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Abstract

In this thesis, we address some latency-based vehicle routing
problems under the uncertainty of travel and service times. We
review the contributions in the literature and present more effi-
cient mathematical models enhanced by a prototype metaheuris-
tic approach providing near-optimal solutions in low computa-
tional time. We also implement our contribution on different
applications in disaster management and scheduling sector. As
another contribution, we also address the equity in strategic and
tactical problems arising in emergency medical service and pri-
mary health care sector. This is justified by the close connection
of equity and latency, as two important performance measures,

both related to the customer-centricity concept.
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Chapter 1

Preface

This thesis is mainly focused on latency-based vehicle routing problems under
uncertainty. A wide range of applications arising in different domains are in-
herently customer-centric posing customer’s satisfaction, typically measured
in terms of responsiveness, as a primary goal. For example, in the humani-
tarian logistics, that represents our elective application domain, the arrival
time plays a crucial role in saving people’s lives and reducing the mortality
rate. While the scientific literature on traditional vehicle routing problems,
both in the deterministic and stochastic variants, is rich and consolidated,
very few papers analyze latency-based routing problems under uncertainty.

In Chapter 2, we first introduce the traveling repairman problem with
profits (TRPP). In simple words, the TRPP is a variant of the well-known
traveling salesman problem in which a repairman is supposed to visit a sub-
set of nodes of a graph in order to maximize the total profit which is a de-
creasing function of arrival times (or latencies) at the customers. In Section
2.2, we present a risk-averse approach to handle the uncertainty of travel
times in the TRPP via a mean-risk model and run a Monte Carlo simu-
lation experiment to show how neglecting the stochasticity of travel times
may result in unstable solutions. As our first contribution, we propose a
position-dependent mathematical formulation which extends the traditional
single-server model proposed by Dewilde ([87]) for the TRPP to the multi-
vehicle case. This contribution is also enhanced by a prototype metaheuristic
approach which provides good solutions in reasonable computational time.
This contribution was presented in the EURO Conference on Advances in
Freight Transportation and Logistics (2018) that was later published in the

Transportation Research Procedia journal [92].



The TRPP position-dependent mathematical model is not the best model
in terms of computational tractability, especially when commercial solvers
are used to solve the problem. This motivated us to present in Section 2.4
a more efficient mathematical model built on a layered graph based on the
same idea presented in [194]. We then proposed a metaheuristic approach,
including three different algorithms which can be found in Subsection 2.4.1.
Some parts of the latter contribution were presented in the 2nd European
Conference on Stochastic Optimization (2017) as well as in the EURO/ALIO
conference (2018) and was later published in Electronic Notes in Discrete
Mathematics journal [54]. The extended contribution was submitted to the
Computers € Operations Research journal and is currently under second
revision.

In Chapter 3, we address a latency-based vehicle routing problem with
service level constraint considering again the uncertainty of travel times.
The problem is closely related to the multi-vehicle TRPP, and, in fact, can
be regarded as a variant of that problem in which the objective is to min-
imize the total latency and profits are instead considered into a constraint
enforcing the achievement of a minimum service level. This contribution is
enhanced by a simple iterative local search heuristic which was presented
in the 46th Annual Conference of the Italian Operational Research Society
(2016). Later, we also implemented the model for a real case study on the
Haiti earthquake 2010 to assess the validity of the proposed approach as a
decision-support tool addressing routing decision-makings arising in the dis-
aster relief phase. The initial results of this contribution were presented in
the ORAHS conference (2017). We also submitted an extended version of
this contribution, including a detailed discussion on the managerial insights
and enriched by a variable neighborhood descent heuristic to the European
Journal of Operational Research. The paper is currently under revision [39].

Chapter 4 presents an extension of the problem addressed in Chapter
3, where travel times are asymmetric and uncertain and uncertain service
times are also considered. Specifically, we adopt a robust distributionally
optimization approach to deal with the uncertainty of the input parameters
varying over an interval set. From the solution viewpoint, we also propose
a metaheuristic algorithm hybridizing the large neighborhood search with a

variable neighborhood descent heuristic. The proposed mathematical model



as well as the algorithm are then applied to the selective multi-machine
scheduling problem with uncertain processing and setup times. The problem,
arising in the manufacturing sector, is indeed closely related to the vehicle
routing problem. We also show how the proposed model, in the deterministic
context, outperforms the existing model in the literature.

In addition to the contributions on routing problems, we have also in-
vestigated how the equity concept can be incorporated into strategic and
tactical decision-makings arising in the health care sector. In effect, equity
and latency can be both considered as customer-centricity performance mea-
sures. In Chapter 5, we first present a comprehensive review on strategic
location and tactical allocation decisions in the emergency medical service
(EMS) sector along with the potential gaps and challenges ahead ([21]).
The Section 5.1 has been selected from a comprehensive review paper we
published in the Computers & Operations Research journal [21].

Next, in Section 6.2 we propose a novel bi-objective location-allocation
model balancing efficiency and equity criteria in the EMSs. We also present
an exact solution approach to generate the Pareto-efficient solutions. A
paper describing the application of the proposed model to a real case study
was published in the Optimization Letters journal [140].

In Chapter 6, we focus on location-allocation problems arising in the
primary health care sector. In Section 6.1, we address a novel location-
allocation problem arising in a hierarchical public health care system that
provide consulting services and addiction treatment cares to the residents.
We also propose an exact fuzzy goal programming approach to solve the
problem and test the model on a real case study for the city of Shiraz, in Iran.
Our contribution provides interesting managerial insights on the performance
of the current system and how it can be improved under different scenarios.
This contribution was published in the Health care Management Science
journal [141]. In Section 6.2, we deal with the optimal location and allocation
of nursing homes in order to optimize the efficiency of the system while
improving the accessibility over a multi-period planning horizon. The model
aims at determining the optimal location of new nursing homes to be added
into the system, at the beginning of each decision period, when new resources
are provided. To deal with the ambiguity of demand changing over the

long-term planning horizon, we propose a probabilistic chance constraint



approach in which the uncertainty of the demands is taken into account.
Alike the former contributions, the model is tested on a real case study.
This final contribution was published in the Operations Research for Health
Care journal [139].



Chapter 2

The risk-averse traveling
repairman problem with profits

2.1 Introduction

The traveling repairman problem (TRP) is a variant of the well-known trav-
eling salesman problem in which a repairman is supposed to visit all the
nodes of a graph exactly once minimizing the the sum of the arrival times
(or latencies) at the customers. Besides being at the heart of important
customer-centric vehicle routing applications, where some quality criterion
regarding the customer’s satisfaction must be pursued, this problem also ap-
pears in a variety of other contexts, such as smart grid maintenance, manu-
facturing, data retrieval networks in computer networks, home delivery and
machine scheduling with sequence-dependent processing times.

The TRP (also known in the literature as minimum latency problem
(MLP)) has been extensively studied by a large number of researchers who
proposed several exact and non-exact approaches. Lucena [156] and Bianco
et al. [45] proposed early exact enumerative algorithms, in which lower
bounds are derived using a Lagrangian relaxation. Fischetti et al. [103] pro-
posed an enumerative algorithm that makes use of lower bounds obtained
from a linear integer programming formulation. Van Eijl [257], Méndez-Diaz
et al. [172], and Ezzine et al. [97] developed mixed integer programming
formulations with various families of valid inequalities. Bigras et al. [46] sug-
gested a number of integer programming formulations as well as a branch-
and-bound algorithm. Some approximation algorithms are also known for

the MLP. The first one was suggested by Blum et al. [49] with an approx-



imation factor of 144. The current best approximation algorithm for the
MLP is due to Chaudhuri et al. [72] for general metric spaces and to Archer
and Blasiak [20] for the case where an edge-weighted tree is considered.

Up to this date, few metaheuristics are available for the TRP. Salehipour et
al. [218] first proposed a simple composite algorithm based on a GRASP,
improved with a variable neighborhood search procedure. In [178], Mlade-
novié et al. presented a general variable neighborhood search metaheuristic
enhanced with a move evaluation procedure facilitating the update of the in-
cumbent solution. Silva et al. [235] presented a composite multi-start meta-
heuristic approach consisting of a GRASP and a randomized variable neigh-
borhood descent algorithm for the construction and improvement phases,
respectively. They also adopted an efficient move evaluation procedure to
speed up the search over different neighborhoods.

Recently, some interesting problem variants of the TRP/MLP have been
proposed. A direct generalization of the TRP that includes identical vehi-
cles (]98]), is the K-traveling repairman problem. In this routing problem a
set of customers should be serviced by a fleet of K vehicles with the aim of
collecting a profit, which is a monotonically decreasing function of the ar-
rival time of the vehicle at the customer. The Cumulative VRP (CumVRP)
generalizes the TRP, by considering a demand associated to each node. The
CumVRP can be further regarded as a special case of the weighted vehicle
routing problem proposed by Zhang et al. [271]. Later on, the presence of
multiple depots was included in the model by Zhang et al. [272]. Kara et
al. [137] considered a flow-based formulation of the Cumulative Capacitated
VRP (CCVRP), where the objective function to be minimized is not the
sum of arrival times, but rather the sum of arrival times multiplied by the
demand of the node. Ngueveu et al. presented in [188] a memetic heuristic
aimed at visiting a set of customers with a homogenous capacitated vehicle
fleet. The proposed metaheuristic seeks appropriate upper bounds while the
lower bounds are obtained by exploiting the properties of the problem. In
[210], Ribeiro and Laporte presented an adaptive large neighborhood meta-
heuristic, applying different repair and destroy procedures adopted from the
literature. In a recent paper, Sze et al. [245] presented a hybrid meta-
heuristic algorithm for the CCVRP, in which a two-stage adaptive variable

neighborhood search algorithm that incorporates large neighborhood search



as a diversification strategy is designed. This study also considers the min-
max objective, adapting appropriately the proposed algorithm.

A recent interesting variant of the problem is the traveling repairman
problem with profits (TRPP) introduced by Dewilde et al. [87]. The problem
belongs to the class of vehicle routing problems with profits, a flourishing
literature stream that has attracted the attention of the operations research
community in the last ten years. It is worthwhile remarking that some
discrepancies in problem definition and taxonomy might be encountered in
the literature. Generally speaking, a profit is associated with each customer
and only a subset of customers to be served is chosen; the decision is made
on the basis of an objective function that might include the collected profit
and/or the travel cost. Depending on the type of the objective function
chosen, different names can be found in the literature. When the objective
function is the maximization of the total profit collected, and a maximum
duration constraint or a capacity constraint (or both) are imposed on vehicle
routes, the problems are usually referred to as problem with profits. If
the objective function is the minimization of the total traveling cost and
a constraint on the minimum amount of profit to be collected is imposed,
we categorize the problem as prize-collecting. If the objective function is
the maximization of the difference between the total collected profit and the
traveling cost, then the routing problem is cast as a profitable problem. It
is worth noting that, notwithstanding the objective function in the TRPP
is the collected profit minus the total arrival time, the problem is commonly
referred in the literature as a problem with profits.

In this problem, a revenue is obtained the first time a location is visited
and the visit of each location is optional, for a single vehicle problem. More
formally, let us consider a set of customers V = {1,...,n} indexed by i, j and
a pre-specified central depot (denoted with 0) where a homogenous fleet of
K vehicles is located. Let V =V u{0} and G = (V,E) (E={(ij) cV xV})
be a complete undirected graph. We denote by p; the revenue associated
to each customer 7 € V' and we assume that the profit collected by visiting
a customer decreases with the arrival time, expressed as a function of the
edge travel times, denoted by d (in line with [87]). In particular, the profit
assumes the maximum value (the revenue value p;) when the arrival time

at node i (t;) is zero. The objective is to identify a set of feasible vehicle



paths (each starting at the depot and visiting a different subset of nodes)
that maximizes the collected profit expressed as a decreasing function of the
arrival times. In particular, the total profit associated to a given solution

(set of vehicle paths) is

> 2 (pi—ti) (2.1)

where we denote by V¥, the set of nodes visited by the vehicle k. For a given
solution, composed by K disjoint paths 7* = [0,1[1,...,l[], k= 1,... K
defined by an ordered set of links indexed by [ (here L* denotes the length
of path of the vehicle k), the total profit can be rewritten, for each vehicle,

k, as

Y opi—t;= ZP[Q]—(Lk—qul)(d[q]) (2:2)

ieVk
where ¢ is the position of the link ¢ € 7% assuming value in the interval
[1,...,L*]. The notation [-] denotes the position of the link in the path. In
fact, equation (2.8) sums the difference between the profit of the ¢'* visited
node after the depot and the number of times the edge preceding that node
is counted in the total latency, including the total latency of node ¢ and all
the subsequent nodes visited after.

This highlights the similarities with one of the variants of the time-
dependent routing problem considered by Picard and Queyranne [199]. In
that problem, the travel cost function between two cities not only depends
on the distance, but also on the position of the arc in the tour. It is worth-
while noticing that this is also the distinguishing characteristic of the TRPP
and its counterpart without profit (TRP), since the arrival time, or latency,
at a given node, depends on the position of the node in the path.

In what follows, we present a fictitious small example shown in Figure
2.1, including five potential nodes to be visited by a fleet of two homogeneous
vehicles. Over each edge is reported the corresponding travel time, whereas
the value under each node represents the revenue collected while visiting the
node. The optimal paths (obtained by solving the model presented in [87])
are shown in Figure 2.2.

The total profit gained by visiting nodes 2,3,4, and 5 is 20, calculated as
the sum of the profit over the path 0-2-3 (19 - (2 x (3) +1x (3)) = 10),
and over the path 0-4-5 (20— (2x (3.5) + 1 x (3)) = 10).
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Figure 2.1: Toy example

Figure 2.2: Optimal paths



In the extant literature, it is usually assumed that the repairman travels
at a constant speed, which is not a realistic assumption in many cases. The
speed and, consequently, the travel time might vary depending on different
factors such as, but not limited to, the fluctuations in weather condition,
traffic congestion, and vehicle breakdowns. The issue of incorporating the
uncertainty becomes particularly important in customer-centric vehicle rout-
ing problems (and hence both in TRPs and TRPPs), where the attention
is directed towards customers related measures. In disaster relief operations
and humanitarian logistics operations, for instance, the arrival time has a
crucial role in saving people’s lives and might significantly contribute to
decrease the rate of mortality.

To the best of our knowledge, notwithstanding there is a vast literature on
the incorporation of stochasticity for vehicle routing problems (][40, 56, 108]),
a few contributions exist on profit-based routing latency problems at the
presence of uncertainty. In [256], the a priori traveling repairman problem
is defined as a stochastic problem with recourse, where the tour should min-
imize the second-stage cost defined as the sum of expected latencies arising
from the revealed set of uncertain vertices to be visited.

In this Chapter, we present our contributions in the stochastic routing
literature focusing on the K-TRPP. We propose a formulation explicitly
addressing uncertainty in the arrival times. We study the problem under
the assumption that the probability distribution of the random travel times
is not completely specified and that only the mean and the variance of the
travel times is known. We propose, in particular, a risk-averse stochastic
version of the TRPP under uncertain travel times modeled through a mean-
risk approach. This broadens the applicability of our models, that can be
applied to tackle the solution of different real-life scenarios, hampered by the
lack of a universally acceptable distribution for modeling travel and service
times. To the best of our knowledge, no existing study has yet investigated
profit-based routing latency problems at the presence of uncertainty.

The contribution of the Chapter is twofold. Firstly, we extend the mathe-
matical model proposed in [87] to address the problem in a stochastic setting,
where the uncertainty affects the travel times. By adopting a risk-averse ap-
proach, we present a mean-risk model that can solve small to medium size

instances to optimality. We present a validation of the model trough a
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Monte Carlo simulation analysis. Moreover, a heuristic approach, easy to
implement and very effective, is also proposed. Secondly, a more efficient
formulation of the problem is presented and the first heuristic extended and
enhanced by introducing a move evaluation procedure which speeds up the
computation. Moreover, in order to assess the quality of the solutions ob-
tained by the heuristic method, we introduce three different upper bounding

procedures.

2.2 The risk-averse K-TRPP under uncertain
travel times

In this section, we address the problem under a risk-averse perspective. In
this case, the decision-maker is willing to trade-off some profit against more
stable solutions in terms of variability. There are different ways to capture
and model risk. The expected utility theory ([262]), that has been preva-
lently used in economics, uses concave utility functions. In the late nineties,
an axiomatic approach to risk has been proposed ([147, 212]), introducing
the theory of coherent risk measures. Here, we account for risk by control-
ling the standard deviation. This is an intuitive risk measure that can be
widely communicated by the experts and easily computed, since it can be
applied whenever the first and the second moments of the random travel
times are known, regardless the specific distribution function we consider.
This assumption is reasonable since it is unlikely that the full distribution
of travel times, if ever available, is known. In order to represent different
risk attitudes, from the risk-neutral to the more risk-averse one, we adopt a
mean-risk approach, striking the balance between two conflicting objectives,
i.e. the expected profit maximization and the risk minimization, following
the classical mean-risk framework proposed by Markowitz in [163], in the
portfolio optimization theory.

We assume that the travel time d; of each edge [ of the network is repre-
sented by a random variable with mean IE(d;) and variance VAR(d,). For
ease of exposition, we consider travel times are independent, which might be
not the case, especially in emergency situations. We should mention that,
even though the following derivation is presented for the uncorrelated case,

the approach proposed is general and can be applied also when the travel
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times are dependent (see [38] for more details). When the travel times are
considered random, the arrival time of each vehicle at generic node i is itself
a random variable (denoted with ;).

A risk measure can be incorporated in our problem, by combining the
mean travel time with some measure of the dispersion. The standard devi-
ation is a very intuitive measure of variability, which is also related to the
value-at-risk objective [41, 42, 43] and that can be used whenever the first
and the second moments of the distribution function of the travel times are
known [40].

The mean-risk function associated to a set of routes 7%, k =1,... K under

uncertain travel times is then

K K
)‘]Elz Z(pi—ﬂ:)]‘*(l—)\)\l VAR[Z Z(]%—fz)] (2.3)
k=14eVk k=1ieVk

Since the decision-maker is risk-averse, the problem does not merely en-
tail the maximization of the expected profit, but it must also consider the
travel time variability. The weighting parameter A € [0, 1) reflects different
risk-averse preferences of the decision maker and plays the role of the trade-
off weight in mean-risk models [152]. By decreasing its value more weight is
put on the non-linear part of the objective function, reflecting a risk-averse
behavior of the decision maker.
We note that even though the arrival times are dependent, it turns out that
the total variance can be computed independently for each vehicle as the
paths cover disjoint subsets of nodes.

In particular, the arrival time at each node is the sum of the travel times
associated to the links [ € 7% i.e. belonging to the subpath connecting the
depot to the node 1.

Hence,

IB(1;) = IE!Z Jl] = Z ]E(Jz) (2.4)

k k
lem; lem}

Under the assumption that there is not any common edge traversed by two
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different vehicles, we have

VAR[i > (pi —tl-)] = iVARL;:kﬂ]

k=1ieVk k=1
K ~ ~ ~
Y| Y VARE) + Y Y COV (i) |. (2.5)
k=11| jeVk ieVk jevk
1]
Here,
VAR(1;) = VAR(Z JZ) = Y VAR(d)) (2.6)
le7r£c lew,{?

and the covariance between ¢; and fj can be evaluated as follows:

COV (&, 1) = E[tt;] - B[LIE[] = E| Y dix ) di| - E [ > Jz] E| Y d
lerk lerk lerck Uerk
i J 2 J

El Y &+ Y Y dd —lZIE(cZ,)] N E@)|=E| Y d|+

knok k gk 1ok gk k ferk ko k
lem; nm; lem; ,¢7rj l en; ST lem; l em; lem; nm;

+El Y Y dd- Y Ed)- Y Y E(d)E(d)-=

lewf,éwé‘? l’eﬂ;ﬂﬁrf lewfmr;? leﬂfﬁwf l’errfﬁwf
= X EB@d)- Y Ed)+ Y Y Edd)- Y Y E(d)E()=
l@rfmr]k l@rfﬁﬂ']"? lEﬂ'f,QEﬂ'J’? l’Eﬂ']’.‘“,ﬂrf lEWf,QﬁW}”? l’ﬂr]’ﬁﬁrf
> [E@) -EXd)]+ Y. Y [E(dd]) -E(d)E()]= Y. VAR(d)
lewfmr;? léﬂf,éﬂ; l’eﬂ;?,éﬂ'f lewfnﬂ;?

(2.7)
since the second term is the covariance between the links [ and !’ which is
zero, for hypothesis.

Proposition 2.2.1. Let ¢ be the position of the link ¢ € 7% assuming value
in the interval [1,..., L¥]. For each vehicle, k=1,..., K

_ Lk i
VAR| > t}] =Y (LF —q+1)’VAR(dy) (2.8)
L icVF g=1
Proof.
VAR[Z e S vard) -y T covini) -
ieVk 1 jeVEk ieVEk jeVk izj
=Y Y VAR(d)+ Y, >, > VAR(d) (2.9)
ieVk lerrf.C ieVk jeVk j+j len’fﬂﬂf
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In the first term, we count L* — g+ 1 times the variance VAR((i[q]) for each
g=1,...L*.
As far as the second term is concerned, we observe that we count VAR((L)
a number of times equal to
LF-qg+1 LF—q+1)!
2( 7 ) (Lf=q+1) (2.10)

2 T (LF—q+1-2)2!

since it is considered for each non-ordered pair of nodes (ij). But

(Lk—q+1)! (L —q+1)(LF—q+1-1)(LF-—q+1-2)!

(LF-q+1-2)l2! (LF—gq+1-2)12!
Then
VAR[Z fz] = iVAR((i[q]) [(Lk_Q+1) +2(Lk—q+;)(Lk_q) )
- LZlVAR(J[q]) [(LF=g+1)+ (LF - q+1)(LF - q)] =
= EVAR(CZM])[L"/‘ —q+1](1+(LF-¢))] = i(Lk p 1)2VAR(J1).
q q (2.12)
]

2.3 Mathematical formulation with position
dependent variables

As highlighted in the previous Section, the position of each edge in the path
should be considered for a correct definition of the total latency. Dewilde
et al., in [87], presented a mathematical formulation based on position-
dependent variables for the deterministic TRPP with a single vehicle. The
integer linear programming formulation proposed requires as an input pa-
rameter the number of visited customers, or equivalently the path length.
In order to obtain the solution, all the possible path lengths should be con-
sidered and the model should be separately solved many times. Hence, this
solution framework can be considerably time-consuming for real applications.
In what follows, we will present our mean-risk model for the TRPP, as an
extension of the Dewilde’s model to the multi-vehicle case. The notation

used in the model is reported here for the sake of clarity.
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Table 2.1: Table of notation

Sets and input parameters:

V={l,..,n} set of nodes by 1, j
%4 vV u{0}
{1,....K} set of paths (vehicles) indexed by &
possible path length g e {1,...,n- K +1}
{1,...,9} set of positions of traversed links indexed by ¢
i profit collected at node 4
Lij expected travel time of the link (ij)
a?j travel time variance of the link (i7)
Decision Variables:
92k _ { 1, if (ij) is the ¢** link over the path of the vehicle k with length g
179 0, otherwise

Considering the above notation, the mathematical formulation based on

position-dependent variables is as follows:

max:;n_z iZZ)\ - (g+1-q)pylx Uq_(l A)

lEV;eV
J#i
K n-K+1 g
2 ZZZ(9+1 R (2.13)
k=1 g=1 q=1jeV jeV
J#i
n—-K+1
>oXagf=1 k=1, K (2.14)
g=1 jeV
& "
fojq—Zm?i 1 =0,J€Vig=2....n-K+1
eV 1€
%] 1#]
q=1,....,9-1,k=1,... K (2.15)
n—-K+1 k
Zz.m;{;qg, g=1,....9, k=1...,K (2.16)
9= eV jeV
JE
K n-K+1 g 1
> 2 22w, =0, (2.17)
k=1 g=1 gq=2jecV
K n-K+1 g
3 Yyall<1, jeV (2.18)
k=1 g=1 g=lieV
J#i
qu{Ol} ieV,jeV,g=1,....n-K+1,

g=1,...,9, k=1,....K (2.19)
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Figure 2.3: Toy example revisited

The objective (2.13) maximizes the total collected revenue expressed in terms
of the linear combination of the expected value and risk. These two com-
plementary measures help the decision-maker to investigate promising and
competitive solutions through the trade-off between the associated expected
value and risk. It also benefits from the fact that a better use of historical
information on uncertain parameters is made, finally, resulting in a better
and more accurate model. The set of constraints in (2.14) ensures the depar-
ture of all vehicles from the depot. The connectivity constraints are reported
in (2.15). Constraints (2.16) guarantee that each position over each path is
assigned to at most one link. The set of constraints in (2.17) establishes that
no link starting from the depot can be used in any other position except the
first one, over each feasible path. The set of constraints in (2.18) requires
that each affected area is visited at most once over all paths. The set of
constraints in (2.19) expresses the binary nature of variables.

The optimal solution of this model, applied to the toy example 2.1 and
considering the case in which the decision-maker is concerned about risk
(A =0.1), is shown in Figure 2.4. Figure 2.3 shows the network, where the
ordered pair over each edge represents the expected travel time over the

edge and its standard deviation, and the value under each node represents
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(6, 1) —’—’__@

12

5@--(3.1)...

Figure 2.4: Optimal paths in the risk-averse model

the revenue collected while visiting the node.
The total expected profit of visiting nodes 3 and 5 is 12 - (6) + 10— (3) =13
and the total standard deviation is v/1 + 1 = 1.41, which is much lower that

the standard deviation of the deterministic risk-neutral solution (calculated

as
\/(22 x (6)+12x(8)) +(22x (7.02) +12x (5.01)) = 8.06 ).

It is important to evaluate the reliability of the optimal solution resulted
from the proposed approach. To this end, we run a Monte Carlo simulation,
as one of the most common uncertainty assessment tools, to investigate the
efficiency of the proposed risk-averse model compared to the risk-neutral
one.

In particular, we have run a Monte Carlo simulation, including 50,000
different scenarios generated using the lognormal distribution, to represent
different possible travel times values over each edge (7). The total expected
profit under each scenario is expressed as the total difference between the
collected revenue at a node and the realized arrival time to reach that node.
Figures 2.5 and 2.6 report the frequency histograms of the simulated profits
for the risk-neutral and the risk-averse solutions, respectively.

The simulation results show that the solution of the risk-neutral model is
highly unstable with high variations in the total profit confirmed by the long
tail in Figure 2.5.

We should note that the risk-neutral model ignores the variance completely
and it is reasonable to expect high profit spread. Interestingly, the negative

profit values (on the left of the vertical line) in Figure 2.5 underline the
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Frequency
900

800 » - Loss Profit

600

500
400
300
200
100

-15.27 -13.23 -11.19 -8.16 -712 -5.08 -3.04 -100 1.03 307 511 7.5 919 11.23 1326 1530 17.34 19.38 2142 2345 2549 27.53 2957 31.61 33.64
Total Profit

Figure 2.5: Frequency histograms: Risk-neutral model

Frequency

700
600
500
400
300
200

100

795 833 871 909 947 985 10.23 1062 11.00 11.38 11.76 1214 1252 1290 13.28 13.66 14.05 14.43 1481 1519 1857 1595 16.33 1671 17.10
Total Profit

Figure 2.6: Frequency histograms: Risk-averse model

18



probability of experiencing loss. This occurrence is avoided by adopting a

more risk-averse approach (see Figure 2.6).

Mean Median Max Min SD

Risk-averse Model  12.99 13.11 17.33 2.34 1.42

Risk-neutral Model 20.01 21.58 35.70 -104.13 8.07

Table 2.2: Simulation results

Table 2.2 reports the arithmetic mean, the median, the max and min
values, as well as the standard deviation (SD) of the simulation results. In
general, we should expect that, in terms of the total expected profit, the risk-
neutral case provides better results than the risk-averse model, (supported by
the higher Mean, Median, and the Max values reported for the risk-neutral
model). The long range Max — Min = 139.8 as well as the high standard
deviation (SD = 8.07) show the unstable behavior of the risk-neutral model,
compared with the risk-averse one with range of 14.99 and SD of 1.42.

2.3.1 The iterated greedy heuristic

In the following we present a heuristic approach to efficiently tackle the
solution of the problem (2.13)—(2.19).

The heuristic approach relies on an iterated greedy method that alter-
nates between constructive and destructive phases. The greedy constructive
method builds a solution R involving a subset S of the node set V.
Visited nodes in R are selected from U \ T'BL where U and T'BL are,
respectively, the set of unvisited and the set of temporary forbidden nodes.
Additionally, an adaptive local search phase is applied to R““" and a new
solution R is obtained. Then, during the destructive phase, a percentage
of the visited nodes in S (10%n) are removed randomly from the current
solution and put in temporary blacklist T'BL. The set of visited nodes S is
updated and the constructive phase is applied again to rebuild the solution.
In fact, at each iteration, the set of visited nodes S in R“" is partially de-

stroyed over the Destroy procedure which is then repaired and updated
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over the Construction procedure in the next iteration. The method it-
erates this pattern until a given number of iteration [t,,,, is reached. The
best solution R+ and the best value of the objective function OF(Rx*) are
stored and returned at the end of the algorithm.

The pseudocode of the iterated greedy heuristic is presented in Algorithm

Algorithm 1: Scheme of the heuristic

1 Initialization:
S« @, U<« V, TBL < @; R+, R, R « null; OF(.) < null

2 for (It =1 to Ityg,) do
3 R« null
4 (S, R™) « Construction procedure(U ~ TBL)
5 R < Adaptive local search(R™")
6 | if OF(RR)>OF(R*) then
7 R+ < R
8 OF(R+) « OF(R)
9 end
10 Destroy procedure(S5)
11 TBL < &
12 t<1
13 while (¢ < 10%n) do
14 Select randomly a node ix € S
15 TBL « TBLU{i*}
16 t++
17 end
18 S« S\TBL
19 end
20 return Rx, OF (R+*)

In the following, we discuss the main steps of the proposed heuristic in more

detail.

During the constructive phase, the Construction Procedure is called to

build an initial solution. Nodes i € S are sorted in ascending order with

Apoi+(1-A)\/02,
Ap;

distance from the depot and the revenue. One seed node is then inserted

respect to the following criterion which accounts for both the

into each vehicle route, following a greedy ordering criterion. Then, each

unvisited node is inserted one at a time, in the best position in the best

route (on the basis of the increment of the profit value).
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There are many different alternatives that can be considered for the local
search. Among them, we opted for a self-adaptive mechanism implemented
in the Adaptive local search procedure. The idea is to randomly select
one neighborhood in the set of neighborhoods, accordingly to the associated

selection probability. The set of neighborhoods {1,..., N} is the following;

1. Intra-route exchange operation: exchanges the position of a pair of

non-adjacent nodes over a path.

2. 2—-opt operation: deletes two non-adjacent edges along the path and
add two other edges such that the direction of middle unchanged edges

in the new path are reversed.

3. Or—opt operation: deletes any triple of non-adjacent edges within the
path and reconnects them by adding three new edges such that the

order of middle unchanged edges over the path is preserved.

4. Inter-route exchange operation: exchanges a pair of nodes belonging

to two different paths.

5. Delete-insert operation: deletes a node from a path and adds it to the

other one.

Within the warm — up period, a roulette wheel mechanism is applied to
determine which neighborhood to explore. The selection probability is the
same for all the neighborhoods and set to j%/ After the warm — up period,
the neighborhood selection is performed using the self-adaptive mechanism
considering the success and the failure of the neighborhoods in the past. In
particular, the selection probability of the neighborhoods is updated every
N, iterations using the following formula:

prob, = ij’l—gu where 5, = % +e.

Here, s, and f, count the number of times the neighborhood v was successful
or unsuccessful, respectively, and € is a small value added to provide all the
neighborhoods (even the unsuccessful ones) with a chance. When the local
search is not able to improve the solution within a given number of iterations,
it is stopped and the destruction phase is applied again. The proposed
Destroy procedure generates a subset of randomly selected nodes in the

current solution to be banned from being present in the solution of next

21



iteration. This kind of diversification mechanism allows us to extensively
search the solution space in order to find near-optimal solutions. A scheme

of the local search heuristic is shown in Algorithm 2.

Algorithm 2: Adaptive local search

1 Input: The current solution R“"", Maximum number of iterations
allowed without improvement 1M Py,q.

2 Initialization: prob, < j%[? Vv=1,...V; R« null,imp < 0
3 fort=1toT do
4 if (t> Warm-up Period and t%N, =0) then
5 | Update-Selection-Probability
6 end
7 Select a Neighborhood ¥ according to the probabilities
prob, Yv=1,...N
8 Explore the Neighborhood © around R" and return a solution R

9 | if (OF(R“7™)>OF(R)) then

10 | imp + +

11 end

12 if (imp%IM P4, ==0) then
13 | return R

14 end

15 end

16 return R

2.3.2 Computational results

We report the performance of the proposed heuristic approach on differ-
ent test cases. The code was implemented in C+4 and the experiments
performed on an Intel® Core™ i7 2.90 GHz, with 8.0 GB of RAM mem-
ory, running under Windows operating system. In order to have an idea
of the quality of the solution obtained, the corresponding mathematical
model was solved using SCIP. We have tested the heuristic on two sets
of instances, including the P—instances and the E—instances used as bench-
mark in routing problems [194]. The number of customers (vehicles) in the
data sets vary from 15-75 (2-15) and 21 - 75 (3 — 14), respectively. The
expected travel time over each link (ij) is set to the Euclidean distance be-
tween node ¢ and j and its variance is computed as [(T’]E(J(ij)))z], where
r is a random number uniformly distributed in the interval [0.1,0.32). In

order to randomly generate revenue values, we have slightly modified the
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Table 2.3: Results for the P-instances

A=0.1 A=0.5 A=0.9
Instance n K |Iterated greedy SCIP |Iterated greedy SCIP |Iterated greedy SCIP
ATime AGap Opt |ATime AGap Opt |ATime AGap Opt

Pnl6k8 15 5| 056 0.09 0.00 | 1.01 0 0.00 | 1.02 0.12  0.00
Pnl9k2 18 2| 0.05 0.06 0.00 | 1.18 0 0.00 | 1.19 0 0.00
Pn20k2 19 2| 0.05 1.13 0.00 | 0.75 2.61 0.00| 1.43 0 0.00
Pn21k2 20 2| 003 3.65 0.00| 086 0.76 0.00]| 1.12 0.71  0.00
Pn22k2 21 2| 0.79 3.09 0.00 | 0.81 0.27 0.00 | 1.43 2.01  0.00
Pn22k8 21 8| 0.35 0.84 0.00 | 0.46 0 0.00 | 0.56 0.33  0.00
Pn23k8 22 8| 0.74 1.25 0.00 | 0.92 0.33 0.00| 1.16 0.15  0.00
Pn40k5 39 5| 0.03 039 7.87 | 0.15 0.53 0.00| 0.84 1.17  0.00
Pn44k5 44 5| 0.06 1.27 535 | 0.06 1.28 0.56 | 0.59 1.17  0.00
Pn50k7 49 7| 0.07 1.78 10.19| 0.07 1.27 0.75| 0.81 0.86  0.00
Pn50k8 49 8| 0.06 1.04 949 | 040 093 0.00| 1.13 1.32 0.00
Pn50k10 49 10| 0.26 1.41  0.00 | 0.06 0.4 014 3.01 0.43  0.00
Pn51k10 50 10| 0.06  0.75 2.15 1.91 0.48 0.00 | 1.66 0.32  0.00
Pn55k7 54 7| 0.09 4.06 9.36 | 0.09 1.87 0.66 | 0.81 2,77 0.00
Pn55k8 54 8| 0.08 294 10.03 | 0.09 2.17 0.53 | 1.02 1.62  0.00

Pnb55k10 54 10| 1.15 3.81 0.00 | 097 282 0.00]| 2.18 2 0.00
Pnb55k15 54 15| 0.02 2.82 7.82 | 1.32 247 0.00 | 1.25 2.15  0.00
Pn60k10 59 10| 0.58 0.92 0.00 | 0.11 0.72 042 | 2.48 0.8 0.00
Pn65k10 64 10| 0.13  0.74 8.02 | 0.15 1.94 0.45]| 0.65 1.34  0.00
Pn70k10 69 10| 0.18  0.62 7.58 | 0.20 1.32  0.46 | 0.95 1.21  0.00

Pn76k4 75 4| 0.60 - 00 0.59 -56.23 58.49| 0.58 -107.59 110.28
Pn76k5 75 5| 0.51 - 00 0.54 - 00 0.54 - 00
average 0.29 1.63 4.343| 0.58 -1.62 297 | 1.20 -4.15 5.25

formula proposed in [87] in order to account for the stochastic case by
considering p; ~ U ((l,u]) where [ = miny’, (IE(CZOl) —a\/VAR(dOi)) and
u = §max], (IE)(CZO,) + VAR(JM)). Here «, 8 are deviation parameters
within interval [0,1] which are determined by the decision maker. Obvi-
ously, the profit assigned to the depot is zero.

The number of iterations It,,,, and 1" have been set to 20 and 1200, respec-
tively. The warm — upperiod has been set to 100 iterations and the local
search is stopped after experiencing 20 inner iterations without any improve-
ment. Also, the trade-off parameter A is taken from the set {0.1, 0.5, 0.9}
and the probabilities are updated every N, = 10 iterations. Tables 2.3 and
2.4 summarize the obtained results.

The performance of the heuristic has been evaluated by comparing the solu-
tion with the one obtained by SCIP within a time limit of one hour. Columns
1, 2, and 3 refer to the name of instances, the number of nodes and the

number of vehicles, respectively. Then, for each value of A the speed up
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Table 2.4: Results for the E-instances

A=0.1 A=05 A=0.9
Instance n K |Iterated greedy SCIP |Iterated greedy SCIP |Iterated greedy SCIP
ATime AGap Opt |ATime AGap Opt |ATime AGap Opt

En22k4 21 4 2 4.03 0.00| 444 045 0.00| 4.32 249 0.00

En23k3 22 3| 393 6.04 0.00| 572 284 0.00| 443 3.76 0.00

En30k3 29 3| 0.07 -1.6 17.45| 0.16 0.57 0.00| 2.42 1.49 0.00

En33k4 32 4| 0.1 -0.63 14.04| 0.12 0.63 088 | 34 0.84 0.00

Enb1kbd 50 5| 0.38 -0.5 6.61| 041 0.51 0.56 | 2.88 0.5 0.00

En76k7 75 7| 1.63 - 00 1.6 0 1.11 | 1.61 0.51 0.38
3

En76k8 75
En76k10 75 10| 1.31 -0.13 256 | 1.28 0.34 0.26 | 3.08 0.33 0.00
En76k14 75 14| 097 0.21 164| 099 007 0.18| 1.05 0.31 0.00
average 132 071 596 | 1.8 0.6 0.38]| 2.74 1.16 0.08

146 -1.77 542 | 1.47 0 0.47 | 147 0.19 0.31

(in percentage) in the solution time (evaluated as AT'ime = %ihm‘]p x 100)
and the percentage gap of the heuristic solution with respect to the solution
provided by SCIP (evaluated as AGap = % x 100) are reported
together with the percentage optimality gap (Opt) of the SCIP solution.

By looking at the results in Tables 2.3-2.4, we observe that the heuristic
provides quite satisfying solutions with the average gap limited to 1.63%
for the P-instances. Moreover, we observe that for the most challenging
instances of Pn76k4 and Pn76k5, either SCIP could not provide any feasible
solution (verified by Opt of o) or provided low quality feasible solutions
compared with the heuristic solutions (verified by the negative AGap values).
In terms of solution time, the average speed-up (ATime) is around 0.29% for
the most complex case with A = 0.1. The decrease in the value of A, reflects a
risk-averse behavior of the decision maker and exacerbates the complexity of
the problem, since more weight is put on the non-linear part of the objective
function.

In the case of the E-instances, the average gap is limited to 1.16% and
SCIP was not able to find any feasible solution for the most challenging
instance En76k7 with A = 0.1, whereas for five out of eight remaining in-
stances the heuristic outperformed SCIP in terms of solution quality (see
column 5 of Table 2.4). In what follows we also discuss about other findings
which are not directly reported in the Tables. For instance, the proposed
heuristic provides satisfying solutions with an average gap (evaluated over
all the A values) limited to 0.83 for the E-instances and to -1.43% for the

P—instances, respectively. In addition, the proposed heuristic outperforms
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SCIP in terms of solution time, which is less than 20 seconds and on average
around 4 seconds, for the P-instances. The average solution time for the
FE-instances is around 24 seconds with a maximum value of less than 59
seconds for the instance En76k7.

The next Section will present a new model for the same problem which is
computationally more efficient and, then, we will develop a series of tailored

heuristics.

2.4 Mathematical formulation defined on a
layered graph

In this section, we present a new mathematical model which is computation-
ally more efficient than the the previous model. The main idea of the new
model is borrowed from the multi-layered based structure presented in [194].
In this work, Guillen et al. ([194]) presented an efficient new formulation,
defined on a multi-level network, for the deterministic K-traveling repair-
man problem without profits enhanced by an iterative greedy metaheuristic.
Let us define a set of levels L = {1,---,7,--, N + 1}, where N =n - K + 1 rep-
resents an upper bound on the number of demand nodes served in a path.
In any level, a copy of nodes is present, amended also with depot in levels
from 2 to N. The N + 1t level is composed of a copy of the depot. In this
network, each tour is represented by a path that ends in a first level node
and starts in a copy of the depot in some level. The level number represent
the position of the node in the path, in such a way that nodes at level 1 are
the last, nodes at level two are the second to last, at level three are the third
to last and so on. Two paths cannot visit the same node, nor in the same
level neither in different levels. Using the multilevel network, the following
decision variables are defined. Corresponding to each pair of demand node
i€V (V =V ~{0}) and visiting level r € L, a binary variable 27 is defined
taking the value 1 iff node 7 is visited at level r, and 0 otherwise. In a
similar way, the binary variable y;; is assigned to each edge (i7) such that
i€V, 7€V and takes the value 1 if edge (7j) is used to link node 7 in level
r+ 1 to node j in level r, otherwise its value is set to 0.

Defining L = L ~ {N, N + 1}, the mathematical model can be formulated as

follows.
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max: 2= Z Z =7 Hoj) Yoj + Z Z Z — Tlj yu
jev rel i€V jeV rell
J#i
(1-X) \J 00]y0]+zz Zngwyl], (2.20)
i€V jeV rel
J#i
<1, ieV (2.21)
reL
Z le =K, (2.22)
ieV
> 2w = K. (2.23)
’I"ELjeV
Yoy =aitt, ieV, rel (2.24)
jev
VESS
Yo+ 2oy =ah, jeV,rel (2.25)
iii‘g
Yoy =y, eV (2.26)
o e{0,1}, ieV,relL (2.27)
Y >0, eV, jeV, rel. (2.28)

The objective function (2.20) maximizes the total profit collected by visiting
a subset of nodes which is expressed as the difference between the revenue
and the arrival time of the visited nodes.

Constraints (2.21) require that each demand node is visited at most in
one level. Constraints (2.22) ensure that each vehicle is assigned to exactly
one demand node at the end of its tour (level 1). Constraints (2.23) impose
the dispatch of exactly K vehicles from the depot. The constraints in (2.24)-
(2.26) are the connectivity constraints and show the relation between the
binary variables z and yj;. Constraints (2.24) require that any node 7 visited
at the upper level r + 1 should be connected to exactly one upcoming visited
node (let say j) by traversing edge (ij) at the lower level 7. The constraints
(2.25) impose that any node j visited at level r should be linked to exactly
one recently visited node (let say 7) by traversing edge (z5) or linked directly
to the depot by traversing edge (0j) at the same level. Constraints (2.26)
require that each node visited at the highest level should be the first visited
node over the path which is connected to the depot by traversing edge (07)
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at the same level. The constraints in (2.27)-(2.28) express the nature of
variables.
Upper bounds

In what follows, we present three upper bounds based on those proposed
for the CumVRP by Ngueveu et al. in [188]. The idea is to sort the customers
in descending profit order and the edges in ascending expected travel time
and variance order. Let p; be the ¢t highest revenue assigned to a node and
fi. and 2 be the et lowest travel time and the et lowest variance among
all the edges, respectively.
To derive a first upper bound, we first assume that [ customers are directly
served from the depot. We notice that the number of visited nodes [ =
K,...,n, (since all the K vehicles are used and each vehicle serves at least
one customer) is not known a priori and hence, different upper bound values
ub; are separately evaluated. Considering the closest edges incident to the

depot (in this case the index used will be ¢’), the upper bound is calculated

l l l
ubt =AY 5~ Y el - (1= Ay | Y62 (2.20)
i=1 e'=1 e'=1

The final upper bound is UB' = I}f%{x (1

as follows.

In the second upper bound, the position of each edge in the path is considered
for the evaluation of the arrival time. In fact, the travel time of the first edge
appears in the evaluation of the arrival times of all the nodes serviced in the
path. For instance with K =1 and [ = 5 (five nodes serviced) the arrival time
of the edge in the first position (e = 1) is counted [ + K — e times. When we

consider K vehicles, the average number of times each edge is counted in a

. . . Ktle (I mod K
balanced solution, servicing [ customers, is [%], where the term

K+Tl_e accounts for the number of times the edge in position e is counted,

(I mod K)
K

bound can be computed as

and the term is for balancing the vehicle paths. The second upper

UbIQZAIJZl;pi_Z[K-Fl_e_‘K(.l mOdK)]ﬁe]—(l—A)\l Z([K+l_e_[§l mod K)

e=1 e=1

(2.30)
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and UB? = rﬁé{xubf.
The third upper bound is computed by differentiating the set of edges inci-

dent to the depot (e’) from those which are not incident to the depot (e).

ubf’z)\iﬁi_)\(i[K+l—e K(l mod K)] B + Z [ (;(mod K)]’ue”)_

=1

(1- )\)\l e’ K+l-¢ —Kgl mod K)]) 5+ Z ([l—e"—(fl{mod K)]) 5,
(2.31)

and UB3 = rﬁ%t{x ub?. These upper bounds will be used to evaluate the
quality of the solutions generated by the heuristic method that we shall

present in the next section.

2.4.1 The hybrid reactive greedy randomized adaptive
search heuristic

In this section, we present a hybrid heuristic, based on an iterative multi-
start algorithm called greedy randomized adaptive search heuristic (GRASP),
first introduced by Feo and Bard ([100]). In our scheme, the GRASP is made
reactive ([115, 202]), allowing to self-tune some parameters during the iter-
ations of the algorithm.

