependence 

phenomena as well as strain localization problems of the solution defined in terms of 

material internal length [62, 63]. In kinematic models, the current crack geometry is 

embedded in each mesh elements by modifying the strain-displacement relationship. In 

this framework, several approaches are proposed in the literature, known, for instance, as 

XFEM or GFEM [64] . The basic idea of such formulations is the use of nonconforming 
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elements to model crack discontinuities by enriching shape functions of the mesh elements 

by discontinuity properties. Such formulations require further extension to predict fracture 

variables for nonlinear problems, especially in presence of frictional effects.  Moreover, 

the methodology needs a different number of kinematic variables for each node and thus 

the total number of mesh points may vary with the crack growth [65].Others methodologies 

based on Discrete Element Method (DEM) [66-68]o or Meshfree Methods (MFMs) [69] 

have been formulated in the last decade, providing valid alternatives to study such 

problems. Methods based on Moving Mesh technique (MM) provide a feasible and 

sensible way to predict crack growth mechanisms in continuum media. Early studies were 

developed in [70], where MM was employed to predict energy release rate by using a 

virtual crack extension. 

 The literature review, referred to above, has shown that, currently, does not exist a unique 

and best approach, since each modelling presents negative and positive features. 

1.2.3.2 Evaluation of the fracture parameters in cellular core material 

The main aims of the core in a sandwich structure are to separate and support the face 

sheets, and transfer shear between the face sheets when the sandwich is subject to bending 

loads [47]. As described in [71], a foam material consists of a cellular structure having 

interconnected small solid struts and or plates forming on an open or closed cell foam. The 

spongy cancellous bone in animals and humans are two of many examples of foam 

structures occurring in nature. Substantial efforts are being made to exploit the cellular 

structure by using materials such as metals, ceramics and glasses. Most of the rigid 

polymeric foams have a linear – elastic behaviour in tension up to fracture, and a brittle 

failure behaviour. So, they can be treated using fracture criteria of Linear Elastic Fracture 

Mechanics (LEFM) [72].  

In order to describe macro-crack propagation in the core region of sandwich panels, a 

fundamental task is to detect the fracture toughness of these materials. The evaluation of 

the fracture toughness and modes of such foams is important because cracks weaken the 

sandwich structures capacity of carrying load [73]. Many authors have developed 

experimental tests with the purpose to investigate fracture performance of different types 

of foams. There are several studies to determine mode I fracture toughness and to 

investigate the influence of density, loading speed and loading direction [74, 75]. A linear 
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correlation between Mode I fracture toughness and relative density of the foam was 

observed by Danielsson [76] on PVC Divinycell foams, Viana and Carlsson on Diab H 

foams [74]. Brittle fracture without yielding produced in mode I was observed in these 

experiments. It is to be noted that a correlation between the static fracture toughness and 

relative density was proposed in [71]  Kabir et al. [77] used the procedure described by 

ASTM D5045 [78] for determining the fracture toughness of polyvinyl chloride (PVC) and 

polyurethane (PUR) foams. Only few studies present the mixed mode fracture of polymeric 

foams, and only for PVC foams. Hallsttröm  and Grenestedt [79] investigated mixed mode 

fracture of cracks and wedge shaped notches in expanded PVC foams. Different types of 

specimens made of Divinycell H100 were investigated and the non-singular T-stress was 

considered in formulation of fracture criteria. It was concluded that for predominantly 

mode II the use of T-stress improved the facture predictions. Marsavina et al. [72] presents 

several work about the evaluation of the fracture toughness in mixed mode. The 

experimental investigations were carried out on Asymmetric Semi-Circular Bend (ASCB) 

specimens [73, 80]. 

1.3 Aims and scope 

The aim of this work is to develop numerical strategies consistent to moving mesh 

methodology and to reproduce quasi-static and fast crack propagation phenomena in 

layered structures. Starting from previous works, which were developed in the framework 

of moving mesh approach and FM, the proposed research project is targeted to couple ALE 

approach with cohesive methodology.  

At first, the target of the proposed thesis is to develop a numerical strategy to simulate 

interface delamination. In this framework, interface cohesive elements and ALE 

formulation are coupled  

Once validated the methodology earlier defined, the ALE approach is generalized in the 

framework of 2D structural systems. The numerical approach is aimed to reduce the 

recourse to remeshing events, which typically increase the computational costs. 
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 A coupled ALE-Cohesive formulation to 

predict interfacial debonding evolution in laminate 

structures 

Equation Chapter 2 Section 1 

In this chapter theoretical and numerical model based on a coupled ALE-cohesive 

interface approach will be presented.  The proposed approach is able to describe 

delamination phenomena of layered structures affected by a pre-existing interfacial 

defects. The theoretical formulation is quite general and provide the possibility to 

implement the effects of generalized interlaminar reinforcement such as z-pins. The outline 

of the chapter is as follows. Section 2.1 presents the formulation of the governing equations 

for the ALE and interface approaches, whereas in Section 2.2 the numerical 

implementation in FEM is reported. Then, in Section 2.3 the implementation of 

interlaminar reinforcement effects is reported. Finally, comparisons and parametric 

results to investigate static and dynamic behaviour of debonding phenomena are proposed 

in Section 2.4. 

Part of analyses and results presented and discussed in this chapter were already 

published by the following papers: 

 Funari, M.F., Greco, F., Lonetti, P., A moving interface finite element formulation 

for layered structures, Composites Part B: Engineering, 2016, 96, 325-337. 

 Funari, M.F., Greco, F., Lonetti, P., A cohesive finite element model based ALE 

formulation for z-pins reinforced multilayered composite beams, Structural 

Integrity Procedia, 2016, 2, 452-459. 

 Funari, M.F., Lonetti, P., Pascuzzo, A., A Moving Cohesive Mesh Formulation to 

predict Debonding Phenomena in Layered Structures, CEPM Journal, 2018, 1(2), 

16-26. 
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2.1 Theoretical Formulation 

The proposed model is presented in the framework laminate structures, in which thin layers 

are connected through adhesive elements. The theoretical formulation is based on a 

multilayered shear deformable beams and a moving interface approach (Fig. 2.1).  

 
Fig. 2.1: Multilayered laminate structure: geometry and interfaces. 

The former is able to reproduce 2D solution by introducing a low number of finite elements 

along the thickness of the structure, whereas the latter is able to simulate the crack tip 

motion on the basis of the adopted growth criterion [81]. The interfacial defects are 

assumed to propagate along the interfaces between the laminas, which are considered in 

this analysis as weak planes where the delaminations are able to growth. This assumption 

can be motivated from a physical point of view, since many experimental observations 

have shown that the evolution of such interfacial defects proceeds along a prescribed path 

almost fixed in the interface zones. Let us consider, a bounded domain 2   with 

 
N

i

i

L h   , which consists of N layers with total length L and thickness ih . The 

laminate is affected by ND internal discontinuities  , i 1,..,d

D

N
N  , which are supposed 

to be located along the interfaces, parallel to the longitudinal axis of the structure. 

2.1.1 ALE formulation and interface approach 

In order to predict the evolution of such internal discontinuities, a moving mesh 

methodology based on ALE approach is proposed, which is introduced only for the 

interface regions, leaving the governing equations of the structural model basically 

unaltered. To this end, fixed or material coordinates are introduced to describe structural 

formulation, whereas, for the interfaces affected by internal discontinuities, moving 
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coordinates are supposed to describe the mesh motion on the basis of the predicted fracture 

parameter. In particular, ALE kinematic is based on the use of a fixed Referential frame 

(R) R , which differs from the classical Spatial (S) or Material (M) domains, i.e. S  and 

M  respectively. In the spatial motion, the position X  of a physical particle in S  is 

described by  ,X x t  , with : M S   . However, introducing the referential map 

: R S   , it is possible to describe the mesh motion in terms of a fictitious referential 

position, namely   (Fig. 2.2). Therefore, according to ALE description the following 

referential maps can be introduced which identify referential, material and spatial 

configurations: 

 ,X x t     ,x t     ,X t      (2.1) 

where the transformation between material and referential configuration is described by 

the mapping   with : R M    and 1    . Starting from Eq.(2.1) in the case of 

one dimensional problem, material and referential derivatives can be computed introducing 

the related deformation gradients:  

      1, , ,  
d d d d

f X t f X t f X t J
dX d dX d



 

       (2.2) 

where J dX d  and 1J d dX    are the Jacobian and its inverse of the 

transformation, respectively.  

 
Fig. 2.2: ALE formulation: kinematic and referential configuration. 

2.1.2 Governing equations 

The derivation of the model is based on the principle of virtual works: 
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0T U W C                 (2.3) 

where T , U , W  are the incremental works of inertial, internal and external forces, 

and   is the functional related to displacement continuity along the perfect interfaces. 

Moreover, C  is the work performed by the traction separation forces at those interfaces, 

affected by internal discontinuities. According to the first-order transverse shear 

deformable laminate theory and multilayered approach [82], the variational form of the 

governing equations can be expressed by means of the following expressions: 
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     
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 

  

   

    



 

  

  

    (2.4) 

where the subscripts i=1,..,N and k=1,..,ND indicate the numbering of the layers (N) and 

the interfaces (ND) affected by debonding phenomena,  , ,     

 
11 2,, , xU U         and 

 d

dx
 represent the generalized strains,  , ,N T M  

are the generalized stresses defined as a function of the classical extensional  A , bending 

 D , bending–extensional coupling  B and the shear stiffness  H  variables,   and 0  

are the mass and polar mass per unit length of the layer, if and ip ,with  1 2 0Tf f f  

and  1 2

Tp p p m , are the per unit volume and area forces acting on the i-th layer, 

respectively. Moreover, virtual works performed by the cohesive elements, i.e. C , are 

defined introducing a failure constitutive law along surface discontinuity, relating the 

displacement jump vector  T

t n    and the cohesive traction vector  T

t nT T T , 

by means of the following expression: 

       
1 10

   

D D
i

k

LN N
k k k k k k k k k k

n n t t

k k

C T dX T X X T X X dX  
  

       
      (2.5) 
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where kX is the moving coordinates defined on the interface domain. It is worth noting 

that cohesive functional is related to the work performed by the traction forces, which are 

expressed in the moving coordinate system to simulate the crack tip motion. The evaluation 

of the traction forces as well as the moving discontinuities is achieved by means of a 

moving mesh method based on ALE formulation. In particular, the mesh motion is 

introduced in the process zone ahead of crack tip, by linear-decaying cohesive traction 

forces, which are moved as far as the growth criterion, defined by the fracture function 
k

fg

, is satisfied. However, in order to reproduce the crack motion, a small portion close to the 

crack tip, equal to the characteristics length of cohesive zone, is moved rigidly, in such a 

way to capture accurately the large scale cohesive effects arising from debonding 

phenomena. As a consequence, in Eq. (2.5), the interface region    is defined as the sum 

of a fixed portion deb  and a variable one ad , with deb ad    , in which debonding 

phenomena and perfect adhesion boundary conditions should be introduced:  

       

         

1

1

 

 

D

k
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D

k
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N
k k k k k k k k

n n t t
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N
k k k k k k k k k k

n n n t t t

k

C T X X T X X dX

k X X k X X dX

  

 

 

 

     
 

      
 

 

 

   (2.6) 

In the present study, the basic form of the cohesive law uses the formulation developed in 

[44], which was revised including a linear response prior the onset of fracture and the rate 

dependent effects [83]. As depicted in Fig. 2.3, for each mode components, the Traction 

Separation Law (TSL) depends on the choice of a critical cohesive stress,  ,c c

t nT T , the 

critical and initial opening or transverse relative displacements, namely  0 , c

n n   and 

 0 , c

t t   by means of the following expression:  

 

0

0

0

0

                          

           

c

c
c c

c

T

T

T and


   


  

            

     (2.7) 
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where  0,  , ,c cT   is equal to  0,  , ,c c

n n n nT   or  0,  , ,c c

n n n nT    in the case of the 

TSL for tangential or opening modes, respectively. In order to reproduced the fracture 

behavior of mixed-mode cases, a mode-dependent cohesive-zone model is introduced.  

 
Fig. 2.3: Interface moving boundary: debonded and perfect adhesion regions. 

In particular, opening and shear traction separation laws are coupled by means of simple 

failure criterion, which is satisfied as far as the crack growth function k

Tg  reaches the zero 

value, as follows: 

2 2

1

f f

k I II
f

IC IIC

G G
g

G G

   
     
   

        (2.8) 

where f is the constant utilized to describe fracture in different material and  ,IC IICG G are 

the total area under the traction separation law, whereas  ,I IIG G are the individual energy 

release rate calculated as  
0

c
n

I n n nG T d



   and  
0

c
t

II t t tG T d



   . 

In order to include the rate dependence effects of the TSL, a modification of Eq.(2.7) 

should be achieved. According to experimental evidences, it is supposed that the critical 

stress c

nT  or c

tT   of the material is constant and the critical crack opening or sliding 

displacements increase with the corresponding speed 
n  or 

t , producing an 

amplification of the dynamic fracture toughness mainly produced by the multi-micro-

cracking mechanisms, defined as follows: 
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  
     

  
  

        (2.9) 

It is worth noting that despite existing models available from the literature, the proposed 

formulation restricts the use of cohesive element to a small portion containing the process 

zone, in which, typically, an accurate description of the stress and displacement fields is 

required. Moreover, for the remaining region of the interface, perfect adhesion, based on 

linear interface elements, is achieved, whose stiffness is proportional to the penalty 

parameter, introduced to impose displacement continuity. As far as the crack tip region is 

concerned, the computational effects and complexities of the mesh are strongly reduced, 

since nonlinearities involved in the TSL are restricted to the debonding length only. The 

mesh motion is described as the difference between spatial and the referential coordinates: 

       1 1 ,          =  k k k k k k k

deb adX X t t r t t on             (2.10) 

where   and    represent fixed or referential and moving coordinates, respectively. In 

order to reduce mesh distortions, produced by the mesh movements, rezoning or smoothing 

equations are introduced to simulate the grid motion. In particular, Laplace or Winslow 

Smoothing Method, i.e. LSM or WSM, can be utilized, which are, in the case of one 

dimensional domain for both Static (S) and Dynamic (D) cases, defined on the basis of the 

following relationships:  

LSM 

, ,k kX      (S)   , ,k kX     (D)   (2.11) 

WSM 

1 1

2

, ,k

X XX J    (S)   
1 1

2

, ,k k

X XX J   (D)  (2.12) 

where J is defined by the Jacobian of the transformation defined according to Eq. (2.2). 

Eqs.(2.11)-(2.12) should be completed by means following boundary equations, with the 

purpose to reproduce the crack tip motion on the basis of the assumed crack growth 

criterions, namely  k

fg . To this end the following boundary conditions should be 

introduced, which are completed by the Kuhn–Tucker optimality conditions: 

0      0    with   0,    at   k k k k k k k

T f T f T f TX g X g X g X X           (2.13) 
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   0,      at   ,      k k k

T T T debX X L X X X X           (2.14) 

where k

TX  indicates the position of the crack tip front of the k-th debonded interface. The 

boundary value problem, given by the set of Eqs.(2.11)-(2.14) is solved by using a 

variational approach. In particular, taking into account the transformation rules defined by 

Eqs. (2.1)-(2.2) and introducing mesh displacement conditions on internal and external 

boundaries, the following expressions for LSM or WSM in weak form, defined in the 

referential configuration, are obtained for the static case: 
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k k
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 

 

 

          
   

 
 (2.15) 

where 
1 2 and k k

T T   are the positions in the referential system of the debonding length 

extremities. Similar expressions can be obtained of the dynamic case, which are not 

reported for the sake of brevity. Therefore, starting from Eq.(2.15), the governing 

equations for the ALE problem are defined by the following expressions: 
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



 (2.16) 

It is worth noting that structural problem is coupled with the ALE approach only by the 

interface traction forces and the fracture criterion, since they are defined in the referential 

coordinate system. Moreover, the mesh motion of the k-th crack tip front, is taken into 

account in the variational from, by introducing weak terms as a function the Lagrange 

multiplied method, which basically correspond to internal constrain conditions which 

modify the mesh position. 

2.2 Numerical Implementation 

Governing equations introduced in previous section are formulated by means of a 

numerical formulation based on the Finite Element (FE) approach. In particular, the 

derivation of the FE starts from the principle of virtual works in terms of displacements, 

integrating the equations on the volume of the elements. A Lagrange cubic approximation 

is adopted to describe both displacement and rotation fields, whereas linear interpolation 
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functions are adopted for the axial displacements. Moreover, for the variables concerning 

moving mesh equations, quadratic interpolation functions are assumed to describe the 

mesh position. The discrete equations are derived introducing the conventional 

interpolation functions: 

       , ,  , , , ,  , ,x t N X t H X t N t N               (2.17) 

where N or H represent shape function matrixes of Timoshenko or ALE variables,   and 

 are the Lagrange's multipliers vectors concerning perfect adhesion interfaces and 

moving constrains at the process zone,  , , ,X    are the vectors containing the nodal 

variables of displacements, mesh position and Lagrange's multipliers, respectively. The 

structural problem is formulated by using spatial coordinates, except for the cohesive 

functional, which is implemented in terms of a moving coordinate system. In order to 

evaluate the TSL at those material points identified by the moving mesh points, a 

projection operator Q , with : S MQ    and X Qx , is introduced. As shown in Fig. 

2.4, such operator characterizes the mapping between moving coordinates and material 

points on the basis of a geometrical projection, which connects the interface domain and 

the corresponding material point. The projection is achieved vertically along the thickness 

direction.  

 
Fig. 2.4:Synoptic representation of the mapping rule between moving coordinates and material points. 

Therefore, the cohesive traction forces on both debonded or undebonded regions are 

assumed to be defined as a function of the moving mesh variables taking into account the 

transformation rule between referential and moving coordinate systems, by means of the 

following equation: 
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   (2.18) 

where 1D and 2D  are the stiffness matrixes concerning debonded (cohesive) or perfect 

adhesion regions, respectively. The discrete equations can be derived from the principle of 

virtual works substituting Eq.(2.17), into Eq.(2.3), taking into account of Eqs.(2.4)-(2.5) 

and Eq.(2.15)-(2.18), which yield the following set of ordinary differential equations in 

time: 
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  (2.19) 

 

ALE INTERFACE (k) 

 
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ad deb ad deb ad debn n n n n n

i i i ii T

i i i

W N N X  
  

  

            (2.20) 

where iM  and iK  are classical consistent mass and stiffness matrixes, iP  is the external 

load vector and   is the Lagrange functional constraint for adhesion between undamaged 

layers, W  is the ALE discretization matrix   is the Lagrange multiplier vector concerning 

the ALE formulation and  , ,deb adn n n  defined the total number of finite elements, those 

in the debonding and perfect adhesion regions, respectively. It is worth noting that in order 

to avoid numerical oscillations due mesh distortions in the cohesive region, the debonding 

length is moved, enforcing the same displacements at the corresponding nodal point 

extremities. Moreover, in order to evaluate the mesh displacements, which verify 

consistency conditions concerning the crack advance, i.e. Eq.(2.13)-(2.14), an iterative 

procedure is implemented, which is able to identify the position of the crack tip on the 
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debonding portion. In particular, at the current time step, the crack position of the k-th 

crack tip k

TX  is defined by searching, the incremental displacement of the crack tip, which 

corresponds to the zero-solution of the function
k

fg  along the debonding region. Such task 

is performed by using a simple procedure based on the predicted values of the fracture 

function 
k

fg  at the extremities of the debonding length. In particular, as depicted in Fig. 

