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Introduction

The design of composite structures is most often dominated by buckling [1, [2]. For example,
the demands for fuel efficiency is prompting the aircraft industry to revolutionize airframe con-
struction to save weight, and thus fuel. A promising concept is to let the airframe operate in
the postbuckling regime, where the skin of the composite stiffened panels are allowed to buckle
in normal flight conditions. This hinges upon the assumption that stiffened panels, and thus the
entire airframe, are imperfection insensitive.

Imperfection sensitivity analysis requires the identification of a large number of buckling
modes and their interaction. Because of the large number of possible modes and our a priori
ignorance about which ones would interact with each other, such analysis is prohibitively time
consuming. Continuation methods based on Riks scheme are often used [3]. In spite of the
simplicity of its numerical implementation, which requires only an approximation of the tangent
stiffness matrix, the method suffers in the case of multiple bifurcations, requiring ad-hoc branch
switch algorithms [4]. Continuation methods are time consuming, requiring a lengthy analysis
for each assumed imperfection. Furthermore, type and shape of imperfections are unknown,
either because the structure is in the design stage or because it is too difficult to measure them.

Therefore, the aim of this work is to propose a robust and efficient methodology to calculate
the imperfection sensitivity of laminated composite folded plates. The proposed methodology
does not require a priori knowledge of the shape and magnitude of imperfections and does not
rely on lengthy continuation analysis. Instead, it uses Koiter’s perturbation approach [5] [6]
to calculate the bifurcation load, post-buckling path, and interaction between modes to detect
bifurcations on the post-buckling path of individual modes, as well as the paths emanating
from those bifurcations. The requirement for linearity of the constitutive equations is easily
met by composite materials, which have a broad, linear stress and strain range of operation in
compression [7].

The most recent implementations of Koiter’s approach include spatial beam assemblages [§],
folded plates [9], 10], and composite structures [II]. Since the approach is based on fourth-order

energy expansion [8], a finite element capable of accurately representing fourth-order terms is



Introduction 2

required for robustness of the analysis. The corotational approach [12] 13] fulfils this requirement
allowing the complete reuse of a linear element for geometrically nonlinear analysis. A mixed
formulation is used to avoid extrapolation locking [14]. The recent 3D plate finite element [15]
based on Hellinger-Reissner variational formulation guarantees an accurate evaluation of linear
elastic response and of rotation fields [16], so it is very suitable to be used with a corotational
formulation to obtain a geometrically nonlinear formulation, which is accurate up to fourth order
energy terms [11].

Koiter’s method provides robust prediction of the path emanating form interaction bifurca-
tions between three or more modes, thus providing a good estimate of the imperfection sensitive,
post-buckling trajectory (even when the shape and magnitude of the imperfections are unknown)
that otherwise would be very costly to follow by a continuation methods. Mode interaction often
produces the most deleterious imperfection sensitive path with the larger drop in load carrying
capacity [I8] 19, 20]. The difficulty resides on how to select the set of modes that produces the
worst behavior.

The Monte Carlo method is proposed herein to find the modes that yield the most unfavor-
able, imperfection sensitive path. Although Monte Carlo is an expensive method, the computa-
tional cost is keep low thanks to the efficiency of both the element used and Koiter’s approach.
Also, Koiter’s approach is quite demanding about the quality of higher order (up to 4th order)
derivatives of the energy, but the element formulation used in this work is uniquely suited to
satisfy those demands for accuracy at a low computational cost. The proposed methodology
allows us to run thousand of analysis in a few seconds, obtaining the worst imperfection using a

Monte Carlo simulation.



Chapter 1

Koiter’s asymptotic approach

1.1 Introduction

The starting point for the analysis of slender elastic structures is the total potential energy II[u],

where u are the configuration variables. In particular we have
Mu] = ®[u] — Apu (1.1)

with ®[u] the strain energy, A the load control parameter and p the applied load. The solution

of the problem requires solving the nonlinear problem
' [u)du = @' [u)du — Apdu =0 Vdu (1.2)

where the prime denotes the Frechet derivative with respect to u. Using a Finite Element

technique, Eq. can be rewritten as

Sulrfu,\] =0 You rlu, \] = (s[u] — \p) (1.3)

with w = Lu,p = Lp with £ the interpolation operator, s[u] the structural response and p
the load vector. The solution of Eq. and then the equilibrium path can be obtained using
the path-following approach and asymptotic approach. In the former, the equilibrium path is

obtained as a sequence of equilibrium points

{(’UJQ,A()),(ul,)\l),....(ui7)\i)} 1 :O,l..n (14)



using an iterative scheme based on the Newton-Raphson method or its modifications [3]. The
Path-following approach is widely used as a solution scheme because of its ease of implementation
and its robustness. Its disadvantages are the computational cost that is directly related to the
numbers of variables of Finite Element discretization (i.e. the dimension w ); the need to
perform an analysis for each load case even in the case of small modifications (i.e. in the case
of imperfections) of the load and the difficulties that arise in the case of multiple and near
coincident buckling modes.

On the other hand, in the asymptotic analysis the equilibrium path is obtained in an ap-
proximate fashion through an asymptotic expansion with respect to the expansion parameters
&,1=0..m red,

VIR - D K
u:uo+;&ui+§ D &bty -+ O(&)

=0 (1.5)

oo, 1 & .
X=Xt Gditg D &gk + o+ OED)
1=0

i,j=0
denoting with (-) the derivation with respect to £. The nonlinear system of equation can be
rewritten as

r[§, A =0 (1.6)

with & the vector collecting the §; expansion parameters. The nonlinear system Eq. has in
general a reduced number of variables. In practical contexts m is of the order of tens. Moreover,
as further explained in the next section once having recovered the terms of the Eq. i.e.
the so-called ’perfect structure’, all deviations of the assumed load (i.e. load imperfections),
geometrical or other kind of imperfections, i.e. loads applied eccentrically, require only the
solution of equation [[.6] This is a great advantage of the method because the nonlinear system
has a reduced dimension and so allows the easy testing of the effect of thousands of imperfections
with very low computational cost.