The Reactive GRASP (RGRASP) basically consists of a loop embedding
a construction phase, then hybridized with a local search phase that im-
proves the trial solution provided by the first phase. The general structure
of the RGRASP, is reported in Algorithm 3. Let g be a GRASP iteration
counter, G an upper bound on the number of iterations of the algorithm and
I'={ay,...,an} a discrete set of values for the value of the parameter a,
which is used inside the construction phase (named GRASP(«)) to control
the randomness of the GRASP. During the iterations of the algorithm, the
probability of picking a given «,,, m = 1,..., M value is self-tuned (lines
8-15), making the scheme reactive. In particular, every G,,q, iterations,
the probabilities prob(a,,), m = 1,..., M associated to the values of a € '
are updated, to increase the probability associated to the most successful o

values.
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Algorithm 3: General structure of the RGRASP

1 Input: G, G, T ={an, -, ap}
2 Initialization: Z,,,, < —00; Syap < null; prob(oy,) < 17, Zm <
0, 2m <0,V < 0Vm=1,..., M.
3 for (9=1,9<G,g++) do
4 Pick randomly av,, € {a,...,ap} according to probabilities
prob(ag,), m=1...,M
S(ms) <« GRASP (. );

6 Apply a local search obtaining a new solution s* with value
2(s%)
7 Zmx < (Zm* + Z(S*) ) s Ymx < (Vm* + 1)

if (g mod Gpee == 0) then

for (m=1,m<M, m++) do

10 if 7,, >0 then

11 Zm < ,Zy—z

12 prob(ay,) < Lzm
Yom=1 5,7

13 end

14 end

15 end

16 if 2(s%) > zpee then

17 | Smaz' < S*, Zmar < Z(S*)

18 end

19 end

20 Return: 2,,4,. Sma
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In the construction phase, a feasible solution is built, composed by a set
R = {p1,...px} of routes. The pseudo code of the construction phase is
shown in Algorithm 4.

At the beginning, all the nodes V are candidate to be inserted, and are

therefore collected into the set 4 of unvisited nodes and sorted in ascending

)\u0¢+(1—>\)03i
AD;

both the distance from the depot and the collected profit. Note that the

traveling time to reach a node and the associated profit contribute in oppo-

order with respect to the following criterion which accounts for

site fashion to the objective function (2.20). One node is then inserted into
each vehicle route, following the ordering criterion. Then, for each unvisited
node j € 4, the possibility of being inserted in any position ¢ over any route
p is evaluated on the basis of its contribution into the objective function,
denoted with §(7,4,p). After the evaluation process, the aggregated contri-
bution A; =3 ,,6(j,4,p) as well as the best position i7 and the best route p}
are stored and all the eligible nodes are put into the list of candidate nodes,
denoted by C'L. The elements in C'L are sorted following a decreasing order
since, obviously, the nodes with higher aggregated contribution are more
promising than the others. A restricted candidate list (RCL) is then built by
considering Ay, = minjecr Aj, Apar = Maxjecr, Aj, which are, respectively,
the minimum and the maximum value attained by the candidates. Hence,
the RCL contains all elements whose values are above some threshold A
defined as follows: A = A, — a(Apaz — Apin ), where av € [0,1]. Nodes with
the aggregated values greater than A are selected and added into the RCL
(lines 22-26) of Algorithm 4. Next, a random element is chosen from the
RC'L and the corresponding node is inserted in the best position in the best
route (lines 27-29) of Algorithm 4. Once the insertion is executed, the can-
didate nodes are re-evaluated and a new RC'L is built again. This stage ends
when all the nodes have been inserted. Obviously, the parameter o controls
the size of RCL, where the value of a = 0 corresponds to the deterministic
greedy algorithm, in which always the node associated with the best value
is chosen. By increasing the value of a, more candidates are added to the
RC'L, improving the chances of escaping from local optimality. The adaptive
component of the heuristic arises from the fact that the greedy algorithm is

applied at each iteration, to reflect the changes implied by the selection of
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the previous element. Algorithm 4 returns a solution s(«) representing the
set of routes built in this phase.
The adaptive local search

The local search phase to be effective must be carefully designed in order
to deeply investigate the portion of the solution space under investigation,
exploiting the specific problem structure. The problem presents, indeed, a
bi-level configuration, where the first level corresponds to a node selection
problem, whereas the second one to a cumulative routing problem over the
selected nodes. This suggests to adopt a two-level heuristic method that sys-
tematically applies two different exploration mechanisms, one for modifying
the set of served nodes— since it is not mandatory to serve all of them— and
an the other one to assign and order the nodes amongst different routes.

In the first level, since even a minor modification on the nodes to be
selected might deeply affect final results, we have implemented a systematic
exploration of 1-node neighborhoods, as a destroy mechanism. More in de-
tail, the number of nodes to be served is iteratively reduced discarding the
node with the worst contribution into the objective function, evaluated as
the difference between the objective function with and without the node.
Whenever a node is deleted, the route is repaired by connecting directly the
two ending nodes. The process terminates whenever the number of nodes in
the current solution s (denoted with [s]) falls below a given number.

An adaptive local search is then applied in the second level, where differ-
ent moves are used to systematically change the neighborhood of the search.
A scheme of the adaptive neighborhood search heuristic, performing 1" iter-
ations, is shown in Algorithm 5.

Since the objective function of the problem is non-separable and non-
additive due to the presence of the standard deviation, we propose efficient

methods to evaluate each move.

Intra-route exchange operation

This operator exchanges the position of a pair of nodes within a vehicle
route. Every pair is evaluated and the best move is then applied. In order
to evaluate the contribution of the move, let ¢ and 7 be two positions along
the route p and let [¢], [j] indicate the node that occupies position ¢, j,

respectively. Given that within the local search phase no new node is added,
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Algorithm 4: GRASP(«a): The construction phase

1 Input: A value of v € )

2 Initialization: §(a) <~null ; U< V;CL<+ @; RCL + @;
Aj«—oo,VjeV, pp < {0}, k=1,... K

3 Sort 4 in ascending order with respect to

4 for (pe R) do

Apoi+(1-N)og,
Api

X _ 2
5 c < arg min(%)
ield ¢
6 Insert ¢ in route p in the best position
7 | U<~ {c}
8 end

9 while (4 # @) do

10 for (jei) do
11 A;j <0
12 Aj « —o0
13 for (pe R) do
14 for (ie{1,2,...,length(p)}) do
15 Evaluate (7,1, p)
16 if (6(4,4,p) > A;) then
17 A; < 8(4,1,p)
18 L bp P
19 end
20 Ay« (8 +6(i.i,0))
21 end
22 end
23 CL[j] < A;
24 end
25 Sort. C'L in decreasing order based on A;
26 Apin < min Aj, Ayypp < max A
jeCL jeCL -~
27 A < Amcwc - a(Amax - Amm)
28 for (r=1,r<CL.size,++) do
29 if (CL[r]>A) then
30 | RCL<« RCLuCL[r]
31 end
32 end
33 Choose a random element Aj. in RC'L
34 Insert node j in position z]* in route p;
35 U U {7}
36 end
37 s(a) <« R

38 Return s(a)
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Algorithm 5: Scheme of the local search

1 Input: The current solution s*, T’
2 Initialization: prob, < 9—11, Yv=1,...0
3 repeat

4 fort=1toT do
5 if (t> warm-up period) then
6 | Update the selection probabilities prob,, Vv =1,...,N
7 end
8 Select a Neighborhood © according to the probabilities
prob,, Yv=1,...,MN
9 s < Local Search(s*,7)
10 if (z(s) > z(s*)) then
11 | §* < s
12 end
13 if No improvements after a certain number of iterations then
14 | Return s*
15 end
16 end
17 Apply the destroy mechanism and let 7 be the discarded node
18 Delete node 7 from s* and repair the solution s*

©

19 until |s| > [0.75n];
20 Return s*
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and the profits collected are the same, we can simplify the difference in the

objective function Az as

Az =Mz, — (1= N)(y/208 + Azga =\ [208 (2.32)

old indicates the value of the objective function variance before the

where 277
move, and Az, and Az, are, respectively, the differences in terms of ex-

pected values and variances which are defined as follows.

Azuz{ a+b+c+d, j+length(p)

a+b+c, otherwise
and ) )
{ a+b+cé+d, j+length(p)
Azaz = , 7, .
a+b+¢, otherwise
where
a (length( ) -1+ 1) (N [--1][4] [Z] ) b = (length(p) - 7’) ( Ki1fa+1] — ,Uf[i][i+1]) )
c = (length’(p) ] + 1) (,u [5-11[4] 1041 ) d = (length(p) j) (ﬂ[z 1[7+1] — /’L[j][j+1])7
a = (length(p)—i+1)? a[i 10 (l 1)1) b = (length(p) - i)?

oLt ~ Ol z’+11)’

li [
—\2 2 2
7) ("[u[m] 915

O

(p)
= (length(p) —j +1)? (O[Qj—l][i] - O[Zj—l][j]) ,d = (length(p) ’ [j+1]) :

2—opt neighborhood This moves deletes two non-adjacent edges along
the path and adds two other edges. Let consider two non-adjacent nodes
[¢] and [j]; a 2—opt move is performed by deleting edges ([i],[¢ + 1]) and
([4],[J +1]) and adding two new edges ([i],[j +1]) and ([i-1],[7]). While
the difference in the objective function is evaluated using (2.32), the terms

Az, and Az, are expressed as

Az, - { a; + by +c1, j#length(p)

ay + by, otherwise
and
Gy + by + ¢, 7+ length(p)
AZU = , 7 .
ay + by, otherwise
where

a1 = (length(p) =i+ 1) (ppiny) — 2o ) > @ = (length(p) = 5) (g = fiGa)) -
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by = X575 " (length(p) = (i + k) (Hj-k)—ke1] = Hiisk]fiske1])

ay = (length(p) —i+1)>2 (U[Qi—l][j] B U[Qi—l][i]

by = Zj o 1(length(p) [0+ k])? ( Tlj-k]lG-k+1]

Or-opt neighborhood

)’ ¢ = (length(p) - ])2( 1+1] ”[zj][jﬂ])’

2
U[i+k][i+k+1]) )

This move deletes any triple of non-adjacent edges within the route and

reconnects them by adding three new edges such that the order of middle

unchanged edges over the path is preserved. Let ([i],[i+1]), ([7],[j + 1]),
and ([k],[k+1]) be a triple of edges such that j—i>1, k—j > 1. An or—opt

move is performed by deleting the aforementioned edges and by inserting
three new edges ([i],[j + 1]), ([4], [k +1]), and ([k],[¢ + 1]). Note that the

order of the edges in this case is preserved. The difference terms of Az, and

Az, can be calculated as follows.

(L1+b1+01
Az, =
a1+bl+61+61+f1,

and

d1+bl+él—d1+é1+f17

Az, =
d1+bl+él+é1+f1,

where

= (length(p) - 1) (M[ﬂ][au] Hiifis))
1= (lenql‘h(p) - 7):“[]] [+
€)= Zl; f 1(] = 1) Ujes]ly +S+1]
ay = (length(p) - i)? ( [ZL]][j+1] - Jﬁ'][m])’

—dy+e + fi,

j # length(p)
otherwise

J # length(p)

otherwise

b = (length(p) = (i + k = 7)) B
dy = (kfn_!ﬂ‘h(ﬂ) k) (e — ,u[k][k+1])a
fl = _l_l(k ]) Hli+s][i+s+1]>

by = (length(p) — (i + k- §)) J Fli1]

_ 2 2
dy = (length(p) - k) ( k+1] 0[k][k+1])’

¢1 = (length(p) = 7)*08 15175 1
E =Y +J +2(s —length(p))) 0[2].+5][j+5+1],
fl = Z] k=) (5 - k+2(length(p) - (i + 5)) Uf¢+s][i+s+1]v

Inter-route exchange neighborhood

This move exchanges a pair of nodes belonging to two different paths. Con-

sider two routes of p;, ps € R respectively and two nodes [i] in p; and [j] in

p2. The terms of Az, and Az, are computed as follows.
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a; +by+ag + by, 1 #length(pr), s # length(ps)
ay + ag + b, i =length(p1),7 # length(p2)
Az, = ‘ .
ai + by + as, i+ length(p1),7 = length(ps)
a; + ao, otherwise
and
Gy + by + dg + 62, i+ length(p1),7 # length(ps)
As - Gy + do + b, i =length(p1),j # length(ps)
’ Gy + by + do, i #length(p1),7 = length(p2)
ay + o, otherwise
where

a1 = (length(pr) —i+ 1) (pp-ny) - Ha-np) . b = (length(py) — i (M[;][m — W) »
as = (length(pa) = 5 +1) (-1 — fig-1)) - b2 = (length(ps) — j /Im[g ~ i)
) —1)
) -

2 0.2
(4]

ar = (length(p,) —i+1) (O'[Z 1t U[QZ 1][2’])’ by = (length(p: J[i+1]
(12 = (]Pngfh(pQ) ] + 1) ( [] 1][ ] U[Qj_l][j]) ) b2 = (lengz‘h(pg ] 2 ((71 ]_,_1 0-[2] j+1]) 9
Delete-Insert neighborhood

2
[i+1] J[z

This procedure deletes a node from a path and adds it to the other one.

—a; —by+c1+ag+by+cy, % length(pr)
Az = —a; — by +ag + by + o, otherwise
and ) )
G1+ by + ¢+ dg+by+ oy i % length(py)
AZ = ’ ,
7 a1 +by +dag + by + ¢ otherwise
where ) ‘
ay = Yjoo Mk [k+1]5 by = (length(p1) — i+ 1) ppi-1ya)

cr = (length(p1) = @) (i) — Hiape)

a1 = Yyt (1 - 2(length(py) - k) Otk by = (length(py) i + D*0f gy

¢ = (length(py) - 1)* (Ufi—l][nl] Ol )

ay = X3 0 B[] by = (length(ps) = j +1) (pray) = Bi-11)
ca = (length(p2) = j +2) g1y

Gy = Yy (1 + 2(length(py) - k) Ol tke] by = (length(pz) - j +1)° (0[21‘][1] N U[Qj—l][j]) ’
¢y = (length(ps) — J + 2)20[23._1][1.].
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We should note that the performance of the proposed heuristic has been
compared with another heuristic named as the hybrid iterated local search
(HILS, for short), which is, in fact, our earlier contribution presented in the

conference paper [54]. A scheme of the HILS is presented in Algorithm 6.

Algorithm 6: Scheme of the HILS
1 Imitialization: PBL < @; prob, < 5, Vv =1,...9; prob(a,,) <

ﬁ,Vm =1,...,M; s* < null; zpee < —00; Smaz < null
2 while |[PBL| <[0.25n| do
3 Pick randomly cv,, € {a,. .., ap} according to probabilities
prob(a,), m=1.... M, s(m.) <« GRASP(a,,., PBL)

4 Adaptive local search()

5 fort=1toT do

6 if (t> Warm-up Period) then

7 Update the selection probabilities prob,, Vv =1,...,0N
8 Select a Neighborhood 7 according to the probabilities

prob,, Yv=1,...,0N

9 end
10 s* < Local Search(s(cms+), )
11 if (2(s*) > z(s(am)) then

12 S(Qumy) < 8*
13 end

14 if No improvements after a certain number of iterations then
15 | Return s*

16 end
17 end
18 if 2(s(ms)) > Zmaz then

19 || Smae < 5(Qme); Zmaz < 2(5(tms))
20 end
21 Apply the destroy mechanism and let 7 be the discarded node
PBL < PBL\U{i}

22 end
23 Return 2,0z, Smaz

2.4.2 Computational results

The proposed metaheuristic was coded in C++ and the mathematical model
was solved using the open source SCIP library, release 3.2.0. All the experi-
ments have been performed on an Intel® Core™ i7 2.90 GHz, with 8.0 GB of
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RAM memory, running under Windows operating system. To evaluate the
performance of our algorithm, we assessed the quality of the upper bounds
and of the heuristic solutions obtained by the hybrid RGRASP, with respect
to the best solution obtained by SCIP within a time limit of 3600 seconds.
The number of iterations G and T have been set to 400 and 1200, re-
spectively. The warm — up period has been set to 100 iterations and the
local search in the second level is interrupted after 20 iterations without
any improvement. Also, the trade-off parameter A is taken from the set
{0.1, 0.5, 0.9}. The « values are selected from the set I' = {0, 0.1, ---, 0.9}
and the probabilities are updated every Gp,.. = 10 iterations. In order to
study the effect of the diversification implemented within the reactive mech-
anism of the GRASP, we also run the algorithm with 7" = 1 for each value
of a € T', thus obtaining ten different solutions. This experiments allow to
disentangle the effect of the reactive mechanism of the GRASP. We have
also compared the algorithm with the results of HILS.

We have tested the heuristic approach on three set of instances, including
the P-instances ([22]), the E-instances ([77]), already tested and the largest
CMT-instances ([76, 188]) with a number of nodes and vehicles ranging from
100 - 199 and (7 - 17), respectively.

A first set of experiments has been carried out with the aim of investigat-
ing the effect of different move strategies within the local search ([196]). In
particular, we have tested the best admissible (BA) strategy, the first best
admissible (FBA) and the least best admissible (LBA). In the BA strategy,
the best admissible improving solution within the neighborhood, if any, is
chosen to update the incumbent solution, otherwise the incumbent is re-
tained. In the FBA, the first improving solution within the neighborhood is
selected, if exists, and otherwise the incumbent is retained. The LBA strat-
egy allows the move to the least improving neighbor solution, if there is any
improving one, otherwise the search over the neighborhood is terminated
without the update of the incumbent. The results of these experiments are
shown, for the instance Pn55k7 (similar results have been obtained for all
the other test cases), in Table 2.5. The table reports both the C'PU time
and the solution quality (the percentage gap evaluated with respect to the
best known feasible solution or, when SCIP is not even able to provide a

feasible solution, to the best upper bound value obtained). The results of
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Table 2.5: LBA versus BA and FBA for Pn55k7

RGRASP

A Gap% CPU
LBA 0.1 3.48 100.66
05 1.84 104.69
0.9 3.45 96.55
Ave. 292 100.63
BA 0.1 9.5 98.26
0.5 7.64 100.18
0.9 7.28 99.27
Avg. 814  99.23
FBA 0.1 3.84 105.51
0.5 4.35 100.85
0.9 4.07 103.25
Ave. 408 103.2

BA are superior, in terms of the computational time, to those provided by
the BA and LBA, but the LBA strategy, on the contrary, outperforms the
BA and FBA in terms of solution quality. In general, the LBA provides
more chance to escape from local optimality, by moving to those solutions
with the smallest improvements. On the other hand, the BA and the FBA
strategies provide better solutions in the first iterations, but are more likely
to be trapped into local-optimal solutions in the long term. To obtain good
quality solutions, we have applied the LBA strategy in the computational

experiments.

2.4.3 Results for the P-instances

Tables 2.6, 2.7, and 2.8 summarize the results obtained for the P-instances,
for different values of \. Columns 1, 2, and 3 refers to the name of instances,
the number of nodes and the number of vehicles, respectively. Columns 4-
15, classified in four categories, correspond to the HILS proposed in [54],
the RGRASP, and the GRASP. In each category, it is reported the C'PU
time (in seconds) and the percentage gap evaluated with respect to the best
known feasible solution or, when SCIP is not even able to provide a feasible
solution, to the best upper bound value obtained. The optimality gap of
SCIP has been reported in the dedicated column with heading Opt%. For
the GRASP heuristic, the average, the minimum and the maximum CPU
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Table 2.6: Results for the P-instances, A = 0.1

Instance n K HILS RGRASP GRASP SCIP
CPU Gap% CPU Gap% CPU Gap% CPU Opt%
Avg Max Min Avg Max Min
Pnl16k8 15 5| 0.23 10.28| 0.75 1.49 [0.32 0.37 0.24 1.49 1.49 1.49| 3.59 0
Pn19k2 18 2| 1.07 6.36 | 3.78 0.76 | 1.00 1.18 0.82 1.82 7.71 0.06{360.91 0
Pn20k2 19 2| 1.18 4.56 | 4.64 1.12 |1.10 1.19 1.01 0.72 1.66 0.05|471.42 O
Pn21k2 20 2| 1.52 9.01 | 5.38 0.87 | 1.28 1.46 1.15 5.75 9.6 0.42| 822.1 0
Pn22k2 21 2| 2.13 4.27 | 6.55 0.36 | 1.59 1.92 1.37 1.92 6.57 0.00| 41.9 0
Pn22k8 21 8| 0.77 4.97 | 1.58 243 [0.59 0.62 0.57 1.79 1.79 1.79| 14.3 0
Pn23k8 22 8| 0.8 2.78 | 1.93 048 [0.91 0.97 0.85 0.93 1.16 0.38 | 8.13 0
Pn40k5 39 5| 10.18 2.65 | 35.08 1.85 [7.29 7.72 6.54 1.03 1.59 0.24| 3600 7.87
Pn44k5 44 5|16.08 3.79 | 57.91 0.8 [9.13 10.08 7.9 1.09 2.79 0.15| 3600 5.35
Pnb50k7 49 7|16.36 9.57 | 90.72 0.96 [11.68 13.23 10.37 2.49 3.62 1.29| 3600 10.19
Pnb0k8 49 8| 17.8 9.2 |64.27 1.87 |10.37 12.94 7.84 2.33 5.51 0.99| 3600 9.49

Pn50k10 49 10| 17.72 6.13 | 59.4 1.22 |11.31 12.72 9.75 1.58 2.53 0.71|697.51 0
Pn51k10 50 10| 16.27 2.35 | 60.77 0.71 |12.06 15.35 10.46 1.03 1.79 0.41| 3600 2.15
Pnb5k7 54 73249 11.81(100.66 3.48 |15.77 18.07 13.67 3.64 5.34 2.56| 3600 9.36
Pn55k8 54 8125.64 9.81 [95.28 2.73 |16.01 17.8 12.78 2.07 3.32 0.60| 3600 10.03
Pn55k10 54 10| 24.99 12.9 | 80.03 2.32 [13.36 16.55 9.85 3.02 5.61 1.38|156.49 0
Pnb55k15 54 15 17.62 7.73 | 51.75 1.8 [13.28 13.96 12.59 0.99 1.52 0.42| 3600 7.82
Pn60k10 59 10| 32.12 6.56 [127.78 1.12 |17.67 20.56 14.07 2.45 4.24 0.93]595.33 0
Pn65k10 64 10| 43.74 4.3 [168.01 1.09 |20.81 23.12 17.82 1.30 2.6 -0.04| 3600 8.02
Pn70k10 69 10| 57.53 5.66 (227.97 1.49 |29.11 32.88 25.8 1.63 2.57 0.17| 3600 7.58
Pn76k4 75 4 (147.96 2.38 |485.79 2.29 |73.01 77.51 65.75 2.25 2.7 1.97| 3600 -
Pn76k5 75 5(138.99 1.78 |452.06 1.74 |59.01 64.92 51.71 1.79 1.98 1.68 | 3600  —
Avg 28.33 6.31 99.19 1.50 14.85 16.60 12.86 1.96 3.53 0.80

and percentage GAP values Gap%, obtained by running the GRASP with
all the « values in I', have been also reported.

First, we benchmark the performance of the RGRASP algorithm and SCIP
on these instances. A first general observation is that the results are influ-
enced by the parameter \: by decreasing its value more weight is put on the
non-linear part of the objective function, reflecting a risk-averse behavior of
the decision-maker. This claim is supported by the increase in the solution
gap and the C'PU times of the heuristic as well as SCIP. The heuristic per-
forms nearly as good as SCIP in very short times. The highest C'PU time
of the heuristic is around 500 seconds, for the instance Pn76k4 with A = 0.9.
In general, the heuristic is much faster with a percentage speedup of 91.5%,
82.5%, and 64%. respectively for A = 0.1,0.5, and 0.9. We observe that the
greatest improvement in the C'PU time spent is achieved for the instances
reflecting a risk-averse behavior of the decision maker (small A values). The
gaps are very small, regardless the value of A and always below 4. When the
number of the nodes increases to 75, the heuristic outperforms SCIP also in

terms of the solution obtained (we report in this case a negative gap).
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Analyzing the performance of the GRASP with and without the reactive
mechanism, reported in columns 8-13, we observe that the best solution
obtained by the GRASP (which corresponds to a given fixed value of «)
might be better than the one obtained with the reactive mechanism. We
should consider that the best solution has been obtained by running the
algorithm with all the ten different values of a and therefore, the total time
spent is the average time (for instance, 14.85 seconds for A = 0.1) multiplied
by ten. Hence, a slightly better solution could be obtained by using GRASP
with many values of a (considering the best solution over all the runs), but
at the cost of a 50% C'PU time increase, on average. Moreover, the worst
solution can deteriorate the quality of the solution considerably, especially
for A = 0.1 and the deviation can be remarkable. For example for the instance
Pn21k2, the worst gap is around 10% and the deviation between the max
and the min gap found by the GRASP over ten runs with different values
of av is 9.18%. On average the deviation is around 2.73% for A = 0.1, and
around 1.5% for the other values of \.

The HILS approach proves to be successful in terms of time efficiency;,
but the solution quality deteriorates especially for A = 0.1 (the average gap
in this case is 6.31%). We observe that as A increases, the average gap of
the local search exhibits a downward trend, going from 6.31% to -1.35%.
This might suggest to limit the use of the HILS heuristic to risk-neutral
problems. As far as the time performance is concerned, we observe that the
HILS heuristic is faster than the RGRASP, with an average C'PU time of
less than 30 seconds.

Finally, we have investigated the quality of the upper bounds proposed in
Subsection 2.4. In Table 2.9, we have reported the gaps between the best ob-
jective values obtained either by SCIP or by the heuristic ( Best objective value),
and the upper bounds UB?, i =1,...,3, calculated as

UDB? — Best objective value

Al = x 100

Best objectivevalue
The first upper bound outperforms the third one in 15 out of 66 instances,
although on average the third upper bound provides slightly better gaps
(2.88% of improvement). The second upper bounds seems to be dominated
by the other two. The quality of the upper bound improves as far as the

number of nodes increases. For example, considering as a threshold a number
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Table 2.7: Results for the P-instances, A = 0.5

Instance n K HILS RGRASP GRASP SCIP
CPU Gap% CPU Gap% CPU Gap% CPU Opt%
Avg Max Min Avg Max Min
Pnl6k8 15 5| 0.33 3.78 | 0.86 0.77 | 0.28 0.34 0.22| 1.01 1.01 1.01 | 1.99 0
Pn19k2 18 2| 0.96 248 | 3.92 0.65 |0.94 1.32 0.8 0.54 086 0.18 | 16.13 0
Pn20k2 19 2| 1.35 4.35 | 4.72 2.57 |1.20 1.31 1.08| 2.12 4.17 1.47 | 35.97 0
Pn21k2 20 2| 1.62 6.71 6.1 3.99 | 1.32 1.44 1.16| 0.60 1.63 0.00 | 32.49 0
Pn22k2 21 2| 1.9 444 | 6.47 058 [1.77 2 1.46| 1.29 3.26 0.27 | 45.68 0
Pn22k8 21 8| 0.54 2.32 1.4 048 |0.65 0.67 0.63| 0.09 0.09 0.09 | 8.7 0
Pn23k8 22 8| 0.75 1.34 | 1.92 0.21 |0.77 0.87 0.69| 0.19 0.21 0.06 | 6.53 0
Pn40k5 39 5| 11.1 2.7 |3571 0.58 |6.86 8.12 5.9 1.06 1.84 0.63 [921.45 O
Pnd4k5 44 5| 17.27 2.71 | 58.07 1.03 |9.49 10.6 845| 1.15 1.76 0.52 | 3600 0.56
Pnb50k7 49 7|18.93 8.25 |95.13 2.08 [12.33 14.15 8.93 | 1.94 3.43 0.74 | 3600 0.75
Pnb0k8 49 8|20.47 5.07 | 68.31 0.93 [11.06 13 8.86 1.64 2.96 0.36 |639.97 0

Pn50k10 49 10| 17.49 4.76 | 59.12 1.8 |11.73 12.42 11.02] 1.34 2.11 0.33 | 3600 0.14
Pn51k10 50 10| 15.75 1.35 | 59.74 0.31 |11.85 16.55 8.7 | 0.47 0.63 0.37 |104.93 0
Pnb5k7 54 7]28.08 6.69 [104.69 1.84 |16.01 17.9 12.85| 2.56 5.17 1.17 | 3600 0.66
Pn55k8 54 8| 26.6 4.55 | 91.93 0.99 |15.64 17.89 13.08] 2.35 3.38 1.08 | 3600 0.53
Pn55k10 54 10| 21.77 9.2 | 78.84 1.6 [13.67 15.85 11.82| 1.80 2.9 0.46 |215.05 O
Pnb55k15 54 15| 17.28 4.37 | 54.41 0.53 [13.49 14.56 11.88| 1.02 1.42 0.76 | 85.63 0
Pn60k10 59 10| 27.74 4.74 {123.29 1.24 |17.75 20.05 16.59| 1.64 2.75 0.74 | 3600 0.42
Pn65k10 64 10| 45.14 4.75 [169.33 2.1 |21.56 26.11 16.26] 1.65 3.05 0.46 | 3600 0.45
Pn70k10 69 10| 63.01 4.3 [238.03 1.51 |30.73 33.8 26.15| 1.84 2.62 1.12 | 3600 0.46
Pn76k4 75 4(162.97 -56.45(497.04 -56.61|73.80 81.58 69.93]-56.35 -56.02 -56.73| 3600 58.49
Pn76k5 75 5(136.95 1.22 |444.04 1.21 [59.06 66.6 43.5| 1.42 1.69 1.20 | 3600 —
Avg 29.00 1.53 100.14 -1.35 15.09 17.14 12.73 -1.30 -0.41 -1.99

of nodes equal to 30, we observe that when the number of nodes is below the
threshold, the average gap of the best upper bound is around 3.87%, and
that it decreases to 0.31% when the number of nodes exceeds the threshold.
Over all the instances, the average gap of the best upper bound is around
5%. As far as the computational time is concerned, it is neglectable in all

the three cases.

2.4.4 Results for the E-instances

The computational results for the E-instances are reported in Tables 2.10,
2.11, and 2.12. The RGRASP is capable to obtain good quality solutions
with an average gap around 0.5% for all the three values of A and always
less than 1.44% (instance En51k5 with A = 0.5). The average running time
required by the heuristic method to solve all the tested instances is approxi-
mately equal to 9%, 11%, and 17% of the time required by the SCIP solver,
for A = 0.1,0.5, and 0.9, respectively. While the heuristic algorithm com-

pletes its runs in less than 160 seconds, on average, SCIP takes close to
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Table 2.8: Results for the P-instances, A = 0.9

Instance n K HILS RGRASP GRASP SCIP
CPU Gap% CPU Gap% CPU Gap% CPU Opt%
Avg Max Min  Avg Max  Min

Pnl16k8 15 5| 0.28 3.47 | 0.81 0.85 | 0.35 0.42 0.25 0.85 0.85 0.85 1.96 0
Pn19k2 18 2| 1.23 247 | 3.93 0.11 | 1.08 1.24 0.85 0.2 0.58 0.11 |16.77 0
Pn20k2 19 2| 1.46 2.32 4.71 1.07 | 1.21 1.36 1.05 0.43 1.07 0.00 | 19.62 0
Pn21k2 20 2| 1.64 2.23 6.34 0 1.30 1.44 1.18 0.71 2.9 0.00 |25.91 0
Pn22k2 21 2| 2.12 337 | 646 0.41 |1.73 1.93 1.55 0.72 3.56  0.20 | 25.89 0
Pn22k8 21 8| 0.65 2.39 1.55 0.33 | 0.75 0.79 0.73 0.51 0.51 0.51 | 8.92 0
Pn23k8 22 8| 0.84 1.47 | 1.94 0.31 | 0.68 0.69 0.66 0.15 0.15 0.15 | 6.04 0
Pn40k5 39 5| 8.83 2.75 |35.22 0.71 |6.89 7.57 6.24 1.31 248 0.56 [160.83 0
Pn44k5 44 5| 15.18 2.48 |56.25 1.07 |9.29 10.94 7.47 1.06 1.58 0.42 |379.37 0
Pn50k7 49 7]19.95 5.61 |96.26 0.82 |11.86 13.73 8.83 1.57 298 0.59 |310.64 O
Pnb0k8 49 8| 19.65 5.12 |67.86 1.72 |11.26 12.35 9.97 1.42 2.11 0.64 |205.71 0
Pn50k10 49 10| 17.51  3.61 |59.24 1.36 |11.58 12.25 10.79 0.87 1.56 0.52 | 63.52 0
Pn51k10 50 10| 17.58 1.65 | 62.33 0.64 |12.07 18.56 9.85 0.54 0.77 0.34 |122.08 0
Pnb5k7 54 7|24.07 7.46 |96.55 3.45 |15.09 18.44 10.69 2.53 3.98 0.85 425,51 0
Pn55k8 54 8|27.89 5.44 |96.82 1.73 |17.16 18.28 16.09 2.7 3.86 1.28 |301.08 O
Pn55k10 54 10| 20.7 7.5 | 7782 0.98 |13.45 15.8 10.99 1.62 4.1 0.71 |98.08 0
Pnb5k15 54 15| 17.11  4.61 | 55.55 0.54 |13.09 13.91 11.31 1.05 1.86 0.65 |100.10 0
Pn60k10 59 10| 27.65 4.23 [127.78 1.05 |17.16 20 14.56 1.28 2.4 0.65 |170.62 0
Pn65k10 64 10| 45.42 4.4 [168.98 1.45 |21.62 25.69 18.53 1.69 2.66 0.46 |858.86 0
Pn70k10 69 10| 57.49 4.65 [230.62 1.6 |29.84 34.02 25.11 1.78 2.69 1.01 |728,51 0
Pn76k4 75 4|173.45 -108.27505.08 -108.46|74.20 77.46 65.24|-108.241 -107.83 -108.57| 3600 110.28
Pn76k5 75 5(126.66 1.27 [438.49 1.26 |61.75 68.57 51.78 1.34 1.5 1.12 | 3600 —

Avg 28.52 -1.35 100.03 -3.95 15.16 17.07 12.90 -3.81 -2.89 -4.41 579.78 5.25

one hour for the largest test instances (more than 30 nodes), especially for
risk-averse problems.

It is apparent that the use of the reactive strategy achieves more reliable
solutions compared to the one without. More specifically, the results are
improved by 0.28%, on average, when the reactive mechanism is executed.
In addition, the solutions obtained for different values of a can be really
different, with a maximum variation of around 6% for the test problem
En23k3 with A =0.1.

The HILS heuristic provides roughly satisfying solutions with the average
gap limited above by 2.63%.

Analyzing the effect of the parameter A, the decrease in the value of A,
makes the problem more involved, as we have already observed for the P-
instances. This claim is supported by the increase in the solution gap and
the C'PU times of the results of the proposed heuristics as well as the SCIP

solutions.
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Table 2.9: Upper bound performance for the P-instances

Instance n K A Al A A3 Best A
Pnl16k8 15 5 0.1 12.78 40.02 7.6 7.6
0.5 4.21 23.35 3.13 3.13
0.9 3.39 21.59 3.02 3.02
Pnl1l9k2 18 2 0.1 19.31 15.96 8.87 8.87
0.5 10.73 8.23 4.71 4.71
0.9 9.72 7.31 4.13 4.13
Pn20k2 19 2 0.1 24.88 16.93 8.54 8.54
0.5 11.01 5.58 2.21 2.21
0.9 11.56 6.30 3.28 3.28
Pn21k2 20 2 0.1 26.84 12.20 5.92 5.92
0.5 17.81 7.28 3.82 3.82
0.9 16.81 6.77 3.61 3.61
Pn22k2 21 2 0.1 14.33 9.03 5.21 5.21
0.5 8.98 4.70 2.37 2.37
0.9 8.51 4.41 2.26 2.26
Pn22k8& 21 8 0.1 2.87 20.16 5.49 2.87
0.5 2.04 13.33 1.77 1.77
0.9 1.90 12.59 1.34 1.34
Pn23k8 22 8 0.1 3.17 15.47 2.11 2.11
0.5 1.34 10.16 2.57 1.34
0.9 1.20 9.61 2.61 1.2
Pn40k5 39 5 0.1 12.79 9.49 6.42 6.42
0.5 7.88 5.15 3.72 3.72
0.9 7.47 4.80 3.53 3.53
Pn44k5 44 5 0.1 10.52 6.61 5.03 5.03
0.5 7.37 4.44 3.38 3.38
0.9 7.05 4.21 3.21 3.21
Pn50k7 49 7 0.1 14.39 16.33 10.66 10.66
0.5 9.12 10.17 6.97 6.97
0.9 8.60 9.54 6.59 6.59
Pn50k8& 49 8 0.1 11.63 16.06 9.93 9.93
0.5 7.06 9.51 5.89 5.89
0.9 6.60 8.84 5.47 5.47
Pn50k10 49 10 0.1 6.93 14.65 7.62 6.93
0.5 4.44 9.33 4.93 4.44
0.9 4.07 8.64 4.52 4.07
Pn51k10 50 10 0.1 2.98 4.38 2.51 2.51
0.5 2.00 2.83 1.48 1.48
0.9 1.89 2.72 1.36 1.36
Pn55k7 54 7 0.1 15.26 15.10 10.42 10.42
0.5 9.75 9.27 6.04 6.04
0.9 9.20 8.80 5.65 5.65
Pn55k8 54 8 0.1 12.61 15.09 9.66 9.66
0.5 7.44 9.57 5.96 5.96
0.9 6.95 9.05 5.62 5.62
Pn55k10 54 10 0.1 12.51 23.20 13.23 12.51
0.5 8.07 15.19 8.42 8.07
0.9 7.46 14.41 7.75 7.46
Pnb55k15 54 15 0.1 7.03 26.29 13.16 7.03
0.5 4.05 18.32 9.25 4.05
0.9 3.68 17.42 8.76 3.68
Pn60k10 59 10 0.1 12.12 19.53 11.1 11.1
0.5 7.70 13.45 7.97 7.7
0.9 7.18 12.75 7.57 7.18
Pn65k10 64 10 0.1 9.12 13.11 7.66 7.66
0.5 5.54 9.20 4.93 4.93
0.9 5.29 &8.91 4.78 4.78
Pn70k10 69 10 0.1 10.65 13.20 9.88 9.88
0.5 6.38 8.94 6.32 6.32
0.9 6.03 8.59 6.08 6.03
Pn76k4 75 4 0.1 6.17 2.13 2.01 2.01
0.5 .91 1.61 1.54 1.54
0.9 4.63 1.43 1.36 1.36
Pn76k5 75 5 0.1 4.41 1.87 1.7 1.7
0.5 3.37 1.30 1.21 1.21
0.9 3.23 1.22 1.14 1.14
Avg 8.29 10.87 5.41 5.02




Table 2.10: Results for the E-instances, A = 0.1

Instance n K HILS RGRASP GRASP SCIP

CPU Gap% CPU Gap% CPU Gap% CPU Opt%
Avg Max Min Avg Max Min

En22k4 21 4099 596| 3 .53 0.29 |1.02 1.32 0.78 |0.64 2.64 0.29(26.95 0
En23k3 22 3|1.84 745 |5 .76 1.58 |1 .25 1.63 1.04|3.14 6.62 0.66 [18.56 0
En30k3 29 3|561 3.6 |1625 -1.84|3 .38 3.9 3.09|-1.07 0.02-2.40| 3600 17.45
En33k4 32 4| 63 1.19 | 1 88 0.06 |3 .97 45 3.2 |-0.32 1.18 -1.41|3600 14.04
In51k5 50 5(22.93 2.79 |8 6.89 2.2 |13.61 15.61 10.77|0.85 1.46 0.18| 3600 6.61
En76k7 75 7 |108.8 3.77 |371.74 3.22 |48.82 53.17 43.85|3.86 4.74 3.45|3600 -
En76k8 75 8 [95.38 -1.73 |366.75 -2.01 |41.45 49.39 32.05|-1.54 -1.08 -1.88| 3600 5.42
En76k10 75 10|85.95 0.33 | 3 25.4 0.09 |43.30 45.46 37.27|0.34 0.64 0.10| 3600 2.56
En76k14 75 14|62.26 0.27 |2 43.2 0.1 [32.93 36.96 29.94|0.40 0.6 0.22| 3600 1.64

Avg 43.34 2.63 159.81 0.41 21.08 23.55 18.00 0.70 1.87 -0.09

Table 2.11: Results for the E-instances, A = 0.5

Instance n K HILS RGRASP GRASP SCIP

CPU Gap% CPU Gap% CPU Gap% CPU Opt%
Avg Max Min Avg Max Min

En22k4 21 4| 1.13 3.18 | 3.76 0.98 | 1.13 1.22 1.06 |0.861 2.87 0.35| 16.44 0
En23k3 22 3| 1.79 218 | 5.79 0 |1.33 1.68 1.11] 1.63 3.98 0.84| 15.73 0
En30k3 29 3| 544 224 |17.01 0.35 [3.50 4.06 2.85| 0.89 2.36 0.35/1885.35 0
En33k4 32 4| 712 122 |20.53 0.62 |4.14 4.54 3.59| 1.68 2.63 1.08| 3600 0.88
En51k5 50 529.03 2.97 | 93.77 1.44 |13.87 17.23 11.53| 1.12 1.45 0.61| 3600 0.56
En76k7 75 7(112.89 0.07 | 381 -0.27 [46.20 55.22 39.05| 0.31 0.51 0.09| 3600 1.11
En76k8 75 8 |96.15 1.12 |358.16 0.86 (42.24 48.57 34.69| 0.76 1.4 0.49| 3600 0.47
En76k10 75 10| 86.96 0.58 [323.98 0.45 |43.82 46.08 39.38| 0.53 0.67 0.43| 3600 0.26
En76k14 75 14| 64.17 0.25 [248.58 0.16 |32.55 34.57 30.49| 0.29 0.38 0.16| 3600 0.18

Avg 44.96 1.53 161.40 0.51 20.98 23.69 18.19 0.90 1.81 0.49

Table 2.13: Upper bound performance for the E-instances

Instance n K A Al A2 A3 Best A
En22k4 21 4 0.1 16.76 1994 15.14 15.14
0.5 10.88 12.52 10.5 10.5

0.9 10.2 11.69 9.93 9.93

En23k3 22 3 0.1 21.23 26.57 17.17 17.17
0.5 1447 1596 12.09 12.09

0.9 13.87 1493 11.58 11.58

En30k3 29 3 0.1 16.14 27.52 23.13 16.14
0.5 9.48 17.24  14.57 9.48

0.9 8.81 16.13  13.62 8.81

En33k4 32 4 0.1 8.82 29.23 9.63 8.82
0.5 2.76 17.14 6.5 2.76
0.9 2.09 15.88 6.12 2.09
0.1 11.61 6.69 5.44 5.44
0.5 7.56 3.41 2.75 2.75
0.9 7.21 3.13 2.54 2.54
En76k7 75 7 0.1 5.44 3.86 3.33 3.33
0.5 3.79 2.49 2.15 2.15

0.9 3.52 2.26 1.93 1.93

En76k8 75 8 0.1 4.43 3.79 3.13 3.13
0.5 2.79 2.29 1.86 1.86

0.9 2.73 2.25 1.84 1.84

En76k10 75 10 0.1 2.81 3.48 2.63 2.63
0.5 1.7 2.19 1.59 1.59

0.9 4§ 2.06 1.49 1.49

En76k14 75 14 0.1 1.06 3.17 1.91 1.06
0.5 0.73 2.37 1.41 0.73

0.9 0.67 2.26 1.34 0.67

Avg 7.15 10.02 6.86 5.84

En51k5 50

(S




Table 2.12: Results for the E-instances, A = 0.9

Instance n K HILS RGRASP GRASP SCIP

CPU Gap% CPU Gap% CPU Gap% CPU Opt%
Avg Max Min Avg Max Min

En22k4 21 4| 1.29 219 | 3.92 0.19 [1.02 1.32 0.78|0.925 1.54 0.19] 18.05 0
En23k3 22 3| 2.12 495 | 6.18 2.5 |1.25 1.63 1.04| 2.12 3.09 0.42| 21.43 0
En30k3 29 3| 5.65 248 |16.48 0.89 |3.38 3.9 3.09| 0.98 2.350.17| 128.36 0
En33k4 32 4| 6.72 134 |19.94 0.74 [3.97 4.5 3.2 | 1.31 2.380.54| 123.18 0
En51k5 50 5 |25.22 238 | 91.66 0.77 [13.61 15.61 10.77| 1.18 2.32 0.36] 520.88 0
En76k7 75 7 (107.73 0.77 |375.76 0.43 |48.82 53.17 43.85| 0.71 0.99 0.50| 3600 0.38
En76k8 75 8 (90.49 1.17 | 362.8 0.92 [41.45 49.39 32.05| 0.69 0.96 0.49| 3600 0.31
En76k10 75 10| 92.19 0.72 |327.18 0.45 |43.30 45.46 37.27| 0.47 0.6 0.33|1539.27 0
En76k14 75 14| 70.77 0.28 (254.77 0.19 [32.93 36.96 29.94| 0.25 0.35 0.16/1436.60 0

Avg 44.69 1.81 162.08 0.79 21.08 23.55 18.00 0.96 1.62 0.35

In Table 2.13 the gaps between the best objective values obtained either
by SCIP or by the heuristic (Bestobjectivevalue), and the upper bounds
proposed in Subsection 2.4 have been reported for the E-instances.

The first upper bound outperforms the third one in 9 out of 27 instances.
The third upper bound provides, on average, slightly better gaps (less than
0.3% of improvement). The second upper bounds seems to be dominated
by the other two, as for the P-instances. As before, the quality of the up-
per bound improves as far as the number of nodes increases. For example,
considering as a threshold a number of nodes equal to 30, we observe that
when the number of nodes is below the threshold, the average gap of the
best upper bound is around 10.3%, and that it decreases to 2.2% when the
number of nodes exceeds the threshold. Over all the instances the average

gap of the best upper bound is around 5.84%.

2.4.5 Large size instances

Further computational tests have been carried out on larger size instances,
with up to 199 customers and 17 vehicles. SCIP was not able to find a
feasible solution within four hours and went out of memory, so we did not
try longer time limit. For this reason, we have omitted the corresponding
columns and we only report the results for RGRASP heuristic to serve as a
benchmark for future comparisons. The gaps have been obtained considering
the best upper bound, hence the actual optimality gap is possibly less than

the one reported.
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Table 2.14: Results for the CMT-instances

Instance n K A\ RGRASP

CPU Gap%
CMT3 100 8 0.1 569.1 1.29
CMT3 100 8 0.5 570.09 1.13
CMT3 100 8 0.9 570.05 1.17
CMT4 150 12 0.1 820.6 0.62
CMT4 150 12 0.5 1539.78 0.46
CMT4 150 12 0.9 795.31 0.45
CMT5 199 17 0.1 1918.91 0.32
CMT5 199 17 0.5 1858.53 0.24
CMT5 199 17 0.9 1902.41 0.23
CMT11 120 7 0.1 639.84 0.64
CMT11 120 7 0.5 733.11 0.38
CMT11 120 7 0.9 604.13 0.34
CMT12 100 10 0.1 542.81 0.95
CMT12 100 10 0.5 560.73 0.56
CMT12 100 10 0.9 558.65 0.6
Avg 945.6 0.63

The results in Table 2.14 show that the RGRASP metaheuristic is relatively
stable in terms of solution quality but its running time becomes important

on the largest instances with 199 demand nodes.