2.5, the current increment of the crack position kX is determined by searching the value 

which sets to zero on the debonding length the function 
k

fg . Such quantity can be easily 

obtained by means the following linearized expression on the basis of the values assumed 

by the fracture function 
k

fg  at the extremities of the debonding length: 

 
   

0    0,     0

k k

f Tk k k k k

T f T deb fk k k k k

f T f T deb

g X toll
X g X g

g X toll g X


      

  
  (2.21) 

It is worth noting that, the initial length of the debonding region, which characterizes the 

dimension of the process zone, can be estimated in several ways. A discussion of the 

characteristic length and its relationship with the mechanical and fracture properties of the 

laminate can be recovered in [84]. However, an analysis on the choice and influence of 

such parameter will be presented in section of the results.  

 
Fig. 2.5: Interface moving boundary: debonded and perfect adhesion regions. 

The proposed approach takes the form of a set of nonlinear differential equations, whose 

solution is obtained by using a customized version of the finite element package Comsol 

Multiphysics [85]. The model can be solved in both static and dynamic framework, taking 

into account the time dependent effects produced by the inertial characteristics of the 

structure and the boundary motion involved by debonding phenomena. In both cases, since 

the governing equations are essentially nonlinear, an incremental-iterative procedure is 
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needed to evaluate the solution. In the case of static analysis, the resulting equations are 

solved by using a nonlinear methodology based on Newton-Raphson or Arch length 

integration procedures. In the framework of a dynamic analysis, the algebraic equations 

are solved by using an implicit time integration scheme based on a variable step-size 

backward differentiation formula (BDF). 

2.3 Implementation of the interlaminar reinforcements  

Introducing the effects of the z-pins, the governing equations, previously introduced, 

remain essentially the same. As described in the previous subsection, a moving weak 

discontinuity approach based on ALE formulation is implemented to describe moving 

traction forces acting on the interface region of the laminate. Instead, in order to simulate 

the effects of the z-pins a set of nonlinear springs fixed to material frame is introduced. 

Furthermore, the proposed model has two cohesive zone, the first defined in the moving 

or spatial domain, while the second fixed to material domain. In Fig. 2.6 a synoptic 

representation of the model is reported.  

 
Fig. 2.6: Multilayered laminate structure: representation of the geometry; interface TSL (a,b)  and Z-pin 

pull-out model (c). 

From a numerical point of view, in order to describe the behaviour of a laminate reinforced 

by interlaminar reinforcements,  z-pin traction potential is introduced in the principle of 

virtual works, modifying  Eq. (2.3) as follows: 
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0T U W C Z                   (2.22) 

where Z  is defined by means of the following expression: 

       
1

ZN
k k k k k k k k

n np t tp

k

Z T x x T x x  


    
       (2.23) 

where 
ZN represents the number of z-pin elements introduced in the laminated structure, 

 ,c c

np tpT T are the critical cohesive stress,  0 , c

np np   and  0 , c

tp tp  are critical and initial 

opening or transverse relative displacements. The traction forces are assumed by means of 

bilinear constitutive laws, which reproduce the initial elastic phase, until interfacial 

strengths are reached, and the subsequent pulling out and sliding mechanisms by means of 

damage constitutive laws Fig. 2.6.  

Fracture function is introduced as energy criterion to estimate the complete failure of z-

pins in terms of fracture toughness  ,pin pin

IC IICG G  and individual energy release rates

 ,pin pin

I IIG G :  
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        (2.24) 

The individual ERRs are determined on the basis of constitutive relationships for normal 

and sliding tractions on the bridging area at the k-th interface as follows: 

 
0

c
np

pin

I np np npG P 



      
0

c
tp

pin

II tp tp tpG P 



      (2.25) 

2.4 Results 

In this section, results are developed with the purpose to verify the consistency and the 

reliability proposed methodology. At first, the debonding behaviour is investigated for 

laminated composites with a single or multiple delaminations. Finally, numerical 

simulations to verify the influence of interlaminar reinforcement are presented. 

2.4.1 Single delamination in unidirectional laminates 

At first, the analysis is developed with reference to loading schemes based on classical 

Double Cantilever Beam scheme (DCB) and Mixed Mode Bending scheme (MMB), in 

which pure mode I and mixed I/II with a mode-mixity ratio of 0.5, respectively, are 
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investigated [86]. The loading, the boundary conditions and the geometry are illustrated in 

Fig. 2.7, whereas the mechanical properties assumed for the laminate and the interfaces as 

well as the ones required by the cohesive zone model are reported in Tab. 2.1 and Tab. 2.2. 

In the follow subsections are presented the results obtained from both static and dynamic 

simulations. 

 
Fig. 2.7: Laminate configurations and loading schemes: Double Cantilever Beams (DCB) (a); Mixed Mode 

Bending test (MMB) (b). 

 1 GPaE   2 3 GPaE E   12 GPaG    
-1kg m     

120 10.5 5.25 0.3 1500 

 mmL   mmB   mma   mmH  - 

150 20 35 3.1 - 

Tab. 2.1: Mechanical  and geometrical properties of the laminates (single delamination). 

 MPac

nT   0 mmn   mmc

n  -1m s  
c

n      - 

30 0.0057 0.0173 2.5 - 

 MPac

tT   0 mmt   mmc

t  -1m s  
c

t      m  

60 0.00334 0.0334 2.5 1 

Tab. 2.2: Interface properties of the laminates (single delamination). 
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2.4.1.1 Static framework 

In this Section, numerical investigation obtained from static framework are presented. The 

numerical discretization utilized for the comparisons is assumed to be uniform and with a 

length equal / 0.2 /150D L  , with D  the element length. The dimension of the 

debonded region is adopted on the basis of formulas available from the literature, which 

identify, for classical cohesive zone models, the characteristic length parameter. Such 

value, in relationship to the geometrical and mechanical properties of the laminate, is 

assumed to be equal to a small fraction of the total length of the laminate, i.e. to 

0.05deb L  . In all cases, along the thickness direction, only two elements located up and 

down of the interface plane are considered in the analysis. To obtain a stable crack 

propagation the samples are loaded under a displacement control mode. Fig. 2.8 and Fig. 

2.9, the relationships between the loads, crack propagation and applied displacement for 

mode I and mixed mode schemes, reported in Fig. 2.7a-b respectively, are presented. In 

both cases, results obtained by the proposed model are in agreement with the ones obtained 

by a refined X-FEM modelling [86] or the analytical solution obtained according to 

corrected beam theory [87]. However, small differences are observed in the case of mixed 

mode loading condition, in which the solution obtained by the proposed formulation is 

between the prediction obtained from the literature. It is worth noting that the numerical 

model arising from [86] is based on the use of 4-node bilinear plane strain quadrilateral 

elements, in which an uniform mesh size equal to 0.1 mm was chosen to satisfy the solution 

accuracy. As a consequence, the total number of elements is approximately equal to 45000 

involving 46469 DOF. Moreover, the modelling developed in the framework of XFEM 

approach is based on an enrichment of the interpolation functions of the elements affected 

by debonding phenomena, leading to more complexities in the solution. Contrarily, by 

using the proposed approach, the number of FE variables is strongly reduced, since a 

uniform discretization the mesh element length equal to 0.2 mm utilized. In this 

configuration, the total number of elements is equal to 2075 involving 6234 DOF.  
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Fig. 2.8: Mode I DCB configuration: comparisons in terms of loading curve (F-U2/L) and crack tip position 

(XT/L) with analytical [87]  and XFEM [86] solutions. 

 
Fig. 2.9: MMB configuration: comparisons in terms of loading curve (F-U2/L) and crack tip position (XT/L) 

with analytical [87] and XFEM   [86] solutions. 

2.4.1.1.1 Influence of the mesh discretization 

In order to verify the influence of the mesh discretization on the accuracy of the solution, 

parametric results in terms mesh characteristics are proposed. To this end, comparisons 

expressed as a function of loading curve and crack tip position are proposed for several 
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mesh sizes, ranging from coarse to refined discretizations. In particular, two different 

numeric models, namely M1 and M2, in which mesh uniform lengths for the layer and 

interface with value equal / 1/150D L   and / 2 /150D L   are adopted except for the 

debonding length, where at least five elements are introduced. The analyses reported in 

Fig. 2.10 denote that, as far as, the mesh size is increased the solution oscillates around the 

refined one. Moreover, the results show how the use of a coarse mesh produces jumps in 

the predicted values with false instabilities are observed. However, when the mesh in the 

structure is enriched, an asymptotically convergence of the solution, asymptotically, is 

observed.  

 
Fig. 2.10: MMB configuration: influence of the mesh discretization on the loading curve (F-U2/L) and 

dimensionless crack tip position (XT/L). 

2.4.1.1.2 Influence of the length of deboning region 

The prediction of the proposed formulation and the stability of crack propagation were 

verified by means of a parametric study in terms of the length of the debonding region. 

The results reported in Fig. 2.1 denote that the choice of the length which describes the 

process zone is able to strongly influence the debonding mechanisms, since different 

predictions of the first debonding load are observed. This behaviour can be explained by 

the distribution of the fracture function along the debonding region, which was reported 

for all the investigated cases also in the Fig. 2.11. In particular, although the values at the 

crack tip are basically the same, different evaluations are observed at the internal extremity 
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of the debonding length, in which the fracture function assumes larger values as far as the 

debonding length decreases. For low value of the debonding length, the model is not able 

to capture the actual internal distribution of the interlaminar stresses and the corresponding 

large scale and thus an overestimation of the first debonding load is achieved. Contrarily, 

as far as the debonding length increases, an accurate description of the process zone is 

achieved and the model tends with a convergent behaviour to the solution. 

 
Fig. 2.11: MMB configuration: influence of the debonding length parameter (Ωdeb) on the loading curve (F-

U2/L) and dimensionless crack tip position (XT/L). 

2.4.1.2 Dynamic framework 

Previous results are developed essentially in the framework of a static analysis, in which 

time dependent effects concerning loading rate and inertial forces are supposed to be 

negligible. The extension in dynamics is developed taking into account the generalization 

of the TSL of the cohesive elements, introducing rate dependent contributions arising from 

inertial effects of the structure and those involved, intrinsically, in the debonding process. 

Material parameters involved in the TSL constitutive relationships, reported in Tab. 2.2, 

are assumed consistently with the values suggested in the literature [83, 88]. The load 

history is idealized as a linear ramp curve in the prescribed velocity until the time has 

reached value t0, after that the velocity remains constant. In the analyses, the quantity t0 is 

assumed to be proportional to the first period of observation T1 with a time sufficiently 
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small to obtain a rapid crack growth and to avoid a highly fluctuating behaviour in the 

crack advance, i.e. t0=0.5T1 [89]. The analyses are reported in Fig. 2.12, in which resistance 

curves for different loading rates are compared with the solution arising from the static 

case. Moreover, the crack growth is investigated also in terms of measured crack tip speed 

normalized on the shear wave speed (Vs) of the material and kinetic energy (EK) produced 

during the debonding mechanics (Fig. 2.13). The results show that high loading rates 

modify the static prediction in terms of resistance curve, since larger values of the first 

debonding load are expected. Such behaviour is quite consistent with several experimental 

observations, which have shown how in fast crack propagation, the process zone affects 

an enlarged damage zone with more dissipated energy, leading to large values and some 

oscillations in the resistance curve [90].  

 
Fig. 2.12: MMB configuration: influence of the loading rate in terms of load-displacement curve. 

The crack tip speeds are much larger in the initiation phase, in which high strain rates 

activate large amount of kinetic energy (Fig. 2.13). Subsequently, the crack tip proceeds 

with low speeds and definitively it is affected by crack arrest phenomena, which are mainly 

produced by flexural oscillations of the specimen and the reflection of high frequency 

waves in the desired range of the crack speeds. This behaviour is quite evident from the 

results obtained in Fig. 2.12, in which for low loading rates, the resistance curve oscillates 

close to the static solution. 
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Fig. 2.13: MMB configuration: influence of the loading rate in terms of crack tip speed. 

2.4.2 Multiple delaminations in unidirectional laminates 

2.4.2.1 Static framework 

In order to validate the proposed model, a case involving multiple delaminations is 

considered. The geometrical model is reported schematically in Fig. 2.14, whereas the 

material data are given in Tab. 2.3 and Tab. 2.4. The structure is affected by edge and 

internal initial cracks of different lengths.  

 
Fig. 2.14: Laminate configuration and loading scheme: Multiple Delamination Scheme (MDS). 
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 1 GPaE   2 3 GPaE E   12 GPaG    
-1kg m     

126 8.5 4.5 0.29 1500 

 mmL   mmB   mma   mmH  - 

200 20 40 3.18 - 

Tab. 2.3: Mechanical  and geometrical properties of the laminates (multiple delamination). 

 

 MPac

nT   0 mmn   mmc

n  -1m s  
c

n      - 

3.3 0.02 0.2 2.5 - 

 MPac

tT   0 mmt   mmc

t  -1m s  
c

t      m  

7.7 0.02078 0.2078 2.5 1 

Tab. 2.4: Interface properties of the laminates (multiple delamination). 

As a consequence, three potential process zones are able to produce debonding phenomena, 

namely
1,2,3

TX . The numerical model is discretized along the thickness by using one 

mathematical layer for each sublaminate, whereas, for the interfaces, three ALE elements 

are introduced between the sublayers adjoining the delaminations. In the analysis, the 

debonding length, in which cohesive elements are introduced, is assumed to be equal to 

1/40 of the total length of the laminate. Moreover, the mesh discretization of the numerical 

model is based on a uniform distribution with an element length of / 0.2 / 200D L   in 

the laminate, whereas for each debonding region a refinement of the mesh involving 10 

subdivisions is utilized. Comparisons, with results arising from XFEM modeling [86], pure 

cohesive approach [91] and experimental data [92] are developed. In addition, in order to 

verify coupling effects between debonding mechanisms, the following idealized 

configurations are considered: 

 Upper Defect (UD) only; 

 Upper and Lower Defects with Lower Delamination Fixed (UD-LF). 

 Upper and Lower Defects with both Delaminations Fixed (UD-UF). 
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In Fig. 2.15 and Fig. 2.16 and , resistance curve and crack tip location as function applied 

displacements (F-U2/L) are analysed. In both figures, comparisons with results available 

from the literature are reported. Moreover, in Fig. 2.17, comparisons in terms of loading 

curve for the idealized configurations are proposed. The analysis in terms of loading curve 

denotes that the proposed model matches exactly the predictions provided by the numerical 

formulations and slightly differs from the experimental data.  

 
Fig. 2.15: MDS configuration: comparisons in terms of loading curve (F-U2/L) with numerical results and 

experimental data 

Moreover, the results show that, at first, crack growth is possible in the upper sublaminate, 

whose effect in the loading curve is to produce a reduction of the current stiffness similarly 

to the cases affected by a single delamination. This behaviour is noted also from the results 

reported in Fig. 2.17, in which the UD modelling presents a decreasing monotonic 

resistance curve once the debonding load is reached. Subsequently, the loading curve is 

modified from the classical evolution, since an extra local limit point is observed (Point C, 

Fig. 2.15). This behaviour is mainly produced by the presence of lower debonding length, 

that, at this stage, remaining fixed, is able to produce instability phenomena in the crack 

growth. As far as the upper crack reaches the midpoint of the initial lower crack, multiple 

delaminations affect the structure. 
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Fig. 2.16: MDS configuration: comparisons in terms of crack tip position (XT/L) with others numerical data. 

In particular, the debonding phenomena are observed also in the lower sublaminate mainly 

to the right direction, whereas the left tip remains basically fixed. When the upper crack is 

located over the Crack Tip-2, multiple delaminations affect the structure. Form C to D, the 

Crack Tip-3 advances over the Crack Tip-2, which moves slightly. Subsequently, when 

the upper crack reaches the midpoint of the initial lower crack, the crack Tip-1 is activated 

(point E, Fig. 2.15). The motion of upper and lower cracks at this stage is responsible of 

the second softening branch in the loading curve (point E, Fig. 2.15). Comparisons in terms 

of crack tip displacements, in lack of data, are developed only with results obtained by the 

XFEM methodology [86]. In particular, the results are quite in agreement for the crack tip 

displacements of the upper laminate, whereas different predictions are observed for the 

evolution of the lower delamination. In particular, the proposed model predicts the crack 

growth in the lower sublaminate when the upper crack has reached its midpoint initial 

length; contrarily by using XFEM methodology, a simultaneous crack growth of both 

delaminations is predicted once the debonding lengths are just overlapped. Such 

discrepancies can be explained by the intrinsic characteristics of XFEM and cohesive 

approaches. As a matter of fact, the proposed model is in agreement with the analyses 

reported in [91], in which the Authors clearly state that only the upper crack propagates 

until the second limit point, i.e. E of Fig. 2.15 is reached. Such result is also consistent with 

the one reported in Fig. 2.17, in which the solution related to model UD-LF is practically 
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coincident with the one of proposed model until point D, after that, in lacking of a possible 

growth in the lower sublaminate, the curve proceeds with a linear branch.  

 
Fig. 2.17: MDS configuration: comparisons in terms of loading curve (F-U2/L) with numerical results and 

experimental data. 

2.4.2.2 Dynamic framework 

Previous results, developed in the framework of a static analysis, are now discussed in 

dynamics. The main aim of the proposed comparisons is to verify how the static solution 

is modified, when loading rate and inertial effects affect the crack growth. The data 

concerning material characteristics, reported in Tab. 2.3 and Tab. 2.4, are chosen on the 

basis of the similar assumptions made for the case involving a single delamination. The 

loading history is assumed to be governed by an applied velocity with ramp curve with a 

constant speed at the time t0. In Fig. 2.18 and Fig. 2.19, results in terms of loading curve 

and crack tip speeds for different loading rates are presented. The comparison with the 

static solution denotes that loading curve is strongly modified in the prediction of the first 

debonding load and, subsequently, when debonding phenomena are activated. For low 

loading rates the curve presents low oscillations around the quasi-static solution. In spite 

of quasistatic condition, the instability phenomena associated to the local limit point, 

namely point B, are not observed, since the loading curve jumps dynamically from the two 

equilibrium configuration relate to point A and D. This behaviour is in agreement with the 
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experimental data, which do not predict any limit points and denote a discontinuous 

evolution from the two points. For increasing loading rates, dynamic effects are able to 

modify the static curve, introducing large values of resistance. As far as the debonding 

phenomena are triggered in the lower laminate, the debonding curves are affected by an 

abrupt change in the resistance curve and an oscillatory evolution.  

 
Fig. 2.18: MDS configuration: influence of the loading rate in terms of load-displacement curve. 