In the next section, a summary of the FE asymptotic analysis proposed by Casciaro et al.

[6] is presented. The described implementation is also called quadratic algorithm.

1.2 Foundamental equations

Asymptotic analysis is essentially the implementation of Koiter’s nonlinear elastic stability ap-
proach [5] into the finite element method (FEM) [6]. The solution process is based on an
expansion of the potential energy ® in terms of load factor A and modal amplitudes &;. It can

be summarized as follows:



i.. The fundamental path is obtained as a linear extrapolation

wl [\ = uo + M\ (1.7a)

where ug is an initial displacement, possibly null, and w = A\ is the vector of kinematic
parameters, i.e., the space of degrees of freedom (dof) of the structure, and u = du/d\ is

obtained as the solution of the linear algebraic equation

Koa=p (1.7b)

where p is the reference load and Ky = K[uy] is the stiffness matrix, which contains the

coefficients of the quadratic terms of the energy ®”.

ii.. A cluster of buckling loads \;, i = 1---m, and associated buckling modes ©; are obtained

along uf[\] by the critical condition

the eigenvalue problem is defined as fully nonlinear, to correctly recover the post-critical
behavior. The nonlinearity is introduced by updating the configuration along the funda-

mental path.

Note that the size m of the subspace of buckling modes needed for the analysis is orders of
magnitude smaller than the number of dof used to discretize the structure, often as little

as m=3.

We denote by V = {9 = Y.I" | &;} the subspace spanned by the buckling modes ¥;
(where &; are the modal amplitudes) and by W = {w : wl®;, i =1---m} its orthogonal

complement, defined by the orthogonality condition

where @ = L4, 0; = LU;, w = Lw and L is the linear operator of FEM interpolation.

We denote by A, an appropriate reference value for the cluster, e.g. the smallest of A; or
their mean value. Accordingly, a suffix "b" denotes quantities evaluated in correspondence

to up = uf[\y].

iii.. Defining &y = (A—Xp) and ¥ = 4, the asymptotic approximation for any equilibrium path



is approximated by a expansion in terms of mode amplitudes &, as follows

m m

. 1

ulA, &) = up + Zfivi + 5 Z §i&jwij (1.7e)
=0 4,7=0

where w;; € W are quadratic corrections introduced to satisfy the projection of the equi-

librium equation (see|21], Section 3.3]) into W, obtained by the linear orthogonal equations
sw’ (Kyw;; +p;;) =0, Vwe W (1.7f)

where K;, = K[u/[\]] and vectors p;; are defined as a function of modes ©;; i =0---m
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by the energy equivalence dw’p;; = ®}6w v;0;.

iv.. The following energy terms are computed for ¢,5 =0---m, k=1---m:

I// . . .
Aijk = (I)b Uﬂ)jvk
I e e . . "
Bijnk = ®,"0;0;0505 — Oy (wijwpg + wipwik + wigwjn)
C _ @Il
ik — PpWooWik
1

1 1
ur[A] = 5)\1)()\ — ix\b)‘bglfﬁfjk + 6)\%()\}, — 3)\)‘13;)/”1131'%

where the implicit imperfection factors iy, are defined by the 4th order expansion of the un-

balanced work on the fundamental path, i.e., ux[A] = (Ap—P'[ 1))y (see [21], Egs.(31,32)]).

v.. The equilibrium path is obtained by projecting the equilibrium equation [21), Section 3.4]

on V. According to eqs, (L.7a)—(L.7g), we have

1 & 1 & 1, —
5 Z && A + g Z §i&i&nBijnk + k[N — Ap(A — 5)\17) Z&Cik =0, k=1...m
§.5=0 i,5,h=0 =0

(1.7h)

Equation ((1.7h]) is an algebraic nonlinear system of m equations in the m + 1 variables

&o, &1+ - &m, with known coefficients.

The accuracy of equilibrium equation Eq. requires that the mechanical behaviour of
the structure is adequately represented by a 4th-order energy expansion. Furthermore, it is also
related to the local linearization of the critical equation which implies (A, — ) << 1 VA,
This can be assumed in the case of nearly coincident buckling modes or in the case of linear
pre-critical buckling modes as generally occurs in compressed members. However the equation
has also been tested for distant buckling modes in the case of nonlinear pre-critical in paper
[9] where the recovered equilibrium path shows great accuracy compared with path-following

solution.



The implementation of the asymptotic approach is quite easy and its computational cost
remains of the order of that required by a linear buckling analysis [6]. Once the preprocessor
phase of the analysis has been performed (steps|i| to , the presence of imperfections can be
taken into account in step 5, by adding additional imperfection terms in the expression for p[)\],

allowing for an inexpensive imperfection sensitivity analysis.

1.3 Imperfection sensitivity analysis

The geometry and loads of thin-walled structures are affected by random distribution of small
imperfections. In the proposed asymptotic method, the presence of small imperfections expressed
by a load p[A] and/or an initial displacement @ affect Eq.(1.7g) only on the imperfection term

ux[A] that becomes [6]
1 1 a2 . 1 2 111 ~3 g l
Al = 5 A6 (A = 5 A0) @70 0k + A, (A = 3A) @470 + g [A] + i [A] (1.8)

with

PN + [N = X (@ @by, — pNér) = i (1.9)

The aim of the imperfection sensitivity analysis is to link the presence of geometrical and
load imperfections to the reduction of the limit load. For structures presenting coupled buckling
modes, even a small load or geometrical imperfection may result in a marked reduction of the
limit load with respect to the bifurcation load [27, 28| 29, B0 3T, 32]. Therefore, an effective
safety analysis should include an investigation of all possible imperfection shapes and sizes to
recover the worst case imperfection (see [33]).