2.4.6 Deterministic K-TRPP

The K-TRPP under risk is a generalization of the deterministic TRPP. In
this section, we apply our metaheuristic to solve instances of the TRPP, that
will therefore constitute a new benchmark for this class of problems. The
results are shown in Tables 2.15 and 2.16 for the P- and the E-instances,
respectively. We report in this case also the objective function value and the
number of visited nodes (#) obtained by both the heuristics and SCIP. In
particular, for the GRASP, we report the best, the worst, and the average
values of the objective function (OFpest, OFyorst and OFg,, respectively),
obtained by running the GRASP with different a values.

For the P-instances, first of all we should note that SCIP is able to find
the optimal solution in all but the last two instances (Pn76k4 and Pn76k5),
for which feasible solutions are found with an optimality gap of 6.54 and 1.11,

respectively. The average solution times are smaller than those obtained for
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the stochastic counterparts. The gap is in general smaller for the determinis-
tic instances and for a few instances (namely Pn20k2, Pn21k2, and Pn22k2)
the GRASP heuristic finds the optimal solution, for a given value of a. As
far as the E-instances are concerned, we notice that SCIP is able to solve
all but two instances to optimality within the time limit. These results are
to some extent expected, since we can observe the same behavior in Table
2.12 for a value of A = 0.9, which in fact assigns a low weight (A = 0.1) to
the variance of the objective function. Also in this case, the time spent for
solving the deterministic problem heuristically is lower than that required
by the mean-risk problem. We finally notice that the performance of the
heuristic is still satisfying in terms of gap, even though it is not tailored to

the solution of the deterministic problem.

Table 2.15: Results for the deterministic P-instances

RGRASP GRASP SCIP

Instance| OF # CPU Gap%|OFjest CPUpst OFworst CPUporst OFavg CPUuuy Gap%| OF # CPU Gap¥
Pnl6k& | 691 13 0.9 0.86 691 0.26 691 0.35 691 0.31 0.86 | 697 13 2.64 0
Pulok2 | 2706 15 3.51 0.11 | 2706  0.58 2706 1.1 2706 0.85  0.11 | 2709 15 2099 0
Pn20k2 | 2692 17 3.75 1.07 | 2721 1.06 2692 1.36 2715.2 1.24 0 2721 17 18.16 0
Pn21k2 | 2026 18 4.54 4.21 | 2115 1.03 2045 1.44 2088.9 1.27 0 2115 17 19.72 0
Pn22k2 | 3891 18 6.32 0.15 | 3897 1.28 3754 1.78 3867 1.53 0 3897 18 14.86 0
Pn22k& | 1850 18 1.41 0.32 | 1843 0.55 1843 0.81 1843 0.65 0.7 | 1856 18 4.27 0
Pn23k& | 2594 20 1.98 0.15 | 2594 0.68 2593 0.93 2593.2 0.85 0.15 | 2598 20 7.75 0
Pud0k5 | 6463 34 3157 2.09 | 6540 532 6472 7.22 6499  6.40  0.92 | 6601 34 141.59 0
Pnd4k5 | 9627 38 51.37 1.21 | 9672 5.46 9608 9.46 9646.1 7.84 0.75 | 9745 37 322.71 0
Pnb0k7 | 4025 42 65.55 1.25 | 4037 12.59 3942 21.79 3986.4 16.91 0.96 | 4076 40 315.6 0
Pus0ks | 4119 43 60.68 0.79 | 4116 10.77 3987  62.23 40741 19.32  0.87 | 4152 41 128.02 0
Pus0k10| 4228 43 53.29 0.59 | 4227 9.64 4187  11.64 42029 10.7  0.61 | 4253 43 62.66 0
Pn51k10({11962 43 59.32 0.61 | 11981 14.25 11933 16.86 11969.3 14.98 0.46 |12036 44 97.6 0
Pus5k7 | 4529 46 89.74 1.01 | 4528 11.65 4436 15.60  4504.7 13.65 1.03 | 4575 46 327.31 0
Pn55k® | 4601 46 86.42 1.5 4642 11.63 4506 16.65 4585.1 13.89 0.62 | 4671 47 165.21 0
Pn55k10| 2770 45 78.06 1.6 2797 10.40 2718 15.04 2772.2 12.75 0.64 | 2815 47 93.83 0
Pub5k15| 2897 46 46.87 0.69 | 2897 9.62 2874 12.41 2888.9 11.65  0.69 | 2917 48 102.6 0
Pn60k10| 4121 53 115.55 0.91 | 4102 12.26 4002 18.35 4071.9 15.51 1.37 | 4159 53 221.53 0
Pn65k10| 5996 56 153.17 1.46 | 6006 16.74 5923 20.71 5955.3  18.96 1.3 | 6085 55 621.98 0
Pn70k10| 6716 58 214.36 1.6 6766  22.90 6630 28.77 0693.8  25.73  0.86 | 6825 56 529.39 0
Pu76kd [60937 73 427.46 -5.5 | 60962 58.00 60775 81.09 60875.9 64.93 -5.55 57759 75 3600 6.54
Pn76k5 (61735 74 385.38 -0.37 | 61870 41.09 61536 83.30 61711.3 54.73 -0.59 |61506 74 3600 1.11

Avg 8824 0.74 11.72 19.50 1446 0.31 47356 0.35
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Table 2.16: Results for the deterministic E-instances

RGRASP GRASP SCIP

Instance| OF # CPU Gap |OFyest CPUpest OFyorst CPUyorst OFung # CPUgyg Gap| OF # CPU Gap
En22k4 | 2300 18 3.51 0.9 | 2317 0.86 2285 1.38 2301.4 19 1.08 0.17{2321 20 14.95 0
En23k3 | 3564 19 5.65 2.44 | 3638 1.10 3541 1.42 3593.2 20 1.25 0.41] 3653 19 20.33 0
En30k3 | 5468 27 13.82 0.71| 5463 2.66 5394 3.44 5449.1 25 3.06 0.8 | 5507 27 924 0
En33k4 13517 31 17.28 0.79 13551  3.20 13411 4.08 13480.1 32 3.63 0.54[13624 31 130.84 0
En51k5 |11620 46 78.51 0.93 | 11655 10.15 11557 15.05 11602.7 45 12.3 0.63[11729 46 420.52 0
En76k7 |28770 72 346.64 -0.14| 28667  36.69 28500 45.82  28594.8 75 39.55 0.22|28731 72 3600 0.73
En76k& |29010 72 324.61 0.29 | 28939  33.06 28805 41.95  28863.8 75 37.31 0.53|29093 72 3600 0.12
En76k10|29258 72 347.16 0.43 [ 29249 31.42 29132 40.25  29211.7 75 37.36 0.46|29385 72 1326.53 0
En76k14(29628 72 227.02 0.09 | 29604  24.86 29513 32.31  29567.6 75 27.3 0.17(29654 72 623.15 0

Avg 151.58 0.72 16.00 20.63 18.09 0.44 1092.08 0.09

2.5 Conclusions and future research directions

We addressed the K-TRPP under uncertain travel times, which is an im-

portant problem in many customer-centric real-world applications. We de-

veloped different metaheuristics, tailored to cope with the peculiarities of

the problem at hand and a local search procedure based on different effec-

tive moves. To enhance the performance, a move evaluation procedure over

different neighborhood structures has been also introduced which speeds up

the heuristic performance. The computational results show that our heuris-

tics are able to provide good solutions, even when SCIP is not able to reach

any feasible solution in 4 hours. In these cases, the proposed upper bound-

ing procedures facilitated the assessment of the quality of the metaheuristic

solutions.
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Chapter 3

Uncertain latency-based
routing problem with service
level constraint: an application
to disaster relief

3.1 Introduction and motivation

Based on the world disaster report published in 2016, from 2006 to 2015,
about 1,917,556, 951 people have been affected by different types of disasters
all over the world ([11]). The total amount of estimated disaster damage
during this time period is estimated to be about 1,424,814, 000,000 dollars.
Only within the years 2006 to 2015, about two billion people, all over the
world, have been somehow affected by disasters that caused about one and
a half trillion dollars of economic losses and many damages. The increasing
growth in the number of natural and man-made disasters and the dramatic
consequences on vulnerable population have put an increasing pressure on
the operational research community to investigate different aspects related
to the disaster management with the aim of providing effective supporting
tools.

The use of mathematical modeling to tackle disaster management prob-
lems dates back to the 1950s, when the focus was on determining the optimal
location for fire-fighting resources [255]. Later on, Knott developed pioneer-
ing vehicle routing models for relief management ([144, 145]). From that
time, hundreds of papers have been published to create a consolidated stream

of research on the emergency or humanitarian logistics which is fostered ev-
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ery year by new and interesting contributions. The readers are referred,
for example, to the survey papers ([64, 198]) for a general introduction on
the topic. The emergency logistics literature is typically classified according
to whether the disaster operations are performed before or after a disaster.
Strategic planning problems, as facility location and stock pre-positioning
and/or disaster mitigation and evacuation problems, play an instrumental
role prior to the disaster occurrence (i.e. in the pre—disaster phase). After
disaster occurrence (i.e. in the post—disaster phase) operational decisions
should be planned and coordinated. These include last mile distribution of
relief goods (such as medicine, food, water), and the routing of the rescue
teams to affected areas.

Particularly, we focus on relief routing operations, which are recognized as
a key element in the post—disaster phase with a crucial impact on the success
level of the relief operations ([61]). The relief routing problem in the post-
disaster exhibits distinguishing characteristics from routing in the business
sector, and poses new challenges, as highlighted, for example, in [157]. First
of all, commercial routing problems are known to be server—centric and cope
with cost—based objectives, whereas humanitarian relief logistic operations
are inherently customer—centric in the sense that customers’ satisfaction and
their priorities should be addressed.

Secondly, in the disaster emergency response context, the responsiveness
is known as a common performance measure which leads to enhanced safety
and welfare of the victims. Indeed, the sooner the affected areas are served,
the more lives are saved and less suffering is experienced. This idea is sup-
ported by the humanitarian society emphasis on the importance of quick
response within the first 72 hours after disaster ([219]), when the short-term
demand, in terms of delivery of perishable commodities (such as medical
medicine and blood products) to the affected areas, should be satisfied. In
the relief routing literature, the emergency responsiveness is typically mea-
sured in terms of arrival time to the affected areas (see, for example, [61]) and
the minimization of the total latency represents a primary goal for reducing
deaths and losses.

Thirdly, because of the limited fleet size, in some situations visiting all
the affected areas might require an excessive waiting time. In this case, the

operational response planning should be performed according to a selective
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framework in that only a subset of the affected areas should be visited. The
choice of the areas should be carried out on the basis of an urgency level
accounting for the population living there and the severity of the disaster in
each area.

It is worth pointing out that, as in any operational context, even more
in the emergency one, routing operations are complicated by the high level
of uncertainty which is inherent in disasters. A severe problem that usually
occurs after an earthquake is, for example, the partial road disruption that
may limit the accessibility of some links. It is evident that ignoring uncer-
tainty in the route definition can lead in this case to very poor solutions with
detrimental consequences.

In this Chapter, we are aimed at addressing these challenges, presenting
another variant of latency-based routing model at the presence of uncer-
tainty.

We contribute to the scientific literature in many respects:

e To the relief routing literature, by proposing a mathematical model
that recognizes the customer—centric nature of the problem aimed at
minimizing the total arrival times of a fleet of vehicles to the areas
affected by a disaster. The model is also enhanced with a service
level constraint to guarantee that a minimum system performance is
achieved. Affected areas are prioritized according to an urgency level,
computed on the basis of the disaster severity and the population size.
We mention that the issue related to the selection of a subset of cus-
tomers on the basis of a service level constraint has been recently ad-
dressed in [58] in a general context, whereas [23] considered a minimum

coverage ratio that is included into the objective function.

 To the stochastic Vehicle Routing Problem (VRP) literature, by propos-
ing a risk—averse approach of the minimum latency problem, and de-
signing an efficient solution approach, able to efficiently solve the prob-

lem.

o To the practice, by addressing a real case study based on the Haiti
earthquake in 2010 and provides different managerial insights. The
case study has been comprehensively examined and different plausible

scenarios have been considered to further validate the model
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o To the disaster management literature, by proposing a comprehen-
sive review on some problems arising in post-disaster operations. In
particular, we review the most recent papers, published after 2016,
on the applications of logistic models for relief response planning in
post-disaster phase. Particularly, we focus on different aspects of the
literature and classify the recent literature based on the model type,
the characteristics of the relief network, the types of decisions involved,
the methodologies, the presence or the absence of uncertainty and the
paradigm used to deal with uncertainty. In addition, we plan to stress
the main streams followed in the literature, highlight the most impor-

tant issues along with the potential gaps and the challenges ahead.

3.2 Disaster relief response and logistics plan-
ning: literature review

This section is aimed at conducting a purposive review of the most recent
literature on post-disaster management, especially those addressing logistics
aspects questions arising in the response phase. There are some recent re-
views in the disaster management literature (see, for instance, [24, 50, 125,
125, 113, 26, 66, 134]) , but to the best of our knowledge, they refer to the
papers published between the years 2005 and 2016. We present an updated
version, restricting our attention to those studies on post-disaster response
planning published from 2016 to Feb 2018 which are at least indexed in Sco-
pus and accessible through Google scholar.

Among the gathered resources, we selected those containing at least one of
our main keywords, including disaster management, disaster response, post-
disaster, logistics, disaster relief, and relief routing.

Figure 3.1 shows the frequency of the 62 selected papers published in 31

operational research journals.
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Transportation Research Part E: Logistics and Transportation Review [ o
Information Systems Frontiers [l 1
INFOR [ 1

Annals of Operations Research [N s

European Journal of Operational Research [ s

Omega [ 1
Transportation Research Part A: Policy and Practice - 1
Transportation Research Part D: Transport and Environment [l 1
International Journal of Systems Science [Jll 1

International Journal of Disaster Risk Reduction [, 7
Journal of Cleaner Production [IINIEGEGN 2

International Journal of Production Economics [l 1
International Transactions in Operational Research _ 2

Applied Mathematical Modelling |G 2
Transportation Science - 1
International Journal of Advanced Manufacturing Technology - 1
Neural Computing and Applications - 1
Expert Systems with Applications [l 1
Transport metrica A: Transport Science [l 1

Socio-Economic Planning Sciences [N 3

Transportation Research Part B: Methodological |G 2
Safety Science [ 1
Operational Research |G 2

International Journal of Industrial Engineering Computations - 1
Decision Science Letters [l 1
Journal of Industrial Engineering International [l 1
Computers and Industrial Engineering [ 2
OR Spectrum [ 1
Information Sciences - 1
Procedia Engincering [l 1
Production and Operations Management [JIl 1

Figure 3.1: The frequency histogram of selected papers in journals

The rest of the Section is organized as follows. In Subsection 3.2.1, we review
the literature on the deterministic mathematical models for humanitarian
relief logistics. Subsection 3.2.2 provides a review on the non-deterministic
contributions for relief logistics in which the uncertainty somehow has been
addressed. Subsection 3.2.3 is devoted to a discussion on the contribution
of technology applications such as Geographical Information System (GIS),
simulation, and prediction models for humanitarian relief response. Finally,
in Subsection 3.2.4, we present a discussion on findings, potential gaps, chal-

lenges ahead, and conclude the Section.

3.2.1 Deterministic models for humanitarian relief re-
sponse

The OR community and the practitioners have investigated optimization-
related issues in all the four components of the disaster management frame-
work, from the pre-disaster planning (when the mitigation and preparedness
operations are planned) to the post-disaster phase (when the relief response

and recovery decisions are performed). The mitigation and preparedness
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Figure 3.2: Decision layers in humanitarian relief network

phases encompass all actions performed before the occurrence of disaster
with the aim of reducing, or possibly eliminating, the effects of hazards while
the response and recovery phases begin after the disaster occurs and include
all those operations performed to meet the needs of the affected people and
to recover the damaged system and the infrastructure, respectively.

Figure 3.2 shows typical decisions in the pre-disaster and post-disaster
phases. We have categorized the decision types addressed in the literature

into one of the following types.

e Location and sizing

e Inventory level and procurement

o Assignment (allocation) and covering

o Network flow (transportation)

o Fleet sizing, vehicle scheduling, and route assignment (route design)

e Vehicle routing and dispatching

Location and sizing decisions are generally taken over the pre-disaster
preparedness phase where the geographical configuration (location) of central
depots, regional warehouses, distribution centers (DCs), and shelters as well
as the their capacities (sizing) for storing the relief items are determined.

After establishing the suppliers, the amount of relief commodities sup-

plied in such places should be determined which is addressed as the Inventory
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level (and procurement) decisions. In general, the inventory levels of sup-
pliers are specified such that an estimated amount of needs over the very
first days after the disaster, and before the arrival of other humanitarian
donations, are satisfied. Usually the spoilage of some relief commodities ne-
cessitating the periodic replacement of such items as well as the damage of
a percentage of commodities due to the disaster are taken into account.

The Assignment (allocation) decisions are common between both of the
pre-disaster preparedness and the post-disaster response phase. Usually, the
assignment decisions over the preparedness phase are about the allocation
of major suppliers such as staging areas and central warehouses to the relief
distribution centers and the regional warehouses while the allocation deci-
sions over the response phase deal with the assignment of relief distribution
centers to the affected population centers. The covering decisions are spe-
cific allocation types in which the allocation control the distance or travel
time between the pair of supplier and demand.

The Network flow decisions deal with the amount of relief commodities
transported between the suppliers, DCs, and affected people as well as the
number of evacuees transported between the affected areas and the safe
shelters considering the capacity of suppliers as well as the amount of demand
in the system.

The Fleet sizing decisions are usually long-term decisions taken before

the disaster, whereas vehicle scheduling and route assignment decisions are
more tactical and planned as post-disaster decisions. In particular, vehicle
scheduling decisions cope with the amount of vehicles and the number of
trips to be dispatched between each pair of points such as supplier-relief
distribution center or relief distribution center-affected area.
Route assignment (route design) is the process of determining a set of pre-
specified routes for the vehicles ([228]). In the case of evacuation, there may
be different roads connecting a population center, all different in terms of
road conditions and capacity, traffic load, accessibility and safety. Hence
the selection of routes connecting each pair of origins and destinations is a
challenging problem to be addressed.

The operational and real-time decisions of arranging different routes and
the order of visiting the nodes fall within the vehicle routing category, and

dispatching deals with the choice of the most appropriate emergency vehicle

o6



for a specific emergency response. We have classified the vehicle routing
models into three categories: location-allocation models, network flow mod-
els, and fleet management models, based on the purposes the model was
proposed for. The decisions on the fleet sizing, vehicle scheduling, route as-
signment, vehicle routing and dispatching all are issues related to the fleet
management and, in our review, we refer to them as fleet management mod-
els.

Relief operations are focused on the tactical and operational decisions in
the response phase, including (7) the establishment and the activation of re-
gional warehouses, DC, and the points of distribution (PODs) which supply
the affected people with relief commodities, (4) the delivery and distribution
of relief commodities (such as water, food, medical supplies, shelter, tent,
clothing, etc) to the DCs, PODs, and the affected areas, (iii) the evacua-
tion of affected people to safe shelters and the transport of casualties and
injured people to the hospitals or temporary health centers. In addition, for
all relief plans involving transportation actions, the operational decisions on
emergency fleet routing and dispatching should be addressed as well. It is
important to note that all of the aforementioned operational and tactical
decisions are somehow connected to the strategic and long-term decisions
adopted before the disaster occurs during the pre-disaster phase. For in-
stance, the performance of the operational dispatching and routing policies
are affected by the choice of the depot(s) (such as DCs or warehouses) to dis-
patch the emergency fleet from. Clearly, the decision on the location of such
suppliers is a strategic decision to be taken in advance. This consideration
has inspired the OR community to develop integrated models, as the state-
of-the-art, in order to address both the operational and the tactical response
decisions along with the long-term pre-disaster decisions simultaneously.

Therefore, even though the focus of this review is on the post-disater
phase, many studies present integrated models that address the strategic
pre-disaster plans accounting for the location and sizing of warehouses, relief
distribution centers, staging areas, shelters, etc, the inventory level and pro-
curement of the relief commodities over the facilities (pre-positioning), along
with the post-disaster tactical decisions on the relief distribution planning.

In Table 3.1, we have classified the papers based on different features,

including the decision(s) involved, the model type, the definition of the o0b-
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jective(s), the staticity or dynamicity, the disaster type for which the model
was proposed, and the methodology applied to solve the problem. We should
mention that the deterministic and the non-deterministic studies are re-
viewed separately, and for those dealing with uncertainty, in addition to the
aforementioned features, the source of uncertainty and the specific paradigm

applied to deal with the uncertainty are considered as well.
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Table 3.1: Classification of literature on deterministic models for humanitarian

routing
Article Model Decision Objective(s) Static/ Disaster Methodology
type type Dynamic type
(23] FM AAs, VR Coverage Static  Earthquake TS
[263] FM VR Arrival time Static General Hybrid
weighted ant Colony
by demands
[138]  L,NF*3-layer L,AL,RE, (MO)time, Dynamic Earthquake Lexicographic
LFS,CF Cost, (MP) weighted
(blood) Tchebycheff
[254] L,FM ** L,CF, (MO) Travel time, Dynamic Earthquake Metaheuristic
Shortage Cost(establi- (MP) (NSGAII +
Road repair shment, trav- MOPSO)
seling,repair)
[102] L,FM L,VR, Average Static Flood Simulation,
Coordination lead-time Heuristic,
(arrival time) , TS
[118] LNF L,CF, Cost, Static General Exact
Shortage Unmet demand,
Wardrop
equilibrium
(89] L,ALNF L,AL,CF, Population Dynamic Flood Decomposition,
Population assisted (MP) Heuristic,
dynamics, VNS
Facility
activation
date
[13] NF,FM VR,CF, Shortage Dynamic General Heuristic
,EF Shortage (MP)
[128] NF3-layer EF,CF,WF, Cost Dynamic Earthquake Exact
Collected (monetary+ (MP)
resource,l, psychological
Psychological penalty penalty) (MO)
[211] FM,NF I,CF, Shortage Dynamic Flood Dynamic
Shortage, weighted by (MP) algorithm
Nuwber of trips, urgency based on
Budget level rolling horizon

*: multi-commodity, +: multi-modal transport, 2(3)-echelon: 2(3), MP: Multi-period MO: Multi-objective,
e-C:e-constraint, NF: Network flow, L:Location, LA: Location-Allocation, AL: Allocation, VR: Vehicle Routing, VS:
Vehicle Scheduling, R: Relocation, I: Inventory, S: Sizing, F'S: Fleet Sizing, RA: Route Assignment, FM:Fleet

Management, TS: Tabu Search

CF: Commodity Flow, EF: Evacuation Flow, WF: Worker Flow
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Most of the problems consider the distinction between different relief com-
modity types (multi-commodity is depicted by a * in Table 3.1). Some
multi-commodity models, in Table 3.1, are bi-commodity and just consider
two types of relief commodities, critical and non-critical [250, 254]. This
reflects the fact that some relief commodities are perishable (such as blood
and food) and should be treated differently in terms of delivery time. In
addition, the demand of relief items over the affected region is not the same:
for instance, areas close to the epicenter of a severe earthquake are more in
need of medical supplies than those far from the epicenter.

Another common feature is the use of different vehicle types (multi-modal
transport is depicted by + in Table 3.1): some isolated areas can be reached
solely by aerial fleet such as helicopters. The relief network may consist
different echelons, or layers with a hierarchical structure. For example, a
typical 2-echelon network (depicted by 2 in Table 3.1) might include the
central warehouse, the relief distribution centers, and the affected areas and
the relief commodities are flowed from the central warehouse to the relief
distribution centers and, from there, to the affected areas.

The objective functions of the response relief literature can be classified
into three groups addressing the efficiency, effectiveness, and responsiveness
measures.

Finding the appropriate objective function in relief response is a chal-
lenging issue ([124]). As a popular trend, many studies incorporate multi-
objective functions which is reasonable when different terms in different and
possibly inconsistent measures, such as travel time and shortage or cost, are
simultaneously considered. The most common objective is the minimization
of total cost which may include the location and pre-positioning (inventory
and procurement) costs, fleet usage and fleet sizing costs, the evacuation cost
or the delivery cost of relief commodities, the holding cost of unused inven-
tories stored in distribution centers, and the penalty cost for the shortage
(unmet demands) and wastage (for perishable products such blood products
[136]). In general, the cost-based objectives are classified as efficiency-based
criteria. It should be noted that the penalty cost of unmet demands (short-
age) is more related to the responsiveness criterion meeting the demands and

cannot be interpreted as an efficiency index. In addition, even if we accept
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that the penalized shortage costs can be added to the total cost, its cost co-
efficients should be expressed in terms of monetary loss to be consistent with
other cost terms. To this end, [182] developed the idea of deprivations costs,
interpreted as the monetary cost that the unmet demands, in the course of
time, are willing to pay in order to meet their urgent needs. We should re-
mind that the logistics models in response relief are, in nature, different from
the logistics models in business context. Obviously, the definition of objec-
tives in terms of cost, which is usual in the server-centric logistics model, is
far from the scope of the humanitarian relief logistics that are supposed to
be customer-centric.

Some studies dealt with the horizontal equity measure by minimizing the
total unmet demands. Different studies has adopted different approaches to
deal with equity in humanitarian relief. For example, Rezaei-Malek et al.
([209]) addressed the equity concept in the relief distribution by balancing
and limiting the difference in the weighted shortage of commodities received
by each pair of demand points. Similarly, In [213], the authors dealt with
the equity concept over the preparedness phase, by minimizing the maximum
unmet demands. Hu et al. ([127]) addressed the equity by incorporating a
service level constraint to assure that the amount of relief commodities pro-
vided to each demand point, from the pre-disaster inventory levels and the
post-disaster procurement, is above a given service level. In [89], Duhamel et
al. evaluate the equity of relief distribution, as a post analysis step, in terms
of the relative gap between the most and the least assisted affected areas
over different periods. Noyan et al. ([192]) approached to equity from a dif-
ferent viewpoint by addressing the equity in accessibility, usually measured
based on the response time, and the equity in supply allocation, expressed
as the maximum proportion of unmet demands. The equity in accessibility
is guaranteed by limiting the assignment of demand points to those points of
distributions whose accessibility score is above a minimum threshold, where
the accessibility scores for each link connecting the points of distribution to
the affected areas are calculated based on the travel time, the risk of being
close to a lake with the flooding danger, and a mobility score related to
the demographical characteristics of the affected areas. In a similar work,
Noyan et al. ([193]) presented a model for last-mile relief distribution, where

the equity in the resource allocation is ensured by minimizing the deviation
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from the desired level of the total amount of supply allocated to the points of
distribution, striking the balance between the shortage over different points
of distribution.

Compared to the efficiency and responsiveness, the effectiveness-based objec-
tives have been less addressed [263, 102]. The effectiveness in relief response
is related to the timely and effective delivery of relief aids to the affected
people and it is closely related to the response time (latency or arrival time)
criterion [263]. The reliability is another criterion addressed in the literature
in which the possibility of damage in the infrastructure network is taken into
account to deliver the relief items or to transfer the evacuees through safe
routes [225, 226, 228, 227]. A study combining the efficiency, equity, and
effectiveness-based objectives and metrics in relief routing can be found in
[129].

The majority of the studies have recognized the dynamic nature of re-
sponse operations to reflect variations in the demands pattern, supplies and
inventory levels, travel times, and other input parameters over the opera-
tional horizon. The dynamic inputs are usually treated as time-dependent
values over different time periods and a multi-period mathematical model
is proposed to take the time-dependent decisions over each period. To the
best of our knowledge, only Duque et al. ([90]) adopt a different approach
to deal with the dynamicity of response relief. In fact, they presented an
exact dynamic programming to arrange the scheduling and routing deci-
sions for a repair crew responsible for road repair in order to facilitate the
arrangement of relief response operations. Although the proposed problem
is applied in the response phase to accelerate the relief operations, as the
authors confirm, the model is more related to the recovery operations than
to the relief distribution problem. We should highlight in this context, the
importance of demand forecasting. Zhan and Liu ([270]) conducted a study
to find the maximum response delay considering that more accurate demand
estimations can be obtained with the arrival of new information over time.

A simple look at the disaster types of models in Table 3.1 shows that most
of them focus on earthquake which is reasonable since earthquake is one of
the most common disasters with devastating effects that might influence
a larger population, compared with other disaster types such as floods or

hurricanes. It is quite common to incorporate different scenarios, simulating
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possible disaster conditions, based on the severity of disaster, the time it

occurs, and the effects on the infrastructure transport network.

3.2.2 Stochastic models for humanitarian relief response

Most of the aforementioned studies in the deterministic context share a com-
mon idea about the importance of dealing with uncertainty. Uncertainty is
known as the undeniable and inseparable characteristic of disaster relief oper-
ations originating from the unpredictability of disasters, in terms of severity,
impacts, and the time and place it occurs. Uncertainty may affect many el-
ements involved in relief operations, for instance, based on the magnitude
of an earthquake, the demands for different types of relief items may vary
from a few people to millions. The same reasoning holds for the possible
variations in the delivery time and road reliability due to the disruption in
the infrastructure network. Based on the disaster severity, even some ware-
houses, relief distribution points, shelters and emergency health centers may
fail to operate (facility failure), and some portion of the pre-positioned relief
stock stored in the pre-disaster phase may be damaged. This shows how the
uncertainty experienced after the disaster may affect even the performance
of pre-disaster policies implemented before. Many papers focus on the uncer-
tainty of demands (see [65, 268, 136]), while uncertainty can be experienced
in other elements, such as, supply and the usable portion of pre-positioned
items, capacity, ([18, 127]), travel time, delivery cost, road reliability and
availability, infrastructure ([205, 265, 227]), supply (influenced both by the
behavioral pattern of society and by the humanitarian organizations ([80])).
Uncertainty also affects some less addressed but important issues such as the
the behavioral reactions of the affected population towards the relief network
(the selection of the point of distribution to refer to ([118]), the acceptance
of evacuation plans ([265]), and some safety related issues such as ransack
and influx probability).

To cope with the uncertainty in relief operations, different approaches
and assumptions are made. The most popular paradigm to model uncer-
tainty in relief efforts is the stochastic framework, developed based on the
probability theory, and among different stochastic paradigms, the two-stage
stochastic programming approach has received most attention since it en-

ables the modeler to link pre-disaster with the post-disaster decisions. A list
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of studies incorporating the two-stage stochastic programming approach can
be found in Table 3.2.

In the two-stage stochastic programming approach, the pre-disaster de-

cisions are taken in the first stage, before the uncertainty is known. The
stochasticity, represented by a set of discrete scenarios, affects the post-
disaster decisions in the second stage which are scenario-dependent. In par-
ticular, the pre-disaster decisions on location of suppliers, sizing and inven-
tory level are usually taken under uncertainty, whereas the second stage
deals with the relief flow decisions after uncertainty disclosure.
As a shortcoming, we should mention that the two-stage models cannot rep-
resent a realistic scheme for the evolution of uncertainty over different periods
as well as the relation between different response operations performed dur-
ing different periods [205]. As an alternative, some studies developed models
based on the multi-stage stochastic programming approach and considered
different (dependent) decision stages over the response phase [265]. The
popularity of multi-period modeling as an alternative to address the dynam-
icity of system, has motivated the development of two-stage multi-period
stochastic models where the scenario-dependent second stage decisions are
taken over a planning horizon ([101, 158, 51, 220, 18, 225, 226, 227]). The
multi-stage stochastic programming is another faithful paradigm to cope
with dynamicity where the response decisions are taken over a set of distinct
stages showing the dependency of actions along the stages as well as the sys-
tem evolution [265, 268]. Following another stream, Cook and Lodree ([80])
presented a stochastic dynamic programming approach in order to find the
optimal dispatch for a single vehicle delivering relief commodities where the
supply and demand are uncertain inputs. Of course the curse of dimension-
ality is one of the reasons why the stochastic dynamic programming has been
less appealing, in comparison with the multi-period mathematical models,
however, we believe that there is a potential to deal with stochastic models
in dynamic programming context, even by adopting its approximate coun-
terpart or the design of some heuristics to overcome the model complexity
and computational intractability.

Following the stochastic framework, Noham and Tzur ([190]) adopted a
scenario-based approach to characterize the stochasticity in demands and

the number of local distribution centers.
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Following the robust framework, some studies adopt the interval data
robust approach proposed by Bertsimas and Sim ([44]) where the uncertain
parameters takes their values from a continuous interval ([278, 225, 253]).
Some studies adopt the scenario stochastic programming approach ([278])
to discretize the uncertainty set, in set of pre-specified scenarios ([253]).

Both in the robust framework ans in the fuzzy counterpart, it is quite

popular to propose hybrid models integrating different uncertainty approaches
and uncertainty types. In [217], Salehi et al. proposed a robust two-stage
stochastic model for the blood supply chain design, where the objective func-
tion is expressed as the linear combination of two terms, including the max-
imum deviation from the best scenario in terms of the total cost (related to
the robustness) and the expected total cost where the cost is expressed as
the summation of scenario-dependent and scenario-independent terms. An-
other contribution on the robust two-stage stochastic approach can be found
in [209, 119], adopted from the original work of Mulvey et al. ([184]) and
Yu and Li ([266]) to balance the solution robustness and model robustness.
Following the possibilistic approach supported by the probabilistic theory,
Shahparvari et al. ([226]) addressed vehicle scheduling, route design, and
shelter selection decisions for the bushfire evacuation problem, where the
evacuation time window, travel time, and shelter capacity are represented as
triangular fuzzy numbers.
Addressing both types of possibilistic ambiguity and stochastic uncertainty
has been the motivation for proposing the fuzzy scenario-based model pro-
posed in [179], and the possibilistic two-stage and multi-stage stochastic
programming models presented in [220] and [250, 268], respectively. The au-
thors claim that the possibilistic and the stochastic information complement
each other and modeling scenario-based stochastic parameters as imprecise
fuzzy numbers is a reasonable alternative since, in general, the value of such
parameters under each scenario cannot be precisely determined.

The uncertainty in route reliability has been addressed in [227] for an
evacuation problem involving vehicle scheduling decisions and route design
(for other variations and extensions of the model see [225, 226, 228]). The
cumulative failure risk over each route, connecting a pair of population center
and shelter, is calculated as a function of failure risk scores over each route

segment. Most of the aforementioned studies are classified as risk-neutral
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Table 3.2: Classification of literature on stochastic models for humanitarian rout-
ing

Article  Model Decision Objective(s) Static/ Uncertainty Uncertainty Disaster Methodology
type type Dynamic  source paradigm type
[65] *LNF L.CF, cost Static Demand Two-stage Earthquake  Exact
Shortage (transporta- stochastic
tion,shortage)
1179] L,AL L,AL, Demand-weighted Static Demand,Faci- Fuzzy Flood Lp-metrics
Coverage lity failure stochastic technique

travel distance, programming
Coverage,Evacuees’
failure (MO)

[182] =+ L NF L,FS,NF, Cost Dynamic  Incoming supply. Two-stage Flood Heuristic
RA,I,Shortage (MO) (MP) ,Demand, Usable stochastic
commodity,Route
availability
[270] **NF,FM CF,VS,FS Loss Dynamic Dcmand Baycsian Typhoon Exact
(MP) updating
[268] 2X\F CF.I, Prioritized Dynamic  Demand Multi-stage Earthquake — Exact
minimum cost (MP) possibilistic
percentage of stochastic
of demands met programming
[278] =31, NF L,CF, Cost Static Demand, Robust Earthquake  Exact
Shortage (transporta- Supply. (scenario
tion,L,Shortage) Cost stochastic
programming)
[217) *3L,NF L,AL,RE, Cost,Delivery Dynamic  Demand,Capacity, Robust Earthquake  Exact
I(stocked),CF(blood),  time, Shortage (MP) Supply two-stage
Shortage,Supply stochastic
[226] FM RA,VS, Evacuees Dynamic  Shelter capacity, Fuzzy Earthquake  Genetic
Shelter (MO) Time window, possibilistic algorithm
selection Travel time, programming,

Network availability Risk

*: multi-commodity, +: multi-modal transport, 2(3)-level: 2(3), MP: Multi-period MO: Multi-objective, SO:single
objective, e-C:e-constraint, NF: Network flow, L:Location, AL: Allocation, VR: Vehicle Routing, VS: Vehicle Scheduling,
R: Relocation, I: Inventory, S: Sizing, FS: Fleet Sizing, RA: Route Assignment, FM:Fleet Management, TS: Tabu
Search, CF: Commodity Flow, EF: Evacuation Flow, WF: Workers Flow

models ([65]) while there are also some contributions on risk-averse models
([91]). Most studies in the risk-averse framework, adopt the Conditional
Value-at-Risk (CVaR), as a coherent risk measure to cope with uncertainty;
for example, Alem et al. ([18]) proposed a two-stage stochastic model for
relief pre-positioning and distribution, where, in addition to the classical
minmax-regret measure, the semi-deviation and CVaR measures were used.
A similar contribution can be found in ([126]) and also in ([79]) in which the
objective function is expressed as the summation of the first stage cost and
the linear convex combination of the CVaR and the expected second-stage
cost. By varying the relative weight of the CVaR and the expected term,
different risk-aversion degrees of the decision maker can be modeled. The
idea of the latter paper is also adopted in [91] presenting a pre-positioning
and relief distribution model, where joint probabilistic chance constraints
are used to assure the feasibility of second stage decisions.

As the only study on the uncertainty theory, Huang and Song ([130]) pre-
sented a customer-centric model for response operations where travel times
are dealt by the uncertainty theory and the total arrival time is constrained

to be as small as possible with a given confidence level.
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3.2.3 Simulation, GIS, and prediction methods

Although the contribution of the OR community to address the optimization
problems arising in disaster management is quite satisfying and valuable, we
should note that the role of mathematical models should be regarded as
complementary to other decision support tools such as simulation, GIS and
qualitative models ([102, 276]).

Enabling technologies, such as GIS, are able to handle massive load of
spatial-based data and information which can be managed for analysis pur-
poses; for example, GIS can be be helpful as a network analysis tool to obtain
more accurate data about spatial elements and, hence, applied to determine
the vulnerability risk over the infrastructure network and the severity of dis-
aster spread on different areas. GIS is also widely used to find the location
of potential suppliers and to design the set of pre-specified routes for the
route assignment problem, taking into account real-time travel times. Last
but not least, GIS can be implemented to generate different scenarios to be
used for simulating and visualizing the planning scenarios.

Among those recent papers which use GIS for post-disaster management,
we refer to the work of Zhao and Liu ([276]) who presented a decision support
system, integrating multi-objective optimization with GISs in order to design
a network of urban emergency rescue facility locations. The authors empha-
size the necessity of addressing the problem in the geospatial multi-objective
context and of dealing with big data on the spatial pattern and natural ge-
ographical conditions. They also proposed a heuristic based on a genetic
algorithm to solve the three-objective optimization model, including service
capacity, global efficiency, and equity. Recently, Rodriguez-Espindola et al.
([213]) presented an integrated approach combining GIS and optimization
for the disaster preparedness in order to find the optimal supplier locations
and the pre-positioning policy. Specifically, under the case of a flood, the
authors applied GIS to first, discard potential flood-prone facility locations
(shelters and distribution centers), second, to assess the damage experienced
in population centers, and third, to investigate the possible effects of disaster
on infrastructure network disruption under different scenarios.

Clearly, the solutions provided by the complex optimization models and

tailored heuristic algorithms cannot be implemented in practice unless the
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input parameters are generated and estimated in a reliable manner. Fol-
lowing this stream, Lu et al. ([155]) proposed a prediction module using
interval data fusion (IDF) and interval Kalman filtering (IKF) methods to
predict the uncertain and time-dependent input parameters, including the
demands and the delivery times for the real-time relief distribution appli-
cations. The prediction relies on the multiple information sources provided
with the stakeholders over the time. Then, a mathematical module is called
to find the relief flow over the network for each time period using a rolling
horizon-based approach. The proposed framework is applied on a case study
on the 1999 Taiwan earthquake.

The reliability of the solutions provided by the mathematical models should
be evaluated by simulation and under the supervision of disaster manage-
ment experts. The simulation in humanitarian relief literature is used to
evaluate the efficiency of models and/or heuristic algorithms ([206]) or in
order to generate possible disaster scenarios (see [101] for a case of using
simulation for disruption scenario generation) and some input data, such as
demands and priorities (see [205, 155]) or to find the optimized values for the
heuristic input parameters ([181]). [155] take the advantage of simulation to
generate a set of initial data that were combined with other official resources
in order to obtain the number of time-dependent fatalities over the affected
areas. Salehi et al. ([217]) took the advantage of a Monte Carlo simulation
for a blood supply chain network design problem, and evaluated the quality
of solutions of the deterministic model in comparison with those provided
from the robust stochastic counterpart.

In [102], Fikar et al. proposed a simulation-optimization approach to design
a decision support system for the coordinated disaster relief distribution.
They applied an agent-based simulation to evaluate the solution of the op-

timization approach within a loop.

3.2.4 Findings and potential gaps

Despite the significant contribution of the reviewed studies on humanitarian
relief, still there are many open questions to be answered, many challenges
to cope, and potential gaps to be addressed. Although most of the contribu-
tions, both in the deterministic and stochastic context, address integrated

models dealing with at least two decision types, still there is a potential
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to present more sophisticated integrated models in which all response relief
decisions are somehow addressed with the aim of providing the stakeholders
with a unified network. In addition, it would be interesting to see how some
short-term post-response decisions— such as recovery— can be implemented
in parallel with relief distribution actions in order to operate the response
phase in a more successful manner. For example, the repair of some roads
with minor disruption might help to perform the relief response over the
recovered route segments, shortening the response time. To the best of our
knowledge, there are only a few studies addressing both the road recovery
and the relief distribution decisions [254, 90].

An underinvestigated area concerns the efforts to model the behavioral
pattern of the affected people towards the stakeholders’ decisions: socio-
economical, cultural and demographical characteristics of the affected pop-
ulation should be taken into account in this respect (for example, see [23]).
This not only enables the stakeholders to model the reaction of affected
people in a better way, but also helps them to provide appropriate relief
services to people with special needs, addressing vertical equity (horizontal
fairness deals with providing relief services with all emergencies in a fair
manner; vertical equity deal with providing different services based on dif-
ferent characteristics and needs). The work of Gutjahr and Dzubur ([118])
is an attempt to consider the behavioral pattern of the relief recipients. This
is a realistic assumption since, in practice, the relief assignment pattern ex-
pected by the stakeholders may differ from what the relief recipients do in
reality. In the proposed model, the upper level is controlled by the stake-
holders with the aim of finding optimal distribution center locations while
minimizing the location cost and the amount of unmet demands, whereas
at the lower level the affected people should choose to which distribution
centers refer. The model provides the affected people with a choice model to
select their supplier based on both the travel cost and the amount of supply
expected to receive to count for the relief scarcity.

As another potential gap, we can mention the development of bi-level
models to cope with the fact that the decisions makers cannot always control
the affected population behavior to implement the stakeholder’s decisions as
the evacuation orders or the relief distribution policies. The idea of develop-

ing bi-level models for humanitarian logistics is appealing, since it enables
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the decision makers to incorporate the behavioral reaction of the affected
people receiving relief aids. This is of great importance since the reaction of
affected people versus the evacuation operations or the points of distributions
providing them with relief commodities may be inconsistent with what the
stakeholders expect. In the stochastic context, Yi et al. ([265]) presented a
bi-level multi-stage stochastic model to arrange the evacuation orders under
a hurricane and at the presence of uncertainty in hurricane evolution. The
proposed bi-level model is another attempt to model the behavioral reaction
of the people who does not follow the evacuation order and refuse to leave
their properties. The model is formulated as a multi-stage stochastic prob-
lem taking the uncertainty of the travel time and time away from home as
well as the travel risk and the risk of sheltering-at-home into account. We
strongly believe that still there is a gap to be filled in bi-level models. In
particular, an interesting future research stream can be devoted to the study
of bi-level models in which the reactions and the behavioral patterns have a
hierarchical structure, where, in addition to the stakeholders of public relief
agencies, there are other private or non-governmental relief agencies (such
as NGOs) that perform the humanitarian relief in parallel. The design of a
three-level mathematical model, with two distinct levels for the public and
private relief agencies and one level for the affected people, would be an
appealing idea in order to systematize the cooperation between the relief
teams at different decision-making levels over a centralized decision-making
system and to address the behavioral reactions of the affected population.
Obviously, this might prevent the probable inconsistency of relief operations
conducted by different stakeholders in a decentralized and non-cooperated
system.

As another potential gap, we should refer to the lack of customer-centric
and efficacy-based models, especially those dealing with waiting times and
delay in response. To the best of our knowledge, there are a few studies
proposing customer-centric objectives expressed in terms of the response of
arrival times ([130] in the stochastic framework and [263, 102] in the deter-
ministic context). In addition, the literature on fleet management for relief
efforts is more focused on fleet sizing, vehicle scheduling, and route assign-
ment, leaving less contributions on the vehicle routing problem, especially,

in the last mile relief logistics [192].
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In the next Section, we present a latency-based vehicle routing problem

for post-disaster relief routing under uncertainty.

3.3 A latency-based vehicle routing problem
with service level constraint under uncer-
tainty

In this section, we address the post-disaster relief operations planning prob-
lem, involving visiting the affected areas to promptly supply humanitarian
aid to the victims of a disaster. This problem poses planning and opera-
tional challenges, caused by the uncertainty about the potential damages of
the disaster and the number of victims, and the lack of information about the
status of the transport infrastructure. Moreover, for the presence of scarce
resources, not all the areas can be serviced and the relief plan should include
a subset of sites to be visited immediately in the aftermath of a disaster.

Because of the richness of the scientific literature and of the partial anal-
ysis conducted in the literature review of the Chapter 3.2 (only the papers
published from 2016 onwards have been reviewed), in the following, we shall
focus on the papers relevant for us, highlighting our contribution with respect
to the state of the art.

A vehicle routing problem arising in post—disaster humanitarian relief
was proposed in 2015 by Sharif and Salari in [231]. Here, the demand of
each affected area is satisfied either directly or through the assignment to
another visited area which is within a given coverage distance. The problem,
aimed at minimizing the total cost is solved by a GRASP algorithm. In [201],
Pourrahmani et al. consider an earthquake evacuation routing problem from
local shelters to regional ones for a long-term safe settlement using public
vehicles. The main contribution relies on the definition of a dynamic evacu-
ation routing approach that can update the routing plans by incorporating
time-dependent travel times. The authors presented a simulated annealing
algorithm for solving the mathematical formulation applied to a case study
on routing evacuation in a district of Tehran, Iran. In another work [200],
Pourrahmani et al. proposed a genetic algorithm to solve a similar model
but in a static context, where the number of evacuees is a fuzzy number.