 
Fig. 2.19: MDS configuration: influence of the loading rate in terms of crack tip speed. 
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Such behaviour can be explained by the results reported in terms of time histories of the 

crack tip speeds. The crack tip speed of the upper sublaminate is affected by high 

amplifications when the crack advances in proximity of the lower delamination, leading to 

jumps in the time histories. At this stage, in spite the static case, crack growth is also 

possible in the lower left-hand side crack, which, even if for a reduced time step, is affected 

by large crack tip speed, comparable to the ones observed for the upper one. Finally, as far 

as the crack growth in the right-hand side lower delamination is possible, crack arrest 

phenomena or steady state crack propagation are observed at low or high loading rates, 

respectively. 

2.4.3 Single delamination in unidirectional laminates reinforced with z-pins 

In this section, results of laminate structures reinforced by z- pins are discussed. The 

validation scheme is developed with the purpose to verify the consistency and the 

reliability of the proposed approach with respect to loading schemes based on classical 

DCB and MMB tests taken from the literature [33, 93, 94]. In particular, the material 

specimen is formed by 24 plies of unidirectional prepreg of IMS/924, resulting in total 3 

mm the nominal thickness of the laminate, whereas the z-pins are made of pultruded 

T300/BMI. The values of mechanical properties and cohesive zone model, assumed for 

the laminate scheme, are reported in Tab. 2.5, whereas those concerning z-pin 

characteristics are reported in Tab. 2.6. 

 1 GPaE   2 3 GPaE E   12 GPaG    
-1kg m     - 

138 11 4.4 0.34 1500 - 

 MPac

nT   0 mmn   mmc

n   MPac

tT   0 mmt   mmc

t  

24.15 9.66 10-3 2.23 10-2 15 6.00 10-3 9.33 10-2 

Tab. 2.5: Mechanical  and Interface properties of the laminates (single delamination). 

 

 Nc

npP   0 mmnp   mmc

np   Nc

tpP   0 mmtp   c

tp mm  

34.5 0.0086 0.88 45 0.011 1.2 

Tab. 2.6: Properties of the single nonlinear spring (z-pin T300/BMI). 
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2.4.3.1 Static framework 

At first, analyses are developed in static framework, in which inertial effects are not taking 

into account. Classical DBC with opening forces, involving pure mode I loading condition 

is investigated. The loading, boundary conditions and geometry of the specimen are 

illustrated in Fig. 2.20.  

 
Fig. 2.20: DBC scheme reinforced by z-pins. 

The numerical model is discretized along the thickness by using one mathematical element 

for each sublaminate, whereas, for the interfaces, an ALE element is introduced between 

each sublayer, in which a pre-existing crack length equal to 50 mm is assumed. It is worth 

noting that as shown in [95-97], a refined discretization obtained introducing more layers 

in classical mode I DBC scheme, does not improve the accuracy in the prediction of 

fracture variables. The analysis is developed under a displacement control mode, to ensure 

a stable crack propagation. The numerical discretization is based on a non-uniform mesh 

enrichment in the debonding region, i.e. / 0.1/180M L  on / 1/180L  , and a uniform 

coarse discretization in the remaining region, i.e. / 0.5 /180M L  . The nominal crack tip 

is defined as the position in which the interlaminar fracture function  fg  is equal with a 

relatively accuracy to zero. The results, reported in Fig. 2.21 and Fig. 2.22, are presented 

in terms of load or crack tip position as a function of opening end displacement, in which 

experimental data obtained from [93], numerical data taken from [33] and [94] are also 

reported. Moreover, in order to verify the improvement effects provided by the 

interlaminar reinforcements, the solution without z-pins is shown.  
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Fig. 2.21: Comparisons in terms of loading curve  with experimental data [93] and numerical results [33, 

94]. 

 
Fig. 2.22: Comparisons in terms of nominal crack tip position  with experimental data [93] and numerical 

result [94]. 

Finally, in Fig. 2.23, the damage distribution in the z-pins and the interlaminar fracture 

function 
fg  are monitored at representative points of the loading curve. The results show 

that, from point 0 to point A, the behaviour of Pinned (P) model and Un-Pinned (UP) model 

is basically coincident. This is confirmed by the results obtained in Fig. 2.21, which shows 
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how up to point A, the interlaminar fracture function 
fg is lower than zero and thus the 

contribution of the z-pins practically negligible. From point A to point B the interaction 

between debonding mechanisms and z-pin traction forces produces, with respect to the UP 

solution, an increment in both stiffness and strength. Similarly, the slope in the crack-tip 

displacement curve is decreased, denoting how, at the same applied displacement, the UP 

configuration presents crack displacements much larger than those observed in the 

strengthened configuration. The maximum strength is observed, when the nominal crack 

tip reaches approximately the midspan of the z-pin region. At this stage the first three z-

pins are completed damaged (Fig. 2.23Fig. 2.21b), whereas the central ones are partially 

debonded and the remaining ones are undamaged. Subsequently, the strength curve 

denotes a softening branch, i.e. path BC, in which the z-pins partially contribute to the total 

strength of the laminate. As far as the nominal crack tip goes over the strengthened region, 

the remaining z-pins proceed from the partial to the complete failure. This behaviour is 

mostly observed in the loading path, which goes from C to D, in which the laminate 

becomes unstable presenting a softening behaviour with no snap-back phenomena. The 

loading curve as well as the crack-tip displacement at the final point D match exactly with 

the ones of the UP configuration (Fig. 2.23e). Such behaviour is quite reasonable since the 

analysis is performed under a quasi-static loading scheme, but, as will be shown 

subsequently, the behaviour in dynamics is different since inertial effects may influence 

the current solution. The results obtained by the proposed model are in agreement with the 

experimental [93] and numerical [33, 94] data available from the literature. However, the 

solution presented in [94] refers to a cohesive model in which distributed interface 

elements are utilized. As a consequence, the loading curve is smoother than the one 

obtained experimentally, in which jumps due the presence of the z-pin failure occur. 

Numerical results reported in [33] simulate the presence of z-pins with discrete cohesive 

elements, reproducing in the loading curve the discontinuities due to the presence of z-pin 

mechanisms. The proposed model, despite the numerical solutions, is able to reproduce 

correctly the presence of the z-pins, since oscillations in the loading curve are properly 

simulated. Moreover, numerical instability problems, typically observed in debonding 

processes, are circumvented by the use of ALE cohesive model, since, as shown in Fig. 

2.21 and Fig. 2.22, the solution is easily determined in wide large ranges of crack tip and 

applied displacements.  
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Fig. 2.23: Damage distribution in the z-pins and interlaminar fracture function  at representative points of 

the loading curve. 

The numerical methodology is validated by means of additional comparisons with existing 

formulations, which describe accurately the behaviour of z-pinned composite laminates. 

The analysis, reported in [33, 93], refers to loading schemes based on classical MMB test 

with /II TG G  equal to 20%. The loading, the boundary conditions and the geometry are 

illustrated in Fig. 2.24. The values of mechanical properties assumed for the laminate 

scheme, those concerning the cohesive zone model and z-pin characteristics are reported 

in Tab. 2.5 and Tab. 2.6 respectively. 

 

Fig. 2.24: MMB scheme reinforced by z-pins. 

The numerical model is discretized along the thickness by using one mathematical layer 

for each sublaminate, whereas, for the interfaces, an ALE element is introduced between 
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the sublayers adjoining the delamination. The mesh discretization of the numerical model 

is based on a uniform distribution with an element length of / 0.5 /100M L  in the 

laminate, whereas for the debonding region a refinement of the mesh, i.e / 0.1/100M L   

is utilized. In Fig. 2.25 , loading curves are reported with respect to different scenarios, in 

which P or UP configurations are analysed. In addition, numerical [33] and experimental 

[93]  results are reported to validate the proposed formulation. Moreover, the relationship 

between nominal crack tip and applied displacements are reported in Fig. 2.26. The results 

show that, despite the case involving pure mode I loading condition, the first debonding 

load is influenced from the presence of z-pin distribution in the process zone, since a larger 

value than that of the UP configuration is observed. This behaviour is mainly produced by 

the position of the z-pins with respect to the initial delamination length, which is larger 

than the case in mode I configuration and lower in the mixed mode loading configuration. 

The loading curve as well as the crack tip displacement evolution present similar trends 

analysed in previous results concerning DCB scheme, except for the path C-D, in which 

the softening branch is affected by snap-back phenomenon. Finally, the comparisons with 

numerical and experimental data are quite in agreement with the results obtained by using 

the proposed model.  

 
Fig. 2.25: Comparisons in terms of loading curve (F/GIC B-U2/L) with experimental data [93] and numerical 

result [33]. 
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Fig. 2.26: Comparisons in terms of nominal crack tip position (XT/L-U2/L) with UP configuration. 

2.4.3.2 Dynamic framework 

Previous results are developed essentially in the framework of a static analysis, in which 

time dependent effects produced by the loading rate and inertial forces are supposed to be 

negligible. The extension in dynamics is developed taking into account rate dependent 

contributions arising from inertial effects of the structure. Without loss of generality, the 

constitutive laws of the z-pins, are supposed to be similar to the ones utilized for the static 

framework. The load process is assumed to be governed by an applied velocity with ramp 

curve and a constant speed (v0) at the time t0, which is assumed to be proportional to the 

first period of vibration of the structure (
-4

0 1 6.246 100.5  [s]t T  ). The analyses are 

reported in Fig. 2.27, in which resistance curves for different loading rates are compared 

with the solution arising from the static case. The results show that, at low loading rate, i.e. 

0 1 [m/s]v  , the solution oscillates around the static one. In particular, pre-debonding 

phase, maximum strength and softening region are practically unaffected by the inertial 

effects. However, as far as the applied speed is increased the solution becomes quite 

unstable. Such differences are mainly produced by the inertial effects of the loading rate 

and their interaction with the z-pin failure, especially when the debonding mechanism 

overpasses the z-pin region.  
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Fig. 2.27: Influence of the loading rate in terms of loading curve (F/GIC B-U2/L).. 

In order to verify this phenomenon, results expressed in terms of measured crack tip 

speeds, normalized on the shear wave speed (Vs) of the material, as a function of the 

nominal crack position /X L  are reported in Fig. 2.28 In the same figure the position of 

the z-pins is also reported. 

 
Fig. 2.28: Influence of the loading rate in terms of nominal crack tip speed . 



49 

 

The results show that during this transition at low loading rates, the crack tip speed in the 

crack initiation phase tends to be damped from the presence of z-pins, leading to crack 

arrest phenomena along the strengthened region. Subsequently, the observed crack tip 

speed is amplified with values much larger than the previous ones, because of the failure 

of the z-pins. Finally, the nominal crack tip tends to large values due to the presence of 

boundary conditions. However, at high loading rates, the inertial effects introduced by the 

external loads are able to produce a relevant amount of kinetic energy and thus the 

observed speeds in both strengthened and strengthened regions are comparable. 
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 Initiation and coalescence phenomena  

Equation Chapter 3 Section 1 

The present chapter extends previous analyses in which a pre-existing defect is assumed 

“a priori” in the structure, taking into account the effects of crack onset. In particular, a 

numerical methodology based on a moving mesh technique and a multilayer formulation 

is developed with the purpose to predict crack onset, evolution and coalescence of 

interlaminar damage mechanisms. The outline of the Chapter is as follows. Section 3.1 

presents the formulation of the governing equations for the ALE and interface approaches, 

whereas in Section 3.2 the numerical implementation is reported. Finally, comparisons 

and parametric results to investigate static and dynamic behaviour of the debonding 

phenomena are proposed in Section 3.3. 

Part of analyses and results presented and discussed in this chapter were already 

published by the following papers: 

 Funari, M.F., Lonetti, P., Initiation and evolution of debonding phenomena in 

layered structures, Theoretical and Applied Fracture Mechanics, In press, 

corrected proof, Available online 29 May 2017. 

 Funari, M.F., Greco, F., Lonetti, P., A coupled ALE-Cohesive formulation for 

layered structural systems, Structural Integrity Procedia, 2017, 3, 362-369 

 Funari, M.F., Greco, F., Lonetti, P., Luciano, R., Penna, R., An interface approach 

based on moving mesh and cohesive modelling in Z-pinned composite laminates, 

Composites Part B: Engineering, 2018, 135, 207-217. 

 Funari, M.F., Greco, F., Lonetti, P., Dynamic debonding in layered structures: A 

coupled ALE-cohesive approach, Fracture and Structural Integrity, 2017, 41, 524-

535. 
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3.1 Theoretical Formulation 

The proposed model is based on the numerical formulation described in the previous 

Chapter, in which the structure is composed by the combination of beams and interfaces 

[36, 82]. Each layer is connected to the adjoining ones by means ALE-cohesive interfaces 

without pre-existing defects, in which debonding phenomena may affect the adhesion 

between layers introducing material discontinuities and traction forces along normal or 

sliding directions. In order to simulate debonding phenomena, a fundamental task to be 

achieved is to identify the position, in which the onset of interfacial mechanisms is 

produced and subsequently to simulate the evolution of the cracked length. In the proposed 

model, two steps, referred to different numerical models and geometries, are considered in 

the analysis, which will be presented, separately, in the following subsections. A synoptic 

representation of the model is reported in Fig. 3.1, whereas the steps involved in the 

proposed procedure are reported in Fig. 3.2.  

 

Fig. 3.1: Multilayered laminate structure: geometry, interfaces and TSL. 

3.1.1 Formulation of the crack onset modelling  

At this stage, it is only required to identify the positions in which the onset conditions are 

satisfied. Without of loss of generality, the crack onset definition is described by means of 

a mixed crack growth criterion, which is a function of the fracture variables, coinciding 

with the ratio between ERR mode components and corresponding critical values, as 

follows: 



52 

 

 
   

1 1

1

2 2

1

r r

k k

I IIk k

f

IC IIC

G X G X
g X

G G

   
     
   
   

      (3.1) 

where k represents the generic k-th interface in which debonding phenomena may occur, r 

is the constant utilized to describe fracture in different materials,  ,IC IICG G are the total 

area under the traction separation law and  ,I IIG G  are the individual energy release rates 

calculated as  
0

c
n

I n n nG T d


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c
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
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Fig. 3.2: Representation of the coordinate systems employed: Before crack initiation  (a), After crack 

initiation, material and moving coordinates system are coincident (b), ALE formulation: referential and 

moving configuration introduced to describe debonding phenomena (c). 

According to previous Chapter, the TSL are expressed by Eq. (2.7). However, the proposed 

model is quite general to include other existing cohesive formulations based on a different 

TSL or stress based initiation criteria, just by modifying the analytical expressions defined 

in Eq.(3.1)-(2.7). It is worth noting that since the main purpose of this preliminary step is 

to identify the position of the onset crack, the numerical model should be described by 

means of a relatively coarse mesh discretization, in which at the k-th interface the position 



53 

 

of each numeric mesh points is described by the horizontal axis X1 (Fig. 3.2a). At this stage, 

since the ALE equations are not activated, the position of the computational mesh points 

is expressed in the Fixed Material (M) Frame (M), M  identified by the x1-x2 coordinates 

(Fig. 3.2), which coincides, at this stage, with the Moving (M) Frame, S , described in the 

following subsection, i.e. X1-X2. The location, in which the crack growth is achieved, are 

identified by means of those values
1

kX , which set to zero Eq.(3.1). Such quantities are 

evaluated by enforcing in the region in which the k-th interface is concerned the following 

condition: 

 1, 1,0    0 , 1, N
k kk k

i if dg X with X L i          (3.2) 

with the index i represent the number of the i-th debonding mechanism potentially 

activated at the k-th interface and Nk

d
 is the number of material discontinuities activated 

at the k-th interface. 

3.1.2 Crack evolution mechanism 

Once the positions of the crack are determined, the numerical model is subjected to a mesh 

enrichment by means of the application of a remeshing procedure, which ensures accuracy 

in the prediction of fracture variables in proximity of the crack onset position. At this point 

of the numerical procedure, the proposed model is coincident with the one developed in 

the previous Chapter, where only the delamination phenomena has been investigated. 

Without loss of generality and for conciseness, the case of an internal debonding 

mechanism is now considered. However, the model is quite general to include multiple 

crack onset and debonding conditions. Starting from the onset coordinate 1

k

X  at the k-th 

interface obtained by solving Eq.(3.2), two independent debonding mechanisms depart, 

i.e. along right and left direction. In order to reproduce the crack growth, the ALE strategy 

is implemented to prescribe the crack motion by modifying the geometrical positions of 

the computational points. In particular, at each interfaces, moving or spatial system, S , 

described in terms of the geometrical positions X , is modified with the purpose to 

reproduce moving traction forces acting at the layers adjoining the interface (Fig. 3.2b). 

The mathematical description of the moving mesh modelling is defined by a mapping 
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operator  , which relies a particle in a fixed Referential (R) Frame, and the one in current 

moving coordinate system, namely R and S , as follows:  

 ,X t    with  : R S         (3.3) 

The mesh motion in terms of displacement field is described as the difference between 

moving and the referential coordinates: 

       1 1 ,          k k k k k kX X t t t t on             (3.4) 

where k kB h   represent the region in which the debonding mechanisms are produced. 

In order to reduce mesh distortions, produced by the mesh movements, rezoning or 

smoothing equations are introduced to simulate the grid motion. In the present study, a 

Laplace based equation is assumed, which is, in the case of one dimensional domain for 

both Static (S) and Dynamic (D) analyses, defined on the basis of the following 

relationships [98]:  
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Eqs. (3.5) should be completed by means of boundary equations to reproduce the crack tip 

motion on the basis of the assumed crack growth criterion, namely  k

fg . In particular, for 

a fixed position in which the crack initiation occurs, different boundary conditions should 

be introduced to enforce internal or external debonding mechanisms. Differently to 

previous numerical implementation explained in Chapter 2, once the position of the crack 

onset is determined, i.e.at 
1 1

kX X , a geometrical debonding with length equal to 2  is 

introduced in the numerical model, producing two potential finite crack tips in which 

debonding phenomena can be triggered (Fig. 3.2b). The evolution of debonding 

phenomena is considered by introducing the following boundary equations, corresponding 

to the Kuhn–Tucker optimality conditions concerning the crack growth: 

 

 

1

1

0, 0  with 0,    

0, 0  with 0,    

k kk k k k k k
TT f T f T f

k kk k k k k k
TT f T f T f

X g X g X g at X X

X g X g X g at X X
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  

           

          

 (3.6) 
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where k

TX  indicates the displacement of the crack tip front of the k-th debonded interface, 

k

fg  is the fracture function defined in Eq. (3.1) and  
/ 

 represents the value of the    

variable evaluated at left (-) or right (+) crack tip position. However, additional 

relationships are required for the ALE formulation to reproduce the crack tip motion and 

boundary conditions. In particular, the displacements of the computational nodes are 

assumed to be zero at the boundaries of the structure, whereas small portions, close to the 

crack tip for the left and right debonding mechanisms, namely k  and k , are assumed 

to be moved rigidly, enforcing the computational nodes at the extremities to have the same 

displacements. This choice ensures that the NL involved in the debonding mechanisms are 

constrained to a small portion containing the process zone, reducing the total complexities 

of the model. Consequently, the following boundary conditions should be considered in 

the analysis (Fig. 3.2b): 
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       (3.7) 

The boundary value problem, given by the set of Eqs. (3.5)-(3.7) is solved by using a 

variational approach. In particular, taking into account the transformation rules defined by 

Eq.(3.4) and introducing mesh displacement conditions on internal and external 

boundaries, reported in Eq.(3.7), the following expression regulates in the referential 

configuration the crack growth:  
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where 
 

 
k

T


 are the positions in the referential system of the debonding length extremities, 

 ,k k   represent the entities of the debonding region for the left or right crack path, 

k

T is the Lagrange’s multiplier introduced to consider the internal boundary conditions. It 

is worth noting that  ,k k    can be considered as variable quantities for each crack 

path, that should be determined during the crack evolution. In particular, from the physical 
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point of view, they represent the portion in which the traction separation laws defined by 

Eq. (2.7) are distributed. Since those regions are assumed to be moved rigidly, by means 

of the ALE strategy, the nonlinearities involved by the traction forces may be reduced to a 

small region close to the crack tip, avoiding as a result spurious and oscillatory effects 

typically documented in pure CZMs. From the numerical point of view, displacements of 

the debonding regions are determined according to Eq. (2.21). Furthermore, As mentioned 

earlier, starting from the crack onset position two independent debonding mechanisms 

depart, furthermore the Eq. (2.21) has been modified to describe displacements of the 

debonding for both side i.e left and rigth (Fig. 3.3):  

 
   

1

1 1

0    0,     0

kk
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
      

  
 (3.9) 

It is worth noting that a enriched Cohesive Model is not utilized along the entire interface, 

but only on a small region containing the process zone and thus the characteristic length 

of fracture, namely k . Moreover, in the remaining regions, a coarse mesh should be 

utilized since it is required to reproduce perfect adhesion phenomena or the onset of other 

debonding mechanisms. 