The asymptotic approach provides a powerful tool for performing this extensive investigation.
In fact, the analysis for a different imperfection only needs to update the imperfection factors
1 [A] and [N through Eq.(1.8)—(L.9) and solve the nonlinear system (1.7g)—(L.7h). Even if
this system, which collects all the nonlinear parts of the original problem, proves to be highly
nonlinear and some care has to be taken in treating the occurrence of multiple singularities, its
solution through a path—following process is relatively easy because of the small number m of

unknowns involved.



Chapter 2

Corotational Formulation

2.1 Introduction

Asymptotic analysis exploits a fourth—order expansion of the strain energy and so it requires
that the energy expression is characterized by fourth—order accuracy at least. Satisfying this
requirement exactly is not an easy task. In fact, the usual plate and shell theories (the so
called "technical theories") and current finite element (FE) technologies only provide second
order accuracy exactly and third order one with some approximations [34]. This introduces an
objectivity error into the element description, i.e. a non rational dependence of the strain energy
on the rigid body motion, which can lead to a poor recovery of the post-buckling behavior
of the structure at increasing displacements. At the moment, various proposals for the FE
asymptotic analysis of shells [34] suffer from this inconvenience, even if in some cases (e.g. when
the post—buckling behavior is largely dominated by stress redistribution, as discussed in [35])
the approximation made can be considered as acceptable.

The corotational formulation, as devised for example in [36] B7], provides an effective general
tool for performing fully objective, geometrically nonlinear finite element analysis. The use of a
local reference frame, moving with the element, allows the rigid body motion from the description
of the element internal deformations to be filtered and, so, decouple the geometrical nonlinearity
from the elastic response. In this way, the element response can be described, in the local frame,
using the standard linear theory. A remarkable contribution to the corotational approach was
[38]. Its main advantage lies in its ability to fully exploit the existing FE technology available
for linear analysis. Corotational algebra, that is algebra expressing the reference change between
a global fixed frame and the local moving element frames, as shown in [8], reduces to standard
algebraic procedures and recursive formulas expressing corotational derivatives can be obtained

in explicit form.



The corotational approach to asymptotic analysis was investigated in [8] with reference to 3D
assemblages of beams, by Zagari et al. [9] with reference to shell structures and by Barbero et
al. [I1] with reference to composites shell structures. The resulting solution procedure is really
effective and offers a robust tool to capture the pre- and post-buckling nonlinear behavior in a way
which is both qualitatively correct and quantitatively accurate. In addition, it is computationally
convenient with respect to path-following analysis, since imperfection sensitivity analysis can be
carried out very effectively.

Folded laminated plates are widely used in the form of structural profiles [39, Fig. 10.1],
stiffened panels [39, Section 11.3], cellular structures [40] and so on. Open or closed sections
composed of flat walls are attractive because they maximize the bending and torsional stiffness
for minimum weight and at the same time they take advantage of the high strength of fiber
reinforced materials. Using laminated panels affords high flexibility to the design by virtue of the
broad range of stiffness and strength that can be imparted to the walls. Ever increasing demands
for lightweight structures for transportation vehicles of all kinds requires the use of optimized
thin-walled structures for which buckling become the design constraint. Accurate computation
of buckling loads, modes, mode interaction [19], and imperfection sensitivity [22, 23] is thus
required. Since these calculations are computationally intensive, there is significant interest in
developing accurate yet economical simulation methods. The use of corotational formulation
is quite attractive in this regard because it allows for simple extension to nonlinear analysis of
proven, accurate, computationally efficient linear analysis elements.

A linear, mixed formulation element called MISS-4 is used as starting point for this work
[15]. The stress resultant interpolation, which accounts for the average distortion of the element,
is self-equilibrated and isostatic. Only 18 stress parameters are used into 6 constant, 8 linear,
and 4 quadratic stress shape functions. The kinematics uses 6 degrees of freedom (dof) per node
for an overall 24 dof. Convergence rate and accuracy is shown in this work to be comparable to
that of 48 dof, displacement based elements such as Abaqus S8R.

The performance of the linear element has been shown to be very good for the case of isotropic
material, both for the recovery displacements and rotations as well as for evaluation of stress
resultants. Numerical results, show s-norm h? convergence rate [70]. Furthermore, the element is
free from locking. The element matrices are evaluated analytically along the contour. Moreover,
the element uses 6 standard degrees of freedom (dof) per node (3 displacements and 3 rotations),
thus allowing for trivial implementation as a user element into commercial codes [15], 58].

In this work, the drilling rotations are implemented as per [24] 25], without un-symmetric
formulation or penalty constraints [26], allowing for an accurate recovery of drilling rotation field;

thus enabling the element to be used for geometrically nonlinear analysis using a corotational
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formulation [8), [12], 13} 9] 1T]. An incompatible cubic mode is used to eliminate the spurious zero
energy mode [16].

A review paper [60] describes the most recent available finite elements based on various lam-
inated theories for buckling and post-buckling, free vibration, dynamics, failure, and damage.
Similarly, [61] offers an overview on different strategies for modeling laminated composites plates.
Recently proposed elements range from assumed displacements [62] 63], mixed and hybrid for-
mulations [64] [65], 66, 68 [69], mixed interpolation of tensorial components (MITC) [71], [72],
NURBS-based isogeometric elements [73], radial point interpolation [74], thickness-stretch de-
formation elements [75] and zigzag elements in nonlinear context [76]. Comparison between
various laminated composite plate and finite element results is provided in [77].

For this work, the laminate kinematics has been approximated by first order shear deforma-
tion theory (FSDT) [85] 42], which offers a good compromise between simplicity and accuracy in
the recovery of displacements, rotations, and stress resultants. Furthermore, the mixed stress-
displacement formulation chosen for this work allows for better recovery of stress profiles than

displacement-only formulations [82] [83].