Following the same stream, [264] presented a dynamic transportation routing
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multi-period model capturing the fluctuations of travel times and demands
for disaster relief operations. The model aimed at minimizing the total time
traveled by vehicles, along the planning horizon, and the number of vehicles
used. Also, a tabu search algorithm was proposed to solve the model. We
also mention some contributions ([123, 154, 261]) that even though do not
deal exactly with our problem, focus on the same dramatic event that hit
Haiti in 2010. For example, [123] analyzes the performance of different post-
disaster humanitarian logistic structures that arose in response to the Haiti
earthquake. In [261], the authors focus on the distribution of emergency aid
in disaster relief operations. In particular, the problem consists of designing
routes for vehicles, choosing the types of vehicles and determining the flow
of the aid. Different criteria, related to the specific conditions of the disas-
ter, are considered in the route design. The contribution [154] extends the
previous work and introduces a model that combines recovery operations of
transportation infrastructure elements with aid distribution planning. The
objective function considers multiple criteria, such as reliability and security.

The papers mentioned above consider, as the main criterion to be min-
imized, the total travel time (cost), thus neglecting the customer—centric
nature that should be accounted for in the design of routing operations in
relief effort. In this case, the minimization of the total arrival times at nodes
should represent a primary goal to increase survivability. Notable exceptions
are the work of Campbell et al. who proposed in [61] two latency-based for-
mulations, the first one aimed at minimizing the maximum arrival time, and
the second one focused on the average arrival time, the paper of Victoria et al.
([260]) who presented a cumulative capacitated vehicle routing problem for
routing and relief distribution planning with time-dependent demands and
the cumulative multi-depot routing model for relief distribution proposed in
[263].

In our contribution, we introduce a customer—centric vehicle routing
model to support the post-disaster relief activities, addressing an issue that
has been only partially addresses by the extant literature.

In addition to the latency-based objective function, the other distinctive
feature of our model is its selective nature. Selective vehicle routing prob-
lems have represented the subject of intensive research in the last ten years.

We refer the interested readers to the very recent contribution [58] (and the
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references therein), where the authors proposed a compact mathematical
formulation aimed at minimizing the sum of transportation costs and lost
profits. Both a Branch & Price algorithm and a hybrid genetic heuristic ap-
proach were tested on a large set of tests derived from benchmark instances.
In the specific field of relief routing, we have already mentioned in Chapter
3.2 the recent paper ([23]), where the author presented a selective vehicle
routing problem where only a subset of demand nodes is visited. The model
was solved by a tabu search heuristic and tested on a real case study on
earthquake in Turkey.

Besides integrating latency with selection, our contribution explicitly
deals with uncertainty in the travel time. The analysis of the scientific
literature of Chapter 2 reveals that, even in the general routing setting,
latency based problems under uncertain travel times have not been fully in-
vestigated. Hence, we should expect that also in the disaster management
context, the same claim is true. In fact, to the best of our knowledge, we
could find only one paper ([130] ) describing an emergency logistics distribu-
tion routing problem under uncertainty. In that contribution, travel times
are dealt by the uncertainty theory and the total arrival time is constrained
to be as small as possible with a given confidence level.

In the present contribution, we analyze the problem under a risk—averse
perspective. Even this aspect is rather new in relief routing operations. An
exception is represented by the very recent contribution of Elgi and Noyan
([91]) who proposed the use of the CVaR measure for the humanitarian relief
network design.

The model is validated on a case study, which is based on real-world
data of the Haiti earthquake in 2010. In addition, a heuristic approach is
presented to solve larger cases.

The remainder of the Section is organized as follows. In Subsection 3.3.1,
we briefly introduce the problem and present the mathematical formulation
for optimizing the routing decisions under uncertain travel times. Subsec-
tion 3.3.2 is devoted to the description of the real case study of the Haiti
earthquake. Subsection 3.3.3 present a thorough discussion about the model
validity and behavior along with managerial insights. Subsection 3.3.4 in-
troduces the heuristic approach designed to solve larger instances along with

some preliminary computational results. Finally, Subsection 3.3.5 concludes
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this study, summarizing the key findings and shedding light on future re-

search.

3.3.1 The Mathematical Model

Let us denote by G = (V,E) a complete undirected graph, where V =
{0,1,....n} and E = {(i7) €V x V} represent the sets of vertices and edges,
respectively. Node 0 corresponds to the depot where a fleet of K identical
vehicles is based. Each node i € V = V \ {0} represents an area affected
by the disaster. From now on, terms “nodes”, “customers”, and “affected
areas” are used interchangeably. With each node i € V it is associated a
coefficient #; computed as function of the severity level of the disaster affect-
ing the area and the population living there. Obviously, those populated
areas more severely affected by the disaster have a higher priority to receive
service. Any edge (7 j) € F represents a possible link between two areas i and
J with an associated travel time d;;. Assuming that such values are known
in advance is a very stringent hypotheses in any operative setting, and even
more in the aftermath of a disaster. Thus, we assume that Jij, Vi,j eV are

independent random variables with known first- and second-order moments,

2
ij
The goal is to find K disjoint routes, (from now on, route and path are

denoted by p;; and o7, respectively.

interchangeably used since the return of vehicles to the depot is not explicitly
required), starting at the depot and visiting a subset of areas selected to
assure a given service level, in a such a way to minimize the random total
latency. The explicit inclusion of the uncertainty changes the nature of the
optimization problem from deterministic to stochastic. In what follows, we
introduce the main decision variables and constraints and we discuss how to
deal with a stochastic objective function.

In order to derive the mathematical formulation, we consider again the
expanded layered network as proposed in [194] for the K-TRP and presented
in Section 2.4. For the sake of completeness, we report hereafter the main
notation. Starting from the number of nodes n and vehicles K, we derive an
upper bound N on the number of visited nodes in a path as N =n - K + 1.
The layered network contains N + 1 levels, where level N + 1 includes a copy
of depot, whereas all the other levels include a copy of depot and all demand

nodes, except for the level 1, which has only copies of the demand nodes and
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corresponds to the last nodes visited over each path. In this network, each
path ends by visiting a node in level 1 and starts in a copy of the depot in
some level. It is therefore easy to identify each path by starting from the
last visited node at level 1, tracking the node connected to it at level 2, and
repeating this process for any other subsequent levels until a copy of the
depot is visited. We consider two sets of decision variables. The first one,
denoted by 27, for each node i € V and visiting level r, take the value 1 iff
node 7 is visited at level r, and 0 otherwise. The second set contains the
binary variables yj;, for each edge (ij), that take the value 1 if edge (ij)
belongs to a path for some vehicle and the total number of nodes in this path,

after node i, is exactly r. The model contains the following constraints:

N j—

Yal<l i€V, (3.1)

r=1

Sal=K (3.2)

ieV

N

SNy = K (3.3)

r=1jev

Yoy =ait eV or=1.. N-1 (3.4)

jev

J#1

y6j+zy;"j:q;§ jeV,r=1,...,N-1 (3.5)
A

N

S 3 0l >T (3.7)

r=1ieV

xre{0,1} ieV,r=1,....N (3.8)

y; >0 i€V, jeV, r=1... N-1 (3.9)

Constraints (3.1) require that each demand node is visited at most once.
Constraint (3.2) ensures that each vehicle is assigned to exactly one demand
node at the end of its tour (level 1). Constraint (3.3) guarantees the dispatch
of exactly k vehicles from the depot. The set of constraints in (3.4)—(3.6)
are the connectivity constraints and show the relation between the binary
variables zj and yj;. Constraints (3.4) require that any node (i) visited at
the upper level (7 + 1) should be connected to exactly one upcoming visited
node (let say j) by traversing edge (ij) at the lower level (r). The set of

constraints (3.5) impose that any node j visited at level r should be linked to
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exactly one recently visited node (let say i) by traversing edge (i j) or linked
directly to the depot by traversing edge (07) at the same level. Constraints
(3.6) require that each node visited at the highest level N should be the first
visited node over the path which is connected to the depot by traversing
edge (07) at the same level. The service level constraint is represented by
(3.7). Affected areas should to be selected to guarantee the satisfaction of a
minimum service level threshold, represented by the parameter I" properly
defined by the decision maker. Finally, constraints (3.8)—(3.9) indicate the
nature of variables. We note that the y-variables can be defined as continuous
because of the total unimodularity property of the matrix constraints.

The definition of the routing plans is carried with the aim of minimizing
the stochastic total latency. In order to deal with this more involved objec-
tive function, the straightforward approach simply consists in replacing the
random quantities with their expected values. It is evident that in a highly
uncertain setting, how the one experienced after a dreadful earthquake, the
“average view” of the system can be misleading. More prudentially, the de-
cision maker would be interested in controlling the risk associated to possible
long delays that may compromise the decisions. To account for this wiser
attitude, we address the problem under a risk-averse perspective. As the
analysis of the scientific literature (mainly appeared in the financial field)
shows, there are several ways to capture and model risk. Interested readers
are referred to the survey paper [147] for a general introduction of the main
risk measures. Here, we have chosen an intuitive and effective way, suggested
by the classical Markowitz theory ([163]). In particular, we measure risk in
terms of standard deviation. Differently from the variance, this measure
is expressed in the same unit of the expected arrival time. The proposed

objective function presents a mean-risk structure:

N N-1
min: Z=2X\ Z Z’f‘ Hoj Yo; + Z Z Z THij Yij

jevr=1 iV jev r=1
J#
N N-1
+(1-)) ZZT20§jygj+Z Yy r2 oyl (3.10)
jevr=1 ieV jev r=1
i

where the first term accounts for the expected total latency, whereas the

second one for the standard deviation. Both the terms can be derived by
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applying the standard formula of the expected value and variance of the
sum of independent random variables. The factor A € (0,1] in (3.10) is
used to weight the importance attributed to the two terms. Obviously, the
lower is A the greater is the importance attributed by the decision maker
to the risk. We notice that the same mean standard—deviation structure
of the objective function, except for the multiplicative coefficients, appears
when considering the quantile-related (Value at Risk) risk measures under
the assumption that the random variables are elliptically distributed (see,
for example, [60]). Under this respect, the proposed risk-averse formulation

is rather general.

3.3.2 The case study

On the 12t of January 2010, an earthquake of magnitude 7.0 of the Richter
scale hit Haiti producing devastating consequences: 230,000 people were
killed, 300,000 injured and about 2,000,000 became homeless. Almost one
third of the Haitian population was affected by the disaster. Only in Port-au-
Prince, the capital city, the 15% of the population died or was injured. The
earthquake caused massive economical losses and the damage amounted to
117% of Haiti’s annual economic output [160]. Because of the severity of the
earthquake and the massive losses, the earthquake was classified as one of the
worst disasters experienced and ranked as the fourth worst earthquake, in
terms of the fatalities, since 1900 [47]. What makes the earthquakes different
from other disasters is the fact that they are highly unpredictable and often
occur suddenly without warning, but what makes them even worse is the
chain of the disasters they cause.

The earthquake caused a partial destruction of the transportation net-
work and damages to many infrastructures. The Port-au-Prince airport
canceled all the flights for three days after the earthquake, and the sea-
port was closed for ten days [123]. After the earthquake, all the hospitals
in Port-au-Prince and many other healthcare facilities, transportation and
communication systems, collapsed or were severely damaged. The govern-
mental administrative building was destroyed, causing the death of 17% of

the employees [32].
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Figure 3.3: Haiti hearthquake, Encyclopaedia Britannica, Inc.

Figure 3.3 shows the map of Haiti depicting the intensity of shaking of the
earthquake. In Haiti, there are four levels of government below the national
level, including departments, arrondissements, communes, and communal
sections. The geographical distribution of the affected areas (in blue) and of

the depot sited near to Port-au-Prince, (in white), is shown in Figure 3.4.
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Figure 3.4: 51 communal sections with potential damage higher than moderate
The information about the severity of the earthquake experienced by each

communal section has been taken from the shake intensity maps [1]. Among

571 communal sections, we have considered 51 sections within four classes
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that we call severity levels (SLs, for short), associated with the instrumental
intensity from VII to X+ that caused a potential damage from Moderate,
to Very Heavy.

The SL has been mapped into a numerical factor, ranging from 1 to 4
and the priority level 6; of each node i has been determined by taking into
account both the SL (multiplied 0.2) and the population living in the area
(gathered from the 2015 national census reports [8]) normalized by the total
population. The value of I" used in the experiments has been set to 0.6.

Figure 3.5 depicts the geographical configuration of the affected areas in
the Cartesian coordinate where the width of each point is proportional to
its population (ranging between a minimum value of 504 to a maximum of
531,434), and the colour represents the SL of the area based on the colour

bar scale.
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Figure 3.5: Classification of the affected areas based on population and the
severity level

The travel distance along each pair of points has been calculated on the
basis of the real-road network using the Google Map API [2]. Starting from
the travel distances, we have computed the travel times by considering an

average speed of 30km/h. The variances o7; have been computed as [ (45 b)?],
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where b is a random number uniformly distributed in the interval [0.1,0.32).
In our experiments we have considered a fleet of 4 vehicles.

The next parts are devoted to the presentation of the numerical results
collected on the considered real case study, with the aim of demonstrating
how the proposed model can be used to support the routing planning de-
cisions after a dramatic disaster. All the experiments have been performed
on an Intel® Core™ i7 2.90 GHz, with 8.0 GB of RAM memory, running
under Windows operating system. The proposed mathematical model and
the heuristic were coded in C++ and the model was solved by the open

source SCIP library, release 3.2.0.

3.3.3 Performance of the model

We present the results of a sensitivity analysis of the proposed formulation
for the case of Haiti earthquake, as described in 3.3.2, with respect to some
key parameters, namely, the service level and the fleet size. The final aim
is to provide the decision maker with useful insights on resource planning,
for example, how much the total latency will decrease if more vehicles are
available and how the variation of the threshold I'" affects the selection of the

areas to be serviced.

3.3.3.1 The impact of the risk

After an earthquake, there is usually a high level of uncertainty in the trans-
portation network. In Haiti, apart from the damages produced by the earth-
quake to the road-network, the presence of rubble, even on the main roads,
was a critical consequence, increasing the congestion level of the overall net-
work [3]. In such a critical context, considering the travel time variations
represents an important issue to address, since the explicit inclusion of the
risk component can lead to different routing plans. More specifically, the
lower the A\ value, the more emphasis is put on the risk component. To math-
ematically evaluate the impact of the risk, we have performed a first set of
experiments by varying the value of the parameter A between 0.1 and 0.5,
to weight the total expected arrival time (EAT for short), and its standard
deviation (STDAT'). Higher values of A\ have not been reported since they

do not reflect a risk-averse behaviour.
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The following Figure 3.6 shows the total expected arrival time versus its
standard deviation as function of A\. As expected, lower values of A provide
more stable routing plans at the expense of an increase on the expected
total arrival time. The opposite happens for higher values attributed to the
weighting parameter. The trade-off is favorable for the extreme values used
in the experiments: we may observe a decrease of almost 27% in the standard
deviation, when a greater importance is attributed to the risk component,
with only an increase of around 3% of the expected arrival time. These
results confirm the importance of explicitly accounting for risk in the model

formulation.

10.5

10

STDAT

A=0.1

49 495 50 50.5 51 515

8

EAT
Figure 3.6: EAT versus STDAT

Analyzing the results in more details, we may appreciate how the risk
aversion impacts on the selection of the visited areas. The following Table
3.3 shows the routes traveled by the vehicles and the total number of visited
nodes (# Nodes) for different values of \.

A 0.1 0.2 0.3 0.1 0.5

# Nodes | 20 20 21 21 21

Route 1 | 0-22-25-15-14-11-29-32 | 0-22-25-15-11-29 0-22-25-15-11-32 0-22-25-15-11-32 0-22-25-15-32

Route 2 | 0-24-13-10-31-39-44 0-24-13-11-10-31-32-39-44 | 0-24-13-11-10-4-31-39-42 | 0-24-13-11-10-4-31-39-42 | 0-24-14-13-11-10-4-31-39-42
Route 3 | 0-23-21-26-18-28 0-23-21-26-18-28 0-23-21-26-18-17-28 0-23-21-26-18-17-28 0-23-21-26-18-17-28
Route 4 | 0-51-50 0-51-50 0-51-50 0-51-50 0-51-50

Table 3.3: Sensitivity of the solution with respect to A

We observe that, for all the A values, the determined routes share a given
set of nodes, namely {4,10,11, 13,14,
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15,17,18,21,22, 23,24, 25,26, 28,29, 31,32,39,42,44,50,51}. These are pri-
ority areas because of the number of inhabitants and the SL. Among them,
the most populated area is represented by the node 25 (Turgeau in Port-au-
Prince) with a population of more than half million. The least populated
ones are the areas 4 and 18 with, respectively, 19,824 and 23,376 inhabi-
tants. All the visited areas (with the exception of 17 and 44) have a SL at
least 3 (areas 4,13, 14,15,18,25,26 have a SL=4). It is interesting to note
that other areas have SL=4, but they are not visited since their population
is lower than 5000 people.

For the case with A equal to 0.1, 98% of the total population affected by
the earthquake with SL=4 is visited, which means that only 2% of population
with the highest SL do not receive aid during the first response phase. The
set of critical areas with the SL=3 receiving relief aids, (10,11, 21, 22,23, 24,
28,29, 31,32, 42,50,51), represent about 96% of the whole population in need
of humanitarian aid.

We observe that, when increasing A from 0.1 to 0.2, only the order of
visiting the affected areas of 11 and 32 changes resulting into a slight im-
provement in the total expected arrival time (about 1%) with a deterioration
of its standard deviation of about 6%. The number of visited areas for \ val-
ues greater than 0.3 increases slightly. In the case of A equal to 0.3, despite
visiting more affected areas, the total expected arrival time decreases, which
is a valuable insight on the non-monotonic behavior of the total expected
latency with respect to the number of visited nodes. Again, the results
obtained with A equal to 0.4 and 0.5 show that, although the same set of
areas is visited, the area 14 is serviced by a different vehicle, leading to an
improvement in the total expected arrival time and a deterioration of the

standard deviation.

3.3.3.2 The fleet size

The results reported hereafter show how the fleet size k impacts the system
performance expressed in terms of visited nodes and total latency. In partic-
ular, Table 3.4 reports the values collected by considering an I' value equal

to 0.6 and a A value equal to 0.1, as function of different £ values.
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Bl

EAT STDAT # Nodes Routes

4 51.1 8.16 20 0-22-25-15-14-11-29-32
0-24-13-10-31-39-44
0-23-21-26-18-28
0-51-50

6 49 6.27 21 0-22-26-18-17-28
0-24-10-31-32
0-23-21
0-13-4-42
0-25-15-14-11-39
0-51-50

7 48 6.00 21 0-22-26-18-28
0-24-10-31-39
0-13-11-8
0-23-21-17
0-14-32
0-25-15-42
0-51-50

8 474 5.90 21 0-22-26-18-17-28

0-24-10-31-39

0-13-11-8

0-23-50

0-21

0-14-32

0-25-15-42

0-51

Table 3.4: Sensitivity of solution with respect to fleet size k

As confirmed by the results, the increase of the fleet size allows to reduce
both the total expected arrival times and its standard deviation, since adding
more vehicles provides more balanced routing plans where the visited nodes
are split among new routes. This allows, in turn, to reach the affected areas
sooner by traversing closer links from the depot or through other intermedi-
ate nodes, thus improving the total latency. For instance, in the case with
4 vehicles, the visit of the affected areas 25 and 13 is delayed to first visit
areas 22 and 24, respectively, but with at least 6 vehicles, they can be visited
directly from the depot. In terms of the number of visited areas, in case of
4 vehicles, the difference between the longest and the shortest routes is 5,
whilst with 7 vehicles, this difference decreases to 2. We also note that the
increase in the fleet size does not have a significant impact on the total num-
ber of visited nodes, which is rather related to the service level constraint,

as will be shown in the next paragraph.
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3.3.3.3 The service level

Another set of experiments has been carried out to investigate the selective
nature of the proposed formulation. To this aim, by keeping fixed all the
other parameters, we have performed additional experiments by varying the

minimum service level I between 0.45 to 0.60.

I  %EAT %STAT Visited areas Routes

0.55  49.31 42.57 {10. 11,14,15,21, 22,23, 24, 25} 0-22-25-15-14-32
0-24-13-11-10-31
0-23-21-26
0-51-50

05 6027 5712  {10.1L. 13,14, 15,21,22,23, 24,25, 26, 31,32,50,51] 0-25-15-14
0-24-13-11-10
0-22-21-26
0-51-50

0.45 81.10 72.0 {10,11,14,15,21,22,23,24,25} 0-22-25-15
0-24-10
0-23-21
0-14-11

Table 3.5: Sensitivity analysis as function of I'

Table 3.5 reports the results collected for A equal to 0.1 (similar results
have been obtained also for the other values of A). In particular, we report
the percentage of reduction of the FAT and the STDAT for different I'
values evaluated with respect to the solution obtained for I' = 0.6. An in-
dication of the visited areas is also provided. As expected, the lower the
imposed service level, the lower the FAT and the ST DAT, since less nodes
are required to be visited. Looking at the results, we may observe that with
an increase of 15% in the minimum service level T', i.e. passing from 0.45 to
0.60, we can provide relief aid for 12 other affected areas, including a popu-
lation of more than half million and covering the 98% of communes with SL
equal to 4. This is justified by these communes are clustered around the de-
pot. The situation for the areas with SL 3 is a bit different, since, as evident
from Figures 3.4 and 3.5, they are scattered over the region within a larger
radius from the depot. This implies that for I' = 0.45, only 6 critical areas
(10,11,21,22,23,24) are visited, while other more populated areas, with the
same SL, are not. In general, for small I' values, it is quite probable that
an attractive area with high population and high SL level is not visited due

to its long distance from the depot. When the service level increases, more
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communes with the same SL but less populated than those visited previously

receive aid.

3.3.3.4 Model validation

In order to validate the model, we have first investigated the importance
of using real data in the definition of the test case. In particular, we have
compared the routing plans obtained by considering the real-road network
with the ones obtained when the travel distance over each edge (i,7) is
calculated as the Euclidean distance between affected areas ¢ and j. We
should remind that the real travel distance between each pair of nodes was
calculated as the shortest distance provided by Google Map API [2], and
thus, many factors such as the presence of physical obstacles (mountains,
valleys, and rivers), cost, environmental impact of the road, are taken into

account.

A EAT STDAT Routes
Real 0.1 51.1 8.16 0-22-25-15-14-11-29-32
0-24-13-10-31-39-44
0-23-21-26-18-28
0-51-50
0.5 49.2 10.37 0-22-25-15-32
0-24-14-13-11-10-4-31-39-42
0-23-21-26-18-17-28
0-51-50
Euclidean 0.1 36.9 7.53 0-22-26-18-28
0-24-25-15-31
0-23-51-50-21
0-14-13-11-10-32-39-44
0.5 355 6.68 0-22-26-18-28
0-24-13-8-32-31-39
0-25-15-14-11-10-29
0-51-23-21-50

Table 3.6: Real-road network versus the Euclidean-based network

Table 3.6 shows the FAT and the STDAT for I' of 0.60 and A equal to
0.1 and 0.5.

Looking at the results, we may appreciate how the Euclidean distance
leads to an underestimation of the total latency (about 38% for the EAT
and 55% for the ST DAT'). Moreover, as far as the number of visited nodes is
concerned, the Euclidean case provides dominated solutions, with less nodes

visited. This latter finding shows the importance of incorporating realistic
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input data in order to obtain meaningful results which are also reliable in
practice, and supports and validates the present case study, solved on a

real-road network.

3.3.3.5 The analysis under a disruption scenario: the occurrence
of a tsunami

To analyze the impact of disruption in the definition of the routing plans, we
have defined two operational scenarios where some road segments, linking
a subset of visited areas, are disrupted. The first scenario copes with the
impact of a tsunami. In 2010, two of independent tsunamis hit the shores
after the earthquake, one along the south coast near Jacmel and the other

one along the Bay of Port-au-Prince (see Figure 3.7).

Figure 3.7: Tsunami event-NOAA Center for Tsunami Research

In this scenario it is assumed that some parts of road network near
the shore are disrupted by the tsunami and some links are not any more
traversable. Figure 3.8 shows the broken links in yellow. Looking at the
routes for the ideal (non disrupted) case, for A equal to 0.5 in Table 3.3,
we observe that they involve two links between communes 10,11 and 13,14
which in this scenario cannot be traversed. Hence, without an adequate

planning, not only areas 10, 11,13 will not receive relief aid, but also all the
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subsequent areas, including about 22% (688, 028 people) of satisfied demands
over all routes.

The model solved under this scenario re-routes the available vehicles to
enable the relief operations. The optimal routes under the tsunami scenario

are reported below:

Route 1 (0-22-25-15-14-11-32)

Route 2 (0-24-13-10-4-31-39-42)

Route 3 (0-23-21-26-18-17-28)

Route 4 (0-51-50)

Figure 3.9 shows the changes in the order of visiting nodes for both cases.
The third and the fourth routes under the tsunami scenario are the same
as those reported for the ideal case in Table 3.3. The first and the second
routes are instead modified. In fact, under the disruption, the affected areas
10,11, 13 cannot be reached from node 14. Hence, nodes 11, 14 are relocated
and served after area 15 in the first route. In addition, areas 10, 13 are visited
by traversing longer non disrupted links from the area 24.

In the modified solution, the expected latency of areas 11 and 14 increases
by 36% and 45%, respectively. The increase in the individual expected la-
tency values contributes to a 2% deterioration of the total expected latency,

with respect to the ideal case.

Figure 3.8: The broken links under the tsunami scenario
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(b)

Figure 3.9: Optimal paths:
a) Ideal case b) Disrupted case under the tsunami scenario

3.3.3.6 The analysis under a disruption scenario: the failure of
the depot

The analysis of the results from the previous scenario and the ideal case are
based on the assumption that the transportation network surrounding the
depot is fully reliable.

In order to depict another critical scenario, we have considered the disrup-
tion over the links connecting the depot to the critical areas within a radius
of five kilometers (22, 23, and 24). In addition, we have also considered the
disruption for road links emanating from the serviced critical areas which are
within ten kilometers from the depot (21, 25, 51). In summary, we have con-
sidered the following disrupted links {(0, 22), (0,23), (0,24), (50,51), (22,25),
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Figure 3.10: Disrupted links under the depot failure scenario

(21,26)} (see Figure 3.10, where the broken links are highlighted in yellow).

Looking at the results, collected by considering A equal to 0.5, we may
observe that the set of visited nodes is the same of those found in the normal
case and that the model is able to rearrange the routing plans. Obviously,
since all the disrupted links were part of the routes in the ideal case, an
increase in the objective function value is registered. In particular, we have
a deterioration of 12% and 4% in the expected latency and its standard

deviation, respectively. The optimal routes in this case are as follows:
« Route 1 (0-25-15-14-24)
« Route 2 (0-13-11-10-4-31-32-39-42)
« Route 3 (0-26-18-17-28)
« Route 4 (0-51-23-22-21-50)

Figure 3.11 shows the optimal routes for both cases on the map. The dis-
ruption delays the visit of the affected areas 22,23, 24 that cannot be visited
anymore as the first nodes. More specifically, in order to visit the area 24,
a longer path should be taken traveling through the areas 25 and 15, which
is an alternative, but much longer way, of reaching the area 24. In a similar
way, areas 22,23 are visited via the longer path passing through the critical
area 51 and also area 50 is visited by traversing its alternative path pass-
ing through areas 23,22,21, which is much longer. These alternative paths

are, in fact, safe in the sense that they are not disrupted, but, obviously,
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(b)

Figure 3.11: Optimal paths:
a) Ideal case b) Disrupted case under the depot failure scenario
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their expected latency and standard deviation are higher. This disruption
scenario also affects the visit of other visited areas due to the rearrangement
of visited nodes over the paths, for example, the latency of area 14 increases
and the visit of areas 39 and 42 is delayed, since before them, area 32 should

be served.

3.3.3.7 The Monte Carlo simulation

Additional experiments have been carried out with the aim of assessing the
behaviour of the solutions provided by the stochastic model. To this end,
we have evaluated how the stochastic solution behaves with respect to the
deterministic one over a large set of possible scenarios. In particular, we
have performed a Monte Carlo simulation generating, for each link, 5,000
different scenarios, taken from a normal distribution, representing different
travel times values. For each scenario s, the total latency has been calculated

according to the following formula:

N N-1
jev r=1 i€V jeV =1
J#i
where § denotes the optimal solution and ¢, is the travel time over link the
(i7) under scenario s. We point out that the deterministic solution has been
determined by solving the proposed model with A equal to 1, whereas the
stochastic solution refers to the case with A equal to 0.1.

The following Figure 3.12 reports the frequency histograms for the sim-

ulated total latency of the proposed model and the deterministic one.
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Figure 3.12: Frequency histograms:
a) Deterministic model b) Proposed model

The simulation results show that the solution of the deterministic case is
highly unstable with high variations in the travel time (the long tail in the
histogram of the deterministic solution underlines this unstable behavior).

We should note that the deterministic model ignores the variance com-
pletely and it is reasonable to expect high standard deviation values. In
general, we should expect that, in terms of the total expected latency, the
deterministic case provides better results than the proposed model. We have
observed that the simulated values of the TL for the deterministic model are

21% larger than the corresponding values for the stochastic model.
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Mean Median  Max Min SD

Proposed Model 51.074 51.083  59.580 39.860 8.067

Deterministic Model 61.870 60.776 133.186 27.104 42.846

Table 3.7: Simulation results

This consideration is also supported by the synthetic values reported
in Table 3.7, namely, the arithmetic mean, the median, the max, and min
values, and the standard deviation (SD), respectively. These values confirm
that the results of the simulation are consistent with those provided by the
proposed formulation.

To conclude, the proposed model provides realistic estimations for both
the total expected latency and its variance, which are confirmed by the

simulation results as well.

3.3.4 The heuristic approach

In terms of computational tractability, we have empirically found that SCIP
was not able to optimally solve instances with more than 75 demand nodes
in a reasonable amount of time. To be more precise, SCIP even failed to
instantiate the model when more than 90 nodes are considered. These con-
siderations have motivated the design of a heuristic approach exploiting the
specific problem structure.

The proposed heuristic is a Variable Neighborhood Search (VNS) which
systematically changes the size of the neighborhood in the attempt of escap-
ing from a local minimum trap, as mentioned in [120]. It is composed of a
construction phase providing an initial feasible solution, with respect to the
set of constraints (3.1)—(3.9), which is then improved through a local search

procedure. The pseudocode is sketched in Algorithm 7.
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Algorithm 7: The proposed heuristic

Input: Thee, Arraz, 0
Initialization: ¢t < 1, s < null
s < Initial solution()

while (t < Tha.) do

v<1

while (v < Apyq,) do

s' < Perturbation(s,0)
s" < Local Search(s',v)
if (Z(s")< Z(s)) then

S<_S"

© 000 g O Uk W N =

[y
=}

v<1
else
| v<vrv+1

=
w N =

end
t<—t+1
end

17 return s

-
'y

= e
o wm

First, the Initial solution() function is called (line 3 in Algorithm 7) generat-
ing an initial feasible solution s which is specified by the set of visited nodes
IT and distinct paths p, p = 1,..., K. At the beginning (see Algorithm 8),
the set of visited nodes II and unvisited nodes ¥, (¥ = V/II) are initialized,
then each path p, p=1,..., k is filled by inserting a single node ¢ € ¥ with the
lowest value of A pg; + (1 = X)og;, i € U. The sets IT and ¥ are updated and
the new path p is added to the solution. Next, if necessary, s is modified
by adding more nodes in order to assure that the service level constraint
(3.7) is satisfied. The modification is done by inserting exactly one node
c e U, at each time, to each path p, based on the same criterion mentioned
before, until the feasibility is achieved. By inserting just one node, at each
time, to each path, we ensure that the generated paths are balanced. The
initial solution is fed in Algorithm 7 that basically consists in an outer loop
executed for a certain number of iterations 1., (or equivalently for a pre-
specified CPU time) and an inner loop, the core of heuristic, which includes
the Perturbation and the Local search procedures.

The Perturbation (s,0) function, playing the role of shaking mechanism
in the VNS heuristic, is explained in detail in Algorithm 9. This procedure

deletes a pre-specified number of visited nodes (let us say J) from the current
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solution and replaces them with a subset of unvisited nodes in W provided
that the feasibility with respect to the service level constraint (3.7) is kept.
The set of deleted nodes are then put into a blacklist which is updated at
the beginning of the procedure. The output of the Perturbation procedure
(s,0), s, is then considered as a reference solution to perform the local search
around. The local search is performed over A, different neighborhoods
indexed by v. The local search over each neighborhood v is performed based
on the best improvement criterion and in the hope of finding an improved
solution s”. If the obtained solution s is better than s, the current solution
is updated, and the index of the neighborhood to be searched over the next
iteration is set to its initial value (v = 1); otherwise, another neighborhood
is explored (v is incremented by one). The inner loop terminates whenever
none of the neighborhoods could improve the reference solution, or equiva-
lently v = Ajpqe. The algorithm used explores five different neighborhoods,
specified by their move operators and classified as intra—route and inter—
route moves. The intra—route neighborhoods include the Swap, the 2-opt,
and the Or-opt; the inter-route neighborhoods used are the Relocation and
the Fxzchange.

The Swap move operator exchanges the position of two visited nodes over
a single path. In the 2-opt move, a pair of non-adjacent edges are removed
from the path and replaced with two new edges reconnecting the path. The
Or-opt move operator is similar to 2-opt, but a triple of non-adjacent edges
are removed and reconstructed. The Ezchange move exchanges a pair of
nodes between two different paths while Relocation move deletes a node
from a path and inserts it to another path.

We should note that the blacklist is updated each time over each iteration

and the nodes in the blacklist cannot be visited until the next perturbation
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mechanism is called.
Algorithm 8: Initial solution
1 Initialization: Il < @, ¥ « V
2 for (p«<1to K) do

3 ¢ < argmin(\ po; + (1 = X)og;)
ieW

4 Insert ¢ in route p

5 I<«TU{c}, ¥« ¥ -{c}

6 | s<(p1I)

7 end

8 if (s is not a feasible solution with respect to constraint (3.7)) then
9 temp < 0

10 while (temp ==0) do

11 for (p< 1toK) do

12 ¢ < argmin(Aug; + (1 = N)og;)

1eW

13 Insert ¢ in route p

14 I« TU{c}, ¥« ¥ -{c}

15 s < (p, 1)

16 if

(s is a feasible solution with respect to constraint (3.7))
then

17 temp < 1

18 break

19 end

20 end

21 end
22 end

23 return s

Algorithm 9: Perturbation (s,d)

Initialization: t < 1, blacklist < &

while (|blacklist| < J) do

choose randomly two nodes ¢ € Il and j € U, j ¢ blacklist
such that if ¢ is replaced by 7, the feasibility is hold
blacklist < blacklist U{i}

replace i by j

I« TTU{j}, IT < I - {i}

U« U {i}, ¥ < U-{j}

end

10 s« (p, 1)

11 return s

© 0 N o A W N

The proposed heuristic approach was used to solve a set of large instances
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all derived from the real data set, where more affected areas have been
considered in the set V. In particular, we have generated 4 more instances,
with a number of nodes ranging from 75 to 90. The other parameters, namely
the fleet size and the threshold, are the same of the other experiments. A
time limit of 1200 seconds has been set both for SCIP and the heuristic
method (Thrq, = 1200). Moreover, Ajzq, has been set to 5 and 6 = 10%]|II].

A Nodes Gaprs(%)

0.1 I6) 30
30 64
85 65
90 52
0.3 I6) 28
30 18
85 19
90 93
0.5 I6) 17
30 13
85 10
90 10

Table 3.8: Results for larger cases: proposed heuristic versus SCIP

Table 3.8 presents the results obtained. SCIP was not able to find a feasible
solution in all but two instances. In Column Gapy (%) we have reported the
gap of the solution obtained by the heuristic with respect to the lower bound
obtained by SCIP when the nonlinear function is replaced by a polyhedral
outer approximation. When SCIP was able to provide a solution, (i.e., for 80
and 90 nodes with A = 0.3) its solution was worse than the solution provided
by the heuristic, respectively, by 92% and 45%. The gap is quite high for
A =0.1. This might be due to the fact that the outer approximation is not
tight when more weight is put on the non-linear part of the model. For the
other values of A the gaps are quite good, considering also the inability for

SCIP to find a good solution, if any.
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3.3.5 Conclusions and future research directions

In this Chapter, we have proposed a tool for supporting the decision pro-
cess in the post—disaster planning phase. In particular, we have proposed
a customer—centric vehicle routing problem that minimizes the total arrival
time, acknowledging in this way the criterion of quick responsiveness of the
relief phase. The model has a selective structure to be more consistent with
the characteristics of short—time relief routing efforts, especially over the first
72-hours after the disaster, when only a subset of affected areas, based on
their urgency levels, can receive humanitarian aid. The selective criterion is
based on the population of the affected areas as well as their urgency levels.
As a main contribution, the uncertainty of travel times was injected into the
problem and a risk-averse approach was considered.

The computational experiments provided interesting managerial insights
about the importance of adopting risk—averse policies, when the uncertainty
of travel times is incorporated. We also presented also a heuristic able to
solve large scale instances in reasonable time.

Future research could involve the incorporation of correlation among the
travel times in the network, especially when network disruptions are more
probable. The extension of the proposed model to a location—routing model
integrating both pre—disaster and post—disaster decisions in relief logistic

could be an interesting future research stream.
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Chapter 4

Asymmetric latency-based
vehicle routing problems with
uncertain travel and service
times

In this Chapter, we will present a distributionally robust methodology for an
extended version of the problem earlier studied in Chapter 3. In particular,
we study the asymmetric latency-based VRP with service level constraint
under uncertainty, considering also the presence of the service time. We
present a metaheuristic approach based on a large neighborhood search and
variable neighborhood descent heuristic. We will use the distributionally ro-
bust optimization approach as an alternative to incorporate the uncertainty
of random parameters (in our case, travel and service times). A large fam-
ily of distribution functions is considered since the random parameters may
belong to any ambiguous distribution with known first and second moments
and with a non-negative support of the distributional set. In Section 4.1,
we review some preliminaries related to the distributionally robust approach
and also we present the new version of the latency-based routing problem for
which we derive an equivalent deterministic model. Section 4.2 introduces a
metaheuristic methodology to solve the problem.

Although we present the mathematical model in the routing context,
this study also contributes to the machine scheduling literature, presenting
a multi-machine scheduling model with a selective structure in which the

uncertainty of both the setup and processing times are taken into account.
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Beside the model is interesting in itself, it represents also a new approach
for dealing with the deterministic selective machine scheduling problem.

In Section 4.3, we present the computational results applying the robust
model in the machine scheduling context, and we provide an extensive set of
experiments performed on instances adapted from the benchmark testbed.
Moreover, we also show the efficiency of our formulation, considering deter-
ministic parameters, when compared with the deterministic model present

in the literature.

4.1 The generalized robust model

In this section, we first present some preliminaries on robust optimization
(RO). The RO models do not require specification of the exact distribution
of the exogenous uncertainties of the model. This is the general distinction
between the approaches of robust optimization and stochastic programming
toward modeling problems with uncertainties. In the framework of robust
optimization, uncertainties are usually modeled as random variables with
true distributions that are unknown to the modeler, but are constrained to
lie within a known support. The uncertainty set can be selected as a con-
tinuous interval or a finite set of different values. In this latter setting, the
problem of interest is in general the optimization of the performance in the
worst case scenario. Three criteria have been introduced in the literature:
absolute robustness, robust deviation and relative robust deviation. Abso-
lute robustness considers minimizing the objective value of the worst case
directly. Robust deviation (or absolute regret) minimizes the largest possible
difference between the observed objective value and the optimal one, while
relative robust deviation (or relative regret) deals with the ratio of the largest
possible observed value to the optimal value. In the continuous case, the un-
certainty sets are selected as continuous intervals. Under this assumption,
the expected solution performance is typically optimized. However, this cri-
terion assumes that the decision maker is risk-neutral and leads to solutions
that may be questionable. In this case, the decision maker attitude towards
a risk should be taken into account. A criterion called Conditional Value-
at-Risk (CVaR), early applied to a stochastic portfolio selection problem,

can be used. Using this criterion, the decision maker provides a parameter
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a which reflects his attitude towards a risk. When « = 0, then CVaR be-
comes the expectation but for greater values, more attention is paid to the
worst outcomes, which fits into the robust optimization framework. In this
section, we consider the worst-case CVaR in situation where the information
on the underlying probability distribution is not exactly known. In fact,
typically, the first- and second-order moments of the uncertain parameters
may be known, but it is unlikely to have complete information about their
distributions.

Let assume that the uncertain travel t;j and service time 7; are defined
by random vectors t and 7, respectively, We investigate a specific case where
the ambiguity set is determined by the mean and covariance and the distri-
butional set is a semi-infinite support set. Let Py and P, be the ambiguous
distribution of random vectors t and 7, respectively, which are described by

their first and second moments as follows:

Py = {IP*| Sup(tij) = [0,00),V(i,j) € V x V. E(ti;) = ;. Var(ty) = o7 }
(4.1)
P = {IP7| Sup(7;) = [0,00),Vi eV, E(7;) = sz, Var(s;) = 02} (4.2)

Following the risk-averse approach, we apply the C'VaR risk measure at a
given confidence level a € (0,1), denoted by CVaR,. This risk measure
quantifies the expected loss of the random variable T in the worst a% of

cases described as follows:
CVaR, = E[T|T > inf{t|P(T >t) <1-a}] (4.3)

where T is a vector of random variables like t or 7 in (4.1) or (4.2).
Therefore, considering the above definitions, we define the robust risk
measure CVaR,(T), denoted by, RCVaR,(T), as follows:

RCVaR,(T)= sup CVaR,(T) (4.4)

PTepT

It is easy to see that the worst-case CVaR,(T) is nothing but the robust
RCVaR,(T) which can be equivalently expressed as

min  RCVaR,(T)= min sup CVaR,(T) (4.5)

(z,y)eX (z,y)eX pTpr

where X is the solution space describing the set of constraints in (3.1)-(3.9).
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We now adopt the same approach proposed in [67], and generalize it for a
extension of the latency-based VRP with service level presented in Chapter
3.

Theorem 4.1.1. For any random variable T € R*, with a distribution func-
tion IPT belonging to the distributional set Py = {IPT| Sup(T) = [0, ), E(T) =
pr, Var(T) = 032}, the RCVaR,(T) is calculated as follows:

2

L if 0 < < =L
RCVaR,(T)={"" _ 7, 7T Proof: See [67]. O
pr + /7=, zfﬁﬁasl

Theorem 4.1.1 provides a baseline to present an equivalent non-deterministic

mixed integer mathematical model for the robust model that we are going

to present.
Let G = (V, E) be a directed (asymmetric) graph where V = {0,1,...,4,...,
J,...,n} represents the set of potential customers to be visited by a fleet of

K homogenous vehicles, and E = {(ij) e VxV|i # j} (V = V~{0}) define the

set of arcs. To each arc (ij), we assign a random travel time ¢;; for which

the first and the second moments, respectively, i,; and crff‘ are known. Each
)

potential customer ¢ is categorized by its profit ¢; and random service time

7;. The first and the second moments of 7; are denoted by jz and o2

i)

re-
spectively. The aim is to select a set of customers to be visited such that a
minimum revenue level is achieved and the total latency of visited customers
is minimized. The binary variable y;; is assigned to each arc (ij) € E such
that i € V, j € V and takes the value 1 if the arc (i) € £ is used to link node
¢ in level 7 + 1 to node j in level r, otherwise its value is set to 0.

The objective function of the problem is as follows:

N N
(I) min:z=Y > r(to;+7)yb;+ 2, >, . r(ty+7;) i (4.6)

r=1 eV r=14eV jeV

j#i
The set of constraints are the same as those presented in (3.1)-(3.9) where
the constraint in (3.7), just for the matter of being consistent with the ap-

plication in Section 4.3, is expressed in an alternative way

N
ieV r=1 ieV
where T" € (0,1) is an input parameter specified by the decision-maker.

This idea is supported by Theorem 4.1.2.
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Theorem 4.1.2. For any feasible solution (x,y) € X described by the set of
constraints in (3.1)-(3.9) with the distributional loss function Zy, Z, subject
to a distribution in

P2 = {IP*[ Sup(Z(ay)) = [0,00), E(Z(ay)) = p=(2,y), Var(Z(ay)) = 02(x,y)},
the following result hold:

min ROVaRZ(Z(zy)) = min_ (25, 23), where

(z.y) (zy)eX

min:zl— Z::Z (750])+M(7']) yoj"‘zzz M(t;j)'i'ﬂ(%j)]y:j

r=lieV jeV
j#i
(4.8)
N ~
min : 2o Z Z [1(to;) + p(75) Jyo; + Z Yo > rlu(ty) + u(7)]yis+
r=1 r=lieV jeV
j#i
(0% N ) o5/, ; N ar 94" o/~
T | R Ll (t) (7)) v, + Z D, 2. 2o (i) + o2(7)]
« r=1jev r=LieV jeV
J#l
(4.9)

Proof: The proof is similar to what discussed in [67] in which two indepen-
dent random vectors, instead of one, are considered. O

As Theorem 4.1.2 shows, the optimal solution of the distributionally robust
model in (4.6) is obtained by solving one linear and one non-linear mixed
integer mathematical model with the objective functions in (4.8) and (4.9)
and with the same set of constraints (3.1)-(3.9). Then, we should take the
minimum between the optimal values of 2 and 2;. In what follows, we

present a metaheuristic approach to solve the latter problems.

4.2 The metaheuristic approach

The computational intractability of the problem has motivated us to design
a heuristic approach exploiting the specific problem structure. Particularly,
we propose an Adaptive Large Neighborhood Search (ALNS) heuristic first
introduced by Ropke and Pisinger [215] which has been widely used for
solving combinatorial problems in different fields ([215, 210]). The ALNS
is mainly described as an iterative approach involving a set of removal and

insertion procedures. Each iteration starts by selecting a pair of removal and
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repair methods: the removal policy partially destroys a part of the current
solution where the insertion method tries to repair it. This, in general,
provides us with a large set of neighborhood solutions and hopefully may
lead into finding near-optimal solutions. In general, the selection criterion
for both of the removal and repair methods is based on the weight values
assigned to each method controlling how frequent each method is called.
Very often, the performance of LNS is enhanced by adding an adaptive
mechanism which tracks the performance of each method, in terms of the
success or the failure in finding improving solutions over the past iterations,
and use this information to dynamically adjust the weights. This gives those
removal-insertion methods, which have been more successful, more chance to
be selected in the next iterations. We develop our proposed algorithm based
on the same idea of ALNS described in [215] but we have customized and
modified the heuristic, based on the specific features of our problem. The
most important distinctive features of the proposed heuristic are classified
as follows.

We hybridize the ALNS with Variable Neighborhood Descent (VND) in
order to intensify the search process. As a matter of fact, the removal and
insertion operators essentially perform a blind search exploring large size
neighborhoods. In simple words, the removal methods can destroy a large
part of the solution and the neighborhood contains a large number of so-
lutions. To overcome this disadvantage, some authors augmented the LNS
with an intensification mechanism such as local search or hybridized it with
other heuristics such as Tabu search and simulated annealing [215]. In our
hybridized algorithm, after a certain number of iterations performing the
ALNS heuristic, we run a VND-based procedure to deeply explore differ-
ent neighborhoods of the current solution in the hope of moving to better
solutions.