 

Fig. 3.3: Strategy to describe debonding phenomena by means ALE interface elements: description of the 

iterative procedure. 

3.2 Numerical implementation 

The numerical implementation of the proposed model is developed by using a finite 

element approach, in which the layered structure is modelled by the combination of shear 
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deformable beam elements connected through the moving mesh interfaces. The former is 

utilized to simulate layer deformability by using classical Timoshenko beam formulation, 

whereas the latter is implemented by means of ALE approach. In particular, at the generic 

interface, mesh displacements and speeds of the computational nodes are defined by means 

of quadratic interpolation functions in terms of nodal components: 

 ,X X .     ,X N X       X N X      (3.10) 

At first, the analysis is developed to identify the positions in which interfacial cracks are 

triggered by checking crack criterion defined in Eq.(3.1). Such task is carried out by using 

a relatively coarse numerical mesh, which is verified, in the next substep, by enriching the 

mesh utilizing remeshing procedure (Fig. 3.4a). The identification of the onset interfacial 

crack position is performed by introducing an operator, i.e. kG , which collects, at each 

loading steps and computational nodes, the values fracture function: 

 ,k k k kG X             (3.11) 

where k  is the operator vector expressed in terms of interfacial displacement vector and 

geometrical position vector of the computational nodes, i.e. k  and kX  respectively. From 

the numerical point of view, the dimension of the numerical mesh should be small enough 

to guarantee accuracy in the prediction of the interlaminar stresses. The position, in which 

a finite crack length is produced, namely 1

k

X , is determined by solving those values which 

set to zero within a numerical accuracy (toll) Eq.(3.11): 

 1,
kk k X toll            (3.12) 

Once the point in which material discontinuity is produced, the continuity condition is 

removed introducing a physical disconnection between the adjoining layers at the k-th 

interface (Fig. 3.4b). As a consequence, the internal crack may evolve differently along the 

Right (R) or the Left (L) sense. From the geometrical point of view, the material 

discontinuity is reproduced by means of a small length 2 , which is introduced at the 

position obtained by solving Eq.(3.12), i.e. 1

k

X . The extremities of this region consist of 

the two crack tip points, namely  1 1,
k k

X X
 

 with  1 1 1 1,
k k k k

X X X X
 

    which 

may evolve due to debonding mechanisms. However, at this stage, the remaining internal 
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points are not affected by material discontinuities, since the presence of the geometrical 

discontinuity produces local effects close to the onset position. 

 

Fig. 3.4: Synoptic representation of the Numerical implementation: Searching of the crack onset condition 

and itself position (a), Process of changing geometry and mesh refinement (b), description of the debonding 

phenomena by means ALE elements (c). 

Subsequently, the R or L debonding regions  ,k k    are identified starting from the 

crack tip points, by searching those nodes, whose extremities, i.e.  ,k kX X  ,  present 

a value of the fracture function 
k

fg  negative within a relative tolerance criterion: 

1 1

k k kX X       with  1

k k

fg X toll       (3.13) 

 
1 1

k k kX X       with   1

k k

fg X toll       (3.14) 
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where the toll is assumed to be a quantity small enough to ensure a finite displacement of 

the debonding region. It is worth noting that k  and k are assumed to be variable 

quantities to be identified in the computation procedure, since they are predicted on the 

basis of current values at the crack tip positions and those of the fracture function close to 

the corresponding debonding regions. From the numerical point of view, in such portions, 

the traction forces evolve in a NL way, whereas in the remaining ones perfect adhesion 

should be represented introducing proper boundary conditions on the interfacial 

displacements. To this end, an enrichment of the numerical mesh is performed, only in the 

debonding regions, by means of classical remeshing techniques [99] with the purpose to 

verify the prescribed accuracy in the definition of the TSL evolution.  

Subsequently, the analysis is carried out by solving the governing equations arising from 

ALE modelling, enforcing, the extremities of each debonding regions to have the same 

displacements. In order to avoid distortions in these regions produced by the mesh motion, 

which may introduce loss of accuracy in the prediction of fracture variables, a rigid 

displacement of the debonding lengths is enforced by using the Lagrange’s multiplier 

method. In particular, the discrete equations are derived by substituting Eq.(3.10) into 

Eq.(3.8), prescribing Eq. (3.7), in which unknown quantities are represented by the 

position of the computational nodes X  : 

   0,    0 , 0 T TW X N N X I X N X I X                (3.15) 

where W  is the ALE discretization matrix   is the Lagrange multiplier vector concerning 

the ALE formulation,   is the position of the mesh point in the referential coordinate 

system, N is the allocation matrix and I  is the unity allocation vector which expresses the 

constraint conditions concerning the right or the left debonding displacements, i.e. 
TX 

and 
TX   respectively. In order to identify the current displacement of the debonding 

mechanisms it is required to solve the growth condition expressed in terms of Eq.(3.9) and 

values of the crack growth criterion at the debonding length extremities. The ALE 

formulation is coupled with the structural problem by means of the cohesive traction 

forces, whose distribution on the adjoining layers is expressed in terms of moving reference 

system. In particular, the traction force vector T is defined on the basis of the relative 

displacement vector  , by mean of the constitutive relationship operator C  expressed as 
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a function of Eq. (2.7). As shown in Fig. 3.4c, the displacement vector is defined in terms 

of the ALE coordinates by means of a projection operator Q  with : S MQ   which 

connects moving material points on the ALE configuration 
S  and fixed material points 

M of the adjoining layers (Fig. 3.4c). Therefore, the interface traction force vector is 

expressed as follows: 

        T C with X                (3.16) 

where T  is the traction force vector, C defined the relative stiffness on the basis of Eq. 

(2.7),   contains the relative horizontal and vertical displacements expressed as a function 

of the   operator at the generic coordinate system X . The proposed approach is 

implemented by means of a customized version of the finite element package Comsol 

Multiphysics [85]. In particular, proper script files are carried out to manage the steps 

involved in the procedure, regarding the geometry variation due to the crack onset, the 

debonding length definition and the mesh enrichment in the process zone. The model can 

be solved in both static and dynamic frameworks, taking into account time dependent 

effects produced by the inertial characteristics of the structure and the boundary motion 

involved by debonding phenomena. In both cases, the governing equations are integrated 

by means of proper stop and restart conditions, to modify the computational mesh due to 

the onset of debonding phenomena. In the case of static analysis, the resulting equations 

are solved by using a nonlinear methodology based on Newton-Raphson or Arch length 

integration procedures, whereas in dynamics, the algebraic equations are solved by using 

an implicit time integration scheme based on a variable step-size backward differentiation 

formula (BDF). A synoptic representation of the numerical procedure as well as the 

computational algorithm implemented in the FE environmental program are reported in 

Fig. 3.5 and Tab. 3.1. 
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Fig. 3.5: Schematic representation of the algorithm for layered structure, crack initiation and evolution. 
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START 

0. Read the input data: geometry, material and interface characteristics 

1. Loop for model coarse iteration 

1.1. Initialize the nodal displacement vector  

1.2. Loop for load increment  

1.2.1. Determine the external force vector f , stiffness, mass and ALE (in case of onset 

condition) matrixes  , ,K M W  

1.2.2. Solve and compute nodal vector variables  

1.2.3. Compute stress and strains for each element and evaluate the damage variable of the 

interfaces 

1.2.3.1. Update the load increment counter; if crack onset condition is not satisfied go back 

to step 1.2 to solve current solution 

1.2.3.2. If crack onset condition is satisfied  1, 1,0    0 ,  1, N
k k

k k
i if dg X with X L i    , 

perform STOP Solver condition  

1.2.3.3. In the 
1

kX coordinate insert the debonding length  ,   by modifying the 

interfacial geometry 

1.2.3.4. Perform model refinement and transfer the interfaces damage variables to the new 

mesh by means of remeshing procedure  

1.2.3.5. Activate interface ALE elements concerning the current debonding process 

1.2.3.6. Prediction of the crack growth  

 END 

Tab. 3.1: Incremental-iterative procedure of the proposed algorithm. 

3.3 Results 

The proposed formulation is verified by means of several comparisons with numerical and 

experimental data. The first step in the validation scheme is developed with the purpose to 

analyse the improvements provided by the proposed formulation with respect to available 

approaches based on classical CZM. At first the analyses are developed in static 

framework. Subsequently, in order to validate the proposed model to identify the 

interfacial crack tip speed dynamic simulation are presented. Finally, static and dynamic 

behaviour of laminate reinforced with z-pins is shown. 

The analyses are developed with reference several loading schemes. At first numerical 

investigation to define the best discretization of the structural elements, then analysed to 

define the computational efficiency of the model are reported.  
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3.3.1 Multi-layered structures, crack onset, propagation and coalescence: Static 

framework 

The layered structure consists of a multilayered composite beam, which presents six 

mathematical layers and five intact interfaces. The structural scheme, reported in Fig. 

3.6Errore. L'origine riferimento non è stata trovata., is based on clamped end 

conditions and concentrated midspan opening forces. Moreover, the mechanical properties 

assumed for the laminate and the interfaces as well as the ones required by the cohesive 

zone constitutive model are reported in Tab. 3.2 and Tab. 3.3.  

 

Fig. 3.6: Layered configuration formed by six structural layers. 

 

 1 GPaE   12 GPaG  
-1kg m     - - 

130 6 1500 - - 

 mmL   mmB   mma   mmh   mmd  

200 20 20 2 5 

Tab. 3.2: Mechanical and  geometrical properties of the layered structures reported in Fig. 3.6 

 

1N mmICG      MPac

nT   0 mmn   mmc

n  

0.26 30 0.00173 0.0173 

1N mmICG      MPac

nT   0 mmn   mmc

n  
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1.02 60 0.00334 0.0334 

Tab. 3.3: interface properties of the layered structures reported in Fig. 3.6. 

The numerical model is discretized along the thickness by using one mathematical element 

for each layer, whereas, for the interfaces, five ALE elements are introduced between the 

sublayers, in which the crack initiation could be potentially activated. The analysis is 

developed under a displacement control mode, to ensure a stable crack propagation. 

Comparisons with existing formulations based on cohesive zone model are proposed, in 

which the interface regions are discretized by means of classical interface elements. In 

order to verify stability accuracy of the solution, several mesh discretization lengths ( )M

, ranging from a uniform to a refined one with mesh enrichment localized along the process 

zone only, are considered. In particular, for the proposed model, the following numerical 

cases are analysed: 

 uniform discretization of the mesh with a characteristic element mesh equal to 

/ 1/ 200M L   with 4623 DOFs (M1) or equal to / 3 / 200M L  with 1504 

DOFs (M2); 

 non uniform discretization with mesh enrichment in the debonding region , i.e. 

/ 1/ 200M L  , and a uniform coarse discretization in the remaining region, i.e. 

/ 1/ 40M L  with 2859 DOFs (M3) . 

In addition, as a comparison, pure CZMs are developed, in which the following uniform 

mesh discretizations are implemented: 

 uniform discretization of the mesh with element mesh length equal 

/ 0.2 / 200M L  with 18018 DOFs(PC1); 

 uniform discretization of the mesh with a characteristic element mesh equal 

/ 1/ 200M L  with 3618 DOFs(PC2); 

At first, the analysis is carried out with the purpose to identify the position, where crack 

onset criterion is possible. This is achieved with a coarse uniform mesh with size equal to 

/ 1/ 200M L  . Once the position of the crack is known, an internal discontinuity with 

size equal to 2 / 0.001/ 200L  is introduced, thus modifying the geometry of the 

numerical modeling. It is worth nothing that the size of such cracked length is chosen to 
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be very small. However, sensitivity studies, presented subsequently, are developed to 

verify the influence of such parameter on the crack onset prediction.  

The results, reported in Fig. 3.7, are expressed in the terms of resistance curve, in which 

the predictions provided by the proposed model (M1-M2-M3) assumed with different 

mesh discretizations and classical CZM (PC1-PC2) are investigated. The analyses show 

that as far as the mesh size increases the proposed solution is affected by a loss of accuracy 

in the prediction of the resistance values, involving some oscillations with respect to the 

reference solution. However, also in the case of a very low element number in the mesh 

discretization, the prediction obtained by the proposed model is not affected by a divergent 

behaviour but it is always very close to enriched one, namely PC1. The improvements 

provided by the proposed model should be analysed in terms of variables involved in the 

numerical models, since it requires a very low number of elements to reproduce the actual 

solution. This is also confirmed by the solution arising from the M3 discretization, which 

presents a smart use of the mesh elements in the numerical model. In particular, the 

proposed approach requires a mesh enrichment in the process zone only and a very coarse 

mesh in the remaining regions, in which perfect adhesion should be reproduced by means 

a penalty approach. Pure cohesive zone models require typically a uniform discretization 

along the entire interface, leading to large computational costs and mesh dependent effects 

in the numerical solution. This is confirmed by the analyses reported in Fig. 3.8, in which 

the evolution between crack tip and applied displacement is reported. The results show 

how the proposed model is quite stable in any mesh configuration, since the solution 

coincides with that of the PC1 modelling. However, in the case of a low discretization, 

cohesive zone model is affected by errors and a divergent trend. In order to quantify 

numerically the discrepancies in the prediction of the actual solution and the performance 

analysis of the computational procedure, a comparison in terms of number of total DOFs 

involved in the numerical model and CPU time between proposed model and cohesive 

approach is reported in Fig. 3.9. The results show how the proposed model despite existing 

formulation based on pure cohesive approaches, strongly reduces the computational costs 

within percentage values equal to 76% and 85% for the CTP time and DOFs, respectively. 

Finally, in order to verify the influence of initial crack length on the actual solution, a 

parametric study is developed in terms of load-displacement curve. From the theoretical 

point of view, such value should be small enough to reproduce the multiscale variation 

from the macro to the micro scale modelling. However, from the results reported in Fig. 
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3.10, it transpires that values lower than do not influence the actual 

solution. 

 

Fig. 3.7: Laminate structure: influence of the mesh discretization on the loading curve (F/GIC B-U2/L)   and 

comparisons between proposed model (M1-M2-M3) with classical Cohesive approaches (PC1-PC2). 

 

Fig. 3.8: Laminate structure: influence of the mesh discretization on the crack tip position (XT/L-U2/L)  and 

comparisons between proposed model (M1-M2-M3) with classical Cohesive approaches (PC1-PC2). 

2 0 001 200/ L . / 
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Fig. 3.9: Number of the total DOFs and CPU time ratio for the numerical simulation performed by using 

proposed modelling (M1-M2-M3) and classical cohesive approach (PC1). 

 

Fig. 3.10: Laminate structure: influence of the material discontinuity length on the loading curve (F/GIC B-

U2/L). 

The proposed model is validated by means of additional comparisons with existing 

formulations, which accurately predict initiation and evolution of interfacial debonding 
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phenomena. The analysis reported in [100] refers to a four point bending test scheme, in 

which an edge debonding crack is produced in a two layered scheme. The geometrical and 

mechanical characteristics are reported in Fig. 3.11 and Tab. 3.4 and Tab. 3.5, respectively. 

The approaches available from the literature refer to classical CZM and Finite Fracture 

Mechanics (FFM) formulations. The former assumes between each layer a traction 

separation bilinear law with respect to normal and tangential interfacial stresses to 

reproduce the debonding mechanisms. Contrarily, the latter is based on a coupled criterion 

based on finite crack extension which combines stress and energy conditions. 

 

Fig. 3.11: Layered configuration submitted to a four-point bending test. 

 

 1 GPaE     1 mmL   1 mmL   3 mmL   mmH  

400 0.26 40 25 20 2 

Tab. 3.4: Mechanical and  geometrical properties of the layered structures reported in Fig. 3.11 

 

Interface

0.050CG   

1N mmCG      MPacT   0 mm   mmc  
1MPa mmk     

0.05 100 0.0001 0.001 1E6 

Interface

0.50CG   

1N mmCG      MPacT   0 mm   mmc  
1MPa mmk     

0.050 100 0.0001 0.01 1E6 

Tab. 3.5: Interface  properties of the layered structures reported in Fig. 3.11. 
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The comparisons, reported in Fig. 3.12 and Fig. 3.13, are presented in terms of load-

displacement curve and crack tip and applied displacement for two different values of the 

critical ERR (Tab. 3.5). The proposed model is described by using several mesh sizes to 

check the stability of the solution. To this end, the debonding length presents in all cases a 

mesh discretization equal to 2/ 0.05 / 25M L  , whereas in the remaining regions the 

mesh is changed with 2/ 0.1/ 25M L   (M1), 2/ 0.5 / 25M L   (M2), 2/ 1/ 25M L   

(M3). The comparisons with the results obtained from the literature are quite in agreement 

also assuming a very large mesh description.  

However, the extrapolation for large values of crack extension, not reported in the data 

taken from the literature, show that also in these ranges stability and convergence of the 

solution are achieved.  It is worth noting that the presence of a coarse mesh in the 

configurations utilized to identify the crack initiation and growth, do not affect the 

accuracy of the solution, which is achieved by means of the localized mesh enrichment in 

the process zone only, reducing the total computation cost of the numerical model. 

 

Fig. 3.12: Four-point bending test scheme: (Gc=0.050) influence of the mesh discretization on the loading 

curve   and crack tip displacement  , comparisons with CZM [100] and FFM [100]. 
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Fig. 3.13: Four-point bending test scheme: (Gc=0.50) influence of the mesh discretization on the loading 

curve  and crack tip displacement, comparisons with CZM [100] and FFM [100]. 