2.2 Geometrically linear formulation

As it was stated earlier, the formulation must be capable of accurate representation of fourth-
order terms on the potential energy. Therefore, we start with a mixed formulation. The initial
reference configuration of the element is flat and referred to a local Cartesian frame {e;, es, e3}.
Furthermore, {x,y} is a vector lying on the middle surface  defined by the unit vectors {e;, es},
s is the thickness along the es direction, and I is the boundary of Q. On this frame, the Hellinger-

Reissner strain energy for a flat shell can be written as

<I>[t,d]:/ {tTDd—;tTE_lt} dQ
Q

t’m dm D m 0
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where t,,,,t; are the in- and out-of-plane stress parameters, respectively; and d,, d; are the in-

and out-plane kinematical parameters, defined as follows

M,
N, M, d,
dy
dy
N;vy Sz Py
L SU J

where IN, M | S are the membrane, bending, and shear stress resultants, respectively; and d,
are the midsurface strains and rotations, respectively.
Using first-order shear deformable theory (FSDT) [42], the differential operators D,, and

Dy are defined as

0 0 -3/ox

9/0x 0 0 0/dy 0
D,=| 0 9/oy|l » Dy=| 0 09/0x —8/dy (2.3)
0/0y 0/0x 0/0x 0 1

10/9y -1 0

The constitutive matrix for a laminate with n layers can be written as

E, E,, O
E— E, 0 (2.4)
sym. E,

where

k
1 n
E, = 3 Z(Zf - 22_1)E5§)
k
E,=xk0® Z(Zk — zj1)EP (2.5)
k

where zx, z;_1 are the top and bottom coordinates of k-th lamina, respectively, ng), Egk) are

the lamina constitutive matrices referring to in-plane and transverse stress/strain, respectively
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[42] and |39, Eq.(6.16)]. Finally, symbol ® denotes the component product (.* in [43]) that
allows us to introduce different shear correction factors for each component of the E, matrix
[65], 66, [44]

K11 K12

K12 K22

When the stress resultants are defined so that the equilibrium equations are satisfied with zero

load, the following identity holds [45]
/Q t"DddQ = /F tTNTddr = /F tI’ N d,, dT" + /F tiNfd;dr (2.7)

where N is the matrix collecting the components of the unit outward normal to the contour T,

that can be split into membrane IN,,, and bending N ¢ parts

N, O
N = (2.8)
0 Ny

2.2.1 Mixed finite element

Assuming a mixed interpolation for the stress resultants and displacements, a discrete expression
for the Hellinger—Reissner mixed strain energy (2.1) can be evaluated. In general, the mixed
interpolation can be written as

t=Bt, , d=Ud, (2.9)

where B is the matrix collecting the assumed stress modes, t. is the vector of stress parameters,
U is the matrix of the displacement shape functions and d,. is the vector of displacement and
rotation kinematical parameters. Substituting (2.9) into (2.1) and integrating on the element

domain €2, leads to the evaluation of the element mixed energy

D, = /Q {BTDU} a0

Hez/Q {BTE_lB}dQ

e

1
(I)e[tey de] = tzDede - 5 tzHete 5

(2.10)
where D, and H . are the compatibility and flexibility matrices, respectively [46], [49].

When the assumed stress modes (shape functions) are chosen so that the stress resultants
identically satisfy equilibrium equations with zero load (self equilibrating stress field in the
element), the compatibility matrix can be evaluated on the element contour T, i.e., Eq.
yields

D, = / BTNTUdr (2.11)
e
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Applying static condensation to the stress parameters t., the element energy can be evaluated
solely in terms of kinematic parameters d., and using (2.11)), the displacements and rotations,

need to be interpolated only along the contour. Details of the element implementation are given

in 271

2.3 Geometrically non linear formulation

A linear finite element can be made geometrically nonlinear using corotational algebra to describe
the rigid body motion [§]. Following the original proposal by Rankin et. al [36], [37], this
framework is still used [51], [52], 53|, 54, 55 [56]. With respect to the fixed frame {e1, ez, e3}, a

corotational (CR) frame {€;, &5, €3} is defined as
e, = Qlaler, k=1.3 (2.12)

with @ being a rigid rotation, parametrized by the rotation vector a according to Rodrigues’
formulation [57] (see Fig. [2.1) . The origin is assumed to be translated by vector ¢. Denoting
by d and R the displacement and the rotation associated to position X in the fixed reference

frame, the following geometrical relationships hold
d=Q"(X+d-¢)-X , R=Q'R (2.13)

with d and R being the displacement and the rotation in the corotational frame. Using a vector

parametrization for R and R and denoting by v and 1) the rotation vectors, we have

P = log(R[¥]) = log (Q" [a] R[y]) (2.14)

A CR frame can be defined for each element through the element rotation vector o which

is a function of the element kinematical parameters d. in the fixed frame
e = ae[de} (215)

The local kinematical parameters d. in the CR frame are related to d. by the geometrical

transformation

d. = g[d.] (2.16)

where g collects the CR transformations for displacements (2.13) and rotations (2.14) oppor-

tunely rearranged in terms of the local kinematical parameters d. of the finite element. See [J]
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Figure 2.1: Corotational frame.

for further details.

Based on the above relations, the linear finite element characterized by energy can
be transformed into a geometrically nonlinear element simply by introducing a corotational
description and assuming that the element kinematical parameters in eq. are referred to

the corotational frame. This leads to:
.t d.] = t! Degld.] — %tZ“Hete (2.17)
The element energy can be expressed in terms of the element vector
ue = {t, d.}’ (2.18)

which collects all the parameters defining the element configuration in a single vector and can

be related to the global configuration vector u through the standard assemblage procedure
u. = Acu (2.19)

where the matrix A, implicitly contains the compatibility constraints between elements. For
the Hellinger-Reissner formulation used here, the components of w are the global displace-
ments/rotations of the nodes of the elements and the the stress parameters of each element.
Using static condensation, the stress parameters can be eliminated at the element level, and

then a compatible scheme can be employed [58].
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2.4 Element implementation

The Mixed Isostatic Self-equilibrated Stress flat shell element MISS-4 [15], 1] is used as the
starting point here. It is a 4-node quadrilateral externally defined by 24 kinematical dofs and
internally by an isostatic self-equilibrated stress expansion represented by 18 parameters.