The general scheme of the proposed ALNS heuristic is shown in Algo-
rithm 10. The algorithm is composed of a construction phase generating
an initial feasible solution s, with respect to the set of constraints (see Sec-
tion 3), which is then improved in the improvement phase over an iterative
procedure.

The initial solution is generated in a greedy fashion started by selecting

K different customers with the lowest service completion time C7T' to be
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scheduled as the first visited nodes. The service completion time of customer
i eV is calculated as CTj = puy,, + ftr, + m . If this initial solution is a
feasible one with respect to the service level constraint (4.7), the procedure
is finished; otherwise, we continue adding the most profitable non-visited
nodes, one by one, to each vehicle. This guarantees to have balanced paths
in the sense that the difference in the number of visited nodes over each
pair of paths is at most one. This process is repeated until the feasibility is
gained and the obtained solution is fed in Algorithm 10.

The improvement phase consists a main loop running for Ity;,, iterations
and each iteration starts with the selection of a pair of destroy (d) and repair
(r) methods. After that, the destroy is applied to destroy part of the current
solution s and then the repair method rebuilds a new solution s’. We have
considered six different destroy and insertion methods, including both the
original ALNS methods ([215]) and their modified versions customized to
be consistent with the problem structure. The proposed heuristic allows
a controlled exploration of intermediate infeasible solutions. To this end,
we replace the objective function z by its penalized counterpart Z where
Z= 240N Sicr Vi — Yier Someq i 27 ]*, [2]* = max(0,x), and X is the penalty
parameter defined by the decision-maker.

Hence, the solution s’ is not necessarily a feasible one. If it is feasible, the
current and the best solutions s and s* can be updated. Otherwise, if the
new solution s’ neither outperforms the current solution, and consequently
nor the best solution, it can be accepted with respect to the aspiration
criterion, explained in Subsection 4.2.4. In any of the cases discussed above,
the scores assigned to the selected operators d and r are also appropriately
modified. These scores are used to update the weights of operators after
each n iteration. The details on the update of scores and weights are given
in subsection 4.2.3.

The iterative VND-based heuristic is called in after every 0, segments,
exploring different neighborhood structures around the current solution s
in order to find an improving solution, if any. This procedure is halted
whenever the input solution s cannot be improved anymore. Finally, the
update of current and best solutions is performed ending one iteration of the

main loop.
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Algorithm 10: Hybrid ALNS-VND heuristic

1 Illpllt: Itjwax, To, 9, (51, 52

2 Initialization: t < 1, T' < Ty, s < null, Spess < null,

3 Initialize the scores &;, the values n;, and weights w; assigned to
destroy and repair operators

4 s < Initial solution()

5 Spest <= S
6 for (t < 1toIt,.,) do
7 Select a pair of destroy and repair operators (d,r)
8 s'<r(d(s))
9 if (2(s") < Z(s)) then
10 5+ s’
11 if (Z(s) < Z(Spest) & s is feasible) then
12 Sbest <= S
13 update the scores of r and d by ¢
14 else
15 | update the scores of 7 and d by ¢,
16 end
17 else
18 if (s'is accepted) then
19 s+ s
20 update the scores of r and d by ¢3
21 end
22 end
23 if (it%01 == 0) then
24 | Update the weights w; and reset & and n;
25 end
26 if (it%09 == 0) then
27 s' < VND(s)
28 if (2(s") < z(s)) then
29 s+ s
30 if (Z(s) < Z(Spest)) then
31 Shest <= S
32 end
33 end
34 T<Tx0
35 end
36 end

37 return Sy
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4.2.1 Removal heuristics

The removal heuristics try to destroy a part of current solution by deleting
a specified number of selected nodes, let say 7, one by one, in the current
solution where v = [5 |V|] and § € (0,1) is an input parameter. The higher
is the value of §, the higher is «, the bigger neighborhood is searched. Here,

we present six different removal methods applied in the proposed heuristic.

Worst remowval heuristic This destroy operator starts with an empty set
for deleted nodes U = @ which is going to be filled by 7 nodes from the set of
visited nodes, let say L. To this end, for each visited node 7, we calculate the
change in the objective function A z%, if i is being removed from the current
solution. The elements in L are sorted in non-decreasing order with respect
to the AZ' values and the i*-th element in L such that i* = [7?|L|] is se-
lected to be deleted from the current solution where 7 is a random number in
[0,1] and p is an input parameter greater than 1 controlling the randomized
degree of heuristic. After each node deletion, the Az values are evaluated

with respect to the last destroyed solution.

Worst removal heuristic: greedy version
This heuristic is similar to the previous one but it does not use the random-
ized mechanism. The node with the largest A z? value is deleted from the

current solution.

Shaw removal with respect to the expected completion time and profit
The Shaw removal heuristic proposed by Shaw [232] and Ropke and Pisinger
[215] accounts for the similarity between nodes. Nodes that are more similar
to each other, with respect to a specified criterion, are chosen to be deleted
from the current solution. The Shaw removal starts with a node (the refer-
ence node) let say r, randomly selected from the set of non-visited nodes,
|U|. Then, for each visited node i in the current solution, we calculate the ex-
pected latency of node ¢ (ECT;) (composed of the expected travel times and
the expected service time up to node i) as well as the expected arrival time
of node r (ECT,), if visited instead of node i. The similarity score SR(i,r)

ECT-BCTy |, |%i=yr
wormor | * ool Then, all

between nodes ¢ and r is defined as SR(i,7) = |
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selected nodes are sorted in non-decreasing order with respect to the similar-
ity scores SR(4,7) and the i*-th element in V — U such that i* = [WX V- U|J
is select to be deleted from the current solution. Here 7 is a random number
in [0,1] and x > 1 is an input parameter. The ending arcs of the path are
re-connected after deleting a node. This process is continued until p nodes

are deleted.

Shaw removal based on profit
This heuristic works like the the above Shaw removal where the only differ-

ence is in the way the similarity score is defined: SR(7,7) = [¢; — ]

Shaw removal based on set up time The similarity score used in this
heuristic is defined as SR(i,r) = [%5™|. The other parts of this heuristic are

the same as explained in the Shaw remowval.

Random removal This destroy operator randomly selects a visited node
in the current solution to be deleted. The same stopping criterion explained

before holds here as well.

4.2.2 Insertion heuristics

We use six different insertion heuristics to repair the partially destroyed
current solution by adding some nodes into the solution. Due to the selec-
tive structure of the problem, we should look for an appropriate subset of
nodes to be inserted into the solution; to this end we let the heuristic choose
the appropriate nodes from the set of all non-visited nodes, including those
present in the current solution but destroyed over the removal heuristics as
well as those nodes that were not selected in the current solution. The node
insertion is continued until either v nodes are inserted or a feasible solution
is obtained. We should note that the repair methods consider the possibility
of inserting both the selected nodes deleted over the destroy phase and the

non-selected nodes. Let U be the set of non-visited nodes.

Basic greedy insertion heuristic
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This insertion heuristic inserts nodes in U one by one, starting from the
first element, in the best possible position (order) and path resulting in the
least change of objective function zZ. After inserting each node, the current
solution is modified and the the changes in the objective function for other

candidate nodes are evaluated with respect to the repaired solution.

Deep greedy insertion heuristic
This heuristic is similar to the Basic greedy insertion but instead of inserting
each non-visited node in the best possible order, looks for the best non-visited
nodes to be inserted in the best order and path such that the total increase
in z is minimized. Similar to the basic greedy heuristic, the current solution

is repaired gradually by inserting node.

Regret insertion
In this heuristic, for each non-visited node ¢ in U, we calculate its regret
value Regret; = Azh2— Azh! expressed as the changes in the penalized objec-
tive function Z, if node i is inserted in its first best and second best positions.
Then, the node maximizing this value i* = argmin(Regret;) is chosen to be

iU
inserted in its best position in the corresponding path.

Random insertion
This insertion heuristic selects randomly a non-visited node ¢ € U and inserts

it in a random position in a randomly chosen path.

Most profitable insertion greedy
This heuristics ranks all elements in U based on their profit values in non-
ascending order, then starting from the first element, assigned with the high-
est profit, the non-visited nodes are inserted one by one in a randomly chosen
position over a random path. Like other insertion heuristics, this process is

continued until the stopping criterion is met.

Most profitable insertion randomized
Similar to its greedy version, this heuristic first orders all the elements in U
based on their profits. Then, the i-th element in U, such that i = [%] is

chosen to be inserted in a randomly selected position in a randomly selected
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path, where 7 is a random number in [0,1], x > 1 is a parameter, and U,
is the set of elements in U sorted based on profit value ¢); in non-ascending

order.

4.2.3 Adaptive mechanism

At each iteration of the ALNS, a pair of removal and insertion methods are
selected to be performed on the current solution generating a set of its neigh-
borhoods. The selection is done in an adaptive way since the performance
of each removal or insertion is recorded giving more chance to the more suc-
cessful neighborhoods to be selected in the next iterations. To this end, the
search iterations N,,., is divided into N different segments, each segment
including ¢; iterations (Npae = N d1). During the first segment, we assign
equal weights w; = 1 to each removal or insertion heuristic 7 and a roulette
wheel mechanism is used to select the pair of heuristics based on weights.
The weights w; over each segment are fixed but the performance of each
heuristic is carefully recorded and the score values of selected heuristics (&;)
are updated. Here, we consider three different score values ¢ = 50, ¢ = 20
and ¢3 = 0 that initially are set to zero and if the solution found using the
pair of removal-insertion heuristics is better that the best solution, their
score values are independently increased by ¢y, if it does not dominate the
best solution but is better than the current one, their scores are increased
by ¢9, and finally if it does not hold any of the latter cases but results in a
deteriorated but accepted solution, the scores are increased by ¢3. At the

end of each segments the weights w; are updated as follows:

a W; if n; = 0

Wi _{ (1 —'r/)wi+n,% ifn;>0

where n; is the number of times heuristic ¢ has been called over the latter seg-
ment and 7 € [0,1] is the reaction factor controlling the weight adjustment
with respect to the trade-off between the current weight and the heuristic
performance. Given the above discussion, the probability of selecting each
insertion (removal) heuristic ¢, is calculated as Zn‘(‘)—gw where n(.) is the total

i=1 Wi

number of insertion (removal) heuristics.
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4.2.4 The acceptance criterion

The acceptance criterion is in the attempt to diversify the search process
and escape from being stuck in a local minimum. In this framework, we also
accept non improving solutions satisfying the acceptance criterion. Here, we
use the simulated annealing as a common acceptance criterion used in ALNS.
If the new solution s’ is better than the current solution s, it is always ac-
cepted; otherwise, it is accepted with probability e:cp(w) where T" > 0
is the current temperature parameter which is gradually decreased at the end
of each iteration by a factor equal to the cooling rate € € (0,1). Obviously,
the initial temperature, let say Ty, should be set appropriately such that
over the initial iterations, more non improving solutions are accepted giving
more chance to explore promising areas in search region. With the increase
in the number of iterations, the moves towards the improving solutions are

prioritized.

4.2.5 The VND-based heuristic

We propose a VND-based heuristic to intensify the search process every 0,
iterations. The classical VND follows the simple idea of switching to different
neighborhood structures starting from the simplest neighborhood type. This
process is stopped whenever all neighborhoods are explored and the current
solution cannot be improved anymore.

Our VND-based heuristic is different from the traditional VND in two
aspects. First, our proposed heuristic is composed of two main loops instead
on one and more importantly, whenever we found an improving solution
s" with respect to the neighborhood v = 14, in the next iteration, we keep
exploring the same neighborhood vy while VND switches to the first neigh-
borhood v = 1. Similarly to the traditional VND, the proposed approach
switches to the next neighborhood v + 1, if no improving solutions over the
neighborhood v are found. The outer loop runs the VND-based heuristic in
an iterative way, until the initial solution is improved. The general structure
of the proposed heuristic is sketched in Algorithm 11. More details about

the local search are given in Subsection 4.2.6.
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Algorithm 11: The VND-based heuristic
Input: s, Nz
Initialization: s* < oo, s’ < null
repeat
§* < s
v« 1
repeat
s' < Local Search(s,v)
if (z(s") < z(s)) then
s« s

else

| v<v+1
end
until (v > Npaz);
until (z(s) < z(s*));
return s

© 00 g O ok W N =

= e
= o

=
N

= e
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4.2.6 Local search procedure

A local search is applied around the solution s with respect to neighborhood
v, seeking for the best improving solution, if any. The applied local search
involves eight different neighborhood structures classified as intra—route and
inter—route move operators. The repair methods consider the opportunity
of adding both the non-selected nodes and the discarded nodes. In the local
search, once again, we allow the possibility of modifying the set of selected
nodes. To be more precise, we consider three different move operators, in-
cluding moves between the class of selected nodes in the solution, moves
between the set of selected and non-visited nodes that can added into the
solution (see Replace in below), and moves among the group of non-selected

nodes competing for being inserted (see Insert unvisited in below).
1. Intra—route neighborhoods, including Swap, 2-opt, and Or-opt moves.
o Swap move: exchanges the position of two visited nodes over a
single path.

e 2-opt move: removes a pair of non-adjacent arcs from the path

and replaces it with two new arcs reconnecting the path.

e Or-oplt move: deletes a triple of non-adjacent arcs and rebuilds

them such that the order of intermediate arcs are preserved.
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o Delete visited move: deletes a visited node from its path.
o Insert unvisited move: inserts a non-visited node into a path.

e Replace move: replace a visited node by a non-visited one.
2. Inter—route composed of Ezchange and Relocation operators.

o FEzchange move: exchanges a pair of nodes between two different

paths.

o Relocation move: deletes a node from a path and inserts it to

another path.

4.3 Application in the multi-machine schedul-
ing context

4.3.1 Application description

Here, we specifically, discuss how the model in (3.1)-(3.9) can be used to
describe a selective multi-machine scheduling problem.
There is a close relation between problems addressed in the vehicle rout-
ing and in the machine scheduling fields, confirmed by the large number of
similarities in terms of the mathematical models and methodologies ([46]).
Let us consider the same asymmetric graph G = (V, E) presented in
Section 4.1, where V includes a set of potential jobs (instead of customers)
to be processed (instead of being visited) on K identical machines (instead
of vehicles) and the set of arcs E represents the precedence relationships
among the jobs. The travel time t;j assigned to (ij) € E is not interpreted
as a travel time, but, in fact, is the set up time, which is equivalent to the
minimum required time to set up the machine after processing job i and
before starting job j. Each potential job ¢ requires a processing time 7; and
has an associated profit value v;. For the dummy job 0 € V', representing the
start of the action over each machine, 7; = v»; = 0. The aim is to select a subset
of jobs in V minimizing total completion time, such that the total benefit
gained by the chosen jobs, in percentage, is above a minimum required level
I' determined by the manufacturer. Hence, in the model presented in Section
4.1, the objective function (4.6) represents the total completion times for all

the processed jobs, including the set up and the processing times.
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4.3.2 Computational experiments

To test the heuristic approach, we have chosen 750 instances from the bench-
mark test used for the order acceptance problem in the single machine con-
text ([195]). To the best of our knowledge, the order acceptance model in
[195] is the first contribution with a selective structure in scheduling context.
The instances are divided into classes (of 250 instances each) of different size
(10, 15, and 25 nodes). The setup times, the processing times, and the profits

are the same as those reported in the benchmark and the setup time vari-
and o2 = [¢?] where (; and (- are random numbers uniformly distributed in

intervals [1.1( min . + tij d[,i
intervals [ ’2(@'3/1,;2\7 ij 153?2%7 ij)] and [ vz(i

The value of I' is set to 0.6 and the number of machines (K) varies from one

ances o2 as well as the processing time variances o2 were set to o2 = [¢?]
% ij

in7; + max;)], respectively.
eV eV

to six depending on the size of instance.

The proposed heuristic was implemented in C+4 and the models were
solved using the open source SCIP library, released 3.2.0. The experiments
were executed on an Intel® Core™ i7 2.90 GHz, with 8.0 GB of RAM mem-
ory. The heuristic solutions were assessed with respect to the best solution
obtained by SCIP within a time limit of 3600 seconds. For each instance,
SCIP is called to solve two different problems, as described in Section 4.1.

The heuristic parameter settings are reported in Table 4.1.

Parameter definition Value
It ax Number of iterations in ALNS 2000
01 Segment of iterations to update the weights 40
n Reaction factor controlling the weight update 0.5
123 Segment of iterations to run VND-based hLeuristic 50
Noaz Number of move operators (neighborhoods) 8
T Initial temperature in the SA acceptance criterion 04
0 Cooling factor 0.99
d Destroy fraction {0.1, 0.2}
K Randomization parameter in Most profitable insertion randomized method

X Randomization parameter in Shaw removal-based methods 2
01 Increment rate of score &; assigned to method ¢, if the best solution is updated 50
o) Increment rate of score ¢; assigned to method 4, if the current solution is updated 20
O3 Increment rate of score & assigned to method ¢, if the degenerated solution is accepted 0

Table 4.1: Heuristic settings

Table 4.2 summarizes the results for 250 instances with 10 jobs and a single
machine organized in 25 data sets each containing 10 instances with the

same size. For each data set, we have reported the average gap Gapay,
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calculated with respect to the best solution obtained by SCIP and expressed
as Gap = % x 100 where zje, and zgcorp are the heuristic and SCIP
best solutions, respectively. In a similar way, the speed up of the solution
time for each instance is calculated as AT = fp—ﬁ%; x 100 where CPUje,
and C'PUgcrp represent the computational times of heuristic and SCIP,
respectively. We should mention that the lower bound assigned to each
instance (zgscrp) is obtained by solving two models and taking the minimum
of their optimal values. Hence, the SCIP solution time C'PUgcrp is the total
computational time spent by SCIP on both models. In addition, since for
the set of instances with 10 and 15 nodes in Tables 4.2 and 4.3, SCIP was
able to find the optimal solutions, we did not report the gap zero for the sake
of brevity. The column with heading #opt shows the number of instances
(out of 10) in each data set for which the heuristic gap (Gap) is zero.

In terms of the solution quality, the heuristic provides near-optimal so-
lutions with an average gap around 4% which increases slightly with an
increase in the risk level o. The heuristic finds optimal solutions for 2 to 9
instances in each data set and, in total, for 135, 140, and 147 (out of 250) in-
stances with a of 0.1,0.5, and 0.9, respectively, In 19 out of 25 existing data
sets, the heuristic solves at least half of the instances to optimality. In terms
of computational time, with respect to all the risk levels, the heuristic is on
average about 3 and up to 8 times faster than SCIP. In addition, the slight
higher average gap for o = 0.9 is compensated by the lower speed up rate as
reported in Table 4.2. In fact, the heuristic average speed up decreases with
the increase in risk level. The average speed up for o = 0.9, is above 8% and
9% lower than cases with o = 0.5 and 0.1, respectively. This could be an

insight showing that the proposed heuristic works well for higher risk levels.

115



Table 4.2: Results for the instances with n = 10 nodes and k£ =1

Instance a=0.1 a=0.5 a=0.9

Gappg %o ATn,'%e #0pt Gapawg%o ATaw,'%e fopt GapawgVo AT a7 Hopt
1 10orders-TaolR1  4.98 36.03 6 4.85 35.27 5 5.44 33.97 3
2 10orders-TaolR3  5.33 38.06 6 4.69 39.8 [§ 7.06 35.06 4
3 10orders-TaolR5  3.46 46.95 2.6 45.85 5 2.4 40.31 5
4
)

s

10orders-TaolR7  3.62 40.3 7 3.39 42.04 6 0.52 39.95 9

10orders-TaolR9  4.04 38.89 7 6.16 39.47 5 5.55 34.82 4
6 10orders-Tao3R1  2.79 40.91 7 3.89 42.48 5 4 42.09 [§
7 10orders-Tao3R3  1.14 35.11 6 0.26 34.28 8 2.9 29.01 5
8 10orders-Tao3R5  3.02 42.94 6 3.69 41.78 5 3.77 35.48 6
9 10orders-Tao3R7  6.39 44.46 3 6.06 42.69 3 5.15 38.78 4
10 10orders-Tao3R9 1.6 47.6 8 0.32 42.15 8 0.84 42.21 6
11 10orders-TaobR1  1.54 46.51 8 4.39 46.24 7 2.27 41.89 8
12 10orders-TaobR3  4.22 40.32 5 4.22 39.2 6 6.37 38.58 5
13 10orders-TaobR5H  8.18 45.17 2 9 41.51 3 12.04 48.41 2
14 10orders-TaobR7  3.02 36.59 3 1.42 38.82 4 2.18 35.47 6
15 10orders-Tao5R9  4.81 47.22 4 6.64 43.95 3 6.72 44.68 3
16 10orders-Tao7TR1  2.32 45.1 8 2.11 45.49 7 5.31 45.8 6
17 10orders-Tao7R3  4.55 37.53 6 7.38 39.5 6 5.39 32.93 5
18 10orders-Tao7R5H  3.76 43.69 5 3.56 40.88 4 3.25 35.7 7
19 10orders-Tao7R7  1.68 41.31 8 1.38 37.12 6 1.59 30.85 6
20 10orders-Tao7R9 1.5 27.95 8 2.37 27.58 6 2.37 25.34 5
21 10orders-Tao9R1 2.42 31.36 7 0.96 33.6 8 3.92 28.26 5
22 10orders-Tao9R3  4.22 44.21 7 3.39 45.54 7 2.15 39.96 9
23 10orders-Tao9R5  2.83 34.28 5 1.74 33.75 8 1.13 30.3 6
24 10orders-Tao9R7  6.48 34 3 6.6 32.64 3 3.5 29.59 5
25 10orders-Tao9R9  4.97 47.75 7 6.83 46.24 6 5.67 40.18 5

Avg. 3.71 40.57 3.92 39.91 4.06 36.78

The results for data sets with 15 jobs are reported in Table 4.3. Compared
with the case with 10 nodes, the average gap decreases with the increase in
risk level a. The gap is 6.04 for a = 0.1 and decreases to 2.27 for o = 0.5,
and then slightly increases to 2.39 for o = 0.9. The heuristic finds optimal
solutions for 104, 129, and 120 out of 250 instances for a of 0.1, 0.5, and
0.9, respectively. In terms of solution times, the average speed up decreases
slightly with respect to the increase in risk level. In particular, for & = 0.1 and
0.5, the heuristic is at least 2 up to 7 times faster than SCIP. Even for a = 0.9
the heuristic provides near-optimal solutions up to 10 times faster than SCIP.
Clearly, the heuristic and SCIP solution times for larger instances with 15
nodes are considerably higher than instances with 10 nodes, but the heuristic
speed up rates are much lower, showing that heuristic computational time

performance increases with the increase in the size of problem.
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Table 4.3: Results for the instances with n = 15 nodes and k£ =1

Instance a=0.1 a=0.5 a=0.9

Gap avg% ATayg% #O0pt Gapawg% ATawe% #opt Gapayg% AT awg% #opt

1 15orders-TaolR1  1.71 27.32 5 2.03 27.72 3 1.27 25.26 5
2 15orders-TaolR3  2.94 24.96 5 3.94 24.14 4 2.1 23.3 5
3 1borders-TaolR5  1.66 26.67 8 0.74 27.74 7 2.03 25.52 5
4 1borders-TaolR7  1.07 28.97 7 0.62 26.93 8 1.18 24.59 5
5 1borders-TaolR9 2.26 22.14 5 2.42 24.25 5 0.88 22.49 4
6 15orders-Tao3R1  1.85 27.71 4 2.47 29.06 5 2.67 27.73 3
7 15orders-Tao3R3  2.41 24.24 6 2.36 23.64 6 2 23.6 5
8 15orders-Tao3R5 1.5 24.45 6 0.95 26.08 7 4.16 24.17 6
9 15orders-Tao3R7  1.03 29.11 6 1.95 27.47 4 2.08 25.16 5
10 15orders-Tao3R9  2.77 25.98 4 1.98 25.78 6 4.28 25.35 4
11 15orders-Tao5R1  5.36 26.3 2 3.63 25.02 2 4.05 22.75 4
12 15orders-Tao5R3  10.09 27.74 3 1.38 25.59 7 2.61 24.31 6
13 15orders-TaobR5  5.21 29 4 2.31 28.74 4 1.96 25.26 6
14 15orders-TaobR7 16.11 25.19 3 1.9 27.33 6 3.92 26.17 4
15 15orders-Tao5R9  14.73 26.69 3 0.85 25.43 8 1.77 24.42 5
16 15orders-Tao7R1  13.86 29.39 3 1.72 25.7 6 1.71 26.05 5
17 15orders-Tao7R3  3.88 27.66 5 1.75 28.2 5 0.64 26.6 6
18 15orders-Tao7R5 7.38 26.16 2 3.59 23.47 3 3.43 22.73 3
19 T15orders-Tao7R7  15.65 28.65 3 3.75 25.2 5 1.37 26.5 7
20 15orders-Tao7R9 15.49 24.55 4 3.54 23.57 3 3.89 23.31 2
21 15orders-Tao9R1  5.37 25.17 3 3.29 23.15 5 2.62 23.91 5
22 15orders-Tao9R3  11.59 27.54 1 1.9 26.33 5 1.02 25.29 5
23 1borders-Tao9R5  1.86 28.91 3 2.74 28.23 4 2.35 28.81 4
24 15orders-Tao9R7 4.3 28.58 2 3.85 26.94 4 3.69 27.11 4
25 150rders-Tao9R9 0.9 28.75 7 1.01 26.33 7 2 25.29 7
Avg. 6.04 26.87 2.27 26.08 2.39 25.03

Table 4.4 shows the results for the set on instances with 25 jobs and 2
machines where the column with heading Gapscrp represents the optimality
gap, in percentage, reported by SCIP. Obviously, those cases for which the

Gapscrp values are zero have been solved to optimality by SCIP.
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Table 4.4: Results for the instances with n = 25 nodes and k = 2

Instance a=0.1 a=0.5 a=0.9
Gap avg% ATuvg% #O0pt Gapavg¥o ATnyg% Fopt Gapavg’h ATawg% #opt Gapscipr%
1 Sorders-TaolR1 5.19 91.11 1 5.18 67.48 1 3.5 49.29 2 1.11
25orders-TaolR3  3.67 89.3 1 4.38 87.3 1 5.96 64.42 0 0
3 25orders-TaolR5 2.74 75.25 3 3.41 68.83 3 2.29 39.49 1 1.16
4 25orders-TaolR7  3.65 101.86 1 2.64 96.16 1 2.04 62.66 4 1.07
5  25orders-TaolR9 6.5 82.7 1 5.53 60.75 2 4.29 51.49 0 3.89
6 25orders-Tao3R1  4.12 79.85 2 2.47 91.28 3 1.73 78.55 3 0
7 2borders-Tao3R3  2.75 66.89 3 1.45 65.97 5 1.59 43.51 1 2.34
8 25orders-Tao3R5H 1.97 79.13 3 2.62 66.06 2 1.54 46.24 4 1
9  25orders-Tao3R7  2.56 75.71 3 2.18 58.82 4 3.33 53.11 2 2.42
10 25orders-Tao3R9  4.24 93.5 0 3.31 67.57 0 4.83 45.01 2 2.91
11 25orders-Taob5R1 3.6 91.77 3 3.24 69.88 2 3.92 46.41 3 2.41
12 25orders-Taob5R3 3.07 87.06 3 3.03 64.28 1 2.85 53.66 2 1.59
13 25orders-Taob5R5  3.72 123.03 1 2.93 101.74 2 3.34 65.69 2 0
14 25orders-TaobR7 1.27 66.64 3 2.01 75.69 3 2.99 53.28 2 0
15 25orders-Tao5R9 3.16 63.33 1 2.37 48.99 2 3.03 50.49 2 0
16 25orders-Tao7R1  4.54 74.31 1 5.16 90.37 2 3.97 45.45 1 4.84
17 25orders-Tao7R3  2.37 105.03 4 3.97 81.75 2 2.44 54.22 2 0
18 25orders-Tao7R5 2.71 97.36 2 2.42 90.95 2 3.01 70.92 1 0
19 25orders-Tao7R7  5.06 104.83 1 4.12 71.72 1 5.43 51.66 1 0.91
20 25orders-Tao7R9  4.95 95.63 1 3.28 101.07 2 2.36 62.17 1 1.66
21 25orders-Tao9R1 5.02 95.67 1 5.17 104.36 1 2.62 62.18 1 0
22 25orders-Tao9R3  4.78 86.16 2 3.27 75.35 2 2.39 41.65 4 2.54
23 25orders-Tao9R5  6.02 75.59 0 3.33 82.92 2 3.62 41.19 2 2.28
24  25orders-Taoc9R7  10.07 107.57 1 3.9 78.02 1 3.83 43.88 1 0
25 25orders-Tao9R9  10.04 90.39 2 3.72 110.76 2 2.38 66.63 4 1.34
Avg. 4.31 87.99 3.4 79.12 3.17 53.73 1.34

4.3.3 Proposed mathematical model versus the tradi-
tional order acceptance model

The mathematical model presented in this section, is a robust counterpart
of a model defined on a layered graph and used in the routing context.
Therefore, a natural question arises, arguing if this formulation, in this de-
terministic version, is a good or a bad formulation for the selective parallel
machine scheduling problem under total completion time minimization. We
were not able to find an exact deterministic equivalent for our model, hence
we adapted the order acceptance scheduling model presented in [195], which
shares the same idea of job acceptance or rejection with our model. To make
the comparison in a fair way, we replace the constraints related to the tar-
diness and deadlines in the order acceptance model with the service level
constraint (4.7) and set the objective function equal to the total completion
time. Since the order acceptance model in [195] is, indeed, designed for the
single machine case, we set K =1 in our proposed model. Both models were
implemented in AIMMS 4.1 and solved by the CPLEX solver considering

118



a time limit of 1000 seconds. We perform a set of experiments on 20 in-
stances selected from the benchmark. Table 4.5 summarizes the obtained
results. Columns 1 and 2 represent the instance name and the number of
jobs, respectively; Columns 3 and 4 report the best objective value and the
computational time (in seconds) for our model, followed by its relative lin-
ear gap (in percentage). In a similar way, Columns 6-8 present the same
information of the Columns 3-5, but for the model taken form the litera-
ture. Column 9 shows the optimality gap for the order acceptance model

and, finally, Column 10 indicates the speed up in solution time calculated as

A = CPUproposed Model
CV-PUOrder acceptance Model

able to find the optimal solution, verified by the zero gap values in Column

x 100. In terms of solution quality, our model was

5, in a time limited to 132 seconds.

For the order acceptance model, CPLEX found the optimal solutions only
in 9 instances, including 4 cases for which the optimality did not proved (ver-
ified by the non-zero gaps in Column 8). In 7 cases, CPLEX provided only
near-optimal solutions with different optimality gaps varying from 0.31% to
12.73% and for the 4 last instances with the largest size, CPLEX did not
find any feasible solution (a dash is reported in the table). Also, with respect
to the solution time, the time limit for all cases but those with 10 jobs was
reached. Apart from that, the considerable difference between Gapo,: and
Gaprp in Columns 8 and 9 is an informative insight showing that the linear
relaxation of the order acceptance model is very weak even for moderate in-
stances with 25 jobs. In summary, our model outperforms the known model

in terms of both the solution quality and the computational time.
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Table 4.5: Comparing the results of two models

Instance #Jobs Proposed Model Traditional Model

Obj Val. CPU(s) Gaprp(%) Obj Val. CPU(s) Gapre(%) Gapop (%) A(%)
10Tao-R1-1 10 131 0.15 0 131 4.1 0 0 3.66
10Tao-R3-1 10 150 0.05 0 150 9.36 0 0 0.53
10Tao-R5-1 10 106 0.05 0 106 1.46 0 0 3.42
10Tao-R7-1 10 155 0.09 0 155 5.94 0 0 1.52
10Tao-R9-1 10 192 0.09 0 192 11.85 0 0 0.76
15Tao-R1-1 15 175 0.1 0 175 1000 29.7 0 0.01
15Tao-R3-1 15 287 0.4 0 287 1000 44.9 0 0.04
15Tao-R5-1 15 311 0.24 0 311 1000 46.3 0 0.02
15Tao-R7-1 15 244 0.23 0 282 1000 74 13.48 0.01
15Tao-R9-1 15 269 0.13 0 269 1000 10 0 0.01
25Tao-R1-1 25 646 2.24 0 648 1000 79.3 0.31 0.21
25Tao-R3-1 25 566 1.56 0 569 1000 77.9 0.53 0.16
25Tao-R5-1 25 772 2.24 0 843 1000 82.2 8.42 0.22
25Tao-R7-1 25 555 1.43 0 557 1000 78.9 0.36 0.14
25Tao-R9-1 25 620 2.43 0 649 1000 7.2 4.47 0.24
50Tao-R1-1 50 1501 43.7 0 1720 1000 91.2 12.73 4.34
50Tao-R3-1 50 1977 24.24 0 - 1000 00 00 2.33
50Tao-R5-1 50 2300 131.24 0 - 1000 00 00 13.12
50Tao-R7-1 50 1854  23.01 0 - 1000 00 00 2.3
50Tao-R9-1 50 2216 49.39 0 - 1000 00 ) 4.94

Avg 14.15 1.9

4.4 Conclusions and future research directions

We proposed a distributionally robust approach for a latency-based VRP in
which the uncertainty affects both the service and travel times. We formu-
lated the problem as a risk-averse model. From the solution viewpoint, we
proposed a hybrid ALNS-VND based heuristic which uses different destroy
and repair methods exploring the order-sensitive structure of the problem.
We also presented an application of the problem in the machine scheduling
context and tested the efficiency of the proposed approach on a large set
of benchmark instances. The proposed methodology provided good quality

solutions for the set of small and moderate instances.
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Chapter 5

Incorporating equity into
emergency medical service
strategic planning

Latency and equity are two closely related performance measures both af-
fecting the customer’s satisfaction. In this Chapter, we have applied the
equity concept into a strategic location-allocation model. As an elective
applicative field, we have chosen a problem arising in emergency medical
services (EMSs) which are one of the most important health care services,
since they play a vital role in saving people’s lives and reducing the rate of
mortality and morbidity. The importance and sensitivity of decision making
in the EMS field have been recognized by operations research scientists, EMS
planners, and health care practitioners who studied many problems arising
in the management of the EMS systems since the 1960s. In this Chapter,
we first present a part of a broad literature review on EMS that appeared
in the authored published paper [21]. In the second part of the Chapter, we
present a novel location-allocation model balancing efficiency and equity in

strategic EMS design.

5.1 Locating Emergency Medical Services: lit-
erature review and new challenges

The EMS systems have attracted considerable attention from researchers
since the 70s. The primary concern is to efficiently design a system which is

able to respond to emergency calls in a timely fashion.
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Traditionally, EMS problems deal with the selection, the location and
dimensioning of sites and the allocation of demand points to the facility
sites. Hence, numerous reviews appeared over the last years on models and
methodologies for locating EMS vehicles. One of the first reviews papers
that addressed EMS location models is the paper of ReVelle et al. [207]. In
[52], Laporte et al. presented a paper on ambulance location and relocation
problems, and classified the existing models in three main groups: static and
deterministic models, probabilistic models, and dynamic models. Tn [111],
Goldberg focused on modeling aspects of the deployment of EMS vehicles.
In a recent review paper, Li et al. ([153]) studied papers addressing differ-
ent types of covering models for EMS planning, hypercube queuing models,
and dynamic allocation and relocation models. Finally, Bagar et al. ([28])
presented a taxonomic framework for EMS location problem.

Amongst the papers on EMS systems, there are only a few review papers
that have a broader view on the management of an EMS system. In [114],
Green and Kolesar surveyed the role of operations research and manage-
ment science in improving emergency responsiveness over time, which lead
to new policies and practices. In [121], Henderson presented a discussion on
challenges in EMS, highlighting the role of system-status management (re-
deployment strategies) in improving the EMS systems. Finally, Ingolfsson
([132]) surveyed research on planning and management for the EMS, empha-
sizing four topics: (i) demand forecasting, response times, and workload; (ii)
measuring performance; (iii) choosing station locations; and (iv) allocating
ambulances to stations based on predictable and unpredictable changes in
demand and travel times.

The structure of the review paper [21] is based on the concept of Emer-
gency Care Pathway (ECP), which is an emerging trend that shifts the cen-
tral role from health care providers to patients. A typical ECP starts when
the EMS receives an emergency request. After determining the urgency of
the incident, an ambulance is dispatched. The ambulance should reach the
emergency scene as soon as possible to provide first-aid and to transport the
patient to the ED of a hospital. Once the patient is discharged from the
hospital, the ECP finishes. The review covers many decision problems in
the ECP as shown in Figure 5.1.
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Figure 5.1: Emergency Care Pathway and related problems

In this Chapter, we will include just the first block, related to the locational
decision making in the EMS. This critical topic plays an outstanding role in
designing efficient EMS systems in which early response to emergency calls
is provided.

Differently from other reviews, we classify the existing contributions
based on two key concepts: equity and uncertainty. In what follows, chal-

lenges, gaps and new trends are highlighted in boxes.

5.1.0.1 Incorporating equity

Equity is one of challenging concerns in the healthcare sector and especially
in the EMS systems, since it evaluates the fairness of how resources (notably
EMS vehicles) are allocated to patients.

Since the main aim of the EMS planners is to provide early response, equity
is usually expressed as a function of distance or Response Time (RT) traveled
by the EMS vehicles. Although there are some standard equity indicators in
location literature (mostly distance-based deviation measures [173]), there
exist only few studies that incorporate equity in the EMS location problems
(see also [153]) and no general consensus exists on appropriate equity mea-
sures.

To evaluate the performance of different Response Time Thresholds (RTTs),
McLay and Mayorga [170] designed a location model which maximizes the
overall marginal increase of the fraction of high priority calls that meet the
performance standards. They also incorporate the concept of patient sur-
vival in their model by simplifying the survival function of [149]. To address

the equity concept in their model, they include a coefficient in the objective
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function which corresponds to the proportion of rural demand at each de-
mand node. The model is tested on data of the Hanover County EMS system
in Virginia. The results show that “longer RTTs (9 and 10 min in the case
of Hanover county) result in more equitable patterns of patient survival. In
these solutions, patient lives were saved in the rural areas at the expense of
losing patient lives in the urban areas, which reduced the disparity between
patient survival rates in urban and rural areas. Since a 9 min response time
threshold is the most common performance measure used by EMS systems in
the United States, this suggests that many EMS systems implicitly consider
patient equity or fairness” [page 135] [170].

Interestingly, in contrast to the contribution of Mclay and Mayorga in
[170], there is some evidence showing that the EMS planners are not much
concerned about equity in services. For instance, Erkut et al. ([94]) mention
that the existence of different actual performance as well as the RT stan-
dards (especially in rural and urban areas) support the claim that the EMS
system managers are against the provision of equal access. They also state
that “although a policy of equal access seems difficult to criticize, such a
policy implies that lives are valued differently in different areas, because the
cost of saving a life can be much higher in sparsely populated rural areas
than in urban centers”[page 43| [94]. The development of a consensus on the
definition of equity in healthcare provision should rely on the composition
of two different equity concepts referred to as horizontal equity and vertical
equity [236]. Horizontal equity implies that all demand nodes are considered
in an equal manner. It means that suburban nodes are treated without dis-
crimination. Vertical equity is concerned with the distribution of the service
between different groups. By this definition, EMS systems are equitable if
they favor disadvantaged groups, compensating for overall inequities. Hor-
izontal equity has been researched extensively in health economics, while
vertical inequity is receiving growing attention in the last years [140].

To decrease the level of disparity for EMS systems in rural areas, Chanta
rt al. [69] presented three different bi-objective location models solved by
the e-constraint method [176]. First, the demand nodes are classified in rural
and urban nodes based on their geographical positions. Then, the authors
investigate the trade-off between efficiency and equity criteria by maximizing

the expected number of covered calls on one hand, and by choosing one of the
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following three criteria on the other hand: the minimization of the number
of uncovered rural demand zones, minimization of the maximum distance
between uncovered demand zones and their closest open stations, and the
minimization of the number of uncovered zones. It is worthwhile to note that
maximizing the expected covered demand favors the location of ambulances
in densely populated areas, which results in longer response times for patients
in more rural areas. To compensate this drawback, the first two additional
objective functions try to implement vertical equity, whereas the last one
focuses on horizontal equity. As the authors acknowledge, comparing the
three model solutions is very difficult given the lack of a unitary measure of
vertical and horizontal equity.

In [68], Chanta et al. uses the Gini coefficient [88] to measure horizontal
equity. The Gini coefficient is a measure of statistical dispersion, which was
firstly developed for evaluating inequity in economic and social welfare liter-
ature, and is the most commonly used measure of inequality. Extending the
minimum-envy model proposed by Espejo et al. ([96]) in which the priority
levels of serving stations are incorporated, Chanta et al. [68] develop a min-
imum p-envy location problem to provide equitable services in emergency
response location problems. The contribution of this model is modeling cus-
tomer dissatisfaction as a new distance-based metric denoted by the envy.
The envy is a function of distance, which indicates the dissatisfaction level
of a demand node with its serving station in comparison to another demand
nodes for the same level of priority. The model then minimizes the overall
envy value. There are several reasons supporting the use of satisfaction as
a significant factor in health care. First and above all, satisfaction is an im-
portant health outcome in its own right, enhancing the compliance and the
cooperation among customers. Second, evaluating satisfaction is important
for continuous quality monitoring and improvement in healthcare delivery.
To show the validity of the model, the authors compared their results with
those obtained through the p-center model ([84]) and a model where the Gini
coefficient is minimized [88], which are both accepted equity models in loca-
tion literature. Following their previous work, Chanta et al. ([70]) presented
a modified version of the p-envy model in which the distance-based objective
function is replaced with a survival function, dependent on the RT [170].

The model imposes lower bounds on the individual survival rates provided
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by first priority servers as well as on the system-wide survival rate. The
model handles the unavailability of EMS vehicles by using the hypercube
model (see the references in 5.1.0.2).

The Gini coefficient, together with the squared coefficient of variation
[53], has also been used in [251] to measure equity among servers. Here,
it evaluates the relative differences among the workload of different stations
obtained through the approximation procedure of [57]. Toro-Diaz et al. [251]
adopt an interesting fairness perspective that equalizes the performance of
the system by reducing disparities in the mean response time of different
demand zones, as well as in the workloads of the servers (the EMS vehicles).
To account for efficiency, the model also considers the mean response time
and the expected coverage.

Besides the balance between efficiency and equity, an important issue
which deserves thorough investigation is the trade-off between horizontal
and vertical equity. Following this stream, Khodaparasti et al. [140] present
an integrated framework for siting facilities in an equitable and efficient
manner. The results of this research show that, especially for the applied
equity measures, horizontal and vertical indices are consistent with each
other.

Another way to address equity is by applying cooperative location games
to the EMS planning. Most of the previous research addresses non-cooperative
location games while the incorporation of server cooperation, especially in
heavy loaded systems, is inevitable. This issue is of interest in EMS planning
due to the close relation of server cooperation with the busy fraction as we
will show in Subsection 5.1.0.2.

In [104], Fragnelli and Gagliardo report a game theoretic approach for
the EMS location problem with interaction between candidate locations for
housing EMS vehicles. Their method orders the potential locations based on
two location games, namely the coverage game and the multi-coverage game.
The focus in the coverage game is on maximizing the coverage of the area
while the multi-coverage game aims at reducing the overlap of covered zones.
The model is able to deal with the equity criterion by maximizing the area
covered by all ambulances without considering the number of calls received.
This approach can be considered as a starting point for further investigation

of applying game theory to the EMS location planning. Since one area can be
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covered by more than one EMS vehicle, the cooperative game should take the
marginality issue into account, i.e., the contribution of each EMS vehicle to
the total coverage. In cooperative game theory, the Shapley value (see, e.g.,
[229]) accounts for the total surplus generated by the coalition of all players
and provides an index of the importance of each player concerning the overall
cooperation. Fragnelli and Gagliardo [104] define the Shapley value based on
two fairness criteria: the coverage indifference and the demand indifference.
Two algorithms are provided to compute the Shapley value of the games in

polynomial time.

Our literature review indicates that, even though some effort has
been made in the last years to incorporate equity principles into
EMS systems, there still exist important under-investigated areas on
equity concepts that deserve attention. The existing literature on the
incorporation of equity in EMS planning does not follow a straight
direction and neglects important realistic and practical aspects of
equity. One of the reasons for this might be the absence of a general
consensus on equity measures for the EMS.

Future research should focus on different aspects of equity in EMS
planning and on the definition of a set of widely accepted evaluation
metrics for developing equity based models in EMS planning. To this
end, studying the equity concept from both a horizontal and vertical
point of view might be a good starting point.

The focus of equity in the EMS literature has mostly been on the
geographical position of demand, which initially imposes the division
of demand nodes into urban and suburban/rural zones. From this
perspective, the efficiency of EMS systems has been evaluated by
the quality of service (the provision of timely service) in urban areas
and the fairness of service is, in general, evaluated by the coverage
provided in suburban/rural zones. Even though spatial distribution
is the most commonly used characteristic to differentiate between
demand zones, also other characteristics can be used. Even demand
zones located in the same urban zone can be different from each other
in some characteristic, which calls for different treatment of these
demand zones. Finally, since EMS systems are subject to dynamic
pressures and often the actual configuration does not comply with the
original design of the system, it is important to embed the temporal
aspect into the equity concepts and to carefully investigate this issue.
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5.1.0.2 Incorporating uncertainty

Uncertainty plays a big role in the EMS analysis. There is uncertainty about
the amount and location of demand, travel times, severity of incidents, avail-
ability of EMS vehicles, length of stay at the ED, etc. However, despite these
uncertainties, costly decisions with long term implication need to be taken,
which can be a challenging task. In addition, parameter estimates might be
inaccurate due to poor measurements. Therefore, making strategic decisions
under uncertainty requires tailored approach to exploit strategically rele-
vant uncertain information. To address this issue of uncertainty the in EMS
literature, the existing literature adopts one of the following approaches:
the probabilistic paradigm, the stochastic programming approach, the robust

counterpart, and the fuzzy framework.

Probabilistic paradigm. EMS literature has focused on the uncertainty
in three types of factors that can play a role in planning decisions: demand,
availability of EMS vehicles, and response times.

The probabilistic paradigm mainly focuses on the last two sources of
uncertainty. This results in a probability that a node is covered, which
depends on the availability of EMS vehicles and uncertainty in RT. Two dif-
ferent streams in this framework can be distinguished. One of these streams
is based on the results of the descriptive Hypercube Queuing Model (HQM).
This model relies on queuing theory to estimate the busy fractions of EMS
vehicles and other system performance measures. The other stream incorpo-
rates uncertainty directly into system parameters such as RT, service time,
delay in response, busy fraction, etc., and is based on mixed-integer linear
programming.