3.3.2 Multi-layered structures, crack onset, propagation and coalescence: 

Dynamic framework 

The analysis is extended to a dynamic debonding example, in which initiation, evolution 

and coalescence of pre-existing material discontinuities are discussed. The purpose of the 

present study is to verify the capabilities of the proposed model to reproduce multiple 

debonding mechanisms. As shown in Fig. 3.14, the structural scheme refers to a layered 

structure with fixed ends, loaded by symmetric vertical opening forces, in which a pre-

existing internal discontinuity along the same delamination path is assumed.  

 

Fig. 3.14: Layered configuration formed by two structural layers. 
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As a consequence, two different configurations are investigated in which the interface is 

affected by Perfect (P) or Imperfect (IP) interfaces. The initial geometrical  discontinuity 

in the IP configuration along the interface is assumed to be equal to / 5 / 200d L  . The 

data concerning material characteristics, fracture functions, CZMs are reported in Tab.1, 

whereas the loading history is assumed to be governed by an applied velocity with ramp 

curve and a constant speed (v0) at the time t0, which is assumed to be proportional to the 

first period of vibration of the structure ( 4

0 10.5 5.95 10  [s]t T   ). The results, presented 

in Fig. 3.15 and  Fig. 3.16, are expressed in terms of normalized resistance curves, in which 

both static and dynamic analyses are developed for the cases of P and IP cases, 

respectively. In both cases, debonding phenomena start from the midspan cross-section, in 

which opening concentrated forces are applied, producing high values of interfacial normal 

stresses. The mesh size at this stage is assumed to be equal to / 1/ 200M L  of the total 

length of the laminate. Once the onset criterion is satisfied, a physical internal geometric 

discontinuity with length equal to 2 / 0.001/ 200L   and a fine mesh discretization along 

the debonding lengths are introduced ( / 0.2 / 200M L  ). Such task is performed by 

means of a stop condition, remeshing and restart procedures from the last converged 

substep. Subsequently, the numerical procedure predicts crack evolution towards the 

external region, which produces a macroscopic loss of stiffness of the structure as shown 

in the loading curve (AB, Fig. 3.15and Fig. 3.16). In presence of a pre-existing debonding 

length, the resistance curve is affected by a discontinuity in the evolution curve. Such 

behaviour is quite clear, when the crack tip reaches the unbounded region (BC, Fig. 3.16). 

The analyses, developed in dynamic, reported in Fig. 3.15 and Fig. 3.16, denote a different 

evolution in the case of P and IP configurations with notable influence of the loading rates, 

especially in presence of a pre-existing debonding length. As a matter of fact, in the case 

of P interface, static and dynamic solutions are quite similar, except in the evolving phase 

in which the resistance curve present larger values for increasing loading rate (Fig. 3.15). 

Contrarily, for the IP configuration, despite to the static case or to the dynamic case, an 

oscillating behaviour is observed, which increases with the loading rate (Fig. 3.16). In 

particular, once the crack tip overpasses the undebonded region, the resistance curve is 

affected by the inertial effects produced by the material discontinuity and thus notable 

discrepancies with respect to the static solution are observed. 
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Fig. 3.15: Perfect interface debonding (P): comparison in terms of loading curve (F/GIC B-U2/L)  between 

static and dynamic cases for different loading rate. 

In order to investigate such phenomena, in Fig. 3.17 the time histories of the crack tip 

speeds are reported as a function of the loading rate. The analysis is presented only for the 

configuration with a pre-existing defect (Fig. 3.14 with internal defects). At crack 

initiation, the measured speeds tend to increase very rapidly reaching a constant value, 

whose entity strictly depends from the applied loading rate. However, when coalescence 

is produced, the debonding mechanisms jump from one extremity to the other one of the 

debonded region. During this transition, the crack growth is quite dependent from the 

applied loading rate. As matter of fact, at low loading rates, the crack tip speeds are 

comparable to the ones observed in the crack initiation phase, whereas large values are 

observed for increasing loading rate. Such behaviour can be explained by the evolution of 

the kinetic to strain energy ratio reported in Fig. 3.17, which presents peak value when the 

crack reach the pre-existing debonding length. However, when the crack tip reaches the 

undebonding region, the kinetic energy is at first reduced and subsequently due to crack 

tip motion tends to increase.  
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Fig. 3.16: Imperfect interface debonding (IP): comparison in terms of loading curve (F/GIC B-U2/L)  between 

static and dynamic cases for different loading rate. 

 

Fig. 3.17: Imperfect interface debonding (IP): evolution of the crack tip speed normalized to the shear wave 

speed of the material and kinetic to strain energy ratio  as function of the normalized applied displacement. 

In order to validate the procedure to describe the crack front speed, the results obtained 

using the proposed algorithm has been compared dynamic with numerical results arising 

from literature [21]. The analyses are developed with reference to loading schemes based 
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on the 4-point bending, in which the dynamic effects are considered from both onset and 

evolution mechanisms. The loading, the boundary conditions and the geometry are 

illustrated in in Fig. 3.18, whereas the mechanical properties assumed for the steel, the 

adhesive, the FRP strip and those concerning the potential cohesive zone model are 

reported in Tab. 3.6, Tab. 3.7, Tab. 3.8 and Tab. 3.9, respectively. 

 

Fig. 3.18: Steel beam configuration and loading scheme. 

 

 1 GPasE   12 GPaadhG  
-1kg ms      mmsL   1 mmsL  

190 79.3 7500 280 30 

 2 mmsL   mmB   mma   mmsH   mmc  

20 50 105 20 35 

Tab. 3.6: Geometrical and mechanical properties of the steel beam [21]. 

 

 1 GPaadhE   12 GPaadhG  
-1kg madh      mmadhL   mmadhB   mmadhh  

5 0.350 2000 160 50 3 

Tab. 3.7: Geometrical and mechanical properties of the adhesive layer. 

 1 GPafrpE   12 GPafrpG  
-1kg mfrp      mmfrpL   mmfrpB   mmfrph  

165 60 2000 160 50 1.2 

Tab. 3.8: Geometrical and mechanical properties of the FRP strip [21]. 
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1N mmcG      mmn  

0.350 0.01 

Tab. 3.9: Interfaces parameters of the Adhesive-Steel interface  and Adhesive-Frp interface [21]. 

In the present case study, comparisons with results arising from the literature [18, 19] are 

developed. The main model refers to a steel beam, strengthened with FRP strip elements. 

The model is based on two cohesive interface elements, which are introduced between 

adhesive-steel and adhesive-FRP strip elements. As a consequence, debonding phenomena 

may affect the layered structures at two different interface levels. The interface law utilized 

to reproduce the debonding process is consistent with the model proposed by [20]. In order 

to obtain a stable crack propagation, the structure is loaded under a displacement control 

mode. In particular, to avoid the dynamic effects due to the external load, a very small 

loading rate equal to 1 mm/s is assumed. However, time steps are modified during the 

computation from 1E-3 to 1E-7 sec, before and after the activation of the debonding 

phenomena, to capture accurately the effects produced by crack growth. In Fig. 3.19 and 

Fig. 3.20, results in terms of resistance curve and crack speed time histories for different 

thickness of the FRP strips are reported. At first, the structure presents a linear, stable and 

quasi-static behaviour. Subsequently, when the crack growth criterion is satisfied in the 

adhesive-steel interface, the ALE interface is activated to reproduce the debonding 

phenomena. During the activation of debonding mechanisms, the resistance curve presents 

an oscillatory and variable behaviour which varies very fast. In the same figure, a detail of 

the resistance curve at the point in which the crack onset is activated is also reported. This 

trend is quite in agreement with similar experimental results available from the literature 

[21], which show the importance of the dynamic effects during the crack growth. 

It is worth nothing that the resistance curves are quite dependent from the thickness 

properties of FRP strip. In particular, an increase of the FRP strip thickness reveals a 

similar impact on the critical displacement and load at the onset of the dynamic process 

(Fig. 3.19 and Fig. 3.20). Increasing the thickness of the FRP strip, the edge debonding 

strength of the beam is reduced (Fig. 3.19). This effect is attributed to the increased amount 

of energy that is accumulated in the stiffened FRP layer and the corresponding increment 

of the edge stresses. Once the dynamic process is activated, the influence of the FRP strip 

thickness produces an increase of the crack speeds, which leads to more severe failure 

mechanisms.  Contrarily to the properties of the FRP layer, which are well documented in 
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the literature, the influence of the adhesive on the debonding phenomena is not completely 

investigated. To this end, in Fig. 3.21 and  Fig. 3.22, results in terms of resistance curves 

and crack speed time histories for different values of the thicknesses of the adhesive layer 

are presented 

 

Fig. 3.19: Comparisons in terms of loading curve for different thickness of the FRP strip. 

 

Fig. 3.20: Comparisons in terms of time histories of  the debonding front speed for different thickness of the 

FRP strip. 
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Fig. 3.21: Comparisons  in  terms  of  loading  curve  for  different  thicknesses  of  the  adhesive  layer. 

   

Fig. 3.22: Comparisons  in  terms  of  time histories of the debonding front speed for different thickness of 

the adhesive layer. 

In particular, an increment of the adhesive thickness reveals a different impact with respect 

the previous analyses in terms of FRP strip characteristics. As a matter of fact, the results 

show how by using thin adhesive layers, an increase of the dynamic debonding strength is 

observed (Fig. 3.21) leading the structure to be affected to a more severe dynamic state 
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(Fig. 3.22), since the observed crack tip speeds tend to be increased. From the results 

reported in Fig. 3.19, Fig. 3.20, Fig. 3.21 and  Fig. 3.22, a good agreement with the data 

available from the literature is also observed [18]. 

In Fig. 3.23 the interfacial tractions across the two cohesive interfaces, i.e. Adhesive-Steel 

(as) and Adhesive-Frp (af), for different time steps of the delamination process, are 

reported. At first, in Fig. 3.23a, the distribution of the interfacial traction forces is presented 

for the status A of the zoom reported in Fig. 3.19 and Fig. 3.21, which basically 

corresponds to the peak load of the quasi-static branch. It represents the stage just before 

the initiation of the debonding process, in which all layers are still bonded together. 

However, at the point A, the non-linear response of the cohesive adhesive-steel interface 

shows how the interfacial normal and tangential tractions tend to zero. This reflects the 

initiation of the dynamic debonding failure. In Fig. 3.23b-d, the representation of the 

evolution of the dynamic debonding, in terms of interfacial traction, has been reported for 

different lengths of the debondend region. In particular, the results are referred to the points 

B, C, D of the zoom reported in Fig. 3.19 and Fig. 3.21, in which the debonding lengths of 

adhesive-steel region are equal to 25, 50 and 75mm, respectively. It is worth noting that 

the af does not debond but it is able to provide interfacial tractions between the 

mathematical layers. Finally, the consistency of the proposed model has been investigated 

also in terms of computational efforts. In particular, in order to satisfy the solution 

accuracy, the numerical model arising from [18] is based on a discretization with 560 and 

320 elements for the steel and FRP strip layer, respectively. Moreover, the discretization 

of the 2D adhesive layer presents a uniform length equal to 0.5. As a consequence, the total 

number of DOFs is approximately 7100. Contrarily, by using the proposed approach, in 

which also the adhesive layer is simulated by means the shear deformable beam elements, 

the number of variables is strongly reduced. In particular, the proposed model has been 

discretized by means a uniform mesh length equal to 1 mm for the laminate and 1 mm for 

the interface involving 3018 DOFs. Therefore, a computational saving approximately 

equal to 60% is achieved. 
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Fig. 3.23: Comparisons in terms of interfacial tractions across the two cohesive interfaces for different 

positions of debonding front. 

3.3.3 Multi-layered structures with inter-laminar reinforced with z-pins 

Once the proposed methodology is validated, a layer configuration involving multiple 

delaminations, crack onset and z-pin interlaminar reinforcement is considered. As shown 

in Fig. 3.24, the structural scheme refers to a layered structure with fixed ends, loaded by 

symmetric vertical opening forces, in which a pre-existing internal discontinuity along the 

same delamination path is assumed. Mechanical properties of the laminate and the 

interfaces are reported in Tab. 3.2 and Tab. 3.3, whereas those concerning the cohesive 

zone model and z-pin characteristics are defined in Tab. 2.6. The main purpose of the 

analysis is to investigate how crack initiation and evolution interact with the z-pin 

debonding phenomena. To this end, the following configurations are investigated: 

UP with two pre-existing debonding regions; 

 10 columns of z-pins uniformly distributed along both initiation and pre-existing 

lengths (C1); 

 4 columns of z-pins for each side overlapped on the pre-existing delamination 

lengths (C2); 
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 4 columns of z-pins for each side overlapped behind the pre-existing delamination 

lengths (C3). 

 

Fig. 3.24: Layered configuration with two structural layers and two material discontinuities: UP 

configuration, C1 configuration, C2 - C3 configurations. 

In each configuration, the mesh discretization of the numerical model is based on a uniform 

distribution with an element length of / 0.5 / 200M L  in the laminate, whereas for the 

debonding region a refinement of the mesh, i.e / 0.1/ 200M L  , is utilized. The analyses, 

reported in Fig. 3.25, are presented in terms of load-displacement curves. The results in 

the first loading path, i.e. 0A, are basically coincident, since the main mechanism is the 

one associated to the crack initiation. Subsequently, the solution appears to be quite 

influence by the presence of z-pins. As a matter of fact, when the z-pins are distributed in 

the region, in which the crack initiation occurs, they modify the loading curve from the UP 

configuration without producing increments of the debonding load. The presence of the z-

pins, at this stage, determines a local stress distribution, which is activated as far as the 

nominal crack tip reaches the z-pin position. This is confirmed by the path AB of C1-C2 

configurations, which strongly differ from the UP scheme. However, as far as the z-pins 

are located far from the onset position the differences between UP and P solutions tend to 

be annihilated. All curves present a jump, when the nominal crack tip reaches the internal 

material discontinuity. However, the snap, observed during such transition, is quite 

influenced by the presence of the z-pins, which are able to reduce the loss of strength (BC). 
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At this stage, the nominal crack tip is jumped through the debonding region and, in order 

to produce crack tip advance, a larger applied displacement is required. This is confirmed 

by the presence of a linear branch in the loading curve, i.e. path CD. At point D, the motion 

of the nominal crack tip is activated and a decreasing behaviour is observed in the loading 

curve, whose characteristics depend from the number of z-pins not completely broken. The 

coincidence of C1-C2 in the loading curve, at large applied displacements, proves such 

remark. Finally, when the z-pins are located far from the crack onset position, the effects 

of the interlaminar reinforcement is observed only when the crack tip reaches the z-pin 

region and thus the loading curves are coincident before it happens.  

 

Fig. 3.25: Comparisons of the different pinned configurations in terms of loading curve (F/GIC B-U2/L)   with 

the UP solution [101]. 

Previous results are extended in dynamics, introducing a time dependent law for the 

applied displacement. In particular, an applied velocity with ramp curve and constant speed 

(v0) at the time t0, assumed to be proportional to the first period of vibration of the structure 

( 4

0 10.5 5.95 10  [s]t T   ), are supposed. The analyses, developed in dynamics, reported 

in Fig. 3.26, denote a different evolution in the case of P and UP configurations with 

notable influence of the loading rates, especially in presence of a pre-existing debonding 

length. As a matter of fact, in the case of UP interface, static and dynamic solutions are 

quite similar, except in the evolving phase, in which the debonding length reaches the pre-
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existing material discontinuity (Fig. 3.26). The presence of the z-pins modifies loading 

curves observed in the static case, since the curves present larger strength values and an 

oscillatory behaviour is produced by the interaction between debonding phenomena and z-

pin failure. Finally, in Fig. 3.27 the time histories of the crack tip speeds are reported as a 

function of the loading rate for all configurations. The results show that at crack initiation, 

the measured speeds tend to increase very rapidly reaching a constant value, whose entity 

strictly depends from the applied loading rate. However, when coalescence is produced, 

the debonding mechanisms jump from one extremity to the other one of the debonded 

region, leading to amplifications in the measured crack tip speed. However, in presence of 

z-pins, the crack tip evolution denotes an oscillatory evolution, in which the traction forces 

constrain the debonding mechanisms enforcing crack arrest phenomena. 

 

Fig. 3.26: Influence of the inertial effects (v0=10 [m/s]): comparisons of the different pinned configurations 

in terms of loading curve (F/GIC B-U2/L) with the UP solution [101]. 
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Fig. 3.27: Comparisons in terms of nominal crack tip speed: UP configuration [101] (a), C1 configuration 

(b), C2 configuration (c) and C3 configuration (d). 
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 Sandwich structures  

Equation Chapter 4 Section 1 

In this Chapter sandwich structure failure modes are investigated. From physical and 

mathematical viewpoints, two main issues are demanding a detailed understanding of the 

mechanical behaviour of sandwich panels: the propagation of internal macro-cracks in 

the core and the delamination at skin/core interfaces. In section 4.1, in order to described 

skin/core decohesion, previous numerical strategy, already used in the framework of 

composite laminates, was generalized simply by modifying the relative displacement 

between skin (shear deformable beam) and core (2D plane stress formulation). Then, To 

concern the evolution of defects inside the core a new numerical methodology based on 

moving mesh methodology will be proposed in in Section 4.2. Finally, in Section 4.3 will 

be described the experimental test performed to detect the fracture parameters of a typical 

semi-rigid PVC foam used like core in the sandwich panels (Divinycell H100, H130, 

H200).    

Part of analyses and results presented and discussed in this chapter were already 

published by the following papers: 

 Funari, M.F., Greco, F., Lonetti, P., Sandwich panels under interfacial debonding 

mechanisms, Composite Structures, 2018, 203, 310-320. 

 Funari, M.F., Greco, F., Lonetti, P., A coupled ALE-Cohesive formulation for 

interfacial debonding propagation in sandwich structures, Structural Integrity 

Procedia, 2018, 9, 92-100. 

 Funari, M.F., Greco, F., Lonetti, P., Spadea, S., A numerical model based on ALE 

formulation to predict crack propagation in sandwich structures, Fracture and 

Structural Integrity, 2018, Accepted for publication. 

 Funari, M.F., Lonetti, P., Spadea, S., A crack growth strategy based on moving 

mesh method and fracture mechanics, Theoretical and Applied Fracture 

Mechanics, 2018, Submitted. 
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4.1 Generalization of the ALE interface model to describe skin core debonding 

The numerical model developed in  Chapter 2   and Chapter 3   is here generalized with 

the propose to describe delamination phenomena along the skin/core interfaces in the 

framework of a two-dimensional idealization of a sandwich structure. The numerical 

model consists of an internal core, modelled by means of a plane stress formulation, and 

two external skins, following a Timoshenko beam kinematic. The formulation is able to 

predict crack growth of material discontinuities, which may affect the skin/core interfaces 

and the core. This is achieved by the use of interface elements based on moving mesh 

technique, which ensures an accurate description of the fracture variables and the 

application of cohesive interlaminar stresses in the process zone. Without loss of generality 

and for the sake of clarity, a sandwich structure is analysed, in which fracture phenomena 

affect the upper skin/core interface only, producing two debonding lengths departing from 

right (R) or left (L) directions. A schematic representation of the model is reported in Fig. 

4.1. 

 

Fig. 4.1: Synoptic representation of the sandwich structure. 