It is described by four nodal coordinates on the plane Z = 0 of the global Cartesian system

{X,Y, Z} and the element connectivity ((2.2)).

Figure 2.2: Global, local and internal coordinate systems.

Next, a dimensionless internal system is defined over the element mid surface with {&, n},

-1 <¢<1,-1 <7 <1, which is implicitly defined by

X =ap+ a1§ +ax§n+azn

(2.20)
Y:bo+b1€+b2§ﬂ+b3n
where ) ; ) o )
ap bo 1 1 1 1 Xl Yl
ay b1 1 -1 1 1 -1 X2 Y2
== (2.21)
a b |1 -1 1 1] |x3 ¥3
as b3 -1 -1 1 1 X4 Y4

where { X, Y}, i =1,..,4 are the global nodal coordinates.
The third system is a local Cartesian system {xz, y}, defined over the element mid surface,
centered and aligned with the element. To define the local system, we introduce the Jacobian

matrix JC and its average J°

56 _ Xe Xo|  |lar+azn) (a3 +azf)
Ye Y, (b1 +b2n) (b + b2€)
_ 1 1t 1 ar a
7= / / JCdedn=| (2.22)
£=-1Jn=-1 by b3
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The average Jacobian J “ s decomposed into an orthogonal matrix R and a symmetric

matrix J, so that

jG

RJ (2.23)

cosa —sina az — b _ a c
3 1
R , « = arctan ( ), J =

sinae  cosa ar +b; c b

The local Cartesian system {x,y} has its origin at the element centroid ({ =7 = 0) and is
rigidly rotated by R with respect to {X,Y}. The coordinates {x,y} are defined according the

transformation

T X —a
—R” ’ (2.24)

Yy Y —bo
The use of a local system {z,y} allows us to eliminate the rigid part of the global element
distortion, providing a finite element description that is objective with respect to a rigid body

motion of the element.

2.4.1 Assumed stresses

The stresses are assumed to be self equilibrated and isostatic, leading to a minimum set of
parameters, which are the 18 components of the vector B,. Then, the stress resultants can be

written as

B’H’L O
t=Bg, = Prm (2.25a)

0 By| |By

where B, and B are matrices representing the assumed stress modes for the membrane and
flexural generalized stresses, respectively, and 3,,,, 3 are 9-component vectors representing mem-

brane and flexural effects, respectively. For the membrane stresses, it is assumed that

100y 0 = 0 —2ad*zy
B,=10 100 2z 0 y -2 202y (2.25b)

001 00 —y —x 0 a?y?>-—0222
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For the flexural stress, it is assumed that

By=10100 2 0 y 0 =2y

B; - with 0010 yea/c 0 0 0 (2.25¢)

000 0 0 -1/ -1 0 -z

with ¢ = a?/b%. Both, membrane and flexural stresses are obtained starting from a polynomial

expansion in Cartesian coordinates x, y and using Pian’s equilibrium filter [15] [16, 17].

2.4.2 Assumed displacements

The interpolation of the displacement field w is controlled by the 24-component vector .,
collecting displacements and rotations of the four nodes of the element. Since the stress ap-
proximation satisfies the equilibrium equation, the internal work can be obtained by integrating
on the element contour. Therefore, only contour displacements are needed. The displacement

interpolation u along element side k is defined as the sum of three contributions

ug[C] = wp[C] + wrg[C] + urc[C] (2.26a)

where —1 < ¢ < 1 is a one-dimensional coordinate along element side k. The first term is a

linear expansion

1 . . ’u’i = [uzm7 ulip ulz}T
uplC] = 5[(1—Qu' + 1+ Qu’], (2.26b)
i W = [, ]

where superscripts 7, 7 denote the nodes of element side k. The second and third terms correspond

to quadratic and cubic expansions for the normal component of the element side displacements

i _ i
wigld] = § L4(C 1) e - [Me s
—(¢" = /) my, 0
with
e A e (2.26d)
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where ng = [ngg, nky]T is the normal to the element side and Ly, is the side length; and 6 is the

average in-plane distortional rotation, defined as
=
0= Z ol — @, (2.26e)

with @, the average in-plane rigid rotation of the element

5. = Nyu (2.26f)
1
Ny = 40, [_d4yv dyz, —dlya diz, _d2yv dag, _d3y’ d3x]

By definition, the linear part ui; and the quadratic part up, are continuous at the inter-
element boundaries. The cubic contribution uy. corresponds to an incompatible mode, which
is added to avoid rank defectiveness [16]. Finally, a simple bilinear interpolation for bending

rotations is used along the side
1
erld = 5[0 = Qe + 1+ Ol @uld) = lpas 0] (2.26g)

2.4.3 Compliance and compatibility

Introducing assumed stress (2.25)) and assumed displacements (2.26)) into the mixed strain energy

(2.1), the mixed strain energy ®. of the element can be defined as follows
1
(I)e = ﬂgDeue - §IBZH€/86 (2273)

where H. and Q. are the element compliance matrix and the compatibility matrix respectively.

The compliance matrix can be written as follows

H, H,, 0

H, = H, 0 (2.27b)
sym H,
where
H,, :/Q {BﬁE;ij}dQ, H,., :/Q {BﬁE;ﬁBb}dQ (2.27¢)
and
H, = / {B{E;le} aQ, H, = {BZE;lBS} 4o (2.27d)
Q. Qe

Since the compatibility matrix is due to self-equilibrated stress interpolation, and it is eval-
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uated trough analytical contour integration, it can be written as follows

Q 0 4 4
Qe = " ) Qm = Z ka: + Qc ) Qf = Z ka (2276)
0 Qy k=1 k=1

The matrices Q,,,;; and Q g, are defined as follows

T _ ! T T
/GQOkuem - / tm K]Nmkumk[d dC

-1

T _ ! T T
BT Qe = / £ [(INT, e [c] dC

—1

1
81 Qs = [ HFANTuplclaC (2,271

where the vectors .., and u.s collect the nodal displacements and rotations describing the mem-
brane and flexural behavior, respectively. Finally, the matrices IN 1, IN s, split the components

of the normal to the element side, as follows

Ny = o Npgp=1|ng np 0 0o 0 |- (2.27g)
0 Ny Nkx

2.5 High order energy variations

To apply the asymptotic approach to the corotational version of element MISS-4, explicit ex-
pressions for the second-, third- and fourth—order energy variations need to be computed [§]
with respect to a configuration that can be either the initial (ug in ) or the bifurcation
one (ug + A\ in ) For computation of second or higher order terms, the constant terms
ug and ug + A\u are irrelevant, so at the element level we can assume d. = 0.