The descriptive HQM was developed by Larson ([150]) to evaluate steady-
state busy fractions, loss probabilities, average RTs, and expected coverage,
for any fixed configuration of facilities. Even though the hypercube model
addresses cooperation between EMS vehicles as well as variation in workload
for EMS vehicles, it relies on several assumptions for dispatching rules and it
requires that the (exponentially distributed) service time is the same for all
EMS vehicles, regardless the type of emergency call and the location of the
vehicle. Moreover, HQM ignores many practical policies that most organi-

zations employ regularly as, for instance, EMS vehicles being dispatched on
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the road, diversions of EMS vehicles from low to high priority calls and many
other features of EMS systems such as the presence of multiple depots. In
spite of these disadvantages, HQM works well in practice and is considered
to be a viable alternative to simulation. In fact, most researchers use it as a
post-solution analysis tool for the evaluation of performance measures (see
[95]). In [151], Larson presents an approximate HQM to avoid the compu-
tational difficulty of HQM. Other contributions to HQM are motivated by
the need to overcome the restrictive assumptions of HQM.

Burwell et al. [59] present a modified version of Larson’s approximate
HQM in which the ties in preferences for EMS vehicles is captured. In [135],
Jarvis presents a generalized HQM in which service time distributions can
be dependent both on base locations for EMS vehicles and on the type of
emergency calls. In[29], Batta et al. develop correction factors for the busy
fractions in an embedded HQM. They include the fact that EMS vehicles
do not operate independently, and thus, may have different busy fractions
which depend on each other and on the location of the EMS vehicle. In
[247], Takeda et al. apply the hypercube approach to investigate the effect
of the decentralization of EMS vehicles over the service area by applying
the proposed model to the urban EMS of Campinas in Brazil. The results
of this study show that by increasing the number of EMS vehicles that are
partially decentralized, the performance measures and especially the RTs im-
prove while variation in the workload of EMS vehicles is negligible. Further,
the results of the model show that the total decentralization policy may not
produce satisfactory results for the decision makers. In [131], Iannoni et al.
propose two hypercube queuing-based models to evaluate the EMS perfor-
mance on highways. The model can deal with three priority levels for calls,
different EMS vehicle types, partial backup, and a multiple dispatch policy.

In most previous works, the busy fraction is considered as an exogenous
input parameter which is estimated through site-specific or area-specific for-
mulations, overlooking the fact that a (site-specific) busy fraction is one of
the model outputs and should be estimated after knowing the exact config-
uration of facilities (see, e.g., [52, 75]). In order to address this shortcoming,
in [75], Cho et al. propose an EMS location model for siting trauma centers

and helicopters in which the busy fraction of each helicopter is endogenized
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as a variable depending on the number of patients transported by the heli-
copter per time unit. In view of the fact that vehicle specific busy fractions
depend on the deployment of EMS vehicles, In [230], Shariat-Mohaymany et
al. present a strategic and tactical model for minimizing the costs of locat-
ing EMS vehicles and their base stations while imposing an upper bound on
the busy fraction of each deployed EMS vehicle. This upper bound depends
on the minimum number of EMS vehicles required to guarantee a desired
reliability level as suggested by ReVelle and Hogan in [208].

In the following, we consider probabilistic models based on mixed-integer
linear programming. The apparent difficulty in this is that the stochastic
elements of EMS systems result in non-linear expressions, which need to be
approximated. In practice, this can compromise the accuracy of the model
predictions and may lead to sub-optimal solutions for the original non-linear
models.

The seminal contribution is undoubtedly the Maximal Expected Cover-
ing Location Problem (MEXCLP) proposed by Daskin [83]. The MEXCLP
uses a system-wide busy fraction obtained by dividing the total workload of
the system by the total workforce of EMS vehicles available. Assuming that
EMS vehicles operate independently, it is possible to estimate the reliability
of service at each node using probability rules. The assumption of EMS
vehicles being uniformly busy throughout the area, regardless spatial varia-
tions of demand, is relaxed in the Maximum Availability Location Problem
(MALP) formulation proposed by ReVelle and Hogan (][208]), where local
busy fractions depend on both the number of EMS vehicles available and
the aggregated level of demand within each local area. In [239], Sorensen
and Church presented a probabilistic location model for EMS planning which
integrates the area-specific busy fraction of MALP in MEXCLP. The sim-
ulation results show the superiority of the proposed model over MALP and
MEXCLP in terms of the overall percentage of calls that receive coverage
within the RTT.

The server independence assumption is relaxed in the Queuing based
Probabilistic Location Set Covering Problem (Q-PLSCP) and the Queuing-
based Maximum Availability Location Problem (Q-MALP) formulations of
Marianov and ReVelle [161]. To evaluate the reliability of service at each de-
mand node, Q-MALP makes use of an M /G /s-loss queuing model. Although
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Q-MALRP relaxes the server independence assumption, it still relies on local
service areas and on location-independent service times. In [133], Ingolfsson
et al. recognize that, beside ambulance availability, randomness has an im-
pact on delays and travel times. This study emphasizes that by ignoring the
randomness in delays, the coverage performance might be overestimated.

These findings are confirmed by Erkut et al. ([95]), who evaluated
five probabilistic covering models, namely the Maximal Covering Location
Problem (MCLP) proposed by Church and Revelle ([78]) and a variation
of it including probabilistic response times (MCLP+PR), the MEXCLP,
and two non-linear formulations that include probabilistic response times
and base location specific busy probabilities (MEXCLP+PR and MEX-
CLP+PR+SSBP). In [95], Erkut et al. compare the five models on three
performance measures, namely expected coverage, loss probability and aver-
age RT, by applying them to the case of Edmonton, Canada. They conclude
that the two non-linear models, MEXCLP+PR and MEXCLP+PR+SSBP,
perform better in terms of coverage compared to MCLP+PR and MEX-
CLP, which confirms that the accuracy in modeling complex systems can
lead to substantial improvements in performance. In particular, based on
the obtained results as well as on their previous research in [94], Erkut et
al. conclude that models that include uncertainty “not only result in better
coverage estimates, but also cause coverage to be a better proxy for lives
saved” [page 64] [170].

We should warn the reader that simplifying assumptions might come
at a cost. This is, for example, the case for the MALP model where
using a local busy fraction requires the assumption of a local ser-
vice area. Which simplified assumption poses the main limitation on
finding an optimal solution for the true problem is difficult to deter-
mine. Another limitation of mixed integer probabilistic problems is
the needed computation time. To efficiently solve these optimization
problems, tailored metaheuristic approaches have to be developed.
However, it is not guaranteed that these solutions methods lead to
an optimal solution. Therefore, simulation is needed to determine
how well the found solutions perform in practice. Simulation might
also shed some light on which simplified assumptions poses the main
limitation on finding the optimal solution.
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Stochastic programming paradigm. In the literature, different stochas-
tic programming problems have been presented to explicitly consider the
dependence of the system reliability on the randomness in demand. In the
stochastic programming paradigm, the model parameters are assumed to be
random variables with a known probability distribution function. This as-
sumption can be justified by the availability of historical data (or outputs of
a simulation model) from which the empirical probability distribution might
be estimated. Under this assumption, two different strategies for making
decisions can be considered. In the chance constrained paradigm, “here and
now” decisions are taken under uncertainty and implemented whatever the
future is. Since a probabilistic guarantee is imposed on the feasibility of
the solution, there is a chance that the implemented solution is not feasible
in practice. A different approach is represented by the stochastic program-
ming paradigm with recourse. In this case, some of the decisions must be
made under uncertainty, whereas other decisions, the recourse decisions, can
be postponed until the realizations of the random variables become known.
Hence, the decisions taken in the first stage can be corrected in other stages
by the recourse decisions, which explicitly depend on the specific value (real-
ization) assumed by the random variables. Both the probabilistic paradigm
and the recourse paradigm have their advantages and disadvantages. The
probabilistic paradigm is most appropriate when the reliability of the system
(for example, in terms of coverage) is most important. However, the two-
stage nature of facility location problems — where locations are chosen given
uncertain future demand, but customers are assigned to facilities once the
uncertainty has been resolved — advocates the use of the recourse paradigm.
In [25], Ball and Lin developed a model with separate chance constraints,
where the probability of failure (the inability to be serviced within the RTT)
of each demand point should be less than a given threshold value. They con-
sider the worst case busy fraction, which occurs when each server is attending
all calls from its neighborhoods. In [36], Beraldi et al. developed a location
model based on joint probabilistic constraints to capture the inherent uncer-
tainty in demand. The probabilistic constraints are jointly imposed on all
demand points, which ensures that the reliability of the entire geographical
area is kept above the prescribed level. In [275], Zhang and Li developed an-

other strategic and tactical location model in which the probabilistic chance
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constraints on the capacity of base locations are approximated by their equiv-
alent second-order cone constraints, assuming that random demands can be
modeled by continuous random variables. Even though the distribution of
emergency calls is naturally discrete and follows a Poisson distribution, the
considered approximation can be justified by the computational tractability
of the resulting model.

To capture the inherent two-stage nature of location decisions, Beraldi
and Bruni ([36]) present a two-stage stochastic model with embedded joint
probabilistic constraints. The paper relaxes the independence assumption
among servers at the expense of discretizing the uncertainty into a finite set
of scenarios. Following the same structure, Noyan ([191]) proposed a two-
stage stochastic location model for EMS planning in which the uncertainty in
demand is taken into consideration by integrated chance constraints. These
integrated chance constraints can be considered to be a relaxed version of
separate chance constraints and allows a convex approximation of the non-
convex feasible set defined by the probabilistic constraints.

Since full discretization of uncertainty in scenarios results in solving huge
mixed integer problems, often a limited number of scenarios is generated by
using proper scenario generation techniques. These techniques aim at find-
ing a good trade-off between 1) including enough scenarios to guarantee an
accurate representation of the underlying stochastic process and 2) includ-
ing not too many scenarios such that the computational tractability of the

resulting scenario-based mixed integer problem is preserved.

Regardless the tractability of the model, we should first investigate
whether it is worthwhile to include randomness into EMS models.
Even though uncertainty plays a big role in EMS models, it is not
evident that this should indeed be included as is done in the stochas-
tic programming paradigm. Although well known measures can be
used to evaluate the advantages of using a stochastic model over
a deterministic model (namely the Value of the Stochastic Solution
and the Ezpected Value of Perfect Information), these quantities are
not useful to decide whether a stochastic model should be used in
practice. The validation of potential advantages of stochastic mod-
els over deterministic ones should be critically assessed (For more
information see also [21]). In addition, stochastic models usually re-
quire information on distributions and other values that might not
be known. As a conclusive remark, the art of modeling amounts to
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describing the crucial aspects of a problem and approximating the
less relevant ones. Including randomness might turn out to be not
the most important issue to address.

Robust optimization and fuzzy paradigms. A more recent approach
for optimization under uncertainty is “robust optimization”. While there are
many high level similarities with the stochastic paradigm, robust optimiza-
tion is a distinct field that seeks a solution that is feasible for any realization
in a given uncertainty set instead of immunizing the solution against stochas-
tic uncertainty. This paradigm is successful in various application areas be-
cause of its computational tractability. Moreover, this approach is the only
reasonable alternative when information about the probability distribution
is not readily available.

Adopting a robust counterpart approach, Zhang and Jiang ([274]) pro-
posed a bi-objective location model for strategic and tactical EMS planning
in which uncertain demand is addressed. The uncertainty in the number of
emergency calls is captured by an ellipsoidal uncertainty set and the weight-
ing method is applied to make a trade-off between costs and responsiveness.

Another computational tractable way of addressing uncertainty is the
fuzzy paradigm. This framework is mostly applied when the probabilistic
paradigm or stochastic framework cannot be used. In the absence of his-
torical data, qualitative information extracted from expert’s observations is
a crucial aspect in the decision making process. As a matter of fact, some
service level concepts in EMS decision making such as patient satisfaction
and staff performance are inherently known as qualitative information. The
fuzzy paradigm facilitates the use of qualitative data as well as expert-based
knowledge by characterizing them as linguistic terms. There are only a few
papers in this stream. Some papers adopt the fuzzy set theory concept to
deal with uncertainty, others apply the fuzzy programming approach to solve
multi-objective location models.

Araz et al. [19] presented a three-objective location model for strategic
EMS planning in which different Fuzzy Goal Programming (FGP) solution
methods are applied. The first and the second criteria in the objective func-

tion maximize the total number of demand nodes covered at least once and
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twice, respectively. The third criterion minimizes the total traveled distance
for the uncovered demand nodes. The authors use the fuzzy goal program-
ming approach to express the aspiration levels as imprecise values (fuzzy
numbers). The efficiency of the proposed approach, in terms of first and
backup coverage, is shown by comparing the results of different proposed
FGP models with the lexicographic multi-objective technique. Although,
the proposed FGP models provide better results with respect to the backup
criterion, the performance of such techniques highly depends on the choice
of the weights and on the priority levels assigned to different criteria. To
allow the decision maker to find near-optimal solutions for different prob-
lem inputs in a short period of time, tailored heuristics could be developed.
Following this idea, Uno et al. ([252]) presented an interactive FGP ap-
proach combined with the particle swarm optimization method to solve an
emergency location problem.

In [146], Koc and Bostancioglu presented a fuzzy location model for EMS
planning based on the Double Standard Model (DSM) of [109]. The authors
used linguistic variables to capture the uncertainty in both travel times and
RTTs. A triangular fuzzy number is associated with each linguistic term
and a probability-possibility transformation is applied to find the probability
distribution of each fuzzy variable. A Monte Carlo simulation was applied
to show the efficiency of the proposed approach for reproducing unknown
data.

A clear advantage of the fuzzy paradigm is that it does not require much
information on the probability distribution of uncertain parameters. How-
ever, relying only on expert knowledge or qualitative data may lead to severe
loss of information about the behavior of the system, which in turn may lead
to inaccurate and unrealistic results. Therefore, it is best to only use the
fuzzy approach in cases where the incorporation of qualitative data as well

as expert-based opinions is unavoidable.

Remarks. In summary, the type of uncertainty as well as the type of
available information should be considered when choosing an appropriate
solution approach. Applying a combination of approaches that includes dif-

ferent types of uncertainty, could help EMS managers to come up with a
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more realistic model in which the complexity of the system is fully captured
and a better overview of the whole system is provided.

The EMS models reviewed so far, focus either on minimizing the expected
costs/response time or on maximizing the expected coverage. This focus is
appropriate for risk-neutral decision makers as these models are insensitive
to costs/coverage variations. However, arriving at an incident location only
a few seconds earlier can already save a human’s life. Thus, instead of
minimizing expected values, risk averse decision makers might accept higher
costs in return for higher protection against losing lives. Unfortunately,
traditional location models fail to meet the needs of risk-averse planners as
only a few papers suggest mechanisms to reduce the chance of unfavorable

large RTs or to increase the probability of arriving at the scene on time.

It is important to incorporate the notion of risk aversion in EMS
location models, for example, by providing risk-based measures es-
pecially designed for EMS systems. This is one of the most inter-
esting directions for future research within the stochastic framework.
Furthermore, there is an increasing need for developing models that
simultaneously incorporate realistic information and several uncer-
tainty sources. Most existing studies in the literature focus on only
one or two stochastic aspects and there is a lack of location mod-
els handling all sources of uncertainty simultaneously. One reason
for this deficiency is the complexity of the resulting models, which
necessitates the design of tailored solution methods with high com-
putational efficiency. In addition, future research within the robust
stream could enrich the literature in the EMS field and could also
provide a comparative framework in which the distinguishing features
of stochastic and robust models can be investigated.

5.2 Balancing Efficiency and Equity in location-
allocation models with an application to
strategic EMS design

In this section, we present an integrated bi-objective location-allocation
model balancing efficiency and equity criteria. The new formulation com-
bines two domains: facility location and data envelopment analysis. To

support the decision maker with more realistic solutions based on the op-
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timal location-allocation decisions, we endogenize the outputs of the model
as a function dependent on the allocation variables. The resulting model
is very difficult to deal with since it turns out to be a bi-objective mixed
integer nonlinear problem. An exact solution approach is then proposed to
address its solution. To illustrate the viability of the proposed approach,
we investigated the potential application of the model to the design of an

emergency medical service system.

5.2.1 Introduction

Major economic changes have placed increasing pressure on facility location
decisions. They require large investments that can not be recovered in the
short term and influence the competitive capacity of the company, affect-
ing not only costs but also the income. For instance, considering a service
business, market proximity is a critical success key to attract customers,
whereas for a manufacturing business, facility location might affect procure-
ment costs, product delivery time, and customers’ service levels. In the pub-
lic sector, the implications of poor location decisions are not confined to cost
considerations. The effect of wrong facility location decisions may extend to
disastrous consequences as increased mortality and morbidity. Thus, facility
location modeling has even greater importance when applied to the siting
of public, notably health care, facilities. Moreover, the public ownership of
the organization and the nature of the facilities is a distinctive feature that
might invalidate the use of classical facility location models. For instance, if
the siting of private facilities is usually driven by the minimization of costs,
the goals of public agencies, especially in health care operations, are more
difficult to capture and interpret, calling for tailored approaches.

Many researchers and practitioners, since the 80s, have tried to address
this issue, incorporating into the models important considerations on the
equity or fairness of the service. Mayhew and Leonardi ([167]) presented a
model that trades off equity and efficiency, with application to health care
resource allocation in London. In [159], Mandell incorporated both equity
and effectiveness measures into the distribution of library books in public
libraries throughout a region. As already observed in the previous Section,
the issue of equity in the EMS literature has been only recently incorporated,

even if this concern has a long history in the location literature [164, 168].
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The majority of the models in the literature deals with the issue of
efficiency by focusing on performance measures. Our model captures the
multi-criteria nature of the service performance, by evaluating the efficiency
through the data envelopment analysis (DEA, for short). DEA is a non-
parametric approach widely applied to assess the relative performance of a
set of decisions making units (DMUs) that use several inputs to produce
several outputs. It is worth noticing that the performance of the DMUs (the
facilities in our case) is, in general, related to the allocation pattern and it
can not be determined regardless of the allocation choices. To overcome this
drawback, we endogenize the produced outputs, that therefore, become a
function of the allocation decisions.

To the best of our knowledge, this is the first study in the location-
allocation literature, and especially in EMS area, addressing both issues of
efficiency and equity through a DEA model with endogenized outputs.

The resulting framework is quite novel (we mention a few papers account-
ing for equity and efficiency simultaneously, like [74]- where system equity
is measured by the opportunity to receive medical services, and efficiency is
represented by consumer and producer welfare- and [236]- where a range of
discrete hierarchical location models with bi-criteria efficiency/equity objec-
tives is presented), and of general applicability, and it provides an integrated
framework for siting facilities in an equitable and efficient manner.

To illustrate the applicability of the proposed model, we consider a real
case study related to the strategic design of an EMS system.

The rest of the Section is organized as follows. In Subsection 5.2.2, some
literature review on the use of DEA in facility location models is presented.
5.2.3, the mathematical formulation of the proposed model is presented. In
Subsection 5.2.4, we describe the solution approach for the proposed model.
In Subsection 5.2.5, we apply the proposed model on a real case study.

Finally, conclusions and discussions are drawn in Subsection 5.2.6.

5.2.2 The use of DEA in facility location models

Despite the DEA has been used as a pure performance assessment method-
ology, only recently some attempts have been made with the aim of incorpo-
rating the evaluation of the locations into allocation decisions [177]. Thomas

et al. ([248]) studied an obnoxious facility location problem considering both
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proximity and DEA scores by running the location and the DEA models it-
eratively. Narasimhan et al. ([186]) embedded branch offices efficiencies
into a model, which considers capacities, demand requirements and budget
constraints. Klimberg and Ratick ([143]) proposed two bi-objective location-
allocation models by developing a simultaneous DEA model and merging it
to the location model. In the proposed models, any potential allocation link
is considered as a decision making unit. One of the objectives expresses the
total cost of allocation while the other objective indicates the total DEA
score assigned to the open links. In another research on facility location,
Sahin et al. ([216]) presented a hierarchical model for siting blood service
facilities. The results of their study show that some inefficient locations
might be included in the optimal solution. The authors then suggested to
improve the efficiency of optimal facilities associated with low DEA scores,
reconsidering the solution of the location model on the light of the efficiency
of the locations. In a recent paper, Mitropoulos et al. [177] presented a
bi-objective DEA-location model in health care sector. The model includes
three objectives: the minimization of total distance traveled by patients from
all communities to their nearest located hospital, the minimization of under-
achievement in soft constraint and the maximization of the mean efficiency
scores. The DEA score of facilities are computed a priori and then they are
entered into the location model as parameters.

The distinctive feature of our model, with respect to the aforementioned
literature, and especially with respect to the Klimberg’s and Ratick’s model
[143], is the endogenization of the location outputs as a function of the alloca-
tion variables. In this respect, it is worthwhile noticing that the efficiency of
the candidate locations is related to the allocation pattern and it can not be
determined before allocating the demands. By endogenizing the outputs, we
provide the decision maker with a more realistic solution which is dependent
on the optimal allocation of the demand, rather than on rough estimation

of future performance.

5.2.3 Designing an equitable and efficient system

In this part, we present a mathematical formulation for the equity and effi-
ciency based location-allocation problem. Formally, the problem is defined

on a graph with a set I of demand points. Each node ¢ € I can be covered by
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a candidate location j € J in case the facility is located within a service radius
7. Let J(i) be a subset of J containing the list of candidate locations that
can cover node i. The aim is the optimal location of p facilities among a set
J of possible candidate locations. The proposed model integrates two parts:
one related to the location-allocation problem, the other concerned with the
performance evaluation. For the location-allocation part of the model, we
define two sets of binary variables. Variables z; are equal to one only if the
location j € J is opened, whereas variables y;; refer to the allocation and are
equal to one if the demand node i € [ is assigned to the location j € J.

In order to measure the efficiency of each candidate location j, referred
in the foregoing as DMU, we use the DEA methodology. We assume that
each DMU j € J has a set A of different inputs denoted by /,j,a € A and a
set B of outputs denoted by Op;,b € B. The efficiency, is defined as the ratio
of the weighted sum of outputs to the weighted sum of inputs, where the
weights are variables to be optimized. We denote, for each j € J, by v,; the
variables associated with the weight of the a-th input I,; and by wy; the one
associated with the b-th output Oy;. In location-allocation models, very often
the performance of the locations depends on the assignments made in the
design phase. Indicating by y the vector of the y;; variables, we can define
Op;(y) as the b-th endogenized output for candidate location j € J. The aim
is to determine the best location-allocation pattern maximizing at the same
time the efficiency and the equity of the system. We observe that equity is
also a function of some measure related to the assignment pattern. Although
the location literature shows the use of different equity measures (like for
example coverage and system reliability), there is no concerted agreement
on how equity should be measured ([30]). Thus, we generally denote it as
H(y).

By considering the notation introduced above, the mathematical formu-
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lation of the proposed bi-objective model can be expressed as follows:

max f1 = Z(]. - 97) (51)
jed

max  fo= H(y) (5.2)

s.t.
Y yiy<1 Viel (5.3)

jed(4)
yij<x; Viel, Vjeld (5.4)
> T <p (5.5)
jed
Z 7)aanj =T; V] eJ (56)
acA
D wyOy(y) +60;=1 VjelJ (5.7)
beB
Z wbjobj’(Y) - Z Uajlaj’ < 07 \Vl], j, € ‘]7 j + j, (58)
beB acA
Vej 201y VaeA jeld (5.9)
wy; > 0x; VYbeB,jelJ (5.10)
yi; €{0,1} Viel, Vjel (5.11)
z;e{0,1} VjelJ (5.12)
0,20 VjelJ (5.13)

The objective function (5.1) maximizes the total efficiency scores assigned
to facilities, whereas the objective function (5.2) maximizes the system-wide
equity performance H(y). Constraint (5.3) ensures that each demand point
should be assigned to at most one facility. Constraints (5.4) allow assign-
ments only to open facilities. Restriction (5.5) imposes a limit on the number
of sited facilities. Constraints (5.6)-(5.10) are related to the DEA part of
the model. Constraint (5.6) states that the sum of weighted inputs for any
sited facility should be equal to 1. Restrictions (5.7) define the inefficiency
variable 6; as a function of the weighted outputs. The set of constraints
in (5.6) in combination with restrictions (5.7) and (5.8) ensure that the ef-
ficiency assigned with closed facilities is zero. Note that the outputs are
dependent on the assignment vector y. Constraints (5.8) ensure, for open
facilities, that the weights are assigned in a way that the efficiency of any
other facility is not greater than 1, if it uses the same weights. Moreover,

constraints (5.9)-(5.10), where ¢ is a non-Archimedean number, guarantee
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that only non-dominated efficient solutions in the DEA model are investi-
gated. Finally, restrictions (5.11)-(5.13) define the nature of decision vari-
ables. Our model resembles the Klimberg’s and Ratick’s [143] model, even
though some distinguishing features can be highlighted. Firstly, our model
considers each facility location as a potential DMU, whereas their model
consider each assignment variable in a transportation network as a potential
DMU. Secondly, the outputs in their model are not allowed to change and
they are considered to be fixed whereas in our model the outputs are endog-
enized. Thirdly, the objective function has its own originality and unlike the
Klimberg’s and Ratick’s model, does account for equity. Moreover, in order
to deal with the endogenization of the outputs, we modified the constraints
accordingly. These distinctive features characterize the model, completely
different in many aspects from previous works, and that can be considered

as a meaningful research extension.

5.2.3.1 The EMS case

In this section, we detail the general model for determining the optimal
location of the EMS facilities so as to assure a given quality of service. We
consider each potential ambulance station as a DMU which uses two inputs
and produces two outputs. The inputs are the capacity, measured in terms
of maximum number of ambulances which can be sited at the station, and
the operational cost. The outputs are related to the RT and the coverage
that each station can guarantee.

Since the problem is not concerned with the more tactical problem of
the EMS station dimensioning, we consider the demand arising form each
station as a deterministic parameter. On the other hand, the allocation is
influenced by the RT, that, as well recognized in the scientific literature, is
subject to potentially dangerous fluctuations.

We model the RT between point ¢ and station j as a random variable
to faithfully represent the real behavior of the system. In particular, we
assume that the RT is lognormally distributed, as commonly reported in the
literature [95].

Then, station j is considered to be able to cover a demand point ¢ only
it the coverage probability, that is the probability that the RT ¢;; is within
the response time threshold (RTT, for short) 7, is greater than a reliability

142



level 1 - a, in which « is the risk level defined by the decision maker [161].

Hence, a demand point ¢ can be covered only by stations j € J(i), where
J(@) = {j|P(tij<7) 2 1-a}

We should mention that, although this probabilistic performance target (cor-
responding to the (1 —a)-quantile of the RT distribution) allows to exclude
the more risky situations (those for which the probability of arriving on time
is less than 1 - «), it is not able to exclude, even for the covered nodes the
possibility that the service is provided too late. It is generally useful, in or-
der to predict performance measures that are more closely related to patient
outcomes [94, 95, 170], to consider the tail of the RT distribution to capture
the delay of the RT with respect to the target.

Instead of considering a risk-neutral perspective leading to the use of
the expected RT, we explicitly introduce the risk of a late answer to the
emergency call. For a given random variable ¢;;, the conditional expectation
of the RT with respect to the threshold 7 can be written as t;; = E[t;;|ti; >
7] = [7 t;;f;;(¢)dt, where f;; is the probability density function of ¢;; and F
represents the expected value. This measure give us useful information by
focusing on the mean of worst case realizations, given that the threshold is
violated.

For each DMU j € J, we denote by O;; the first output of our model
representing the total expected response time, conditioned on the fact that
it is greater than 7:

O;(y) = Zt;jyija (o)
iel
It is notable that this output is an undesirable one. To deal with this case,
we have regarded undesirable outputs as inputs [233]. Other methods can
be used to incorporate undesirable outputs into the DEA model [99)].
The second output is related to the expected demands covered by each

station 7 which is denoted by:

O2(y) =) pijdiyij,  (02)
iel
where p;; is the probability that the RT is within the threshold 7 and d; is

the demand associated with the demand point 2.
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To address the issue of equity in our model, we use the equity criterion
of minimizing the total number of uncovered demand zones. Chanta et al.
[69] used this criterion as a measure of fairness for the ambulance location
problem in a tactical level.

The EMS location-allocation model balancing equity and efficiency, which
hereinafter is called E3M S, for the sake of brevity, is then defined by prob-
lem (5.1)-(5.13) amended with constraints (ol) and (02), where H(y) =
Yierl Xjesciy¥iz] - We should remark that the focus and the contribution
of our model are the combination of equity objectives with efficient location
decisions for the design of service systems in the public sector and not the

choice of the particular equity function to be used.

5.2.4 The exact solution approach

The proposed model is very difficult to deal with. It is a bi-objective mixed
integer non-linear problem. In order to address the non-linearity, we adopt a
standard linearization technique to transform the model into a bi-objective
mixed integer problem. In particular, we can apply linear McCormick [169]
envelopes to linearize the non-linear terms in constraints (5.7)-(5.8) resulting
from the product of continuous and binary variables.

Defining the auxiliary variable zy;;, as 2p; = wp;Yi;, We can come up with the

following set of linear constraints

Zbij > Wy wp —wp, Ybe B, Yiel, VjelJ (5.14)
2pi; 20, VbeB, Yiel, VjelJ (5.15)
Zpij <wy Py, VbeB, Viel, Vjeld (5.16)
Zij <wyi, VbeDB, Viel, VjelJ (5.17)

where w;"** is an upper bound of the output weight wy;.

The remaining part is devoted to the presentation of an exact method
for our bi-objective model.

Different solution approaches have been proposed in the literature for
computing the Pareto front for the class of mixed integer bi-objective prob-
lems, among which the weighting method is the most popular one. The
method scalarizes the objective function vector, reducing the problem to a

single objective one. The method exhibits several drawbacks, for example,
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the dependence of the performance on the weighting coefficients and the
lack of guarantee that the optimal Pareto front is obtained. Another well-
known and widely used method is the so called e-constraint method which
consists in the repeated solution of a sequence of single objective problems,
amended with additional constraints. In particular, one objective is cho-
sen to be optimized and the other objective is incorporated as an inequality
constraint where the right hand side (the parameter €) assumes different
values in a certain range. Since the method can also find weak efficient solu-
tions, a modification of e-constraint, specifically tailored for multi-objective
problems, has been presented in [166] by Mavrotas.

Our model is a bi-objective mixed integer optimization problem, where
one objective consists in the maximization of the total number of covered
demand points and the other in the maximization of the total system effi-
ciency. By choosing the efficiency criterion as the main objective function

and considering the equity criterion as a constraint, the e-constraint problem

P(e) is defined as

max f1(X)
S.t.

fo(X) > € P(e)
XeX

where X denotes the set of variables defined in the mathematical model of
Section 5.2.3 plus the auxiliary linearization variables introduced above. In
addition, X is the set of constraints in (5.3)-(5.13), (ol), and (02).

The idea is to construct a sequence of e-constraint problems based on a
progressive reduction of e. The set of values that ¢ may take is finite since
the first objective represents the number of covered demands which is finite
and integer.

In order to define the range of variations for e, we first solve the E3M S
problem considering only the objective function related to the equity, to
find the ideal point f! = mazxexf2(X). Then, we optimize the efficiency
related objective function alone to obtain the ideal point f! = mazxcx f1(X).

Next, we apply the lexicographic optimization to obtain a Pareto optimal
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(non-dominated) solution. In practice, the lexicographic optimization is per-
formed by solving the following problems

N _
1 —f)l??;(fl(X)

sit.fo(X) = f3
and
2" = max fo(X)

XeX
s.t.fi(X) = flI

The points f and fI¥ are called the nadir values.

After this calculation, we obtain, for the second objective function, a
discrete set of integer points in [ f2', fI], whose values are iteratively assigned
to €. Let the cardinality of this range be C' and ¢¢ be the element in the c-th
position in the range. The scheme of the algorithm is reported in Algorithm
12.

Algorithm 12: The exact e-constraint method
1 Let EF'F be the set of generated efficient solutions.

2 EFF <.
3 forc=C,...,1do
4 Solve P(e°) and let f;(€°) and S*(e°) be the optimal objective
function value and the optimal solution, respectively.
5 if ¢ <> C then
6 if f7(e°) <> £ (') then
7 | EFF < EFFUS*(e).
8 end
9 end
10 end

11 return EF'F.

Lemma 5.2.1. The point (f{, f]) is an efficient solution.

Proof: Suppose that the point (f, f{) is not efficient. Therefore, it should

exist another point (21, 29) such that either:
1. 2= fN and 29 > f1

2. 2> fN and 2z > f1
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3. 21> [V and 2, = f!

Cases (1) and (2) are in contradiction with the fact that fI is an ideal
point. The case (3) is in contrast with the fact that f{¥ is a nadir point.
Therefore, the point (f{, fI) is an efficient point. Similarly, we can prove

that the point (f{, f&V) is also an efficient solution.

Theorem 5.2.1. The set of solutions produced by the Algorithm 12 generates

the exact Pareto front of our model.

Proof: In order to proof the claim, we should first prove that each solution
belonging to the set FF'F is Pareto optimal and second, we should prove
that the set of solutions produced by Algorithm 12 gives the exact Pareto
front.

In order to prove the first part, let us consider a solution S € EFF. S
is the optimal solution of a problem P(¢e¢) for some ¢ =C,...,1. We might
have two different cases: either fy(S) =€ or fo(S) >ec. If fo(S) =€, Sisa
Pareto optimal solution, as shown for the general case (see [176]).

On the other hand, if f5(S) > €°, since f; involves only binary variables
and e¢ is integer, fo(S) = e/, with f > ¢ and therefore, S is the optimal
solution of a problem solved before problem P(e).

To prove the second part, we should show that any other solution S ¢
EFF is not efficient. Assume that there is a solution S for the E3MS
problem which does not belong to the efficient set EFF. Since S is feasible,
f2(S) assumes an integer value. Let fy(S) = €¢ for some ¢ = C,...,1 and

therefore, it is an efficient solution, which contradicts the hypothesis.

5.2.5 Computational results

In this section, we report on the results collected by applying the proposed
model on a real case study for strategic EMS design in Edmonton city,
Canada.

The information about the case study and data set is based on the previ-
ous researches carried out by Erkut et al. [94, 95] and Erdogan [93]. The
data set includes the average and the standard deviation of lognormally
distributed response times, the average number of calls, and the capacity

of stations for a set of 180 demand points and 16 potential ambulance
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stations. The interested reader can find the data on the following link:
"http://professor.business.ualberta.ca/armanningolfsson/Research /Data”.
Since the aforementioned data set does not include the cost of siting stations,
we generated them from the interval [10, 32].

To evaluate the performance of solutions, concerning the fairness crite-
rion, we apply the Gini coefficient of the Lorenz curve, the within-group Gini
indices associated with covered (GiniY’') and uncovered (Giniy') zones, and
the gross between-group index (G9) in Dagum’s Gini decomposition.

It is notable that the within-group Gini indices Gini{’ and Gini§ quan-
tifies the inequality among each individual group of covered and uncovered
zones, respectively while the gross within-group Gini index captures the in-
equalities between the set of covered and uncovered demand zones.

Based on Dagum’s Gini decomposition, the Gini index is decomposed as
follows [185]:

Gini = Giniy + Gini® + Gini9®

ZieNO ZkeNg | ZjeJ tijYij — ZjeJ tk:jyk:j|

Ginig =
21| Yier Yjes tijuij
Clini® = ZieNl ZkeNl | ZjeJ LijYij — Zjethjykj|
W=
21| Cier Xje tijyij
Clinidb — DieNy 2okeNy | Yjer tijYis = ey tk:jykj|

| Yier Xjes tijij
where No={i €Y, y;; =0} and Ny ={iel| ¥, vy =1}

To capture the randomness in our model, we define the Gini index based
on the quantile of lognormally distributed RT by replacing the distance val-
ues in the traditional Gini index with the quantile of RTs [88]. In addition,
we classify demand points into two separate groups of covered and uncov-
ered zones. This enables us to investigate the inequality among both covered
and uncovered zones. Although, due to the spatial configuration of potential
stations, some demand zones are not covered within the RTT, in general and
in the absence of auxiliary servers, the closest open station would respond
to them. As a result, we assign the uncovered zones to their closest open
station enabling us to capture the inequality among uncovered zones as well

as between covered and uncovered zones.
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The algorithm and problem modeling have been implemented in AIMMS
4.1 [48] and solved by ILOG CPLEX 12.6 [10]. The experiments were exe-
cuted on a laptop Intel core i7 with a 2.7 GHz processor and 4 GB RAM.
The average solution time is around 900 seconds.

The first set of computational experiments is devoted to the analysis of
the behavior of the model as a function of different risk levels o and RT'Ts.

Figure 5.2 reports the trade-off between the risk level o and the equity
components of the Gini coefficient discussed above for the single objective
problem optimizing f;. The instance solved has p = 12 and the RTT equal
to 10 minutes. The results show that lower values for equity measures of
Gini¥, Gini9® are obtained for higher risk levels. This can be explained
by considering that, the higher is the risk level that the decision maker is
willing to bear, the larger is the number of covered demand points. For
instance, by varying the risk level from 0.05 to 0.15, the total number of
covered zones increases from 98 to 141. This, in turn, results in a more
balanced system configuration (lower values for Gini?®), where equality in
the covered demands is sacrificed to achieve better service for the uncovered
zones. The decrease in the within-group Gini coefficient Giiniy and, on the
contrary, the increase in the Giniy support this claim. We would like to
remark that the total Gini index will increase slightly, indicating that the
decrease in the reliability level 1 -« (the increase in the risk level o) will not

necessarily produce more equitable solutions.

149



%] L LTI s "
o * * —— G
=
]
-

2 o0s * —- Gy
£
© g (G

0.06

— =2 —  Gini
v
0.04 7
7
—_— od
*-— —
0.02 P ,‘—"‘ _______
""" *.
L e 'y
o
[ 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16
Risk level a

Figure 5.2: Risk level o vs. within- and between-group Gini indices

A note of caution should be in order. The results show a high sensitivity
of the number of covered zones to the variations of the risk level. As an
example, a 5%-increase in the risk level (from 0.05 to 0.1) will increase the
number of covered demands by 18% while, by increasing « from 0.1 to 0.15,
about 22% of uncovered zones can be covered. On the other hand, there is
a dependence between the risk level and the RTT. By increasing the RTT
from 10 to 15 minutes, the number of covered demands will increase to a
different extent, considering different risk levels. For o equal to 0.05, 0.10,
and 0.15, we obtain an increase of about 70%, 49%, and 24%, respectively,
in the number of covered zones. This highlights the importance of choosing
the appropriate values for the risk level and the RTT.

The second set of experiments is devoted to the validation of the proposed
model, with respect to the pure equity- and pure efficiency- based models.

With this aim, we solve the E3MS model, considering separately the
two single objectives f; and fy considering a = 0.05, RTT = 10 minutes
and p = 12. The results have been reported in the Table 5.1, where the
headers have the following meaning. The first column represents the criterion
to be optimized, the second and third columns are the objective functions
evaluated in the optimal solutions obtained. For the sake of clarity, we recall
that the first two rows of the Table are related to the ideal points discussed

in Section 3, whereas the last two rows are equivalent to the lexicographic
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optimization, and the corresponding solutions are the nadir points. As we
can see, the nadir point f¥ outperforms the ideal point fI with respect to the
efficiency criterion. This reveals the fact that applying the combined E3M S
model enables the decision maker to improve the efficiency criterion while the
highest equity level is guaranteed. The resulting configuration of the open
stations as well as the assignment pattern exhibits the best performance for
the equity criterion while producing more outputs and therefore increasing
the overall efficiency. In a similar way, the nadir point f3¥ outperforms the
ideal point f{ in the equity criterion. In this case, we are able to provide
higher values for the equity measure even when the the overall efficiency is

maximum.

Table 5.1: E*MS in comparison with pure efficiency and equity models

Optimization criterion fi fo
fi 12 80

fo 10.67 98

filfs = f1 11.299 98

Table 5.2 reports the efficiency and equity performance measures of the

Pareto optimal solutions for the case in which 7 = 10 minutes and a = 0.05.

Table 5.2: The results for the Pareto front with a = 0.05 and RT'T = 10 minutes

solution — fi  fo G Giniy Gini®  Gini SEC (%) SCRT

11.327 97 0.017 0.025 0.098 0.140 91.90 307.21
11.357 96 0.017 0.026 0.097 0.140 92.80 307.29
11.392 95 0.016 0.027 0.097 0.140 93.69 308.42
11.434 94 0.016 0.028 0.096 0.140 94.58 308.51
11.478 93 0.015 0.029 0.095 0.139 95.54  309.67
11.540 92 0.015 0.030 0.094 0.139 96.35 310.86

Ol W N~

The columns 2 and 3 show the values of efficiency and equity criteria for the
Pareto optimal solutions. The other columns, but the last two, represent
the equity components in Dagum’s decomposition as well as the Gini’s coef-

ficient. In the last two columns, we reported the percentage of the system-
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wide expected coverage SEC and the average RT above the threshold, SCRT
in seconds.

The results in Table 5.2 indicate that the decrease in the number of
covered demands will result in higher values for within-group Gini index
assigned with uncovered zones Giniy. In this situation, the disparity in
uncovered zones is increased at the price of improving the efficiency. This
agrees with our concept of equity, since the emphasis is on the uncovered
demands. Therefore, it is reasonable that the equality in the uncovered
group is higher, when the equity function is maximized. Higher values for
the within-group Gini index for covered demands Gine}’, when our equity
measure is maximized (solution 1), is an evidence of the fact that our equal-
ity measure is focused on the uncovered zones. In fact, the access to the
service can be extended to cover more points, at the expense of a slight
decrease in equality in covered demands. This shows also the trade-off be-
tween horizontal and vertical equity. Horizontal equity implies that all the
demand points are considered in an equal manner. It means that subur-
ban nodes are treated without discrimination. Vertical equity is concerned
with the distribution of the service between different groups. By this defini-
tion, EMSs are equitable if they favor disadvantaged groups, compensating
for overall inequities. In our case, horizontal equity is not in contrast with
vertical equity, since, when suburban points are disadvantaged in terms of
equity in access to the service (solution 6), the disparity between covered and
uncovered zones reduces. This implies a decrease in the disparity between
covered and uncovered zones. As a last remark, we should remark that the
total Gini index exhibits only a slight variation over the Pareto front. This
verifies that, although our main equity criterion is not explicitly known as
a RT-based equity measure, it is not in contrast with the results of Gini

performance measure.
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Figure 5.3: The trade-off between efficiency and equity criteria in Pareto
front

The results in the last two columns show the trade-off between two out-
puts in the DEA model. It is evident that sacrificing the system equity will
lead to better results for the system-wide expected coverage performance.
In particular, the system-wide outputs of SEC and SCRT improve when the
efficiency in the system is maximized. We should notice, as a shortcoming
of our model, that the choice of the weights in the DEA model, and con-
sequently the outputs, is out of the decision maker’s control, and all the
outputs are considered equal.

Figure 5.3 represents the exact Pareto front for the case in which av = 0.05

and 7 = 10 minutes.
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Figure 5.4: The percentage of trade-off: efficiency versus equity criteria in
Pareto front
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The trade-off between equity and efficiency for the Pareto efficient solu-
tions is shown in Figure 5.4.
The last Pareto efficient solution in the Pareto front, which has the best
value for the efficiency criterion, is considered as the baseline of this com-
parison. The positive values show the percentage of improvement in the
equity criterion while the negative values indicate the decrease in the effi-
ciency criterion. This provides the decision maker a framework to find that
how much loss should undertake in one criterion for the benefit of a certain

improvement in another criterion.

5.2.6 Conclusions and future research directions

We presented an integrated location-allocation model for balancing equity
and efficiency with an embedded a DEA model. By endogenizing the outputs
of the DEA, a better trade-off between equity and efficiency criteria is made.
This issue is highly important since in location-allocation problems, the out-
put of each DMU is dependent on the assignment variables. It is obvious
that before siting facilities, we can not estimate the output parameters.

As already noticed, the choice of weights in the DEA model, and conse-
quently the outputs, is out of the decision maker’s control. In some cases,
in which the decision maker has some priority levels on the outputs, this
may probably result in undesirable results. To overcome this drawback, one
suggestion can be the incorporation of weights restrictions into DEA models.

As another limitation of the proposed model, we can refer to the need
for developing a tailored solution method which considers the peculiarity of
the class of location-allocation models. This can be a motivation for future
researches to explore the structure of the problem in more detail.

An application of the model to the strategic design of EMS was pre-
sented. The model has its own contribution in the EMS literature, since
captures the uncertainty in RT in a novel way through the incorporation
of a risk averse approach. In this applicative context, an interesting issue
would be the exploration of the trade-off between equity and efficiency also
in tactical-operational models, as for instance in location-relocation models
(see [14, 222] and the references therein), where a stable performance should

be guaranteed.
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Although a general form for the equity function has been considered,
there is an essential need for the investigation of equity measures designed
especially for EMS systems. Future research will also focus on the application
of the proposed model to other interesting applicative contexts in the health

sector and in other fields.
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Chapter 6

Location-allocation models in
the primary health care sector

In this Chapter, we will present two location-allocation models supporting
the decision-making in two interesting problem in the primary health care.
At a first glance, it may seem that these two contributions are completely dif-
ferent from each other since they address separate problems with different
characteristics and are related to different sectors in the health care sys-
tem. For example, the first contribution presented in Section 6.1 is a multi-
objective, static, and deterministic model which addresses a strategic-tactical
decision problem while the other contribution, presented in Section 6.2, is,
in fact, a single objective, multi-period and stochastic model, designed for a
strategic decision-making problem. Despite all these distinctions, they share
some similarities; for example, both models deal with location-allocation
decisions, address the efficiency of health care systems as well as the accessi-
bility of the service. The models belong to the same class of covering models,
and are inspired by real case studies arising in the same geographical region.
In the following, we will briefly introduce each contribution which will be
later discussed in more detail in the corresponding Section.

Community Based Organizations (CBOs) are important health system stake-
holders with the mission of addressing the social and economic needs of in-
dividuals and groups in a defined geographic area, usually no larger than
a county. The access and success efforts of CBOs vary, depending on the
integration between health care providers and CBOs but also in relation to
the community participation level. To achieve widespread results, it is im-

portant to carefully design an efficient network which can serve as a bridge
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between the community and the health care system. In Section 6.1, we ad-
dress this challenge through a location-allocation model that deals with the
hierarchical nature of the system explicitly. To reflect social welfare con-
cerns of equity, local accessibility, and efficiency, we develop the model in a
multi-objective framework, capturing the ambiguity in the decision makers’
aspiration levels through a fuzzy goal programming approach. We also re-
port the findings for the real case of Shiraz city, Fars province, Iran, obtained
by a thorough analysis of the results.

In Section 6.2, we propose a multi—period location—allocation problem arising
in nursing home network planning. In fact, we present a strategic model in
which the improvement of service accessibility through the planning horizon
is appropriately addressed. Unlike previous research, the proposed model
modifies the allocation pattern to prevent unacceptable deterioration of the
accessibility criterion. In addition, the problem is formulated as a covering
model in which the capacity of facilities as well as the demand elasticity are
considered. The uncertainty in demands within each time period is captured
by adopting a distributionally robust approach. The model is then applied

to a real case study for nursing home planning network in Shiraz city, Iran.