Moving interface elements between core and skins are introduced to simulate onset and 

evolution of debonding phenomena. In particular, the crack growth is expressed as a 

function of two coordinate systems, i.e. referential and moving, which parametrize the 

motion of the process zone from onset to crack advance (Fig. 4.1). Without going into too 

much details, the ALE interface formulation shows the same equations reported in the 

previous Chapters, which are not repeated here. As shows Fig. 4.2 and Fig. 4.3, ALE 

interface elements are incorporated in the sandwich structure at the lines in which 

debonding phenomena may occur. 
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Fig. 4.2: Moving and referential coordinate systems in the ALE description. 

 

Fig. 4.3: Moving mesh interface elements, process zone and crack onset. 

However, at first, the interfaces are assumed to be perfectly bonded to both upper and 

lower skin/core lines and thus moving coordinates match with the referential or material 

ones. In this framework, dynamic equations of motion can be expressed by introducing 

equilibrium conditions along the horizontal and vertical directions and flexural rotation 

(counterclockwise) as follows: 
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   

   
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where, as shown in Fig. 4.3, the superscript k with k=S1,S2, here and in the following, refers 

to the lower (S1) or upper skins (S2),  /,X X Y  are the domain of the X or the boundary 

between X and Y (with X,Y=S1, S2, C, ALE1, ALE2),  0 ,I   are the per unit length inertial 

rotation and mass of the skin,  *,EI GA are the flexural and shear stiffnesses,  , ,x yp p m

are the axial, vertical and flexural external loads applied to the skins, the notation 

 
 d X

X
dt

 indicates the time derivative of the function X, Eij with  i,j=1,2,3 is the 2D 

plane stress elastic matrix, U with T C CU U V     is the vector containing the horizontal 

and vertical displacements of the core, f  is the per unit volume vector force. Moreover, 

the interlaminar stresses are defined on the basis of moving mesh coordinates and 

interlaminar relative displacements as follows: 
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,   (4.5) 

where ST and CT  are the thickness of the skin and core, respectively. Previous equations, 

i.e. Eq.(4.1), should be considered in those cases, in which the interfaces are not affected 

by debonding phenomena. However, once crack initiation condition is satisfied, at the 

position 
TX X  debonding phenomena should be simulated from the right and left 

directions. In particular, two different positions are introduced, which identify fictitious 

crack tips for the right and left debonding lengths, i.e.   ,L R

T TX X X . Such quantities 

differ from the internal length 2 ,  which refers to the initial defect predicted by the crack 
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growth criterion and from the numerical point of view, it is taken to be very small in the 

numerical model to simulate the presence of an initial defect. For more details, the 

influence of such parameter was investigated in [53]. Therefore, the governing equations 

are expressed as follows: 
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2S   (4.6) 

where the superscript k is k=S2,  ,R LX X  are the effective moving coordinates for the left 

(L) and right (R) directions measured on the material domain. Moreover, the governing 

equations of the core, i.e. field and initial conditions, refer to a classical 2D plane stress 

modelling, which, for the sake of brevity, is not reported in detail. However, boundary 

conditions concerning the interface regions between core and skins are defined by the 

following expressions: 

     

     

33 , ,

12 , 22 ,

R L

Y X X X

R L

X Y Y Y

E U V F X F X

E U E V F X F X

  

  
 on 

2 /C S     (4.7) 

It is worth noting that interface traction forces are expressed in terms of the moving 

coordinate systems, i.e.  ,R LX X , for the right and left debonding phenomena, leaving 

unaltered, with respect to the standard material formulation, the governing equations of the 

structural elements [102].  

4.1.1 Results 

In this section, the proposed model is verified by means of comparisons with numerical 

and experimental data. The first step is developed with the purpose to analyse the 

consistency of the proposed formulation under mode I and mode II loading conditions. In 

particular, according to standard experimental methods, the static behaviour of interfacial 

cracks for several sandwich debonding configurations is investigated. The main aim of the 

comparisons is to validate the proposed model and to examine its ability to describe 

debonding failure mechanisms in sandwich configurations. The structural behaviour is 

investigated in both static and dynamic frameworks to identify the influence of inertial 

effects on the crack growth phenomena, produced by different levels of the loading rate. 
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4.1.1.1 Mode I DCB loading scheme 

At first, analyses are developed with reference to a classical DCB loading involving a pure 

mode I fracture analysis. The loading, boundary conditions and geometry of the specimen 

are illustrated in Fig. 4.4, whereas, according to data recovered in [103, 104], mechanical 

properties assumed for the laminate, core and interfaces as well as the ones required by the 

cohesive elements, are summarized in Tab. 4.1. The crack evolves in the interface region 

between core and face sheet (namely at 
2 /CS ). In particular, a pre-existing delaminated 

length is assumed in the upper interface, whereas the lower interface is considered as 

perfectly bonded. The numerical model is discretized by means of shear deformable beam 

elements with cubic interpolation functions for each face sheet, whereas the core is 

modelled by quadratic interpolation functions with linear elastic material behaviour. 

Moreover, ALE elements with linear interpolation functions are introduced between each 

sheet-core interfaces to predict crack onset or debonding advance. The analysis is 

developed under a displacement control mode to ensure a stable crack propagation. 

Cohesive constitutive relationships are based on exponential laws, with smooth decay 

branches according to [105].  The numerical discretization utilized for the face sheet is 

assumed to be generally uniform with a length equal to / 1/ 30M L  , with M  the 

element length. The core has been discretized by means plane stress quadrilateral elements 

with maximum element length equal to / 1/ 30M L  . At the interfaces a coarse 

discretization is adopted, except at the process zone ( ,R L ) where a mesh enrichment is 

considered, i.e. / 1/ 300M L  . 

 
Fig. 4.4: Loading schemes and geometrical configuration for mode I analysis. Definition of the internal 

debonding geometry. 
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Face - sheet 

aluminium 

 1 GPasE   12 GPasG  s  
-1kg ms     - - 

70 26 0.33 2700 - - 

Core - PMI 

AIRES R 

90.400 

 1 GPasE   12 GPasG  s  
-1kg ms     - - 

0.42 0.22 0.25 400 - - 

Geometrica

l properties 

 mmL   mmB   mma   mma   mmsT   mmcT  

152.4 25.4 50.8 27.1 2.2 15 

Interface 

properties 

1N mmCG      0 mm      

0.550 0.12     

Tab. 4.1: Geometrical, mechanical and interface properties. 

 In Fig. 4.5, comparisons in terms of loading curves as a function of opening end 

displacements, for two different core thickness configurations, i.e. Tc=15,20 mm, are 

reported. The results show that the proposed approach is able to reproduce correctly the 

behaviour of the structure, since the loading curves are quite in agreement with 

experimental [104] and analytical data available in [103].  

 
Fig. 4.5: Mode I analysis, normalized loading vs opening displacement: comparisons with numerical [103] 

and experimental [104] data in terms of normalized loading curve and opening displacement. 
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The results show that an increment in the core thickness does not produce improvements 

in the loading curves, which are basically coincident in terms of stiffness, displacements 

except for a small variation of the peak load. Previous analyses developed essentially in 

statics are extended in a dynamic framework. The main aim is to investigate the influence 

of the loading rate on both resistance curve and crack tip speed evolution. In addition, the 

effect of an internal pre-existing delamination region is also considered to verify the 

dynamic amplifications produced during the crack growth and their interaction with an 

external debonding length. The structure is subjected to an applied speed with a ramp curve 

until the time (t0), which is assumed proportional to the first period of vibration of the 

structure (t0=0.5T1); subsequently a fixed velocity is prescribed to the end displacement 

(v0). In Fig. 4.6, comparisons in terms of resistance curve between static and dynamic 

results are developed, obtained by means several prescribed opening speeds with refers to 

low or high ranges. Moreover, the following configurations are considered in the analyses: 

 external debonding length only with b=0 (C1);  

 internal and external discontinuities with different geometric lengths, i.e. b/a=0.2 

(C2) or b/a=0.5 (C3).  

 

Fig. 4.6: Mode I analysis, normalized loading vs opening displacement: effect of the loading rate on the 

resistance curve: comparisons between static and dynamic loading curves. 
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The results show that under static loading the presence of an internal debonding length 

modifies load-displacement curves, increasing system instability during the crack growth 

and leading large oscillations with respect to the static case. The presence of an internal 

debonding, at low speeds, does not modify the evolution curve, which, apart little 

oscillations in the unstable path, is quite coincident with the C1 configuration. However, at 

large speeds, the dynamic effects modify the crack growth behaviour, since C1 and C2 

denote notable oscillations, which tend to be reduced, for increasing values of the opening 

displacements, leading to same predictions of the static solution.  

In Fig. 4.7, the influence of an internal discontinuity on the dynamic behaviour of 

debonding phenomena is discussed. In particular, for a fixed loading rate, comparisons in 

terms of loading curve are proposed for the C1, C2 and C3 configurations. The results show 

how the presence of an internal discontinuity modifies the equilibrium path, introducing a 

marked span-back phenomenon in the loading curve. However, once the crack tip 

overcomes the internal debonding length, the curves for the configurations with internal 

debonding lengths, i.e. C2 and C3, tend to the same prediction. 

 

Fig. 4.7: Mode I analysis, normalized loading vs opening displacement: Effect of the internal debonding 

length: comparisons between static and dynamic loading curves. 

.  
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Fig. 4.8: Mode I analyses: crack tip speed vs crack displacement as a function of the loading rate and the 

internal debonding length for C1 and C2 configurations. 

 

Fig. 4.9: Mode I analyses: crack tip speed vs crack displacement as a function of the loading rate and the 

internal debonding length for C1 and C2 configurations. 

Additional results are presented Fig. 4.8 and Fig. 4.9, in which the relationship between 

speed and position of the crack tip is investigated. The analyses show that during the crack 

onset, the tip is affected by large accelerations, which tend to be reduced as far as the crack 
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tip speed grows. However, at low loading rates, after a maximum value is reached, the 

crack tends to a steady state advance, since a constant speed is observed. In presence of an 

internal debonding region, the crack is affected by an oscillating behaviour and, especially 

at low loading rates, crack arrest phenomena are observed. This phenomenon is mainly 

produced by the presence of the internal debonded region, which produces a local 

distribution of contact forces with respect to the case of perfectly debonded region. Large 

amplifications in the crack tip speeds are observed, especially, during the transition regions 

from the adhesive to the delaminated length 

4.1.1.2 Mode II CSB loading scheme 

The analyses are extended to a loading scheme involving a mode II loading condition. 

Comparisons with numerical data are reported for a sandwich configuration based on a 

three-point bending loading scheme. As shown in Fig. 4.10, the initial crack is located in 

the upper interface between the face-sheet and the core, whereas geometrical and 

mechanical characteristics are reported in Tab. 4.2  The numerical discretization utilized 

for the face sheet is assumed to be generally uniform with a length equal to / 1/ 55M L 

. The core has been discretized by means plane stress quadrilateral elements with maximum 

element length equal to / 1/ 55M L  . At the interfaces a coarse discretization is adopted, 

except at the process zone ( ,R L ) where a mesh enrichment is considered, i.e. 

/ 1/ 550M L  . The following configurations are considered in the analyses: 

 external debonding length, i.e. b=0, (C1);  

 internal and external discontinuities with b/a=0.5 (C2).  

 

Fig. 4.10: Loading schemes and geometrical configuration for Mode II analysis. Definition of the internal 

debonding geometry. 
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Face - 

CFRP 

 11 GPasE   22 GPasE   12 GPasG  s  
-1kg ms     - 

135 9.75 9.75 0.28 1800 - 

Core - PMI 

RHOACE

LL 71RIST 

 1 GPasE   12 GPasG  s  
-1kg ms     - - 

0.105 0.042 0.25 75 - - 

Geometric

al 

properties 

 mmL   mmB   mma   mma   mmsT   mmcT  

550 250 100 25 2.25 25.7 

Interface 

properties 

1N mm  CG      0 mm      

0.385 0.20     

Tab. 4.2: Geometrical, mechanical and interface properties.. 

Comparisons in terms of applied loads as a function of mid-span vertical displacement for 

two different pre-existing crack length configurations are reported. In both cases, results 

obtained by the proposed model are in agreement with the ones obtained by analytical 

approach based on pure cohesive model [103](Fig. 4.11). Moreover, in Fig. 4.12, 

comparisons are developed to verify the consistency of the solution with respect to the 

local distribution of interfacial stresses. Despite numerical data reported in the literature, 

the proposed model is able to reproduce the crack growth also for more extended tip 

displacements. The results point out in the load-displacement curves the presence of a knee 

once the position of the crack tip overcomes the one of the applied loads. The accuracy of 

the solutions is guaranteed also locally in terms of stress distribution. Good agreement with 

the values obtained by using a pure cohesive modelling, in which an accurate description 

in terms of mesh element length is required along all the interface regions is found. 

Contrarily in the proposed model, based on ALE approach, the mesh refinement is 

introduced along the process zone only, leading to a reduction of the computational costs 

involved in the analysis. 
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Fig. 4.11: Mode II analysis, normalized loading vs opening displacement: comparisons with numerical  

[103] in terms of normalized loading curve and opening displacement.  

 

Fig. 4.12: Mode II analysis: comparisons with numerical data arising from [103] in terms of traction forces 

for lower and upper interfaces. 
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Previous results developed essentially in statics are extended in a dynamic framework, in 

which applied speeds based on a ramp curve with different loading rates are considered. 

Resistance curves are reported in Fig. 4.13 and Fig. 4.14, which refer to configurations 

with or without an internal debonding length, i.e. C1 and C2, respectively. The results show 

that, at high loading rates, large oscillations and amplifications with respect to the static 

solution are observed. Similarly, to results obtained under pure mode I loading scheme, 

Mode II configuration is also affected by the presence of an internal discontinuity, since 

an instable behaviour in the loading curve with small oscillations is observed with respect 

to the static equilibrium path. The stress distributions for two different structural scenarios 

related to C1 and C2 configurations are reported in Fig. 4.15. The results show that, in 

presence of an internal debonding length, the traction forces present a discontinuous 

behaviour at the extremity points, leading to singular values of the interfacial stresses. In 

Fig. 4.16, comparisons in terms of crack tip speeds, denote how the presence of an internal 

discontinuity produces an amplifications of the tip speed also for low loading rates, leading 

to jumps of crack speeds once the tip reaches the debonded length. Moreover, as far as the 

crack tip overcomes the delaminate length; the crack tip speed oscillates leading to crack 

arrest phenomena during the crack evolution.  

 

Fig. 4.13: Mode II analysis, normalized loading vs opening displacement: comparisons between static and 

dynamic loading curves for C1 configuration. 
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Fig. 4.14: Mode II analysis, normalized loading vs opening displacement: comparisons between static and 

dynamic loading curves for C2 configuration. 

 

Fig. 4.15: Mode II analysis: comparisons in terms of traction forces for different position of the debonding 

front 
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Fig. 4.16: Mode II analysis: comparisons in terms of the crack tip speed for different internal debonding 

lengths. 

4.2 Model based on ALE to describe crack propagation 2D solids 

The evolution of pre-existing cracks in the core is simulated by the generalization of the 

formulation developed in previous subsection to a two-dimensional domain. Two 

configurations are introduced to describe the mesh motion defined as referential or material 

ones. The latter is modified by the geometry variations produced by the crack advance, 

whereas the former is basically fixed or at least re-meshed in those cases in which large 

distortions occur. 

4.2.1 Theoretical formulation of the model  

The proposed approach is presented for a 2D continuum model, based on plane-stress or 

plane strain assumptions, in which an initial material discontinuity is assumed in the 

material. As shown in Fig. 4.17, the governing equations of the structural model are defined 

by a classical formulation related to a 2D problem, with essential and natural boundary 

conditions on
u u pS S S   , as follows: 

  0div E u f    in V cu u  (Sc),  E u n p   (Sp)   (4.8) 
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where, V ,
pS , cS and h  with 

p cV S S h   are the volume, load and displacement 

boundary surfaces, loading and thickness  of the structure,  Tu u v  is the displacement 

vector function, E  with TE E is the elastic matrix defined differently for plane 

strain/stress, f is the per unit volume force vector, cu is the prescribed vector function and 

p is the per unit surface force vector. Eq.s (4.8) are completed by the crack growth 

conditions, which will be introduced, subsequently, in terms of Fracture Mechanics 

variables.  

 

Fig. 4.17: Schematic representation of a 2D problem including a macro-discontinuity. 

It is worth noting that in this context the evolution of an initial material discontinuity is 

simulated by the use of ALE approach, which is introduced to take into account of a 

geometry variation of the structural boundaries. As a consequence, previous equations 

should be reformulated in terms of moving coordinates, introducing proper relationships 

between initial and current geometrical configurations.   Consistently to ALE formulation, 

two coordinate systems are introduced, known as Referential (R) and Moving (M) ones 

(Fig. 4.18), which identify, for each mesh point, the mapping between the current and fixed 

nodes: 

 M RX X      1

R MX X       (4.9) 
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where : R MC C   with T

X Y
         is assumed to be invertible with continuous 

inverse. In order to take into account of geometry variation produced by the crack 

propagation phenomena, Jacobian matrix of the ALE mapping is required, by which 

gradient operators can be expressed by means of the following relationships: 

   1

M RJ           M Mdiv J     with  

X Y

R R

X Y

R R

X X
J

X Y

  
  
 
  
   

  (4.10) 

Therefore, the governing equations of the structural problem are defined by substituting 

Eq.(4.10) into Eq.(4.8), as follows: 

       0 in VM M R Mdiv E X u X J f X       in V     

 (4.11) 

 M cu X u , (Sc),      RE u X J n p    ,(Sp)        (4.12) 

Eq.s(4.11)-(4.12) evaluate the elasto-static problem and are completed by the relationships 

to identify the crack propagation. 

In particular, introducing the fracture function fF defined on the basis of material 

characteristics, the crack growth displacement at the generic point of the tip contour, can 

be obtained by means of the following incremental relationships: 

0     0     0     on    


   


F
F F F F F F F

f
f , , f , S

G
     (4.13) 

where SF is the fracture domain shown in Fig.1, 
F is the fracture multiplier, F

 is the 

incremental crack tip displacement vector along normal direction, G is the energy release 

rate associated to the crack area extension.  

In order to describe the shape variation produced by the cracked surface, specific boundary 

conditions and field equations are required. Introducing the nodal mesh displacement 

vector function, defined as M RX X X   , boundary conditions should be introduced 

along the crack tip contour to enforce normal crack tip displacements according to 

Eq.(4.13), as follows: 

   FX n   on  SF        (4.14) 
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where n  is the normal vector at generic point of the cracked surface and   is the 

incremental displacement obtained by solving Eq.(4.13). 