The corotational approach is very convenient to express the strain energy variations, because
the only nonlinearity is limited to the geometrical relationship g[d.], eq. . The Taylor

expansion of this relationship can be written as
1 1 1
g[de] = gl[de] + 592[d65 de] + 693[d6a dea de] + ﬂgzl[d& de, dea de] +ee (2-28)

where g,, are n—multilinear symmetric forms which express the nth Fréchet variations of function
gld.]. In the following, the vector u; (¢ = 1...4) denotes a generic variation of the global finite
element configuration vector and the vector ue; = Acu; = {t.;, dm—}T denotes the corresponding
vector at the element level, that collects stress and displacement parameters. With the same

notation, ug and wu.g are the global and element reference configuration vectors.
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2.5.1 Second-order variations

Second—order energy variations are used in the evaluation of the fundamental path (1.7a)) and
the buckling modes ©. In both cases, using expansion (2.28)) and the energy expression (2.17)),

the contribution of the element to the energy variation can be expressed as
(I);/uelue2 =t1D.g[de2] + t55Deg[de1] — t5 Heteo + t2)Degslder, des) (2.29)
Introducing matrices L; and G[t.] through the following equivalences
Lid.; = g,[dej] , d],Glteo)der =t Deg,lder, deo), (2.30)
eq. (2.29) can be rearranged in a more compact form:

T T —-H., DL,
Uy Poter = U Kether , K= (2.31)
LIDT Gt
The mixed tangent matrix of the element K. can be directly used, through a standard

assemblage process, to obtain the overall stiffness matrix K

uip@”uQ =ul Kuy, , K= E:AETI{EA‘.3 (2.32)

2.5.2 Third-order variations

Third-order energy variations are used in Koiter analysis to evaluate the third—order coefficients
and are also used to evaluate the secondary force vectors. The element contribution to the scalar

coefficients can be easily calculated using the general formula

‘b;”uauezues =tL D.gsdeo,des) + 1, Degsldes, der] + 1D gslder, deo) (2.33)

+tl,D.gslder, deo, de3]

Then the element contributions can be simply added to get the global values. On the other
hand, taking advantage of the above expression, the element contribution to vector secondary

force vector can be evaluated by

De de ade
q)/elluelue2 =P = g2[ 1 2] (234)
G[tel]deZ + G[te2]del + Q[teo, dela deQ]
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where vector q is defined according to the following condition:
dzﬂﬂ[teoa deh deQ] = tZODeg:s [deh deZ, deS] (235)
Then, the overall vector is obtained by standard assemblage

" T
P uus = E Ae Pe [uela ue2]
e

2.5.3 Fourth-order variations

Finally, fourth-order energy variations, used to evaluate the fourth—order coefficients, can be

computed by summing the relevant element contributions based on the following expression

1111

(I)e Ue1Ue2Ue3Ueqy = t31Deg3 [d627 der de4] + tZQDegg [de37 de47 del}
+ tz?,Deg?, [de4a dela deZ] + tz4Deg3 [dela de27 de3] (236)

+ tZODegz,L [delv deZa deS; de4]



Chapter 3

MISS-4 flat shell finite element:

numerical assessment

3.1 Introduction

In this chapter, an investigation on the performance of the proposed shell element for linear
static and buckling analysis of laminated composite folded plates is presented. First, the static
linear analysis of laminated composite plates for different laminate stacking sequences (LSS)
and span-to-thickness ratios is performed. Particular attention is given to the point-wise and
global convergence of the stress resultant to elucidate the behavior of the element for regular and
distorted mesh. Then, buckling of simply supported plates is reported. Buckling modes, loads,
and their convergence are reported. Finally, linear static and buckling analysis of three folded,
laminated-composite, are reported. The first is a clamped € section under shear force. The
second is a clamped C shaped section under shear force while the third is a clamped box under
torsional couple. Different LSS are considered. Global convergence for linear static analysis and

convergence on buckling load, buckling modes and comparison with S8R are given.

3.2 Linear static analysis of laminated plates

The benchmark for static linear analysis is a simply supported square plate of side a (see fig.
under uniform distributed load ¢q. The lamina elastic properties are: F; = 25, Fs = 1, G2 =
G13 = 05, G23 = 0.2, Vig = 0.25.

Cross-ply and angle-ply laminates are considered, as follows:

i.. A symmetric cross-ply laminate [0/90/0] with SS1 boundary [67, Section 3.1.3] and shear

factors k11 = 235445/404004, k12 = 0, koo = 289/360 [68];

22
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Figure 3.1: Simply supported square plate. Geometry and mesh.

ii.. An antisymmetric cross-ply laminate [0/90], with SS1 boundary and shear factors ki =

koo = 207680/362481, k12 = 0 [68];
iii.. An antisymmetric angle-ply [—45/45] [69];

iv.. An angle-ply [-30/60/ — 60/30], with SS2 boundary condition and shear factors ki; =

All results are obtained for side-length /thickness ratio a/t = 10,20, 100. Analytical solutions
[42] are used as reference, using the following dimensionless parameters for displacement and

stress resultants:

_ 100 Eo _ 100 - 100
w=w 1 r = w 35 y— Yy t(a/t) (31)
qt (a/t) qt(a/t) q
and
M, M,
_ 100

M = — M 3.2
UL g2 (et | Y 2
My My

being w the transversal displacement of the plate.
Point-wise converge for displacements and stress resultant are listed in Tables

and The percentage error is defined as

numerical — analytical

error% = 100 x (3.3)

analytical

It can be seen in Tables [3.IH3.4] that the convergence to the analytical solution is very fast
for all values of span-to-thickness ratio.