6.1 Enhancing Community based Health Pro-
grams in Iran: a multi-objective location-
allocation model

6.1.1 Introduction

Over the past decades, major sociological and economic changes, such as the
growing population and the increased urbanization, have placed increasing
pressure on the Iranian health system [85, 148, 171]. In this context, the
role of the health care system has been challenged ([171]), fostering consid-
erable transformations. One of the most visible breakthroughs has been the
establishment of a Primary Health Care network that has led to remarkable
achievements in various areas, ranging from health education to endemic
disease control [148, 171]. To reduce the gap between health outcomes in
urban and rural areas, given the shortage of human and capital resources,

the Primary Health Care system has relied on the community participation.
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Locally-based groups, referred to as CBOs, which have operated in Iran
for centuries, are playing an increasingly important role in social and eco-
nomic developments, strengthening the foundations of an emergent civil so-
ciety. In the case of Iran, CBOs are active in meeting and coping with
the critical needs of underserved and vulnerable population. They promote
community health and education, provide counseling services, drug addic-
tion prevention, and improve service delivery, thereby explicitly reflecting
social welfare concerns of equity and local accessibility.

Whether effective and equitable development can be ultimately achieved
by CBOs depends on the community participation they foster, its main de-
terminant being the geographical proximity [27].

The aim of the paper is to explore the potential for a structured quantita-
tive approach for the strategic location of CBOs, considering the geographical
distribution of specialized health care services.

The addressed challenges are manifold. From a modeling viewpoint, it
investigates the optimal location of CBOs, proposing a novel multi-objective
hierarchical location-allocation model. To the best of our knowledge, this is
the first attempt to develop a mathematical model for this problem. More-
over, the model contributes to the location-allocation literature, since it
combines the multi-objective and the hierarchical paradigms, thereby pro-
viding a faithful representation of the system and facing the concerns of the
different stakeholders involved.

From a practical viewpoint, the insights derived from the research provide
a systematic analysis of the trade-offs in the above mentioned applicative
domain and shed light on determinant factors affecting the system efficiency
and equity.

The first phase of this project consisted in a field-based research to better
understand the system from an operational perspective. In this respect, for
carrying out data collection, we collaborated with CBOs of Shiraz city, Fars
Province, Iran. This collaboration with the practitioners was an essential
component of this research rooted in a real-life application.

The rest of the section is organized as follows. In Subsection 6.1.2, the
relevant literature is briefly reviewed. In Subsection 6.1.3, the characteris-
tics of the system, the nature of the services provided, and the stakeholders’

goals are discussed. Subsection 6.1.4 presents a mathematical programming
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model for the specific case study. In Subsection 6.1.5, a solution methodol-
ogy for solving the proposed model is described. Subsection 6.1.6 is devoted
to the implementation of the proposed approach on a real case study en-
hanced by our findings and the policy implications suggested by the results

in Subsection 6.1.7. Finally, in Subsection 6.1.8, some conclusions are drawn.

6.1.2 Literature review

We present a new multi-objective hierarchical location-allocation model for
a health care network. To place the contribution of the paper in the right
perspective, we restrict our focus to the literature on location-allocation and

multi-objective models applied in health care.

6.1.2.1 Location-allocation models

There is a vast literature on the application of location-allocation models in
the health care sector [204].

In [244], Syam and Corte presented a location-allocation model for spe-
cialized health care services, providing treatment and rehabilitation for strokes
or traumatic brain injuries. The model minimizes the total cost, taking into
account the effects of factors such as service centralization, facility over-
load costs, target utilization levels. In [33], Benneyan et al. introduced a
location-allocation model for long-term decision makings in Veterans Health
Administration sector, considering the fluctuation in demands. The objec-
tive function is a weighted sum of conflicting criteria including travel time,
unoccupied capacity, and uncovered demands. In another paper, Zhang et
al. ([273]) investigated the impact of client choice behavior in the location
of preventive care facilities. The main aim is the maximization of the partic-
ipation level which is proportional to the geographical proximity. In [116],
a location-allocation model for the design of a primary health care network
is presented. Three criteria, including the maximization of the coverage,
the participation, and the total traveled distance are separately considered
as accessibility measures. In [238], Song et al. introduced a new location-
allocation model for the design of long-term health care services where the
preferences of the patients are incorporated through closest assignment con-
straints. Kim et al. ([142]) proposed a location-allocation model for locating

new public health care services in a network of existing private and public
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facilities. The model deals with the preferences of low-income and high-
income patients as well as the competition level among private and public
facilities.

Following the hierarchical stream in location-allocation models, Galvao et
al. studied the problem of locating perinatal facilities in Rio de Janeiro,
where a nested hierarchy structure between different types of facilities exists
[106, 107]. In [174], Mestre et al. presented a hierarchical model in which
the improvement in the geographic equity of access is followed by the min-
imization of weighted distance traveled by the users within a hierarchical
multi-service health care system. The study incorporates the efficiency of
service as well as the operational costs. Sahin et al. proposed a 2-level hier-
archical location model for locating facilities which provides blood services
in Turkish Red Crescent [216]. In [237], Smith et al. presented a hierar-
chical location model for locating community health facilities in developing

countries.

6.1.2.2 Multi-objective models in health care sector

The importance of the simultaneous consideration of multiple objective func-
tions has been acknowledged in some of the location-allocation models re-
viewed in Subsection 6.1.2.1 (see also [33, 116]). Recognizing the compelling
necessity of considering different criteria, Mohammadi et al. ([180]) proposed
a bi-objective location-allocation model for the design of a reliable health
care network. The first objective minimizes the total cost of treatment,
transportation, and the expected cost of failure, while the second objective
minimizes the sum of maximal accumulated travel time. In [242], Sun et al.
presented a bi-objective allocation model for the optimal assignment of pa-
tients to hospitals during pandemic influenza outbreak. The two considered
criteria are the minimization of the total distance traveled by patients to
hospitals as well as the minimization of the maximum distance traveled by
a patient to the assigned hospital. In [31], a multi-objective mathematical
model for the allocation of beds to hospitals with uncertain demands has
been presented. The model investigates the trade-off between three criteria:
the cost of creating new beds, the number of nurses and physicians. In a
recent research, Steiner et al. presented a multi-objective model to aggregate

the health services offered in different municipalities into some microregions.

160



The aggregation is done to facilitate the management of resources [240]. The
model provides a trade-off between three conflicting criteria, including max-
imizing the variety of services provided in each microregion, minimizing the
inter-microregion travel distances, and maximizing the homogeneity of pop-
ulation in the microregions.

In [117], Guo et al. presented a bi-objective location-allocation model
for the evaluation of community based health services. The model inves-
tigates a trade-off between cost and service where service is expressed as
the total number of demand nodes that receive service within a given dis-
tance threshold. In another research, Mitropoulos et al. ([177]) developed a
three-objective location model to find the most effective locations for locat-
ing health centers in Greece. The model investigates the trade-off between
the total distance traveled by customers to their closest hospital, the un-
derachievement in the minimum workload requirement of hospitals, and the
average Data Envelopment Analysis (DEA) scores assigned to open hospi-
tals. In [86], Davari et al. presented a bi-objective model for health care
design in which the equity criterion has been considered. They also imple-
mented fuzzy goal programming approach to solve the model. The model
addresses the trade-off between two criteria, including the aggregate partic-
ipation level in the network and the equity. To this end, they incorporate
the attractiveness concept as a negative exponential function of travel time
or distance. The participation criterion is evaluated by maximizing the to-
tal attractiveness captured by served demands, and equity criterion is ex-
pressed by the maximization of the minimum attractiveness in the network.
In another work, Graber-Naidich et al. ([112]) presented a three-objective
location-allocation model to account for cost, accessibility, and appropriate-
ness of provided care for a primary care network design problem. In [63],
Cardoso et al. presented a location-allocation model addressing long-term
care network design in which three types of equity are considered, including
equity of access, geographical equity, and socioeconomic equity. In [243],
Syam and Cote developed a location-allocation model for establishing not-
for-profit health care organizations. As the authors mention, the proposed
model is an implicitly multi-objective model in which the objective function
takes into account the cost of service and the penalty cost for the total unmet

demands. The model also requires that a minimum service level be provided.
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A hierarchical multi-objective location model for the design of hospital
networks has been proposed by Mestre et al. [175]. The model considers the
uncertainty in demands. In [236], Smith et al. introduced a bi-objective hi-
erarchical location-allocation model with equity and efficiency criteria. The
model is especially focused on public health services. Recently, another ap-
proach balancing equity and efficiency has been provided with an application
to emergency service design [140].

Despite the quite rich literature reviewed, there are potential gaps and
open issues yet to be investigated. Despite the large number of appli-
cations for location-allocation models in the health care field, there are
only a few papers addressing the hierarchical nature of health care ser-
vices [106, 107, 174, 216, 237], two of which, [175, 237], incorporate the
multi-objective framework. Moreover, our multi-service hierarchical loca-
tion model incorporates the preferences of referred recipients to upper level
facilities. To this end, referral is only limited to a subset of upper level
facilities which are within a specified threshold. This will facilitate the refer-
ral and encourage the recipients to continue their treatment which, in turn,
will increase the level of participation. We recognized that except equity
and accessibility, which have already been addressed ([175, 237]), the effi-
ciency of existing upper level facilities is another important factor affecting
the system performance. This issue is of paramount importance especially
in hierarchical systems, where the quality of professional services provided
at upper levels has a direct influence on the final outcome. The incorpora-
tion of efficiency helps the managers to recognize the most efficient facilities
that deserve more financial support. On the other hand, considering the
competition level component is another contribution of the present paper.
The model tries to decrease the competition level among first level facilities
by increasing the distance between any pair of those facilities. This gives
servers located at optimal locations more chance to develop their service and

to attract more recipients in a stable condition.
Another important issue usually neglected or only partially addressed in the

health care literature is the incorporation of ambiguity in different stake-

holders’ preferences at different levels. To overcome this shortcoming, we
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have considered the fuzzy set theory that enables the Decision Maker (DM)

to express the preferences imprecisely and even as linguistic terms.

6.1.3 Problem description and formulation

The State Welfare Organization in Iran coordinates three different service
providers: CBOs, Consulting Centers (CCs), and Addiction Treatment Clin-
ics (ATCs). CBOs are small organizations with different headquarters in
the city. The services provided by CBOs can be classified into two main
components: basic consulting services and addiction prevention programs.
Other services provided by CBOs are somehow related to these two types
of services. They also hold workshops teaching life and work skills. The
establishment of CBOs is essential for linking the district office and the local
community. As a matter of fact, in recent years, CBOs have been successful
in decreasing crime and addiction rates in poor neighborhoods [12, 203]. As
a result, the local district supported the establishment of CBOs, technically
and financially, providing human resources such as social workers and consul-
tants. It should be mentioned that the CBOs neither interfere in addiction
treatment nor provide the patients with methadone. In addition, they do
not give the recipients professional consulting services. Instead, CBOs refer
a portion of their recipients to other higher level facilities where they can
receive more professional and cut-rate services, based on the needs and the
severity of recipients’ problems. In particular, professional CCs (both pub-
lic and private) offer consulting services in different fields such as personal,
family, child care and development as well as educational problems. They
work under the supervision of district authorities that require accountabil-
ity. ATCs work under either the supervision of district authorities or medical
universities, and they offer inpatient and outpatient addiction treatment ser-
vices.

The nature of this organization imposes a hierarchical structure into the
system where CBOs are at the lowest level and the CCs and the ATCs
provide service at the highest level. The service providers operate under a
successively exclusive service hierarchy. This means that any upper level
facility provides just its own level of service. In fact, although ATCs and

CCs can also offer lower level services, they do not do so in most cases. It
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Figure 6.1: The system structure

should be noted that both CCs and ATCs have their own recipients, and the
recipients referred by CBOs consist of only a portion of their customers.
The structure of the system is explained in Figure. 6.1. Note that level
0 denotes customers.
Many factors should be considered when designing a health care system of
this kind, where the participation and completion of treatment rates are of
paramount importance. The activity level of a facility is determined by the
number of people who choose to seek its services. Therefore, service areas
of the facilities cannot be neglected in the design process. One of the major
determinants of participation to the programs offered by CBOs is the ease of
access to that facility. The factors that impact the accessibility include the
number, type, and location of the facilities. As well recognized [177, 259],
the probability of participation and the motivation for continuing treatment
decrease with the distance traveled. As a matter of fact, many patients stop
their addiction treatment or do not attend their consulting sessions because

of long distance.
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In order to facilitate the accessibility of patients to the second-level fa-
cilities, the total distance traveled by recipients referred to the second-level
facilities should be minimized. In addition, the referral is limited only to
those second-level facilities which are within a critical distance. To improve
the performance of the service network, some other criteria should be taken
into account. For example, to improve the service level of any first-level fa-
cility and to increase system safety, first-level facilities should be dispersed
throughout the city, avoiding strenuous competition levels. This implements
an equity concern since it ensures equal access to CBOs to people living in dif-
ferent areas. In addition, the maximum distance between first- and second-
level facilities should be minimized to assure that the second-level facilities
are well dispersed over the area.

Besides this spatial efficiency, another concern of the stakeholders is the
facility efficiency, expressed as a fraction of outputs produced for a given
level of inputs. In this way, economical concerns, important especially in
this context where the providers operate with limited resources, are also
considered.

To address the efficiency and productivity of sited facilities, we apply the
DEA framework, as a well-known tool for quantitative efficiency assessment
which is widely applied in the operations research field. For more information
about the DEA, the interested reader is referred to [81, 177].

6.1.4 The mathematical model

The mathematical model for the design of the system is presented in this
section. We start by introducing the notation used throughout the article,

and then present the objective functions and the constraints.

Sets/Indices:

I : is the set of demand points indexed by 4

F': is the set of potential locations to site first-level facilities indexed by f
F;(T) c F : denotes set of first-level facilities such that d;f <7', where T is
the maximum threshold distance that recipients should travel to reach first-
level facilities

K :is the set of service types (addiction treatment or specialized consulting)
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provided by second-level facilities indexed by k

Sk : is the set of potential locations to site second-level facilities providing
service type k

S = Uger Sk 1 is the set of locations to site second-level facilities indexed by s
Sk f(T) c Sk : set of the second-level facilities providing service &k such that
dygs < T, where T is the maximum threshold distance that recipients referred

from a first-level facility should travel to reach a second-level facility

Input parameters:

h; : denotes the amount of demand at demand point ¢, 7 € [

d,p : denotes the distance between two arbitrary points or locations a and b
/3% : denotes the percentage of recipients from demand point i requiring ser-
vice type k at the second-level

¢ : denotes the capacity (the maximum number of demand nodes) of the
first-level facility f

C* : denotes the capacity of the second-level facility s providing service k
s : denotes the amount of inefficiency associated with the second-level facil-
ity s

p : denotes the maximum number of first-level facilities

¢* : denotes the maximum number of second-level facilities providing service
type k

M : denotes the maximum distance between first-level facilities (M = max dy)

ffeF
m : denotes the minimum distance between first- and second-level facilities

(m = min e ses ds)
Decision variables:

1, if demand node i is allocated to the first-level facility f
0, otherwise

- {1, if a first-level facility is established at potential site f

0, otherwise
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2
T

1, if a second-level facility providing service k is established at potential site s
0, otherwise

w}i = the amount of demand referred from the first-level facility f to the

second-level facility s
D; : the minimum distance between any pair of first-level facilities

DF, : the maximum distance between any pair of first-level and second-level

facilities offering service k.

The model reads as follows.

minOy(w) = > Y ) dywis, (6.1)

feF keK seSy
min Os(x) = Y Y n?, (6.2)
keK SESk
min Og(D) = Z leQ - D17 (63)
keK
> wiy=1, iel (6.4)
leyjf <cxy, feF (6.5)
YwpsChal, kekK, seS (6.6)
feF
> wi- Y Brhiyl =0, feF keK 6.7)
SESkf(T) iel

Diy+ (zh+a2)(m—dys) >2m—dy,, f e F, ke K, s€ 5 (6.8)
D, + (:E} +x}u)(M—dff/) <S2M —dsp, f, fre F(f+f) (6.9)

Y, xp<p, (6.10)
Jel

YoaZ<gt, keK (6.11)
SES}C

wy.xle{0,1}, feF seS (6.12)
yip €401}, i€l feF (6.13)
wiz>0, feFkeK,seS, (6.14)
D, >0, keK (6.15)
Dy >0 (6.16)
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Departing from the rationale explained at the beginning of this section, the
three objectives of accessibility, efficiency, and equity are operationalized into
three different objective functions. The accessibility is represented by O; in
(6.1) where the total travel time for individuals accessing second-level facil-
ities, once referred from CBOs, is minimized. This assures spatial efficiency
and maximizes at the same time the success probability of the program or
the participation level.
The efficiency criterion is represented by O, in (6.2), which minimizes the
total inefficiency score of second-level facilities in the system. The equity
is represented by Os in (6.3). It includes two components: the maximum
distance between any pair of open facilities offering similar services but at
different levels, D¥,, and the minimum distance between any pair of open
CBOs, D;.
Constraints (6.4) state that recipients should be referred only to CBOs within
a critical distance. Constraints (6.5) impose a limit on the number of quar-
ters that any CBO can serve. Constraints (6.6) impose a limit on the number
of referral from any open CBO to the upper level facilities. The next restric-
tions in (6.7) are associated with service referrals. They enforce recipients
to be referred to second-level facilities which are within a critical distance.
Constraints (6.8) define distance variable D¥,, Vk € K, as the maximum dis-
tance between any pair of open facilities offering similar services at different
levels. These restrictions in combination with (6.3) provide the minimum
dispersion between any pair of lower and upper open facilities. Constraints
(6.9) define dispersion variable D; as the minimum distance between any
pair of first-level facilities. In a similar way, constraints (6.9) in combina-
tion with (6.3) assure that open CBOs are as much as possible dispersed
throughout the area. Constraints (6.10) impose a limit on the number of
first-level facilities to be opened. The set of constraints in (6.11) put an
upper bound on the total number of upper level facilities to be established.
Finally, constraints (6.12)-(6.16) define the type of variables.

In the next section, we will describe an approach for dealing with the

multi-objective nature of the proposed model.
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6.1.5 The fuzzy goal programming approach

For solving a multi-objective problem, a wide variety of multi-objective pro-
gramming techniques can be applied. These methods differ from each other
with respect to their different ways of converting the multi-objective model
into a single objective one [241].

The goal programming approach is one of the most popular and practical
approaches used [71]. In the goal programming framework, the DM imposes
an aspiration (target) level on each criterion. Then, the deviations from these
target levels are minimized. The most challenging issue in goal programming
is the determination of aspiration levels as precise values. In fact, the main
question to answer here is: how can the DM set precise values for targets,
especially at the presence of some degrees of uncertainty which is inevitable
in most real-world problems? To capture the ambiguity in the aspiration
levels, the fuzzy set theory can be used [277]. The resulting method, known
as fuzzy goal programming approach, enables the DM to express the target
levels imprecisely and even as linguistic terms such as "approximately greater
(less) than” or "approximately equal to”.

In this case study, we apply the weighted additive model introduced by
Tiwari et al. ([249]) and also the priority preemptive approach developed
by Chen and Tsai ([73]). Both these models guarantee that the obtained
solution is a Pareto efficient one.

Based on the main idea behind fuzzy goal programming approach, the math-
ematical model in (6.1) -(6.16) can be expressed as the problem of finding a

feasible solution for the set of constraints in (6.17)-(6.18), as follows:

On()<0} h=1,23 (6.17)
(6.1) - (6.16) (6.18)

where O] represents the aspiration levels assigned with fuzzy goal in (6.17)
h =1,2,3. Note that < denotes the fuzziness in the fuzzy goal and can be
interpreted as "approximately less than or equal to”. Fuzzy goals in (6.17)
represent fuzzy sets and can be identified by their membership functions
indicating the degree of utility in achieving the target values.

The linear membership functions assigned to fuzzy goals in (6.17) are defined
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as follows:

1 Oh() SO}IL
_ ol
Hoy() = 1~ gt Oh<Ou(.) <O (6.19)
0 Oh() ZO}JLV

where O} and O} are, respectively, the aspiration level (ideal solution) and
the upper bound (nadir solution) assigned to fuzzy goal uo, (.), h=1,2,3.
To obtain the ideal solution for the At criterion, we solve a single objective
problem including criterion Op(.) and the set of constraints in (6.1)-(6.16).
The nadir solution, for the A" criterion, is the maximum value that Oy(.)
takes with respect to the ideal solutions of the other two criteria.

Applying the weighted additive model (Tiwari et al. [249]), an equivalent

formulation for the initial fuzzy model in (6.17)-(6.18) is obtained as follows:

3

max hzlwhuoh(.) (6.20)
(6.1) - (6.16) and (6.19) (6.21)
oy ()<l h=1,2,3 (6.22)
1o, ()20 h=1,2,3 (6.23)

where wy, (wy, > 0, X7 _, wy = 1) denotes the weight associated with the Ath
fuzzy goal.

In multi-objective context, very often, the DM considers a priority structure
in which some fuzzy goals have a higher priority for the achievement over the
others and the fuzzy goals are ranked into different priority levels. Following
this stream, Chen and Tsai ([73]) proposed the preemptive priority fuzzy
goal programming model capturing the priorities imposed over goals. For
our special case, the managers have considered two different priority levels for
the fuzzy goals. The fuzzy goal associated with the criterion O; is ranked as
the 1-priority, whereas the fuzzy goals associated with criteria Oy and O3 are

ranked as the 2—priority. The preemptive priority model can be formulated
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as follows:

3

max Y. fio,(.)

os() < oy ()

(6.24)
(6.25)
1o, (-) < po, (1) (6.26)
(6.1) = (6.16) and (6.19) (6.27)
po () <1 h=1,23 (6.28)
po, ()20 h=1,23 (6.29)

The algorithmic scheme of the presented fuzzy goal programming approach

is reported below.

Algorithm 13: The exact fuzzy goal programming method
1 for h=1,...,3 do

2 Solve the optimization problem with criterion Op(.) and constraints
(6.1)-(6.16).

3 Let opt; be the optimal solution.

4 end

5 for h=1,...,3do

6 Let Of = Op,(opt}) and O = maxﬁ¢h(0h(opt2))

7 Build the membership functions po, (.).

8 end

9 Solve the appropriate fuzzy goal programming model (either (6.20)-(6.23)

or (6.24)-(6.29)).
10 Return the obtained Pareto efficient solution.

Theorem 6.1.1. The solution produced by the Algorithm 13 is a Pareto

efficient solution for the proposed model.

Proof: Let Z* be the optimal solution of (6.20)-(6.23), where Z* de-
notes the set of optimal variables (x*,y*, w*,D*). If Z* is not an efficient
solution for the model in (6.1)-(6.16), there exists another feasible solution
Z such that O,(Z) < Op(Z*) h € {1,2,3} and for some j € {1,2,3} we
have O;(Z) < O;(Z*). This results in po,(Z) > po, (Z*) h e {1,2,3} and
o, (Z) > po,(Z*) for some j € {1,2,3} . Since wy, are strictly positive values,
we conclude that Y5 _, wy 1o, (Z) > Ya_i wh fo, (Z*) which is a contradiction
with the optimality of Z*. The same results hold for the preemptive priority

model.
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6.1.6 Case study

As the sixth most populous city in Iran and the capital of Fars province, Shi-
raz city is well-known for being an important historical, cultural, political,
economical, and commercial center. The specific geographical and econom-
ical characteristics of Shiraz city and its potential have encouraged many
people to choose this city for immigration. Based on the national census
of population and housing reports, prepared by statistical center of Iran in
2011, the population of the municipality of Shiraz is about 1700687 people
and in the last 5 years, 175081 people have immigrated to this city.

The social structure of the municipality of Shiraz is also very complex due
to the immigrants of different socio-economic backgrounds from other parts
of the country, especially from rural areas and small cities in Fars province.
This fact resulted in higher population density and increased exposure to
deteriorated living conditions.

Most immigrants, coming from small cities and rural parts, are settled
in suburban, poor, and crime-prone neighborhoods. The unemployment
dilemma, addiction and drug-related crimes are serious concerns threaten-
ing the immigrant community. As a matter of fact, Fars province is among
the first 12 provinces having the highest addiction prevalence rate [4]. In this
situation, the main aim of the district authorities is to provide the residents
with appropriate social care services, including addiction prevention and
treatment programs as well as consulting services for improving life quality.
The municipality of Shiraz includes nine municipal zones which are depicted
in Figure. 6.2. To choose both the set of demand points and candidate facil-
ity locations, we concentrate on the municipal zones associated with higher
crime rates. In 2010, Taghvaii et al. conducted a research to evaluate the
crime rate in eight existing municipal zones of Shiraz [246]. Based on their
findings, zone 2 reports the highest rate for drug-related crimes with 42.6%,
followed by zones 5,7, and 8 with 14.6%. The rate of drug-related crimes
in other zones varies between 1.1% to 4.4%. Zone 9 is not surveyed in the
research because it has been recently included in municipal zone divisions.
Nevertheless, we consider it as a crime-prone area with a rather high rate of
immigration located at the outskirts of the city. We discretized the munici-
pal area in 84 population centers, representing the demand nodes.

Currently, 24 CBOs, most of which located in the crime-prone areas with a
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® Municipal Zone

Figure 6.2: 9 Municipal zones of Shiraz city

high rate of immigration, provide lower level services concerning consulting
programs and addiction prevention plans. Besides the 24 existing locations,
we have considered 20 new locations in order to investigate the potential
system improvement. Although some existing CBOs in municipal zones 1
and 6 are included in our study, we did not consider any new candidate CBO
or demand node in these areas. The reason is that some CBOs in these ar-
eas did not have any considerable experience of referring their recipients to
upper level facilities.

At present, 30 active CCs, including 29 private centers and a public one,
are run under the supervision of the local authority. Currently, 10 ATCs,
including 9 private clinics and a public one, provide addiction treatment
services. Besides these 10 locations, we have considered 8 extra potential
sites for establishing new ATCs.

Figure. 6.3 illustrates the spatial representation of demand nodes as well
as both existing and potential sites for locating first-level and second-level
facilities performed by ArcMap. We assume that at most 35 CBOs, 14 CCs,
and 13 ATCs can be sited, i.e., p = 35, p; = 14 and p; = 13. To evaluate
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Figure 6.3: Spatial distribution of population centers and existing and po-
tential locations of facilities

the efficiency score of each CC, we have considered the input and output
parameters of Table 6.1. Then, the Klimberg’s simultaneous DEA model (see
[143]) has been used to compute the DEA scores. At first sight by looking at

Table 6.1: Input and output parameters for CCs

Inputs Outputs

Number of doctors Number of non-referred treated recipients
Number of psychology consultants Number of treated recipients referred by CBOs
Maximum capacity

Figure. 6.3, it seems that CCs have not been sited in proper locations. For
instance, we noticed that 17 out of 30 existing CCs are located in municipal
zone 1, where demand for CBO services is considerably low. In other words,
57% of CCs are not well spread out over the city. We also found that the
rate of referral from existing CBOs to some CCs is very low. These findings

are confirmed by the efficiency scores of the CCs reported in Table 6.2.
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Table 6.2: The DEA score of CCs

CC  Location coordinates(Km) DEA score CC Location coordinates (Km) DEA score

(7, y) (7, y)
1 (-0.1438,0.0215) 0.78 16 (-1.9436,1.4414) 1
2 (-1.3876,1.7628) 0.47 17 (1.7256,-1.554) 1
3 (-1.273,1.5428) 0.74 18 (-1.6591,1.928) 0.38
4 (2.3214,0.758) 0.90 19 (2.2119,0.954) 0.47
5 (3.9066, -3.7832) 0.52 20 (-8.0871,7.8846) 0.63
6 (-1.8279,2.1117) 0.60 21 (2.5888,1.4285) 0.64
7 (~2.3633,1.5692) 1 22 (-8.0174,7.979) 0.57
8 (-1.7971,0.6594) 0.64 23 (-2.3497,2.7964) 0.60
9 (-2.1426,1.1446) 1 24 (-1.7125,2.0336) 0.38
10 (4.4771,-2.817) 0.41 25 (-3.1988,2.0379) 0.74
11 (-2.1804,1.2142) 0.43 26 (-3.5129,2.7087) 0.74
12 (-2.7024, -6.695) 1 27 (-1.7049, 2.0256) 1
13 (-8.2694,7.7555) 0.34 28 (-1.3378,1.5832) 0.87
14 (~4.0818,3.053.9) 0.35 29 (~2.1285,2.6982) 0.59
15 (-1.7451,1.8545) 0.35 30 (-1.6301,1.7652) 1

The efficiency of ATCs has not been considered in our study given the lim-
ited number of existing ATCs. In order to instantiate the model, we have
considered a coverage distance for CBOs equal to 2.5 kilometers to facilitate
the residences’ access and encourage them to interact with CBOs constantly.
The appropriate coverage distance threshold for the second-level facilities has
been set to 4.5 and 6 kilometers for CCs and ATCs, respectively.

To gather the needed information about the rate of referral from existing
CBOs to upper level facilities and the number of demands at each demand
point, we asked CBO managers to fill in our questionnaire. Other data about
CBOs and ATCs were collected by contacting the managers of the local au-
thorities. Collecting data as well as modeling the case study began in May
2013 and ended in March 2014.

6.1.6.1 Presentation of the results

This section is devoted to the presentation of the results obtained by solving
the optimization problem for the case of Shiraz. The optimization problem
was modeled using AIMMS 4.1 and solved by CPLEX 12.6, running on a 2.7
MHz personal laptop with 4 G RAM. The CPU time for all cases did not
deviate from 3 seconds.

We present three research questions, relevant for the DMs of Shiraz, here-

after called scenarios A, B, and C. To provide the managers with alternative
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solutions and to compare the current system with the solutions obtained by
the model, we amended the problem (6.1)-(6.16) with the following con-

straint:

[Tl = ) wf <qe (6.30)
fede

where J, denotes the set of existing CBOs’ locations and ¢, is the maximum
number of existing CBOs to be closed. Hence, |J,| - ¥ fede r}c represents the
number of existing CBOs which are closed and this number is limited above

by ¢e.

6.1.6.2 The current system

In this part, we evaluate the current network based on the three main crite-
ria, including accessibility, facility efficiency, and equity.

Looking at Figure. 6.3, we observe that 9 out of 24 existing CBOs (the 38%
of first-level facilities) have been located at municipal zone 7, while there
are only 4 active CBOs (the 17% of first-level facilities) at municipal zone
2, which has the highest rate for drug-related crimes. In addition, munici-
pal zones 5 and 8 have the same rate for drug-related crimes as municipal
zone 7, but they are hosting only 1 and 2 active CBOs, respectively. This
shows that the current spatial configuration of the first-level facilities is not
consistent with the demands at different areas.

Moreover, the current location of CBOs is not balanced. As a matter of fact,
the minimum distance among all pairs of the 24 existing CBOs is only 0.29
km, indicating a high competition level among CBOs.

Considering the current configuration of CBOs and the limitation on their
capacities, the managers are able to cover only 52% of demand nodes within
the threshold of 2.5 km. The percentage of uncovered demand nodes is
around 44% of the total demands in the network. The minimum distance
traveled by these recipients to their closest CBO is 4.72 kilometers, whereas
the average is 3.69 kilometers. This is an evidence for the fact that, using
existing CBOs, it is impossible to provide service for all quarters.

The location of uncovered demand nodes and their neighborhoods can guide
the managers to find appropriate potential sites for establishing new facili-
ties. There is no complete information about the referral pattern which is

used in the system. However, by gathering the data, especially in the case of
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CCs, we noticed that some recipients are referred to CCs, which are very far
from their closest CBO. Even supposing the ideal case in which recipients
are referred to their closest second-level facilities, the distance traveled to
reach their closest CC and ATC is 6.14 and 8.48 kilometers, respectively.

In the rest of this section, we investigate the optimal configuration of fa-
cilities under three different scenarios, referred to Case A, B, and C, that
provide meaningful answers to a specific questions posed by the managers.
For each case, a comparison with both the current system and other cases

are provided.

6.1.6.3 Case A

This case answers the question: how should the current network be reorga-
nized?

In other words, the managers adopt a risk-prone approach accepting the
consequences of closing some of the existing CBOs in order to get the best
possible spatial configuration for the whole system. In this case, the corre-
sponding model is exactly the same as the model in (6.1)-(6.16). First of all,
the solution obtained by the fuzzy goal programming method is compared
with the solutions obtained by considering separately the three objective
functions. The results are shown in Table 6.3. The first three rows in Table
6.3 represent the optimal objective function values resulting from the solu-
tion of single objective problems with criteria O, Os, and Os, respectively
while the last row shows the results for the fuzzy goal programming model,
denoted by FGP.

Columns 5 -7, in Table 6.3, show the utility degree in achieving the target

value for each criterion.

Table 6.3: The optimal results for case A

O, Oy O3 H1 Mo H3

(0N 5890.540 7.670 68.394 1 0 0
O; 11518775 2.721 67.559 0.11 1 0.25

O35 12237.342 4.730 65.090 0 0.59 1
FGP  6998.799 2.827 65.350 0.83 0.98 0.92

The results show that, when Oy is optimized, the highest utility degree for

the accessibility criterion (u; = 1) is achieved at the price of sacrificing the
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other two criteria completely (us = pz = 0). Similarly, the utility degree
associated with the efficiency criterion is at the highest level (uy = 1), while
for the other two criteria this value is low (u; = 0.11, p3 = 0.25) when O, is
optimized.

Similar conclusions can be drawn for the third row. Unlike the first three
cases, the optimal solution of the fuzzy goal programming model provides
significantly higher utility degrees in target achievement for all the criteria.
The optimal spatial configuration for first-level and second-level facilities
obtained by the fuzzy goal programming method is shown in Figure. 6.4. In
addition, Table A.1 in Appendix A reports the open facilities for both the

lower and the upper levels.

@ Existing CBO
® Newly established CBO
4 Selected CC
Existing ATC
B Newly established ATC

Figure 6.4: Spatial distribution of optimal locations for case A

Comparing the configuration with the current one, we observe that in the
former case the minimum distance between any pair of open CBOs is 0.48,
whereas in the latter is 0.29 kilometers. It is interesting to note that although
11 extra CBOs are established, to provide extra coverage, the minimum dis-
tance between CBOs increases by 65%. This finding shows that, for this
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special case study, a higher number of CBOs does not exacerbate necessar-
ily the competition level between them.

Hence, within an optimal configuration of CBOs, we are able to provide cov-
erage for all demand nodes and at the same time to decrease the competition
level between CBOs. By relocating % of existing CBOs, the system reaches
higher utility degrees for both accessibility and equity criteria.

Moreover, the results show that existing ATCs 4 and 9 are not included in
the optimal solution and only 14 out of 30 CCs are selected. We should em-
phasize that, since 50% of active CCs in the new configuration are efficient,
the recipients have more chance to be appropriately served than before.

In addition, the maximum distance between any pair of CBOs and CCs and
ATCs, linked with referrals, are 4.340 and 5.80 kilometers, respectively. The
average of the aforementioned distance for CCs (ATCs) is 2.953 (2.419).
Comparing with the current system, this shows about 0.29% (20%) decrease
in the maximum distance traveled by the referred demands to their assigned

CCs (ATCs).

6.1.6.4 Case B

This case is relevant when the managers adopt a risk averse policy for the
first-level facilities. In particular, this scenario let the DMs know how the
current network could be upgraded without closing existing CBOs and es-
tablishing 11 new CBOs to provide coverage for the under-serviced areas.

The model associated with case B is (6.1)-(6.16) amended with the set of
constraints :E}c =1, f € J, to preserve the existing CBOs. Table 6.4 shows the
objective function values for single objective problems as well as the results

for the fuzzy goal programming model.

Table 6.4: The optimal results for case B

O, O, O3 M1 Mo 3

O3 6929.891 7.670 68.394 1 0 0
0; 11518.775 2.721 67.559 0.04 1 0
O;  12237.342 4.730 65.090 0 056 1
FGP 8324.161 2.827 65.541 0.73 098 1

Conclusions similar to the previous case can be drawn from Table 6.3.

Using the multi-objective approach, the total utility degree assigned to all
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criteria is significantly higher than the total utility achieved for each single
objective problem.

Comparing the solutions with the case A, we can notice a deterioration of
both accessibility and equity criteria in the case B. In particular, the deteri-
oration in the accessibility criterion is about 19% while the equity criterion
is slightly (0.3%) worse.

The deterioration is related to the fact that the case A has more flexibility in
finding the best configuration of first-level facilities. The value of the facility
efficiency criterion is the same in both cases. This is an expected behavior,
since the policy taken for the establishment of first-level facilities does not

affect the efficiency of the second-level facilities (CCs).

To investigate the possibility of improving the accessibility criterion, we
apply the preemptive priority model (6.24)-(6.29) considering the case that
the accessibility criterion is prioritized over both facility efficiency and equity
criteria.

The results of the preemptive priority model are summarized in Table 6.5,

where PPFGP denotes the preemptive priority model.

Table 6.5: The optimal results for the case B with priority structure

O, Os O3 1 12 3
PPFGP 7789.475 10.859 66.128 0.83 0.92 0.79

The results show that an improvement of 6.4% in the accessibility criterion
can be obtained at the price of deteriorating facility efficiency (2.8%) and
equity criteria (0.9%).

The spatial distribution of the optimal locations is shown in Figure. 6.5,

whereas a Table A.1 is provided in the Appendix A.
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Figure 6.5: Spatial distribution of optimal locations for the case B

Comparing the optimized configuration with the current configuration we
can notice that 8 out of 10 of the existing ATCs are located at optimal
locations. This can guide the managers to relocate ATCs positioned in non-

optimal locations.

6.1.6.5 Case C

Another relevant question is whether the current network could be upgraded
while limiting the number of existing CBOs to be closed. The results have
been obtained by solving the model (6.1)-(6.16) amended with the constraint
(6.30), allowing at most 4 existing CBOs to be closed. The spatial distribu-
tion of the optimal locations is shown in Figure. 6.6. See also Table A.3 in

Appendix A.
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Figure 6.6: Spatial distribution of optimal locations for the case C'

Table 6.6 indicates the optimal objective function values for the fuzzy goal
programming problem. Comparing the results of the last row in Table 6.6,

with similar results in Table 6.4, we can draw the following conclusions:

Table 6.6: The optimal results for case C

O, Oy O3 H1 H2 H3

(0N 6025.212  8.141 68.394 1 0 0

O; 11618.733 2.721 68.394 0.02 1 0

O; 11749.450 5.02 65.264 0 0.58 1
FGP 7190.792 2.827 65.350 0.80 0.98 0.97

In terms of accessibility, this case provides better results than the case B,
with an increase of 14%. The equity criterion is also improved, since the
minimum distance between any pair open CBOs is 65% higher. As far as
the efficiency criterion is concerned, both cases provide the same results.

On the other hand, the case A provides higher accessibility levels (2.7%
higher) than case C, whilst both cases provide the same results for the other

two criteria.
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6.1.7 Discussion

The analysis of these different planning contexts suggested important man-
agerial insights. First of all, they showed that the existing CBOs are far
from being able to meet the community needs, leaving many areas without
access.

Regarding the accessibility criterion, scenario A provides the best results.
This is expected as, in this case, the managers accept the risk of closing
some existing CBOs. The model uniformly distributes the resources across
the city, thereby ensuring the provision of services to the highest number of
individuals.

Regarding the equity criterion, the maximum distance between the first-
level and second-level facilities for all cases are the same and the only dif-
ference is in the minimum distance between CBOs. In this respect, cases A
and C' provide better values than the case B. This, on one hand, underlines
a high competition level between CBOs in the current system and, on the
other hand, it highlights the importance of adopting quantitative approaches
in the configuration of these services.

In addition, the scenario A has the lowest value for the average dis-
tance traveled by recipients to reach ATCs (32% and 12% improvement over
cases B and C, respectively), whereas in the current system, both the to-
tal weighted distance traveled to the second-level facilities and the average
distance traveled to reach CCs/ATCs are high.

All the cases provide the same results for the efficiency criterion. This
result is reasonable as this criterion is independent from the policy adopted
for the selection of CBOs. It is remarkable that, for all cases, all efficient

CCs are included in the optimal solutions.

6.1.8 Conclusions and future research directions

We proposed new combined multi-objective hierarchical location model aris-
ing in the context of community based services. The model accounts for
three different policy objectives: equity, accessibility, and efficiency. The
notion of ambiguity in the decision makers desiderata’ has been taken into
account, underlying the importance of the human component in the opti-

mization phase. This is a salient model feature for the DMs, who were
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able to express the objectives in linguistic terms. In addition, the investiga-
tion of the trade-off between these criteria enabled the managers to explore
the structure of the system in detail and take decisions in which both the
managers’ perspectives and public viewpoints are considered. The proposed
model was validated using real data for Shiraz city in Iran. By implementing
the solution of the mathematical model, the managers could practically eval-
uate the improvement in the completion of therapy sessions and addiction
treatments, especially for this case study.

The model built is quite general and can easily be adapted to different
contexts with similar characteristics, although it was inspired by the situ-
ation of Shiraz city. As a future research deserving detailed examination,
we mention the incorporation of qualitative measures in a comprehensive
model. It would be interesting to see the trade-off between qualitative and
quantitative measures for performance assessment.

Another interesting avenue for future research is the application of the
VIKOR method to find the compromise solution that better suits the DM’s
preferences [234, 269].

6.2 A Multi-period Location—Allocation Model
for Nursing Home Network Planning Un-
der Uncertainty

6.2.1 Introduction

An aging revolution is taking place world—wide. Increased longevity is one of
the most important success of our era but it also raises a challenge for health
systems that are put under the pressure to reform their care organization
to be sustainable for an aging society. These increased expectations should
be reconciled with the limited resources available. In 2012, people aged 60
years and more were 0.8 billion, 11% of the world population. By 2030 they
will number 1.4 billion and will represent up 17% of the world population.
By 2050, this number will rise up to 22% [9]. In addition, increased urban-
ization and migration will result in older people living alone. Each country
will need a comprehensive approach to make the necessary transformation

and to meet the challenge. Improving services for older people entails to
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consider each component of care system as, for instance, specialized clinics,
home care services, and nursing homes.

The impact of the aging society will fall predominantly on the long—term
care sector requiring appropriate re—design of the long—term care services, in-
cluding supported self-care, home—based and, especially, home nurses. This
contribution is motivated by the real problem of creating an efficient nurs-
ing home network to satisfy the elderly care demands in emerging countries.
In particular, we shall focus on the Middle East considering Iran. In the
last years, the Iranian society has experienced an exceptional increase of
life expectancy: in 1960 this index was around 44 years against 73 years in
2012. It is supposed that even greater thresholds could be achieved with a
widespread provision of public health care services in which all age groups
are served equitably, including the elderly population (people aged 60 and
over). The need of designing an efficient long—term care network is a quite
new requirement in Iran, that for tradition, is a family—centered society. If
in the past the idea of moving elderly family members to nursing home has
always been disapproved, in recent years this trend has been inverted due to
social changes, increased socio—economic difficulties and the opportunity to
receive more professional care.

The problem of designing an efficient nursing home network has a strategic
nature and involves decisions that have an impact over an extended plan-
ning horizon. The limited financial resources are typically spread over a time
horizon making the adoption of a myopic policy, that ignores the inherent
dynamic nature of the problem, highly inefficient. On the contrary, a long-
sighted view, can be vital for the system financial survival.

To address this issue, we propose a multi—period location model that incorpo-
rates the dynamic evolution of the system throughout the planning horizon;
with the provision of new financial resources, new facilities can be located
and additional demand can be gradually satisfied. To this aim, in consecutive
periods, newly established facilities are located and the assignment pattern
is improved assigning all previously covered demands to closer facilities, if
possible. In general, by applying this incremental approach, the distance be-
tween covered demands and facilities sequentially reduces over time and the
accessibility (perceived as an important service level) is improved over the

entire planning horizon. Indeed, in presence of finite financial resources the
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system can fall, relatively easily and quickly, into very poor service levels,
especially when the demand variability is high.

To the best of our knowledge, there is not any previous research on loca-
tion literature addressing the strategic design of the nursing home network.
In addition, although there is a vast literature on multi—period location mod-
els, only Albareda-Sambola et al. ([17, 15]) address the important issue of
satisfying the demands in an incremental fashion, whereas the variability
of the demand of service, along the horizon, has been typically neglected
[62, 175]. This poses a challenge, since the determination of the optimal
location of facilities at the beginning of the horizon should be made before
the actual amount of demand is available. We deal with this issue by adopt-
ing a distributionally robust approach. We consider a general case in which
only the mean and the deviation of the stochastic demands over each time
period are known. Moreover, we opt for a risk—averse view point, consider-
ing the service levels as probabilistic constraints to be satisfied with a given
reliability level [37, 55, 35]. We point out that there is a strong background
on applying the chance constrained approach for strategic planning in the
health care sector, supported by its risk—averse characteristic [36, 105]. As
a risk—averse approach, the chance constrained paradigm allows the decision
maker to capture the demand uncertainty and to exclude the more risky
situations depending on the aversion level. Compared with risk-neutral ap-
proach ([62, 175]), in which only the expected values are considered, the
risk—averse framework takes also the deviations of the uncertain parameters
into account.

Another distinctive feature of the proposed model is the incorporation
of the elasticity of the demand with respect to the distance traveled by
the users (distance—elasticity of demand). There is a general consensus on
the elasticity of demand in the health care sector [258, 259]. The explicit
consideration of the distance—elasticity of the demand enables the managers
to gain valuable information about the participation level for care services,
supporting in a more realistic fashion the decisions of upgrading or extending
the facilities in the long—term.

To address the elasticity of demands, we define a user—specific distance
threshold reflecting the preferences of users to access the service. This thresh-

old is different from the manager—specific threshold which is related to the
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covering nature of the problem and represents the manager’s preferences.
The main contributions of the proposed model are as follows:

(1) The model proposes a multi—period framework in which demand nodes

are incrementally served.

(2) Unlike previous related research ([17, 15]), the proposed model modifies

the allocation pattern to prevent unacceptable deterioration of the accessi-

bility criterion. In addition, the problem is formulated as a covering model

in which the capacity of facilities is also considered.

(3) The uncertainty in demands within each time period is captured by

adopting a distributionally robust chance constrained approach. In addi-

tion, the model also incorporates the distance—elasticity of demands.

The rest of the section is organized as follows: Subsection 6.2.2 presents
a brief review on existing relevant literature. Subsection 6.2.3 describes the
problem and presents a stochastic formulation along with its deterministic
equivalent counterpart. Subsection 6.2.4 presents the real case study and
shows the improvements achievable when implementing the recommenda-
tions provided by the model in terms of location—allocation configuration in
the nursing home network in Shiraz city. Finally, conclusions and findings

are reported in Subsection 6.2.5.