 

Fig. 4.18: Referential and Moving coordinate systems for a 2D problem 

In addition, rezoning equations as well proper boundary conditions are required to 

redistribute the material points adjoining the cracked surface. Without loss of generality, a 

Laplace regularization technique is utilized to reduce mesh element distortion. Moreover, 

additional boundary conditions are required on the external contour to constraint the 

displacements of the mesh points. As a consequence, the governing equations of the ALE 

problem are defined by means of the following expressions:   

2 20     0X Y       in   V       (4.15) 

0,           UX on S           (4.16) 

where 
2 is square nabla operator and MS  is with =      M U F M FS S S with S S  is the 

external contour of the structural system.  
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4.2.2 Numerical implementation of the model 

Previous equations are implemented, numerically, by using a finite element formulation 

based on Galerkin approximation method. At first, the following sets of kinematic and 

weighing functions are defined as follows:  

    1 ,   M cU u u H V u X u on V              (4.17) 

      1 , 0  u u u u MW w w H w w X on V             (4.18) 

where 
1H  denote the Sobolev space, uw  is the weighting function vector related to 

displacement fields. Starting from Eq.(4.11)-(4.12) and introducing Eq.(4.10), the 

following expression represents the weak form for the structural problem: 

     

   

 : :  

0

R

R R

R u R M R

V

M u M u A

V S

W X J E X u X J JdV

f X W JdV p X W J dA

         

  



 

     (4.19) 

where RV  or RS  are the volume or the boundary surface of the structural system in the 

referential configuration, J or AJ  are the jacobians related to the volume or area, 

respectively. Similarly, for the moving mesh equations, the corresponding weak form is 

derived starting from Eq.(4.14)-(4.16), the following sets are introduced to describe mesh 

displacements and weight functions: 

  1 ,   M M M M R MX X X H S X X on S             (4.20) 

    1 , 0  X X M X MW w w H S w on S              (4.21) 

Constraint conditions are introduced to prescribe crack tip displacements, defined 

according to Eq.(4.13). In particular, implicit boundary conditions at the crack tip front, 

are simulated by means of Lagrange Multiplier Method (LMM) enforcing Energy Release 

Rate (ERR), extension and angle orientation to verify Eq.s (4.13). The fracture function is 

consistent to a Griffith’s local law of propagation. Moreover, the crack direction may be 

predicted in terms of existing criteria available from the literature based on local fields at 

crack tip such as maximum circumferential stress [106] or [107] or global energy variables 
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such as maximum strain energy density [108]. Crack tip displacements are predicted by 

the ALE approach by solving Eq.(4.15) with explicit and implicit boundary conditions 

defined by Eq.(4.16) and Eq.s (4.13)-(4.14),respectively. In particular, the following weak 

form is determined: 

 : 0

R F FV S S

W dV Xn W dA W n dA               (4.22) 

where is the LMM vector and W is the corresponding weak function. Eq.(4.19) and 

Eq.(4.22) are solved by using Galerkin’s approximation, by using a proper discretization 

of the geometric domain into Ne elements and the use of isoparametric elements defined 

by the following set of structural and ALE variables: 

1 1 1

,      ,    
e e eN N N

I I M MI MI I I

I I I

u N U X N X N
  

           (4.23) 

where eN represents the number of elements utilized and  , ,MN N N are the matrix 

interpolation functions and  , ,M IU X  are the nodal vector functions. Introducing 

Eq.(4.23) into Eq.(4.19) and Eq.(4.22), the following discrete equations are derived: 

1,       0,      0M I MKU F AX R RX C           (4.24) 

where K , U , F  are the global stiffness matrix, displacement and load vector,  ,A R  are 

the ALE matrix and vector respectively. Moreover, 1C  represents the vector containing the 

positions of the crack tip front obtained by solving Eq.(4.13). Explicit expressions of the 

ALE and structural problems are reported in Appendix A.  

4.2.3 Computational procedure and implementation algorithm 

In this section, computational procedure and implementation steps, involved in the 

advancing crack scheme, are presented. In order to facilitate the readability of the paper, 

some practical and general assumptions regarding the choice of the fracture function and 

crack propagation angle criterion have been made. The crack growth conditions are 

enforced by using a remapping mesh algorithm, which takes into account of geometry 

variation on the basis of Eq.(4.13). With reference to Fig. 4.19, in which a straight crack 

path is considered, the fracture function is based on local-Griffith approach criterion 
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expressed as a function of the ERR and critical values. ERR is evaluated by using J-integral 

based approach with respect to a path surrounding the crack tip and a coordinate system 

aligned with respect to the direction of propagation    : 

u
J Wn n dA 




 
  

 
         (4.25) 

where  is the contour enclosing the crack tip, W is per unit volume strain energy, n  is the 

normal to contour  , n is the component of the normal vector along the crack propagation 

direction. Without loss of generality, the crack propagation angle is defined on the basis of 

Maximum Energy release rate criterion expressed in terms of as J-integral components as 

follows: 

2

1

arctan
J

J


 
  

 
         (4.26) 

where J2 and J1 are the components of the J integral along normal (e1) and tangential (e2) 

directions, i.e. 2 2J J e  and 1 1J J e  . With reference to Fig. 4.19, a suitable procedure 

to predict kinking angle and crack advance is performed, which is based on the crack angle 

criterion tolerance.  

 

Fig. 4.19: Schematic representation of the proposed algorithm: (a) crack onset condition satisfied, 

evaluation of  ; (b) crack propagation in  direction until the angle variation predicted is lower than tollQ; 

(c) tolerance condition is satisfied, new definition of the computational nodes (P3 and P4). 

In particular, it is supposed that at the crack tip front, a surrounding region is introduced 

to predict fracture variables by using J-integral expression defined in Fig.(4.25). In such 

region a large number of mesh points are introduced, which are moved rigidly to achieve 

an accurate evaluation of the fracture variables.  The current solution is obtained by solving 
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at the current iteration step, Eq.(4.25)-(4.26) and by prescribing the movements of the 

surrounding crack region by means of the following relationships: 

   cos ,        sin ,T F T FX Y             (4.27) 

where   is the angle of propagation predicted at the current step and T is the incremental 

scalar quantity related to the crack advance. Moreover, additional constraint conditions are 

required to do not change the shape of pre-existing crack, whose positions are basically 

governed by displacements values obtained by solving the structural problem. This task is 

achieved by introducing two nodes close to the region adjoining the crack tip, which are 

stretched as far as the angle variation predicted by Eq.(4.26) is lower than a fixed tolerance 

value ( toll ). Once tolerance condition is satisfied a new definition of the computational 

nodes is required, which are driven, eventually, by the new value of crack propagation 

angle. It is worth noting that during the crack growth, mesh movements of the 

computational nodes produce mesh distortions, which require the use of a remeshing 

algorithm to reconstruct a new regular mesh discretization, transferring the nodal variables 

from the distorted to the new computational points. This procedure is recalled by means of 

a mesh quality parameter, which control the allowable distortion in each element. 

However, consistently to the ALE formulation, the use of rezoning or regularization 

methods strongly reduces the use of remeshing algorithm. Previous steps are implemented 

by using an external subroutine that interacts with a COMSOL MULTIPHYSICS FE 

software [109]. In particular, the algorithm was developed by means of proper customized 

script files, which manage the parameters and the results required by the iterative 

procedure. The computational procedure is presented, synoptically, in Fig. 4.20, and in 

Tab. 4.3 the steps involved in the user-subroutine are reported.  
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Fig. 4.20: Schematic representation of the algorithm for crack propagation in 2D solids. 
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START 

0. Read the input data: geometry, material, mesh discretization and load configuration. 

1. Loop for each load increment 

1.1 Determine the external force vector, stiffness, mass and ALE  matrixes (Eq.(4.24)); 

1.2 Evaluate fracture variables (Eq.(4.13), Eq.(4.25)) 

1.2 Check crack growth conditions as well as fracture variable (Eq.(4.13), Eq.(4.25)) 

1.3 Loop to predict crack tip displacements if 1.2 is satisfied; 

1.3.1 Solve incremental Structural and ALE problem; 

1.3.2 Identify crack tip displacement and crack tip angle; 

1.3.3 Solve incremental problem to predict crack tip position 

1.3.4 Check tolerance conditions for the angle variation or mesh quality; 

1.3.5 If angle variation or mesh quality tolerances are satisfied 

1.3.5.1 Perform point node refinement at crack tip and modify the current mesh on the predicted 

moving geometry 

ELSE 

Continue 

     End Loop 1.3 

 End Loop 1. 

 END 

Tab. 4.3: Incremental-iterative procedure of the proposed algorithm. 

4.2.4 Results and validation 

In this section, the proposed algorithm is verified by means of a number of case study that 

are compared to numerical and experimental results available from literature. The first 

step, in the validation scheme, involves a single edge cracked cantilever plate subject to 

either mode I or mixed-mode loading. Finally, a polymethyl methacrylate (PMMA) 

continuum with different initial defects is investigated under a three-point bending loading 

scheme. 

4.2.4.1 Single edge cracked cantilever plate 

The first case study is aimed at verifying the computational performance of the proposed 

model. In this view, two rectangular plates fixed at the bottom edge, with an initial crack 
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located at the plate mid-length, and alternatively subject to in-plane crack opening or shear 

unit loading at the upper edge, are taken into consideration. The loading, boundary 

conditions and geometry considered are illustrated in  Fig. 4.21a-b whereas dimensionless 

mechanical properties are taken as elastic modulus E = 3 107 and Poisson’s ratio ν = 0.3, 

all in accordance with the data provided in [110].  

 

Fig. 4.21: Geometrical, loading and mesh configuration: (a) Model A involving in pure mode I; (b) Model 

B involving in Mixed Mode. 

The loading scheme involve a pure Mode I crack propagation with a very low value of the 

ERR mode component ratio (Fig. 4.21a) or a mixed Mode I/Mode II crack propagation 

with prevalent mode I fracture component (Fig. 4.21b). Mode partition is verified by the 
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results reported in Fig. 4.22, in which the ERR ratio, for both loading case, is expressed as 

a function of normalized crack length and synoptically in term of the maps of contour of 

the maximum principal stress. In both cases, the prediction of the crack tip variables is 

guaranteed by using J-integral concept on a region close to the crack tip front, in which a 

uniform mesh is utilized. In the remaining region, a coarse mesh is utilized to achieve the 

required accuracy in the prediction of the field variables.  

 

Fig. 4.22: Influence of the loading condition in the  J2/J1-X, comparisons between loading scheme A and B. 

In order to verify the prediction of the proposed model, in Fig. 4.23 , comparisons in terms 

of Mode I Stress Intensity Factor (SIF) ( 1K ) as a function of the crack length extension are 

reported for the case shown in Fig. 5a. The mesh discretization length at the crack tip region 

is equal to / 1/ 4D R  , whereas in the remaining region a coarse mesh with a total 

number of elements equal to 1047 s utilized. In the case of pure mode I, the mesh 

discretization does not influence the prediction of the fracture variables [46] and thus a 

coarse mesh is utilized. As expected, the crack growth proceeds along a straight path, with 

a zero propagation angle, because of the pure Mode I loading condition. The value of 1K , 

obtained by the proposed model, seems to be in good agreement with the data arising from 

[111], producing a low relative error between the curves, as shown also by means of 

Person’s coefficient of correlation, whose maximum value is equal to 0.998 .  
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The second example is referred to the loading scheme reported in Fig. 4.21b, in which due 

to the mode mix crack growth the propagation angle is not zero. Fig. 4.22 shows that in 

this case a higher value of the 2 1/J J  ratio results in a mixed mode crack propagation. The 

initial mesh configuration used for the analyses is generally coarse in the region externally 

located to the crack tip region. As shown in Fig. 4.21b the tip region  FS is discretized 

by means triangular plane stress elements with length equal to / 1/ 4D R  ,  whereas in 

the remaining part of the structure a transition mesh with maximum length equal to 

/ 20 /1D R  , involving in total 12506 DOFs. 

 

Fig. 4.23: Loading scheme: mode I  SIF in terms of the crack propagation length, comparisons with 

numerical data arising from [111]. In the legend is reported the Pearson’s correlation coefficient (R=0.998). 

In  Fig. 4.24 the crack tip coordinates predicted by means of the proposed model are 

compared with the ones obtained using a numerical strategy based on a meshless 

formulation [110]. In the proposed model, a crack tolerance angle equal to 1    is 

assumed, to predict the crack direction. The two models are in good agreement within each 

other’s. The accuracy of the solution is also confirmed by the low value of the relative 

error and by the Pearson’s coefficient of correlation, which is very close to the unity. 
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Fig. 4.24: Loading scheme: crack tip coordinates Y-X, comparison  with numerical data arising from [110]. 

In the legend is reported the Pearson’s correlation coefficient (R=0.999). 

In Fig. 4.25 , a synoptic representation of the mesh motion during the crack propagation is 

reported. In particular, the evolution of the mesh discretization during the crack 

propagation at four different crack propagation steps is reported. It is worth noting that a 

high number of computational points are condensed around the crack tip region to ensure 

a good prediction of the fracture variables. However, a coarse discretization is adopted in 

the remaining parts of the structure during the entire simulation process. For the same four 

crack propagation steps mentioned earlier, the Von Mises stress maps based on the 

proposed model are compared with the ones arising from the meshless approach proposed 

by [110]. The comparisons reported in Fig. 9b-c show a good correlation between the stress 

maps and therefore confirm the accuracy of the proposed model.  
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Fig. 4.25: Synoptic representation of the mesh motion during the crack propagation; (b) Von Mises stress 

maps for  four crack propagation steps arising from[108]; (c) Von Mises stress maps for  four crack 

propagation steps arising from the proposed model. 

As shown in Fig. 4.26, an increase of the parameter toll  produces a loss of accuracy in the 

prediction of the crack tip coordinates. In detail, the relative error between the refined (C1) 

and (C3) configurations is equal to 0% in the initiation phase, while tending to 12%, i.e 

with larger accuracy, at the start of the crack propagation. However, in all the investigated 

cases the analyses do not show divergence or convergence problems, leading prediction of 

the crack path quite reasonable from an engineering point of view. 
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.  

Fig. 4.26: Loading scheme Fig.5b: influence of the algorithm parameter tollQ in the prediction of the crack 

path. The symbols on the graph represent the remeshing events. On each curve the presence of the symbol 

denotes a remeshing event 

In order to quantify the efficiency of the proposed model with respect to the effects 

produced by toll , in Fig. 4.27 a comparison in terms CPU time and number of remeshing  

events is proposed. For all investigated configurations, the same number of mesh elements 

as well as the setup required by the NL solving procedure are assumed.  Three different 

configurations, with a different limit angle tolerance value, are assumed. The configuration 

C1 is based on a small limit value of angle tolerance, i.e.  1toll   , which, although it 

provides an accurate description of the crack path, it makes the use of a large number of 

mesh variations, leading to a notable increase of computational complexities and CPU 

time. In addition, C2, C3 and C4 configurations are based on larger values of limit angle 

tolerance, ranging from 2 to 7.5 degree. These cases provide less accuracy in the prediction 

of the crack growth, but a lower computational time is expected. Moreover, the tests were 

performed on a Xeon processor running on Windows 10 system. The analyses, reported in 

Fig. 4.27, in terms of CPU time, number of remeshing events and angle tolerance, show 

how the computational costs measured in terms of CPU time could be strongly reduced 

with respect to the C1 configuration ensuring good accuracy in the prediction of the crack 

path. This aspect connected with the possibility to perform a smart mesh discretization in 

the process zone and remaining part of the structure can be utilized, as shown in the next 
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subsection, to produce additional benefits to reduce the computational costs of the 

analyses. 

 

Fig. 4.27:  Loading scheme B: comparisons in term CPU time and number of remeshing for the numerical 

simulation performed by using different idealized value of tollQ (C1, C2, C3 and C4). 

4.2.4.2 Three-point-bending in a PMMA beam 

The second case study focuses on a continuum, either provided or not, with multiple holes 

and different initial crack lengths and locations. A PMMA beam is therefore investigated 

under a three-point bending loading scheme, with the aim of testing the numerical 

procedure on a more complex mechanical problem. This case study has been 

experimentally studied by [112] and the results were subsequently analysed by several 

authors within the bounds of different numerical methods, such as XFEM [113], phase 

field method [114] e.g.  
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Fig. 4.28: Geometrical and loading configuration of the PMMA beam: (a) without holes, (b) with holes 

As shown in Fig. 4.28, the considered beam has a clear span of 457.2mm, a width of 

203.2mm and thickness of t = 12.7mm. For the first configuration (P1, Fig. 12a, the initial 

crack a has a length equal to 38.1 mm and it is located at a distance c=127 mm from the 

mid-span of the beam. The second configuration (P2) differs from the first one in terms of 

both initial crack length (a =25.4mm) and initial crack location (c=152.4mm). To concern 

the mechanical properties, they are taken as elastic modulus E=205GPa and Poisson’s ratio 

ν = 0.3.  Both configurations have been additionally analysed considering a set of three 

holes vertically aligned and located at a distance of 152.4 mm  from the mid-span of the 

beam. According to experimental data provided from [112], the loading schemes and the 

elastic properties of the material are shown in Fig. 4.28, whereas a summary of the 

geometrical configurations considered is reported in the Tab. 4.4. Similarly to the previous 

analysed cases, plane stress 6 node elements featuring Lagrange quadratic interpolation 

functions are utilized to discretize the structure. It is worth noting that a refined mesh 

discretization is adopted just in the region adjoining the crack tip front  FS ,whereas in 

the complementary part of the structure a relatively coarse mesh discretization is 

introduced. In particular, the initial mesh presents a number of elements equal to 149 and 

911 for the FS and remaining domains, respectively. Fig. 4.29, Fig. 4.30, Fig. 4.31 and Fig. 

4.32 illustrate the crack trajectory numerically determined by means of the proposed 

algorithm and assuming fixed value for the crack advance and tolerance limit value equal 

to  0.1 mmF  and 2toll
 , respectively.  

In  Fig. 4.29 and Fig. 4.30, the results obtained assuming, respectively, the P1 and P1-holes 

configurations are compared with existing experimental [112] and numerical [113] data. 

In P1-holes configuration, the first hole attracts the crack trajectory due to the vicinity of 
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initial crack. However, the crack is able to bypasses it whilst stopping his run in the middle 

hole.   

In Fig. 4.31 and Fig. 4.32 the results of similar analyses obtained assuming, respectively, 

the P2 and P2-holes configurations are compared with existing experimental [112]  and 

numerical [113] data. As shown, the proposed model is again able to reproduce accurately 

the crack paths.  

Configuration  mmc   mma  

P1 127 38.1 

P1-holes 127 38.1 

P2 152.4 25.4 

P2-holes 152.4 25.4 

Tab. 4.4: PMMA Beam simulated configurations. 

 

Fig. 4.29: P1 configuration: Predicted crack path, comparisons between Experimental [114] and Numerical 

[113] data. 
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Fig. 4.30: P1-holes configuration: Predicted crack path, comparisons between experimental [114] and 

numerical [113] data. 

 
Fig. 4.31: P2 configuration: predicted crack path, comparisons between experimental [114] and numerical 

[113] data. 
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Fig. 4.32: P2-holes configuration: predicted crack path, comparisons between experimental [114] and 

numerical [113] data. 

With particular reference to the simulation performed on the P2-holes configuration, the 

crack path propagates directly towards the second hole, ending its run in this location. It is 

worth noting that P1-holes configuration is affected by larger computational complexities 

than the case by P2-holes configuration, since it presents a considerable increase in the 

shear stress intensity factor 2K  around the holes and a more complex crack pattern. 