Stress resultant convergence are graphed in Figs. [3:2] [3:3] 3.4 and B.5] The solid line repre-
senting h? is shown for reference; where h is the element size of the regular mesh, or span over
number of elements per side for irregular meshes. It can be seen that the element displays h?

convergence for a variety of laminates and span-to-thickness ratios, and that the h? convergence
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is maintained for distorted mesh (Fig.|3.6]).

Point-wise and overall convergence properties are investigated using also distorted mesh with
d = 0.2a (see Fig.|3.1). The convergence rate measured using s-norm [70], shows that the rate
of convergence is preserved also for distorted mesh (Fig. [3.6).

The results are compared with the S8R laminated plate elements implemented in the commer-
cial software Abaqus [84] [67] and when available with mixed finite element available in literature

[68].

% error
a/t  Mesh o ME My ME, Sy
10 4x4 3.152 1.197 8.011 21.016 6.552
8x8 0.745 0.127 1.063  4.986 1.963
16x16 | 0.188 -0.019 0.2 1.199 0.506
32x32 | 0.051 -0.006 0.043 0.316 0.111
64x64 | 0.017 -0.001 0.009 0.095 0.016
20 4x4 3.931 -0.569 9.537 22.012 1.151
8x8 0.929 -0.174 1.441 4.463 1.402
16x16 | 0.226 -0.067 0.315 0.983 0.481
32x32 | 0.063 -0.017 0.079 0.227 0.11
64x64 | 0.013 -0.003 0.023 0.038 0.015
100 4x4 4.886 -4.264 9.921 24.363 -17.493
8x8 1.087 -0.338 1.711 4.56 -3.414
16x16 | 0.268 -0.086  0.38 0.904 0.015
32x32 0.06 -0.022 0.101 0.205 0.068
64x64 | 0.015 -0.004 0.025 0.041 0.005

Dimensionless analytical values

ot - | w*  mF  MF  ME &P

10 - -1.168 7.016 1.15 -0.317 18.955
20 - -0.796 7.432 0.888 -0.264 19.976
100 - -0.671 7.594 0.789 -0.243 20.448

Table 3.1: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments and shear forces at point E, for regular mesh and
span-to-thickness ratios on a simply supported square plate [0/90/0] under uniform distributed
load.

3.2.1 Buckling analysis of a laminated square plate

The buckling analysis of a laminated square plate (I x [ x t) is presented here. The geometry,
material properties, boundary, and load conditions are taken from [86]. The plate is simply
supported on its boundary and loaded with a uniform edge pressure A. The thickness is t =
1.272107* m. The length is [ = 0.508 m. The LLS is [0/90/90/0]s. The lamina materials
properties are F; = 181 GPa, Ey = 10.27 GPa, G125 = 7.17 GPa, v15 = 0.28. The critical loads
are listed in Table and the buckling modes are shown in Fig. Note that h? convergence
is achieved for buckling loads (i.e., eigenvalues) as shown in Fig. While the results obtained
using the proposed element coincide with those obtained using Abaqus S8R, elements when both
use a 64x64 mesh, it must be noted that the proposed element has only 24 dof in comparison to

48 dof for S8R.
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Figure 3.2: Simply supported square plate [0/90/0]. Convergence of bending moments and

shear forces at point FE, for regular for various values of span-to-thickness ratio.
line represents h? (shown for reference). S8R (Abaqus) and HQ4 [68] results are shown for

comparison.
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Figure 3.3: Simply supported square plate [0/90]. Convergence graphs for flexural moments,
shear stress resultant, and axial stress resultant at point E for different span-to-thickness ratio
using regular mesh. S8R (Abaqus) and HQ4 [68] results are shown for comparison.
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Figure 3.4: Simply supported square plate [—45/45]. Convergence graphs for flexural moments
resultant at points A and C for different span-to-thickness ratios using regular mesh. S8R
(Abaqus) and HQ4 [68] results are shown for comparison.
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Figure 3.5: Simply supported square plate [30/ — 60/60/ — 30]. Convergence graphs for flexural
moments resultant at points A for different span-to-thickness ratio using regular mesh. S8R
(Abaqus) and HQ4 [68] results are shown for comparison.
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Figure 3.6: Simply supported square plate for different LSS. Convergence graphs using s-norm,
for different span-to-thickness ratio using regular and distorted mesh.
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Figure 3.7: Square plate [0/90/90/0]s under uniaxial compression. Buckling modes.
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Figure 3.8: Square plate [0/90/90/0]s under uniaxial compression. Convergence of buckling
loads with mesh refinement. The solid line represents h? (for reference).
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% error
a/t Mesh @ MF ME, SE
10 4x4 1.553 1.683 7.541 -29.66
8x8 0.359 0.231 2.138 -16.246
16x16 0.087 0.032 0.474 -8.555
32x32 0.021 0.002 0.062 -4.389
64x64 | 0.0056 -0.005 -0.025 -2.222
20 4x4 1 0.677 9.609 -30.793
8x8 0.244 0.126 3.044 -16.347
16x16 0.057 0.008 0.812 -8.538
32x32 0.006 -0.005 0.171 -4.372
64x64 0 -0.006 0.006 -2.213
100 4x4 0.724 -0.144 11.321 -32.146
8x8 0.194 0.008 4.041 -16.747
16x16 0.041  -0.008 1.257 -8.618
32x32 0.006  -0.008 0.34 -4.376

64x64 0 -0.008 0.071 -2.21

Dimensionless analytical values

ot - | @ MF  NME  5E
10 - -1.951  6.268 -1.604 -34.703
20 - -1.759  6.291  -1.577 -34.881
100 - -1.698 6.301 -1.559 -34.937

Table 3.2: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments and shear forces at point E, for regular mesh and
span-to-thickness ratios on a simply supported square plate [0/90] under uniform distributed
load.