6.2.2 Literature Review

There is a vast literature on the development of single period location—
allocation models in the health care context ([34, 36, 140, 141]). Many
existing researches have shown the advantage deriving from the adoption of
a multi—period programming framework, when compared with a single pe-
riod one, to deal with strategic location—allocation decisions. In particular,
there is a wide literature on the application of multi—period location models
for the public service sector ([197, 221]) and, especially, in the health care
field [21].

Nevertheless, there are only a few papers in the literature addressing
multi-period location—allocation models at the presence of stochasticity [162].
Among them, we refer to a recent work of Markovic et al. [162]. Recognizing
the sparseness of literature, the authors presented a multi—period model to

locate a set of flow—capturing facilities aimed at intercepting the stochastic
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traffic flows with evasive behavior. The proposed model allows the adjust-
ment of facility locations over different time periods. A Lagrangian relax-
ation heuristic is proposed and tested on two road networks.

Adopting a risk—neutral approach, Albareda—Sambola et al. proposed a
multi-period location—allocation model under cost uncertainty [16]. They
considered two alternative strategies, including the scenario—dependent case
in which the decision locations are made gradually with the evolution of
randomness over the planning horizon and the scenario—independent case,
where the locations decisions are made in an a priori fashion at the beginning
of the horizon. For the scenario-dependent strategy, they presented a multi—
stage stochastic location model while for the a priori case, a two—stage model
is defined.

In another paper, Nickel et al. presented a multi—period model for the
facility location problem in supply chain, where demands and interest rates
are affected by uncertainty and represented by a set of scenarios [189]. The
problem is formulated as a multi—stage stochastic model in which the objec-
tive is expressed as the maximization of the total benefit and the achieved
service level.

Hernandez et al. ([122]) studied a multi-period mathematical model
for the prison selection problem in which the demands are represented as
stochastic parameters. The model determines the location and the size of
new facilities for each time period and the capacity upgrade for both existing
and new prisons over the planning horizon. The objective function minimizes
the opening and expansion costs, the costs of transferring the convicted in-
mates from the court to their assigned prison, and the cost of overpopulation
in prisons which is, indeed, a penalty term. In order to address the accessi-
bility issue, the objective function accounts for the closeness of the inmate’s
prison to the court which facilitates the frequent visit of inmates and their
families. To incorporate the uncertainty in demands, the authors applied a
scenario tree generation approach and then solved the resulted model using
a branch—and—cluster coordination method. As a case study, the Chilean
prison system has been considered.

To get the reader familiar with the main issues arising in the health care
sector, in the following we review those researches addressing the location—

allocation planning of health care facilities.
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In [238], a mathematical model for designing a network of long —term care
facilities is presented. To reflect the patient’s preference, the model imposes
the closest assignment property in which patients are assigned to the nearest
open facility. They also recognized the changes in the demand pattern and
suggested developing a multi—period model in which the variation of demand
through different periods is captured.

In [267], Zahiri et al. proposed a multi—period location model for an organ
transplant problem in which the uncertainty in input data (cost) is handled
by using a robust probabilistic programming approach. They also extended
the model to a bi—objective one in which the minimization of total traveled
time is considered, underlining the importance of dealing with distance—
based measures even when the allocation is not directly done between pair
of facilities and users, but between pair of facilities.

Benneyan et al. ([33]) proposed a location—allocation model, as well as its
extended multi—period counterpart, to address the fluctuation of demands
over time, for Veterans Health Administration facilities. They considered
the objective function as a weighted sum of conflicting criteria, including
travel time, unoccupied capacity, and uncovered demands.

In [187], Ndiaye and Alfares presented a multi—period location—allocation
model for the establishment of seasonal health care facilities serving tran-
sient populations. The objective function minimizes the sum of opening and
operating costs as well as the total traveled distance. The adoption of the
multi—period framework enables the managers to handle the seasonal vari-
ability in operating costs and demands. Although the coverage issue has not
been considered in the model, improvement of the accessibility is obtained
by the incorporation of a distance threshold.

Rodriguez—Verjan et al. proposed in [214] a multi—period location—allocation
model for home care services to minimize the total cost in a multiple resource
system. What distinguishes the paper from other works is the modelization
of some peculiarities of health care systems, like the authorization, different
resources, pathologies and their evolution in time.

In [110], Ghaderi and Jabalameli presented a multi—period location model
considering budget constraint on investment during each period. The objec-
tive function minimizes the total travel and operating costs. Both fixed and

operating costs for located facilities and constructed links over each period
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time are considered. As a case study, they also presented an application of
the model in the health sector.

Two different two—stage stochastic programming models for multi—period
hospital network planning are presented in [62, 175]. The uncertainty in
demand and supply is captured using different scenarios embedded in a two—
stage stochastic framework. In the first model, the allocation decisions are
postponed in the second stage, when the uncertainty realizes, whereas in the
second model both location and allocation decisions can be taken in the first
stage.

In [223], a multi—period location—allocation model for emergency blood
supply scheduling problem was presented. A set of temporary blood facilities
are located and assigned to the blood donators such that the total cost is
minimized. The cost function is expressed as the total cost of transporting
blood from blood facilities to the center as well as the cost of relocating
blood facilities within consecutive periods. In addition, the total amount of
unmet demands is penalized in the objective function. A coverage distance is
imposed limiting the allocation of blood donors to blood facilities within the
coverage radius. The number of available blood facilities over the planning
horizon is fixed and a demand coverage constraint is imposed to guarantee
the satisfaction of a specified percentage of demands. Enhanced with a
Lagrangian relaxation solution approach, the model was implemented on a
case study.

In a recent paper, Correia and Melo ([82]) proposed a multi—period lo-
cation model in which the sensitivity of customers to delivery lead times
has been incorporated. The novelty of the model comes from differentiat-
ing the customers who make the most contribution to the company’s profit—
and that should be responded on time—, from the others, for whom a maxi-
mum allowed delay is considered. Meanwhile, a subset of time periods over
the planning horizon is specified in which strategical decisions such as the
opening of new facilities, the closure of the existing ones, and the capacity
acquisition decisions for new facilities are made. The tactical decisions about
the distribution of services to customers can be made in any time period.
Some additional assumptions, like considering different capacity levels for

the facilities sited at potential locations or limiting the number of times that
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the customers are responded with delay over the planning horizon, are also
considered.

The most significant contribution of the reviewed literature relies on mod-
eling features of health care problems which had not been addressed before.
Despite their undeniable novelty, there are still some potential gaps to be
filled. For instance, none of the aforementioned models addresses the impor-
tance and the possibility of improving accessibility and service level through
the planning horizon. Neglecting the modification of the allocation pattern,
when there is such a possibility, may result in an overestimate of the system
performance. To partially address this issue, Albareda—Sambola et al. ([17])
proposed a multi—period incremental location model to serve demands in-
crementally over a discrete planning horizon. Later on, Albareda—Sambola
et al. introduced, in [15], three different multi—period incremental location
models, differing in the definition of variables and presented some computa-
tional comparisons.

To the best of our knowledge, the aforementioned papers are the only
existing ones addressing incremental demand serving and budget limitation
in a multi—period location problem. Although both contributions recognize
that the allocation pattern might change through different time epochs, they
do not address its negative results nor provide a solution for that. In addi-
tion, service levels were not considered.

Moreover, all the aforementioned studies, more or less, recognize the
stochastic nature of problems in health care [33, 110, 214, 238], but only a
few of them deal with uncertainty [62, 175, 267].

In addition, they share the same idea of minimizing the total cost or/and
total traveled distance without considering the importance of the coverage
concept in public health sector. It is notable that covering a particular
demand node within the manager—specific distance threshold does not nec-
essarily mean that all citizens of that zone (or at least a significant portion
of them) will refer to the assigned facility, unless the preferences of the users
in some way are incorporated. Hence, it might be impossible to come up
with a single distance threshold in which both user and manager preferences
are taken into consideration. In addition to the manager—specific distance

threshold, which is related to the covering nature of the model, a user—specific

191



distance threshold can be defined reflecting the user preferences. This also
facilitates the injection of distance—elasticity of demands.
We try to address these important issues, only partially investigated in

the scientific literature.

6.2.3 Problem description and mathematical formula-
tion

The nursing homes problem can be modeled as a covering location—allocation
model in which a finite number of demand nodes (population centers) should
be served by a number of facilities (nursing homes). Allocation of demand
nodes to facilities is carried out by taking into account a (manager—specific)
distance threshold, D, which prevents the assignment of demands to distant
facilities, representing the covering nature of the model. The location of
facilities is chosen from a set of prespecified potential sites. The assumptions

of the proposed model are as follows:

e A demand zone is satisfied provided that a nursing home is located

within the manager—specific distance threshold.

e Whenever a demand zone is satisfied, its demand should be also ful-

filled in the subsequent periods.

o Each demand node must be served by at most one facility during any

time period (single assignment property).

e Due to budget restrictions, at any time period, a limited number of

nursing homes can be established.

e Once a nursing home is opened in a time period, it should be kept

open for all subsequent periods.

o Each nursing home can host only a limited number of people which is

fixed over all periods.

Using the multi—period framework, with the establishment of new facil-
ities, some demand nodes, which were not covered during previous periods,
might be served. To investigate the possibility of enhancing the service

levels, the reassignment to farther facilities is prevented for all subsequent
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periods, whereas previously covered demands can be only reassigned to closer
facilities. Hence, throughout the planning horizon, the distance between de-
mands and facilities is sequentially reduced. In general, this strategy helps
to improve the accessibility criterion over consecutive periods.

In order to address the distance—elasticity of demands, we introduce an-
other distance threshold, denoted by ﬁ, which represents the preferences of
users. Then, we define the "correction function”, which is a function depen-
dent on the user—specific threshold that estimates the expected portion of
the demands from a population center that actually refers to the assigned
facility. Obviously, all the people living in a covered population center will
not necessarily refer to the facility assigned to. Hence, it is reasonable to
have an estimation about the real value of referred demands.

In deterministic strategic planning, uncertainty is usually ignored and
uncertain quantities are typically replaced by a single value forecast. While
this approach could be accepted for single period problems, it is not realistic
in multi—period problems where the horizon may span fifteen years. In these
cases, a wrong decision may have serious consequences for many years, caus-
ing a deterioration of the system performance. Given the long—term nature
of the problem, even forecasting the demand is difficult for the presence of
unforeseen fluctuations in the population as well as inaccurate predictions of
death rates. In our model, therefore, we explicitly account for uncertainty
in the demand.

There are different approaches to deal with uncertainty: robust and
worst—case methods often provide very conservative solutions. Chance con-
strained programming explicitly limits the probability of constraints viola-
tions. Since the main goal of the model is to ensure the provision of the
service, we formulate the nursing homes problem as a probabilistic model
with chance constraints.

In particular, our model includes, for each time period, a probabilistic
constraint assuring that the stochastic demand can be covered by the opened
nursing homes with a given probability value. This, in turn, enables the
constraint to be violated with an acceptable violation probability, which is
the risk the decision maker is willing to bear.

Since very often the assumption of full knowledge of the distribution of

the random parameters fails, the uncertain demands are represented as ran-
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dom variables with unknown probability distribution function, but known
expected value and variance. Under this assumptions, we formulate a distri-
butionally robust problem, in which the nursing home network is designed
to minimize the total number of uncovered demand points, while the chance
constraints on the capacity of each nursing home are formulated considering
any distribution with the given mean and variance. This approach is espe-
cially beneficial for cases in which scant information about nursing homes

demand is available.

6.2.3.1 The multi—period probabilistic location-allocation model

The following notation is used in the model formulation:

Sets and indices:

I : set of demand nodes indexed by i

J : set of potential facility sites indexed by j

H={0,1,...,T} : set of time periods indexed by ¢ (time period 0 represents

a dummy period)

Input Data and Parameters:

d;j + shortest distance from demand node ¢ to facility j

D : maximum acceptable service distance from the decision maker’s point of
view,

D : maximum acceptable service distance from the user’s point of view,
(D<D)

a;;j + element of the covering matrix equal to 1 if d;; <D and to 0 otherwise
hi;(w) : random demand generated at node ¢ during period ¢

Aij ¢ correction function, A;; = (1- %) po, where pg is the participation prob-
ability when travel distance is negligible and d;; = min(d,;, D)

(; : maximum amount of capacity for facility j

a : risk level

Py : maximum number of facilities to be opened at period ¢

Decision Variables:

o 1 if demand node 7 is allocated to facility j during period ¢
971 0 otherwise
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~_ ] 1 if a facility is located at site j during period ¢
Yit=1 0 otherwise

Considering the above notation, the mathematical formulation of the pro-
posed multi—period probabilistic location—allocation model (M PLM) can

be expressed as follows:

T
min: Y > (1= @) (6.31)
t=1 iel jeJ
S.t.
Tijp < ay;e Veel, Vyed t=1,....T (6.32)
injtszxij(t+l) ViEI, t:]-:"'aT_]- (633)
jed jedJ

Zdijxij(“'l) < D(].— injt)"' Zdijxijt V’LEI t= ].,...,T—]. (634)

jeJ Jed Jed

Yowy <l Viel t=1,....T (6.35)
jeJ

P( ZAijhit(w)xzjt - ijjt < 0) >1l-« V] € J, t= 1, e ,T (636)

iel

Yjit <Yjey Vied t=1,....T-1 (6.37)
Z(yj(t‘*'l) - y]t) < P+ L= 07 s 7T -1 (638)
jeJ

zi;0€{0,1} Viel, Vjeld t=1,....,T (6.39)
Yyio=0 VjeJ (6.40)
yi€{0,1} Vjed t=1,....T (6.41)

The objective function (6.31) minimizes the number of times that a demand
node is not covered during the time horizon. Constraints (6.32) state that
each demand node can be assigned only to open facilities which are within

the distance threshold D. The elderly are not the only users of the system
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and the maximum acceptable service distance D was incorporated into the
model not only for the sake of the residents of the nursing homes but their
visitors and families too. In practice, the stay in nursing homes is more
about years to days or months and families frequently travel to the nursing
homes. Looking for possible ways to improve the accessibility of the systems,
we came with the idea of imposing a maximum acceptable service distance,
as a common idea in location—allocation literature. With the improvement
of accessibility, the families are encouraged to go to the nursing homes more
frequently which, in turn, has positive effects on the elderly’s life as well.
To be accessible, the daily nursing homes should not require traveling more
than 5 or 6 km per day. This is a common idea which has been addressed in
the public facility location context; for instance, in [122], the closeness of the
prisons assigned to the prisoners with their families is taken into account.

Constraints (6.33) state that whenever a demand is covered, it should be
covered for all upcoming periods. The next set of restrictions in (6.34) imply
that, for each period, any previously covered demand is reallocated to a closer
facility if possible; otherwise, the demand is covered by the same previous
facility. Restrictions (6.35) state that each demand node, at any period, is
served by at most one facility. The probabilistic capacity constraints in (6.36)
ensure that the probability of not exceeding the capacity of each candidate
facility, during each period, should be greater than or equal to a prespecified
reliability level 1 — «. It is worthwhile remarking that period-dependent
capacities could be easily incorporated into the model by simply replacing
Q; with Q. In our case study, based on the instructions imposed by the
law to the governmental organization, the capacity of the nursing homes is
fixed, and cannot be upgraded over the planning horizon.

Note that the term A;;h;(w) indicates the number of residents at demand
node ¢ who would, if assigned, effectively use the facility j during period ¢
considering the distance—elasticity measure (see also [177, 259]).

Constraints in (6.37) state that once a facility is located, it should remain
open for all the subsequent periods.

Restrictions (6.38) impose a limit on the maximum number of newly
established facilities at any period. Note that »7_; (9;(t+1) —¥;¢) indicates the
number of newly established facilities in period ¢ + 1 and y;o represents the

variable corresponding to the dummy period 0 which its value is set to zero.
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Finally, restrictions (6.39)-(6.41) define the nature of decision variables. We
should mention that, based on the application at hand some modifications
might be made on the model. For instance, the single assignment property
can be mitigated allowing to split the demands of a node over different
facilities reflecting the users’ preferences. This can be easily incorporated by
relaxing the binary variables z;j5, leading to a more tractable problem. It
is worthwhile mentioning that the users’ preferences are incorporated into
the model through the elasticity of the demands, and that, very often, the
single assignment property is required by managers willing to allocate the
cumulative demands of each demand zone to a single facility.

We should remark that different attitudes (egalitarian and utilitarian)
may be considered in any health care model. The egalitarian approach con-
siders an equal weight for different target demand points, whereas the util-
itarian one focuses on high populated demand zones. The current assump-
tions of the model reflects an egalitarian approach, covering as much zones
as possible, along the horizon, regardless of the variability of the demands
in each zone. The utilitarian approach could be implemented incorporating
into the objective function the expected demand, as usual in the maximal
covering literature. Since the proposed model was motivated by a real case
study, the objective function reflects the decision makers’ preferences, and
focuses on covering as many areas as possible. This was also motivated by
the fact that there is not a significant difference among demand levels over

different areas.

6.2.3.2 The deterministic equivalent formulation

We show that the problem M PPL M actually admits an explicit conic reformu-
lation, which can then be conveniently solved using an outer approximation
technique.

Let assume that the random demand value h;(w) follows an arbitrary
distribution function but its mean (y;) and its variance (o%) are known.
Specifically, we show that for any « value within (0,1), the distributionally

robust chance constraint

inf P( Z Aijhit(w)xijt - ijjt < 0) >1 -« (642)

hig(w)~(pie,0 %) iel
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is equivalent to the convex second—order cone constraint [40, 60)]

/60& Z:C%jt&?jt_ijjt-i_Z/lijtxiﬁSO’ VjEJ, tzl,...,T (643)
iel iel

where fi;;1 = Nijftie, Oijt = Nijoir, and B, = 1?7‘}
In fact, we can rewrite (6.42) as
inf P(hch < 0) >1-« (6.44)
hy~(h,T)

where hy is the vector of (h 16> ha -+, By, —ij]-t)T and X;; denotes the vector
(Alj T1jes A2j Tajes =5 Nijj T|1|jts 1). In a similar way, hand T represents the
vector of expected values and the covariance matrix associated with hy.
From now on, for the sake of simplicity, we denote hy and Xj; by h and X,
respectively.

Let assume that h = h + T z, where i, = 0, 02 =1, and T'¢ is the full-rank
factorization matrix such that o2(h) = T'¢T'¢". The following two cases are

possible.

1. T¢" % 0. In this case, we have

sup P(hTi < 0) = sup P(zT e x> —fli) = (6.45)

he~(h,T) z~(0,I) L+¢?

where ¢* =inf rp 74 jz |z|” (The last equality holds based on Theo-
rem 9 in [165]).

(a) Ifh% > 0, then by taking z = 0, we can obtain the infimum ¢ = 0.

(b) If hx < 0, then the problem is expressed as determining the

squared distance from the origin of the hyperplane {z |z F? %=-h 5(}

Ch : (hx)2
which is solved by taking ¢* = 7.
So we have

) 0 %'h>0
q- = 'h2 71
T X h<0

which represents a closed—form expression for ¢?. Hence, the con-

straint in (6.44) holds iff - +1q2 < a. The last equation holds iff

%"h <0 and (¥71h)2 > o(X"h) =2 which is equivalent to (6.43).
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2. T¢' % = 0. In this case, we simply conclude that X! 'k = 0 which results
in

inf P(hchs()) =1, ifx"h <0 (6.46)
h~(h,I")

Considering X! T' X = 0, the equivalency of (6.42) and (6.43) is obtained.

By replacing restrictions (6.36) with (6.43) in M PLM, we come up with an
integer non-linear deterministic equivalent formulation named as (NDM PLM ).
To solve the model, a linearization of the model could be applied (as shown
in Subsection A.0.2 in Appendix A) and then off—the shelf softwares such as
CPLEX could be used.

Although, in theory, a linearized problem is computationally more at-
tractive, in practice, the solution of the linearized MIP model, even for
medium size problems, can be significantly time—consuming. In fact, the
linearized model involves 3 |I]|J| (|H| - 1)( || + 1) more constraints and
1| |J| (JH|-1)( || + 1) more binary variables than the nonlinear model.
Considering the special structure of the model, we can show that its contin-

uous relaxation is convex.

Lemma 6.2.1. The function Fj,(x,y) = \/ﬁa Yier x?jt&izjt_ijjt+ZieI fLije Tijt
1S convew.

Proof: We can rewrite Fj; as Z(x) — Q;Yje + Yier flije Tijr in which

Z(x) = \/ﬁa Yier 35,075, or equivalently, Z(x) = \/x8,02x". As Qjy;i

and

Yier fijt Tij¢ are linear terms, it suffices to show the convexity of Z(x). Since
Ba 0% defines a semidefinite positive matrix, there is a Cholesky decomposi-
tion for it as B, 62 = L LT. Hence, we can rewrite Z as Z = Vx L LT xT =

| x L ||, where || . | is the Euclidean norm.

Assume x1, Xo as two arbitrary vectors and A € (0,1). We have

FAxe+ (1= M)x2) LlI< Axg L[ + || (1= A)x2 L |
=A X L[ +(1=A) [[x2 L]

and the proof is complete.

Therefore, we may apply the outer approximation algorithm (AOA) on
NDMPLM to obtain the global optimal solution ([224]).
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6.2.4 Case Study
6.2.4.1 Case study description and input data

In this section, we apply the proposed model on a real case study for the
nursing home network design problem in Shiraz city, the sixth most pop-
ulous city in Iran and the capital of Fars province. The model has been
implemented in AIMMS 4.1 and solved by AOA [48]. The experiments were
executed on a laptop Intel core i7 with a 2.7 GHz processor and 4 GB RAM.
The average solution time, for all experiments, was less than 50 seconds.

For the current case study, an extended planning horizon including three
periods from 2015 to 2025 has been considered.

Currently, seven nursing homes provide the residents with elderly care
services such as rehabilitation, education, and welfare services [5]. Nursing
homes are allowed to admit at most seventy recipients. The municipality of
Shiraz, including nine municipal zones, is divided into 76 population centers,
based on postal divisions [6]. Each population center represents a demand
node in this study.

In addition to the location of the seven existing nursing homes, 17 more
candidate locations have been considered. This enables the managers to site
new facilities as well as relocating the existing ones, if necessary.

Tables A.4, A.5, and A.6 in Appendix A, show the location coordinates of all
the population centers and the candidate facility locations. See also Figure.
6.7.
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Figure 6.7: Spatial distribution of demand nodes and the locations of nursing
homes in Shiraz city

To estimate the Shiraz population, we applied the population projection
data extracted from the UN population projection reports [7]. To estimate
the elderly population during different years, we set the fertility rate based
on the medium fertility rate scenario, introduced by the Population Division
of the Department of Economic and Social Affairs of the United Nations
[183].

Analyzing the statistical reports published by the Shiraz municipality [6],
from 2006 to 2009, we found approximately an identical trend for population
distribution of each municipal zone over different periods. The estimated
demand at each demand zone was considered as its expected value and the
variance was set to 0.2 of the expected value. We also assumed that the
demand of each municipal zone is uniformly distributed among its nodes.
Table 6.7 shows the elderly population at any municipal zone for the next

years.
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Table 6.7: Estimated elderly population

Municipal zone

Elderly population during different years

2015 2020 2025
1 17096 21743 27840
2 17695 22505 28817
3 16188 20589 26363
4 17889 22751 29132
5 12778 16251 20809
6 13823 17581 22511
7 12772 16244 20799
8 5029 6396 8190
9 9843 12519 16029

The Euclidean distance was used to measure the travel distance between

demand nodes and the nursing homes sites (see Appendix A). Other char-

acteristics of the problem are summarized in Table 6.8.

Table 6.8: Case study inputs

Dt

| |J| T t=1 t=2 t=3

A

a« D D Q

6 24 3

3

5

005 5 5 70

6.2.4.2 Results and findings

Figure. 6.8 represents the optimal location of nursing homes, obtained by

solving the model with o = 0.05. The circles around the optimal locations

3,13,19, and 23 represent the considered coverage radius.
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Figure 6.8: Spatial distribution of optimal nursing homes’ locations during each
period

In addition, Table 6.9 shows the optimal location of active nursing homes

for different periods.

Table 6.9: The optimal nursing homes’ sites

Nursing home Time period

number t=1 t=2 t
locationd
location5
location6
location12
location13
locationl8
location19
location20
location23
location24

w

¥ K X X ¥ X X % % ¥

Based on the obtained results in Table 6.9, only three out of seven existing
nursing homes are present in the optimal solutions. This shows that the cur-
rent configuration of system can be improved by relocating nursing homes
1,2,4,and 7.

By calculating the distance between nodes and their assigned facility, we
observed that the distance traveled by all covered demands is gradually
decreasing through the planning horizon or at least is constant. The mean

distance traveled by the residences is equal to 2.69, 2.61, and 2.02 kilometers
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with a deviation of 1.51, 1.27, and 1.12 kilometers, along the periods 1, 2,
and 3, respectively (see Table A.7 in Appendix A). All demand nodes during
periods 2 and 3 are covered and the number of uncovered nodes within the
first period is limited to 9, including nodes 1, 2, 6, 27, 28, 29, 31, 57, and 58.
Table 6.10 classifies the nodes based on the relative improvement in the
traveled distance within four categories. The relative improvement in the
accessibility criterion, s(i,t), for each covered node i over each period t, is

calculated as follows.
(9(’];7t) _ ZjEJ dij'rij(t_l) - ZjEJ dijxijt7 t _ 2’ 3.
Zje] dijxij(t—l)

Table 6.10: Classifying covered nodes based on the relative improvement in ac-
cessibility criterion

Relative accessibility Time period
improvement t=2 t=3
s(i,t) < 25% 19,30,40,41,71,73  13,17,25,41,43,47,48,57,59, 62, 66, 68
25% < s(i,t) < 50% 7,9,10,32,45,67,76 1,7,12,14,19, 44, 16, 56,58, 70
50% < s(i,t) < 75% 8,11,23,24,25 3,5,6,8,18,20,26,60,61,65
s(i,t) > 75% 21,22 45,64

The first row in Table 6.10 represents the index of demand nodes with up
to 25% improvement in the accessibility criterion over periods 2 and 3. The
second row shows the nodes with at least 25% and at most 50% improve-
ment in s(z,¢). In a similar way, other rows present similar results for higher
values of s(i,t).
The maximum relative improvement in the accessibility criterion was, re-
spectively, about 91% and 92% for demand nodes 21, 22 and 45, 64 over
periods 1 -2 and 2 - 3 (last row in Table 6.10). Obviously, the traveled
distance of the demand nodes not reported in Table 6.10 does not change
over different periods.
Since we are addressing the multi-period service level based location problem
in a coverage context, it can be possible that some demand nodes are not
satisfied at the end of the planning horizon. Such demands can be assigned
to the closest open facility provided that the facility capacity is increased or
some external resources are available to serve unsatisfied demands.

Of course, the coverage radius strongly influences the system behavior

(Figure. 6.9). By increasing the distance threshold values from 5 to 6 kilo-
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Figure 6.9: Coverage versus distance threshold

meters, it is possible to double the coverage, but nasty results are obtained
for very narrow coverage radius values.

We also investigated how the changes in the risk level « affects the cover-
age performance. Clearly, when the risk level is low, or equivalently, a high
reliability level is required, the probabilistic capacity constraints (6.36) are
tight, since the demands of covered nodes should be within the capacity of
facilities with a high probability. In order to satisfy the capacity constraints,
less demand nodes might be covered. On the contrary, when the decision—
maker accepts higher risk levels, and lower reliability level are required, it is
more likely that the capacity constraints (6.36) are violated so the number
of uncovered nodes decreases and we are able to cover more demand points.
For the case with a distance threshold equal to 5 and a risk level of 0.01,
the number of uncovered nodes over all periods is 13, but by increasing the
risk level to 0.08, for the same distance threshold, the number of uncovered
nodes decreases to 9 which shows about 31% improvement in the objective

function.

Table 6.11: Sensitivity analysis with respect to «, pg

« po D Obj. Expected satisfied

demands
0.10 090 9 9 609
0.10 095 9 9 644
0.02 090 5 11 611
0.02 095 5 13 642
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As another experiment, we have evaluated the impact of the participation
probability pg. For example as a result of advertising programs, this prob-
ability can increase, determining a higher participation level in the health
program. Based on our observations, by a 5% increase in the participation
probability (from 0.90 to 0.95), the expected amount of satisfied demands
increased up to 6% (5%) for risk level equal to 0.10 (0.02) and distance
coverage of 9 (5) kilometers. See Table 6.11.

As a final consideration, the role of constraints in (6.36) in improving the
accessibility performance has been assessed by comparing the model solution
with and without these set of constraints.

Although the objective function value in both cases is equal, about 27%
of covered demands during periods 2 and 39% of covered demands in period

3 experience up to 93% increase in the traveled distance.

6.2.4.3 Current system evaluation

We have also carried out a set of experiments to provide some managerial
insights about the current system performance. Specifically, we have consid-
ered the operational scenario that the managers are not strongly motivated
to upgrade the system by adding more facilities, probably due to financial
crisis, and instead, are interested to run the system with only the existing
nursing homes. This requires keeping all the seven existing nursing homes
active and banning the establishment of new facilities over the whole plan-
ning horizon. This in the mathematical model (6.31)-(6.41) can be expressed

by imposing the additional set of constraints
yj1—1:07j= 1,...,7

and solving the problem with p; =7, ps = p3 = 0.

Note that this new set of constraints in combination with (6.37) require the
activation of existing nursing homes over all periods. The resulting model
turned out to be infeasible due to the violation in the probabilistic capacity
constraints (6.36). This supports the claim that the system should definitely
be equipped with more facilities to address the increasing demand. Of course
the capacity constraints are the most challenging constraints of the model

and the managers might be willing to evaluate a capacity expansion, while
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keeping the current configuration of the facilities. To investigate this possi-
bility, we removed the capacity constraints (6.36) from the aforementioned
augmented model and evaluated the coverage performance of system. Al-
though in this case the problem is feasible, 24 demand nodes will not be
covered over different periods showing that even in the absence of capac-
ity constraints, with the current configuration of nursing homes, not all the
demand areas can be covered. Interestingly, the latter results in terms of
coverage performance are still 54% worse than the results reported in Table
6.11 for the case with capacity constraints (6.36).

Finally, we investigated the multi-peropd behavior of the model assum-
ing that the system upgrade is allowed from the second time period with
po = 1, p3 = 2 and that the first period is run with all the currently exist-
ing facilities (p; = 7). Again, the latter assumption requires adding a set
of constraints to the model. The optimal objective value is 12 in which 9,
1, and 2 zones are not covered over periods 1, 2, and 3, respectively, while
the optimal objective value obtained by our model was 9 in which only 9
zones are not covered in the first period and all the demands are covered
over the next periods. This again support our initial claim that the cur-
rent configuration of facilities is not optimal and even after upgrading the
system, some demand nodes will never be covered. This will encourage the
managers to modify the current system configuration and to relocate some
facilities. Although the relocation of strategic facilities is costly and may

involve unwanted consequences, it will improve the system performance.

6.2.4.4 Probabilistic versus deterministic and time-invariant model

In order to validate the probabilistic model, we have compared it with its
deterministic counterpart, obtained by replacing the random variables with
their expected value in constraints (6.36). Table 6.12 shows the resulting
optimal sites. We observed that the assignment pattern associated with
the deterministic model will result in the infeasibility of the problem at the
presence of uncertainty. This shows the importance of incorporating the
deviation of demands and adopting a probabilistic approach and provide
evidence for the superiority of a risk—averse perspective over risk—neutral

ones.
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Table 6.12: The optimal nursing homes’ sites for the deterministic model

Nursing home Time period

number t=1 L=2 L
location2 *
locationb
location6
location9
location12
locationl14
locationl7
location21
location23
location24

w

*
¥ K X X X ¥ ¥ % x ¥

Apart from that, we also evaluated the left-hand side of the reliability con-
straints (6) obtained by the solution (Z;j,9;;) of the deterministic model

expressed as

P( Z;)\ijhn(w)fijt < Qj@jt) =Fo(Qj9je), Vield t=1,..,T
i€
where @ = Y, Aijhit(w) 25 is a normally distributed random variable with
the cumulative distribution function Fy(.) and 2, and y;, are the optimal
values of the deterministic model. As shown in Table 6.13, for some con-
straints, the probability of not exceeding the capacity is low and, considering
a reliability level of 0.95 (corresponding to the risk level of o equal to 0.05),
it is five times below the minimum required value. This cases are highlighted
in bold in Table 6.13. This, again, supports our previous claim about the
necessity of incorporating the stochasticity of uncertain parameters into the

model.

Table 6.13: The reliability level of the deterministic model

Nursing home Time period
number t=1 t=2 t=3
location2 - 0.99 0.82
location5 1

location6 0.99 0.59 0.94

location9 - - 1

location12 - 1 1
locationl4 - - 1
locationl7 0.84 0.69 0.99
location21 - - 1
location23 - 1 1
location24 - - 1

We also investigated the importance of considering the temporal depen-

dency of the stochastic demand.
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A comparison between the coverage performance resulting from the pro-
posed model and the same model, where the mean and the variance of the
demand are considered constant over time (stochastic time-invariant demand

model), is presented in Figure. 6.10.

s F'roposed model

anipeTime-independent
demands

Numberof covered demands

66

2010 2015 2020

[}
(=]
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Ln
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Figure 6.10: Stochastic time-invariant demand model versus the proposed model

The proposed model outperforms the stochastic time-invariant demand
model, in terms of coverage performance. In particular, in the first period,

the latter model overestimates the coverage performance by 14%.

6.2.4.5 Monte Carlo simulation

The last part of this section is devoted to a Monte Carlo simulation in-
vestigating the validity of the proposed model with respect to the proba-
bilistic chance constraints (6.43). The simulation results are expected to
provide informative insights about the effectiveness of the proposed risk—
averse approach, allowing to test how frequently the demand can be ex-
pected to exceed the capacity. To run the simulation, for each pair of can-
didate location j and period time t in (6.43), and corresponding to each
uncertain demand hy(w), i € I, we generated 50000 different random val-
ues hs drawn from the normal distribution N(u;, 0y;) where each random
value represents a scenario indexed by s. To validate the results of the
stochastic model, the assignment and location variables x;;; and y; were
set to their optimal values, and the frequency of violation in constraints
Yier Nijhits = Q5 <0, jeJ t=1,...Ts=1,..,50000 for different risk
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level values was calculated. Performing this procedure, we observed that for
risk level values a € {0.01,0.02,...,0.07}, all the constraints over all scenarios
are satisfied, or equivalently, the frequency of violation is zero. These results
are expected since lower risk levels are more conservative and it is more un-
likely to experience any violation. The results of simulation for bigger values

of a are reported in Table 6.14.

Table 6.14: The probability of violation in the Monte Carlo simulation

J
« t 12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

008 1 - - - - - 0 - 0

2 0 0 0 - 0.009 0

3 0 0 0 0 0 0 0 0 0 0
010 1 - - - - - 0 0

2 0 0 0 0 0

30 000 0 0 0.009 0 0 0
02 1 - - - - - 0 - - - - - - - - - - 0

2 0 0 0 - 0.009 0

3 0 0 0 0 0 0 0 0 0 0
03 1 - - - - - 0 - - - - - - - - - - 0 - - - -

2 - -0 - -0 - - = - - 0 - - - - 0009 - - - - -0

3--0--0--00 -0 - 0 - - 0 - 0 0

A few violations are experienced which are still less than the risk level. Since
this violations are related to the candidate facilities 17 and 18, by adding
other facilities to the network, possibly near the neighborhood of facility 17,

the violation would be eliminated.

6.2.5 Conclusions and future research directions

In this section, we proposed a multi—period model for the nursing homes
facility location problem. The multi-period perspective was adopted for
handling the budget constraints as well as the fluctuation of demands over
time.
The improvement of the accessibility performance was followed by the dy-
namic modification of the assignment pattern, if possible, while the deterio-
ration of service level was strictly prohibited over the planning horizon.

We also discussed about the possibility of incorporating both the pref-

erences of users and managers within a covering framework. This enabled
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us to address the elasticity of demands, based on the distance parameter, as
well.

The imprecise nature of demands was tackled by applying a probabilistically
constrained approach on the capacity constraints to satisfy with a given
probability. Additionally, the deterministic equivalent formulation of the
model as well as its linearized counterpart were introduced. The model was
implemented on a real case study for nursing home location planning problem
in Shiraz city, Iran. The analysis of the results provided us with important
managerial insights about the current configuration of nursing home facilities
and the possibility of improving the current performance.

It is mentionable that although we developed the model for nursing home
planning network, it can also be applied for other strategic location deci-
sions arising in the public sector. Extending the proposed model to address
the issue of fairness will be interesting as a future research topic. This can
be investigated through the division of demand nodes into different subsets
(categories) based on their characteristics and special needs for health ser-
vices. Hence, the incorporation of different constraints or the definition of
other objectives specified for each demand category could be possible. For
instance, an option could be the division of demand zones based on their
geographical locations into marginal and non—marginal zones and the prob-
lem could be modeled as a bi—objective problem by adding another objective
which minimizes the amount of uncovered demands associated with marginal
zones over all periods. In addition, different coverage radii or types of facil-
ities for zones in which the access to health care services is limited could be

introduced.
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Appendix A

Appendix

A.0.1 Open facilities for Cases A, B, and C

Table A.1: Optimal locations for Scenario A

1 9 18 23 29 34 40 1 10 20 1 7
3 10 19 25 30 35 41 4 12 27 2 8
4 11 20 26 31 36 42 5 14 29 3 10
5 13 21 27 32 37 43 7 16 30 5! 13
7T 15 22 28 33 38 44 9 17 - §) 14

Table A.2: Optimal locations for Scenario B

—

1 .1 .1 .1 1 1 2 2 2 2 2
Ty Ty Ty Ty Ty Ty Ty Xiy Tig Tig Tog Ty

1 6 11 16 21 33 38 1 10 20 1 7
2 7 12 17 22 34 40 4 12 27 2 8
3 8 13 18 23 35 41 5 14 29 3 10
4 9 14 19 24 36 42 7 16 30 o5 13
5 10 15 20 32 37 43 9 17 - 6 14
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Table A.3: Optimal locations for Scenario C

:U} x} x} x} x} :U} x} w3, ot ad, ad, ad, ad,
1 7T 13 20 27 33 38 1 10 20 1 7 15
3 8 15 21 28 34 40 4 12 27 2 8 17
4 9 17 22 30 35 41 5 14 29 3 10 18
5 10 18 23 31 36 42 7 16 30 ) 13 -
6 11 19 24 32 37 43 9 17 - §) 14 -

A.0.2 Linearization

Since the term under the square root in Eq. (6.43) is non—negative, if

Yier Miji Tiji < Q;yji, we can rewrite it as follows:

|

which can be simplified in Eq. (A.2):

iel iel

2 2
ﬂa ZTLQJt &zzjt) < (ijjt - Z/Alwt 371]‘t) V] € J, t= 1, R ,T (Al)

Y Babiiiwije— Qi yj + 2Q; D flijiijije
1el iel

_ZZﬂijtﬂkjtxijtxkjtSO VjEJ, t=1,...,T (AZ)
1el kel

We introduce the auxiliary variables z;;; and wyj; denoting the bilinear terms
Tij Yy and x5 T in (A.2) |, respectively. The set of constraints (A.3) -

(A.11) are also added to obtain a set of equivalent linear constraints for
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their non-linear counterparts in (A.2):

Z ﬁa(}?jt Tijt — QJQ' Yje +20Q); Z flije Zije — Z Z flije flrje Wikge <0

sel iel iel kel

Vjeld t=1,....T (A.3)
Z]j fije Tije < QY Viel, VjelJ (A.4)
zlijtzxijterjt—l Viel, Vjed t=1,...,T (A.5)
Zijt < Tijt Viel, Vjed t=1,...,T (A.6)
Zijt < Yjt Viel Vjeld t=1,...,T (A7)
Wikjt > Tije + Tpje — 1 Vi, kel, VjeJ t=1,...,T (A.8)
Wikjt < Tijt Vi,kel, Vjed t=1,...,T (A.9)
Wikjt < Thjt Vi,kel, Vjeld t=1,...,T (A.10)
Zijt, Wikje € {0, 1} Vi,kel, VjeJ, t=1,....,T (A.11)

The mathematical model NDMPLM amended with constraints (A.3) -
(A.11), and the auxiliary variables, define the proposed model.

A.0.3 Coordinate transformation

The transformation in (A.12) was applied in order to convert the GPS coor-
dinates of the demand nodes and facility locations, specified on the map, into
the Cartesian coordinates, which is consistent with the Euclidean distance

axiomn.

2= Rx cos(C x 3.14/180) x (s x 3.14/180)
(A.12)
y=Rxtx3.14/180

where (x,y) and (s,t) represent the Cartesian and the GPS coordinates,
respectively, I? is the approximate earth radius, and C' shows the latitude of

a hypothetical center point over the region.
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A.0.4 Location coordinates of population centers and
facilities

Table A.4: Location coordinates of population centers at zones 1-3

Zone Population center Location coordinates Zone Population center Location coordinates

x Yy x y
1 ) 5069.3 32945 2 ) 5077.1 3289.4
1 (2) 5069.3 3297.8 2 (10) 5076.3 3290.2
1 (3) 5071.2 3296 2 (11) 5075.6 3290.1
1 (4) 5072.6 3295.3 2 (12) 5076.4 3291.1
1 (5) 5070.8 3293.6 2 (13) 5076.2 3291.5
1 (6) 5072.3 3293.9 2 (14) 5077.1 3291.7
1 (7) 5071.8 3292.6 2 (15) 5077.1 3292.3
1 (8) 5074.1 3291.8 3 (1) 5085.7 3287.7
1 () 5075.1 3292.1 3 (2) 5081.1 32885
1 (10) 5073.4 3293.3 3 (3) 5080.3 3289.6
1 (11) 5076.1 3292.8 3 (4) 5079.7 3290.3
1 (12) 5077.2 3293.8 3 (5) 5078 3293.3
2 (1) 5078.7 3287 3 (6) 5079 3292.9
2 (2) 5078.3 3288.2 3 (7) 5079.8 3292.7
2 (3) 5080.9 3287.2 3 (8) 5079.4 3291.6
2 (1) 5079.5 3287.9 3 (9) 5078.6 3292.4
2 (5) 5079.9 3288.8 3 (10) 5080.4 3290.6
2 (6) 5079.1 3289 3 (11) 5082.2 3289.3
2 (7) 5079 3290.1 3 (12) 5081.5 3291.9
2 (8) 5078 3289.1 3 (13) 5082.3 3292.4

Table A.5: Location coordinates of population centers at zones 4-9

Zone Population center Location coordinates Zone Population center Location coordinates

T y T y
1 0 5080.7 3202.2 6 ©) 5070.7 3300

4 (2) 5071.6 3289.3 6 (2) 5070.1 3299.8
4 (3) 5074 3280.8 6 (3) 5069.3 3299.1
1 (4) 5072.1 32005 7 (1) 5078.3 3291.4
4 (5) 5070.3 3291 7 (2) 5084.3 3285.3
4 (6) 5070.1 32025 7 (3) 5083.3 3286

1 (7) 5071.3 3292 7 (1) 5082.4 3286.4
4 (8) 5073.6 3287.5 7 (5) 5082.5 3287.9
4 (9) 5072.8 3201.4 7 (6) 5083.5 3287.3
1 (10) 5073.9 3200.7 7 (7) 5085.2 3287.4
4 (11) 5075.1 3290.9 8 (1) 5074.6 3294

5 (1) 5078.2 3285.4 8 (2) 5078.1 3280.8
5 (2) 5076.1 3286.7 8 (3) 5077.1 3290.6
5 (3) 5074.7 3287.3 8 (4) 5077.9 3290.6
5 (4) 5076.1 3288.1 9 (1) 5075.8 3285.5
5 (5) 5074.7 3288.8 9 (2) 50715 3286.6
5 (6) 5077.4 3288.5 9 (3) 5070.2 3288.9
5 (7) 5075 3280.8 9 (4) 5068 3291.1

215



Table A.6: The coordinates of potential facility sites

Facility Location coordinates Facility Location coordinates
J z Y J z Y
1% 5071 3300 13 5081 3293
2% 5070 3300 14 5081 3291
3* 5070 3298 15 5078 3293
4* 5068 3292 16 5080 3285
H* 5080 3287 17 5079 3289
6* 5073 3292 18 5076 3290
[ 5078 3299 19 5077 3286
8 5084 3283 20 5078 3291
9 5087 3288 21 5073 3294
10 5083 3287 22 5069 3295
11 5087 3285 23 5070 3290
12 5081 3288 24 5077 3288

* Existing nursing homes
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Table A.7: Distance traveled by covered demands

Demand node period Demand node period
i t=1 t=2 t=3 i t=1 t=2 =3
1 - 4.76  2.405 39 1.815 1.815 1.815
2 - 3.586  3.586 40 3.396 2582 2.582
3 3.866 3.866 1.014 41 4.753 3.726  3.318
4 4.992  4.992  4.992 42 2.969 2969 2.969
5 3.941 3.941 1.368 43 3.202 3.202 2.567
6 - 3.546  1.226 44 4.55 455 2934
7 4.62  3.21  2.017 45 3.867 1.963 0.154
8 4.796  2.169 0.605 46 4.094 4.094 2.635
9 3.229  1.901 1.901 47 4.448  4.448  4.392
10 3.521  2.253  2.253 48 3.324  3.324  3.289
11 2719 1.101 1.101 49 235 235 235
12 2.501 2.501 1.553 50 1.64 164 1.64
13 2.663 2.663 2.284 51 2.706  2.706 2.706
14 1.019 1.019 0.665 52 4.404 4404 4.404
15 1.471 1471 1471 53 4.758 4758 4.758
16 1.148 1.148 1.148 54 0.327  0.327 0.327
17 1.985 1.985 1.874 55 1.512  1.512 1.512
18 2.67 267 1.075 56 242 242  1.659
19 3.023 235 148 57 - 3.703  3.182
20 3.977 3977 1.435 58 - 4.022  2.126
21 3.62 0311 0.311 59 4.631 4.631 4.606
22 3.066 0.357 0.357 60 3.688 3.688 1.689
23 3.522  0.939 0.939 61 4.735 4735 1.908
24 3.239  1.292 1.292 62 2.392 2392 2.353
25 421  1.892 1.453 63 1.653 1.653 1.653
26 4.182 4.182 1.991 64 3.68 3.68 0.778
27 - 2.092  2.092 65 4.392  4.392  1.231
28 - 1.626  1.626 66 3.936 3936 3.12
29 - 0.867 0.867 67 2.649 1917 1.917
30 4.691 3.742 3.742 68 2.054 2.054 2.015
31 - 0.56  0.56 69 1.366  1.366 1.366
32 4.755 2768  2.768 70 2.66 2.66 1.362
33 3.748  3.748 3.748 71 3.025 2.785 2.785
34 2.991 2991 2.991 72 1.724  1.724 1.724
35 2.38 238  2.38 73 4.109 3.571 3.571
36 149 149 149 74 0.229 0.229 0.229
37 1.200  1.209 1.209 75 1.314 1314 1.314
38 2.255  2.255 2.255 76 2.231 1.148 1.148
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