Finally, in order to verify the influence of the initial mesh discretization on the accuracy 

of the solution, a parametric analysis is performed. To this end, comparisons expressed in 

terms of crack paths and ERR mixed mode ratio 2 1/J J  as a function of the crack length 

occurred are computed by assuming three different mesh sizes. It is worth noting that the 

numeric model presents different mesh discretizations of the geometry with lower 

characteristic length in the crack tip region and a larger one with transition mesh in the 

remaining part. The relative discretization in terms of total and relative number of DOF 

involved in both region is discussed. The investigation is performed on the P2 

configuration with respect to the following mesh discretizations  
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 enrichment at the crack tip region  FS with element mesh length equal to 

/ 1/ 3M R  and transition mesh in the remaining part of the structure with 

maximum length equal to / 40 /1M R  , involving in total 6342 DOFs (M1);  

 enrichment at the crack tip region  FS  with element mesh length equal to 

/ 1/ 5M R  and transition mesh in the remaining part of the structure with 

maximum length equal to / 20 /1M R  , involving in total 12548 DOFs (M2);  

 enrichment at the crack tip region  FS  with element mesh length equal to 

/ 1/ 8M R  and transition mesh in the remaining part of the structure with 

maximum length equal to / 7 /1M R  , involving in total 26746 DOFs (M3);  

 

Fig. 4.33: Mesh discretization detail around the crack tip for M1, M2 and M3 configurations. 

It is worth noting that M1 discretization is based on a low number of mesh elements, since 

mesh enrichment is introduced only in the region adjoining the crack tip front, in which 

accuracy is required to predict fracture mechanics variable. In the remaining region, it is 

only necessary to reproduce the mesh motion and thus a low element order is required. Fig. 

4.33 illustrates a zoom view of the detail around the crack tip for each mesh discretization 

adopted in the analysis. 

In Fig. 4.34comparisons in terms of crack tip coordinates for each mesh discretization are 

reported. The crack paths are almost perfectly overlapped, denoting a low dependence of 

the results from the mesh refinement. This result is also confirmed by the comparisons in 

terms of 2 1/J J  as a function of the crack length occurred.  In particular, Fig. 4.35 shows 

that the use of a relatively coarse mesh discretization does not produce significant loss of 

accuracy or divergence phenomena and, thus, it is able to identify with good accuracy ERR 
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mixed mode ratio. This is confirmed also by the results reported in Fig. 4.36, in which a 

comparison in terms of CPU time and number of mesh elements introduced at the crack 

tip and remaining region is proposed. In particular, the results show that a smart mesh 

discretization, i.e. M1, can be useful to reduce the computational costs, since the crack path 

prediction does not show a high dependency from the degree of refinement of the 

discretization. Moreover, the results show that the use of a coarse or a relatively coarse 

mesh discretization, i.e. M1 or M2, allows to reduce the computational cost of the analysis 

by 67% or 48% with respect to M3 configuration, respectively. Finally, the evolution of 

the mesh motion is presented in Fig. 4.37 for M1 configuration, in which mesh 

discretizations before and after remeshing procedure are reported for several steps of the 

analysis. The results show that, according to the ALE methodology, the mesh movements 

of the crack tip region is enforced rigidly, ensuring the required accuracy in the prediction 

of the fracture variables. The elements of the remaining regions are stretched due to the 

rezoning or regularization requirements, leading to a consistent transition mesh 

discretization in the structure and a strong reduction of the computational complexity of 

the model.  

 

Fig. 4.34: P2 configuration: influence of the mesh discretization on the prediction of the crack path. 
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Fig. 4.35: configuration: influence of the mesh discretization on the prediction of the ERR mode ratio 

 
Fig. 4.36: P2 configuration: comparisons in term CPU time and number of elements for the numerical 

simulation performed by using different mesh discretizations (M1, M2 and M3). 
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Fig. 4.37: M1 configuration: synoptic representation of the mesh motion during the crack propagation. 

4.3 Experimental Campaign 

In this section, the fracture toughness of a commercially available semi-rigid PVC foam under 

mode I is evaluated by three-point bending tests on Semi-Circular Bending (SCB) specimens. 

Mode II and Mixed Mode are analysed on Asymmetric Semi-Circular Bend (ASCB) specimens. 

Ayatollahi et al. [115] proved that the ASCB loading scheme is able to generate all range of mixed 

fracture modes in fragile construction materials, including a pure mode II fracture condition. The 

method was used by Marsavina et al. [72, 73] for PVC foams. 

 
Fig. 4.38: Experimental Setup: (a) SCB specimen; (b) ASCB specimen. 

All specimens were cut from 20 mm Divinycell H100, H130 and H200 panels in the two 

main directions using a Denford CNC router with a 0.1 mm resolution equipped with a 3 

mm drill bit (Fig. 4.39). Although the numerical cutting procedure included the mid-span 

sample notching, the natural crack was initiated using a fresh razor blade, which was 

tapped to sharpen and extend the pre-notched tip to a final nominal length of 40 mm. The 

samples were uniformly sprayed with several coats of white paint. Subsequently a stream 
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of black paint was applied as to obtain a random b/w speckle pattern, the ideal  reference 

system for Digital Image Correlation (DIC) purpose [116].  

 
Fig. 4.39: Cutting samples by using Denford CNC router. 

In order to check the density declared from the Divinycell®, the density of the foams was 

determined according with ASTM D 1622-08, using cubic specimens of 15x15x15 mm, 

an electronic balance Sartorius LA230S for weighting and a digital caliper for dimension 

determination. 

Fig. 4.38 shows the load conditions taken in consideration. Three samples were tested 

according to each scheme, accounting for a total of eighteen specimens for each density 

typology. All samples had identical geometrical properties: the radius, R, of the semi-

circular samples was 80 mm, whereas the length of the notch, a, was 40 mm.  

The SCB loading scheme consisted of a point load centred on the top edge of the half-disc, 

which was spanned at 120 mm  1 2 60 mmS S  . In the ASCB (mixed mode) loading 

scheme the left supports was moved to a 5.5 mm, 8 mm 12 mm, 16mm, 24mm,  2S

distance from the specimen mid span, with the second supports remaining at a 60 mm  1S  

distance from midspan.  

All tests were performed in displacement control, at 2 mm/min rate. Load and displacement 

data were continuously recorded using the testing machine built-in sensors and data 

acquisition system (Fig. 4.40). Additionally, fixed focal lens camera shots were taken 
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every 5 second to digitally monitor the specimen change of configuration under the applied 

loads. 

 
Fig. 4.40: Experimental Setup: Load machine, digital camera and high speed led lights. 

Fig. 4.41 and Fig. 4.42 show the average force vs mid-span vertical displacement relations, 

exhibited by the SCB  2 5.5 mmS   and ASCB  1 2 60 mmS S  specimens, 

respectively, as well as the  xx  strain maps retrieved by means of the DIC processing 

referred to H100. 

The black curves refer to the specimen displacement measured at the top point A, using 

the machine built-in transducer. These values are affected by the loading-pin penetration, 

as evidenced by the heavy non-linear behaviour of the curve. An additional measure of the 

experimental displacement at the crack mouth (point B) was retrieved from the correlation 

of the digital images collected, each corresponding to a known load step. The DIC  

processing was performed using the freeware Matlab script Ncorr, developed by Blaber et 

al. [117]. The red curve obtained in this manner is a more realistic representation of the 

flexural deflection of the specimen, being only affected by minor local compressions 

occurring at the specimen supporting pins. 
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Fig. 4.41: Load – midspan vertical displacement relationship and DIC strain maps: (a) SCB specimen. 

 
Fig. 4.42: Load – midspan vertical displacement relationship and DIC strain maps: ASCB specimen (S2=5.5 

mm) . 

The average values of maximum forces detected in the experimental tests, as detailed in 

Tab. 4.5, were employed for the calculation of the Stress Intensity Factors (SIFs). 

The SIFs for mode I, 
1cK , and mode II 

2cK , were computed according to the following 

expression, proposed by Ayatollah et al. [115]: 
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 max
1 2, , ,    1,2

2
ic i i

P
K a Y a R S R S R i

Rt
       (28) 

where 
maxP  is the average value of the maximum load experimentally measured either on 

SCB or ASCB specimens, and the functions  1 2, ,iY a R S R S R  are given by Marsavina 

et al. [72, 73]: 

       

           

3 2

1 2 2 2 2

5 4 3 2

2 2 2 2 2 2 2

6.235 15.069 17.229 1.062

1.884 7.309 5.037 2.77 5.075 1.983

Y S R S R S R S R

Y S R S R S R S R S R S R

   

     
(29) 

Computed values of SIFs with reference to the two set of tests are listed in Tab. 4.5. 

Core-Divinycell 

H100 

1cK  [MPa m0.5 ]  2c
K  [MPa m0.5] 

1

maxP  [N] 
2

maxP  [N] 

0.222±0.001 0.116±0.002 334±1 628±5 

Core-Divinycell 

H130 

1cK  [MPa m0.5 ]  2c
K  [MPa m0.5] 

1

maxP  [N] 
2

maxP  [N] 

0.303±0.001 0.177±0.005 456±6 970±3 

Core-Divinycell 

H200 

1cK  [MPa m0.5 ]  2c
K  [MPa m0.5] 

1

maxP  [N] 
2

maxP  [N] 

0.599±0.004 0.337±0.002 901±5 1847±5 

Tab. 4.5: Experimental results in terms SIFs and maximum load reached. 

4.3.1 Preliminary results 

In this set of numerical results aims to validate the capability of model to describe the crack 

propagation in 2D solids. With this purpose, a sandwich structure fixed at bottom skin with 

an initial horizontal crack is taken into consideration as reference case study (Fig. 4.43a). 

Although the proposed model is able to describe both the skin/core interface delamination 

and the crack propagation in the core, the aim of these simulations is specifically to 

describe the crack path occurred in the core of the sandwich structures and verify its effects 

on the interfacial traction forces. 

The reference specimen has a 150 mm length and width equal to 35 mm. The core and skin 

thickness are 75 mm and 2 mm, respectively. The initial crack has a length to 25 mm and 

it is located at the core mid-depth.   
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Two different loading conditions are investigated:  

 a uniformly distributed opening force applied along the upper skin of the panel 

(Fig. 4.43a). 

 a point opening force applied at the cracked edge of the panel (Fig. 4.43b) 

The idealized sandwich structure presents glass/polyester skins and a Divinycell H100 

foam core, therefore the material and interface properties are the same as the ones listed in 

Tab. 4.6 with reference to the MMB test. The fracture parameters and   experimentally 

determined Divinycell H100 foams, as detailed in the experimental section of this Chapter, 

are employed in this analysis.   

 
Fig. 4.43: (a) uniformly distributed opening force applied along the upper skin of the panel; (b) point opening 

force applied at the cracked edge of the panel (b); detail of the mesh discretization in the core (c). 

Face-sheet 

glass/polyester 

 11 GPasE   12 GPasG  s  
-1kg ms     

16.4 2.7 0.17 1500 

Core-Divinycell 

H100 

 1 GPasE   12 GPasG  s  
-1kg ms     

0.135 0.035 0.32 100 

Interface properties 

1N mm  CG      0 mm    

0.800 0.12   

Tab. 4.6: Mechanical and interface properties of the structures reported in Fig. 4.43. 

The 2D model involves a discretization of each face sheet by means of shear deformable 

beam elements, whereas the foam core is modelled by plane stress triangular elements. 

Both skin and core elements features cubic interpolation functions and a linear elastic 

constitutive behaviour of the materials. ALE equations are introduced at each skin/core 

interfaces, in view of possible debonding phenomena, and in the core, to predict the 
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propagation of the pre-existing crack length. Linear interpolation functions are assumed 

for the ALE variables. The numerical discretization used for the face sheet is assumed to 

be generally uniform with an element length D  equal to 5mm . A coarse discretization 

is adopted at the interface, in absence of any pre-existing interfacial defects. With reference 

to the core modelling, a high number of computational points is condensed around the 

crack tip region, whereas a coarse discretization is adopted in the remaining domain (Fig. 

4.43a). The analysis is developed in displacement control mode, with the aim to ensure a 

stable crack propagation. Fig. 4.44 and Fig. 4.45 show the load / opening displacement 

curves numerically obtained with reference to both the schemes here considered. As 

shown, the constitutive behaviour shown is initially linear and stable. Once the crack 

function criterion is satisfied, the curves show a sudden descending trend. A clearly 

different trend can be observed in the two descending branches: the point loading causes a 

snap-back, a phenomenon that is not evidenced when a uniformly distributed opening load 

is applied to the structure.In Fig. 4.46 and Fig. 4.47, the Von Mises stress maps at four 

subsequent load steps are shown together with crack propagation pattern for both loading 

configurations. Although in both cases a mixed mode fracture arises, the crack propagation 

paths exhibited by the two specimens are visibly distinguishable. Whereas the point load 

activates a mode II dominated fracture process, the distributed load tends to cause a mode 

I dominated fracture mode. 

 
Fig. 4.44: Load-displacement response: uniformly distributed opening force. 
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Fig. 4.45: Load-displacement response: point opening force. 

 
Fig. 4.46: Uniformly distributed opening force: Von Mises contour plots and crack evolution for different 

loading steps.  

 
Fig. 4.47: Point opening force: Von Mises contour plots and crack evolution for different loading steps.  

In sandwich structures, loads are typically applied to the face-sheets and these are 

transmitted to the core by the adhesive interface. The core behaviour and its sensitivity to 

crack propagation is, therefore, strongly affected by the interfacial stress, which are, in 

turn, related to the external loads, the materials stiffness’s, and the cohesive law.  

In this view, the interfacial traction forces detected at the upper skin-to-core interface are 

shown in Fig. 4.48 and Fig. 4.49 for both load configurations analysed. 

Fig. 4.48a depicts the distribution of the interfacial forces corresponding to the peak load 

of the linear elastic branch (A) in the distributed load case. The distribution of stresses is 
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quite uniform, which suggest the cohesive interface is not threatened by any possible 

debonding phenomenon. The propagation of the crack in the core is able to slightly affect 

the distribution of the interfacial traction forces (Fig. 4.48 (b), (c), and (d)), whilst it does 

not substantially modify the quality of interface response. 

A similar analysis is illustrated in Fig. 4.49(a-d) with reference to the point opening force 

scheme. As shown in Fig. 4.49 (a), high values of the interfacial traction arises at the 

sandwich panel edge, in correspondence of the applied load. The onset condition could 

have been easily activated at the interface region but it is prevented, in this case, by the 

crack propagation in the core. This phenomenon tremendously affects the interfacial 

stresses, whose peak tends to move congruently with the crack tip position. However, a 

more even distribution of stresses suggests that an interface debonding is unluckily to occur 

at this stage. 

The results show how the interfacial stresses distribution can affect the crack propagation 

in the core and highlights the usefulness of a numerical model able to couple the two effects 

in an effective manner. 

 
Fig. 4.48:  Uniformly distributed opening force: interfacial stresses across the upper cohesive interfaces at 

different value of core’s crack tip positions. 
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Fig. 4.49:  point opening force: interfacial stresses across the upper cohesive interfaces at different value of 

core’s crack tip positions. 
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 Conclusions  

 

In this chapter the conclusions and the future works are discussed. Some critical 

considerations about the features of the developed numerical models are analysed. 
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5.1 Conclusions 

At first, the aim of the presented thesis was the investigation of the interface crack 

propagation phenomena in multilayered structures simulated by using shear deformable 

beam elements. The theoretical formulation was based on Arbitrary Lagrangian and 

Eulerian (ALE) methodology and cohesive interface elements, in which weak based 

moving connections are implemented by using a finite element formulation. In this 

framework, only the nodes of the computational mesh of the interface region are moved 

on the basis of the predicted fracture variables, reducing mesh distortions by using 

continuous rezoning procedures. 

The following conclusions can be drawn in respect of the obtained numerical results: 

 ALE interface formulation are introduced with the purpose to simulate the 

evolution of crack growth phenomena, avoiding to modify the governing equations 

of the structural problem.  

 Despite of existing formulations, available in the literature, this model gives the 

possibility to introduce nonlinear interface elements in a small region containing 

the crack tip front, whereas in the remaining one, linear constrain equations are 

introduced to simulate perfect adhesion.  

 The computational efforts and numerical complexities arising from classical 

debonding approaches were avoided.  

 The proposed model is quite general to be implemented in several existing FE 

software, since it leaves basically unaltered the governing equations of the 

structural problem. 

  In order to validate the proposed approach several comparisons are proposed with 

existing formulations, for cases involving single or multiple delaminations.  

 The robustness of the solution is verified by means of sensitivity analyses in terms 

of mesh characteristics and parameters involved in the numerical model.  

 The parametric study in dynamics has shown how debonding phenomena are much 

influenced by inertial forces and loading rates, since instability phenomena, jumps 

and amplifications in both resistance curve and crack tip speeds are observed. 

https://www.sciencedirect.com/topics/materials-science/crack-growth
https://www.sciencedirect.com/topics/materials-science/crack-tips
https://www.sciencedirect.com/topics/materials-science/delamination
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Along the way the proposed model has been generalized with the purpose to simulate also 

onset and coalescence which typically affect layered structures. The proposed strategy is 

based on two different stages solved simultaneously, which are devoted to identify onset 

crack position along the interfaces and the corresponding evolution.  

The following definitive conclusions are drawn based on numerical simulations: 

 The numerical approach is quite general since it does not depend from TSL or the 

structural formulation and can be easily implemented in conventional FE software. 

 The validation procedure is developed by means of comparisons in the framework 

of both static and dynamic analyses, with existing results arising from literature. 

 The layered structures involving crack onset, growth and coalescence phenomena 

are proposed and discussed to verify the applicability of the proposed approach to 

complex debonding configurations.  

 The results denote how debonding phenomena are quite influence by the presence 

of internal material discontinuities, which produce strong oscillations in the loading 

curve, amplifications of the total kinetic energy and large crack tip speeds. 

Finally, the research project has been focused on the study of the sandwich structure failure 

modes. From physical and mathematical viewpoints, two main issues are demanding a 

detailed understanding of the mechanical behaviour of sandwich panels: the propagation 

of internal macro-cracks in the core and the delamination at skin/core interfaces. To 

concern the delamination between skin and core, the previous numerical strategy, already 

used in the framework of composite laminate, was generalized simply by modifying the 

relative displacement between skin (shear deformable beam) and core (2D plane stress 

formulation). Moreover, crack growth in the core has been described by a 2D moving mesh 

approach, in which a proper fracture criterion and mesh refitting procedure were 

introduced to predict crack tip front direction and displacement. Based on the results 

obtained, the following conclusions can be drawn: 

 The results show the capabilities of the proposed model to reproduce correctly the 

behavior in both static and dynamic frameworks. 

 The parametric study denotes how debonding phenomena are quite influenced by 

the presence of internal material discontinuities, which produce strong oscillations 

and instabilities in the resistance curve and high speeds during the crack evolution. 
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 This study could be very useful for developing modeling strategies to understand 

debonding phenomena in sandwich composites subject to low-velocity impact. 

 The proposed model is able to simulate both micro-cracks at core and skin 

interfaces, which can proceed independently during the crack advance.  

 The use of proper regularization or rezoning methods, which adapt the mesh motion 

reducing mesh distortions during the transition procedure and ensuring consistency 

in the mesh topology.  

 The model is validated with several comparisons with numerical and experimental 

data, in which complex structures also in presence of holes/inclusions are 

considered. 
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