3.3 Linear and buckling analysis of laminated folded plates

The linear static and buckling analysis of three folded plate structures are here presented here.
The first is a clamped beam with Q-section under shear force, the second is a clamped beam
with C-section under shear forces, and the third is a clamped box beam subjected to torque.
Each folded section is analyzed for various laminate stacking sequences (LSS). For the first
section, static linear analysis is performed and the convergence using s-norm is reported. For
the second and third sections, buckling convergence as a function of mesh refining is discussed.

The predictions are compared with results obtained using element S8R, in Abaqus.

3.3.1 Clamped beam with ()-section under shear force

Linear static analysis of a clamped beam with € section is reported here. The geometry is
shown in Fig. 39| The length is [ = 100 mm and the width is @ = 2.5 mm. Three thickness
are considered a/t = 2,5/2,10/3. The mechanical properties of each lamina are E; = 104
GPa; Fy = 10.3 GPa; G = 5.15 GPa; v12 = 0.021 and two LSS are analyzed, [0/90/0/90] and
[0/45/0/45]. A line load ¢ = 25 kN/mm is applied. The global convergence using s-norm is
reported in Fig. and a rate of convergence h? is shown.
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Figure 3.9: Clamped beam with Q-section. Geometry, boundary conditions and mesh.
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Figure 3.10: Clamped beam with Q-section for different LSS. Convergence graphs using s-norm,
for different values of a/t using regular mesh. The solid line represents h? (shown for reference).
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% error
a/t Mesh w4 MA ME, Sp NS¢
10 4x4 1.29 9.298 5.699 -30.38 -21.691
8x8 0.305 2.132 2.862 -16.845 -11.659
16x16 0.078 0.511 1.109 -8.961 -5.901
32x32 0.023 0.121 0.363 -4.621 -2.492
64x64 | 0.008 0.027 0.098 -2.345 -0.93
20 4x4 0.513 8.206  5.899 -31.78 -18.554
8x8 0.147 2.054 2.659 -17.046 -6.974
16x16 0.037 0.497 0.998 -9.026 -3.673
32x32 0.009 0.117 0.33 -4.656 -1.808
64x64 0 0.024 0.087 -2.365 -0.761
100 4x4 0.136 7.741 6.274  -33.255 -17.434
8x8 0.078 2.008 2.885 -17.702 -3.964
16x16 0.019 0.493 0.991 -9.173 -1.077
32x32 0 0.12 0.288 -4.679 -0.421
64x64 0 0.027  0.066 -2.371 -0.234

Dimensionless analytical values

A

10 - -1.279  3.72  -4.381 -32.788  -0.774
20 - -1.091 3.745 -4.479 -32.517  -0.697
100 - -1.031 3.755 -4.552 -32.398 -0.641

Table 3.3: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments at points A, C, shear forces at point B and membrane
stress resultant at point C, for regular mesh and span-to-thickness ratios on a simply supported
square plate [—45/45] under uniform distributed load.

3.3.2 Clamped beam C-section under shear force

The buckling analysis of folded C-section [118] is presented here. The geometrical data (Fig.
are [ = 36 m, b = 2.025 m, a = 6.05 m and ¢t = 0.05m. The concentrated load is F' = 250 KN.
The mechanical properties of each lamina are F; = 30.6 GPa; Fy = 8.7 GPa; G132 = 3.24 GPa;
Gas = 2.29 GPa; v12 = 0.29 and two LSS, here called LSS, and LSSs, are analyzed. LSS, is
shown in Fig. and LSS, is a [0/90/0] for all three panels in the C-section. Buckling loads
are reported in Table. achieving h? convergence, as shown in Fig The corresponding

modes are graphed in Fig. [3.13

Figure 3.11: Clamped beam C-section. Geometry, boundary condition and mesh.
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Figure 3.12: Clamped beam with C-section under shear forces for different LSS. Convergence of
buckling loads with mesh refinement. The solid line represents h? (for reference).
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Figure 3.13: Clamped beam with C-section for LSS=LSS;. Buckling modes corresponding to
buckling loads A1..)\4.



% error

a/t Mesh | @* M2 M Sy
10 4x4 2.818 0.413 2.0567  -27.937
8x8 0.54 -0.211  0.038 -15.242
16x16 | 0.097 -0.1 -0.084  -7.994
32x32 | 0.011 -0.034 -0.034 -4.096
64x64 0 -0.014 -0.014 -2.071
20 4x4 2.313  -0.345 1.507 -28.723
8x8 0.397 -0.32 -0.02 -15.368

16x16 | 0.055 -0.121 -0.091  -8.029
32x32 0 -0.04 -0.036 -4.109
64x64 0 -0.016 -0.014 -2.08
100 4x4 2.066 -0.465 1.573 -29.419
8x8 0.329 -0.366 -0.034 -15.88

16x16 | 0.045 -0.128 -0.088 -8.1
32x32 0 -0.042 -0.036 -4.11
64x64 0 -0.016 -0.016  -2.078

Dimensionless analytical values

ot - | @t  MA  Mp SP
10 - -0.926 7.126 4.419 -37.18
20 - -0.731  7.274 4413 -37.117
100 - -0.668 7.326 4412 -37.109

Table 3.4: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments at point A and shear force at point D, for regular
mesh and span-to-thickness ratios on a simply supported square plate [30/ —60/60/ — 30] under
uniform distributed load.

mesh )\1 )\2 )\3 )\4 )\5 )‘6
4x4 1.757 4.505 11.140 11.852 17.938 19.140
8x8 1.548 3.575 7.083  8.008 10.677 11.827
16x16 1.500 3.365 6.202 7.166 8.9565 10.438
32x32 1.489 3.315 6.006 6.968 8.5765 10.131
64x64 1.486 3.303 5.959  6.911 84855 10.057
64x64 (S8R) 1.486 3.299 5944 6904 8460 10.033

Table 3.5: Square plate [0/90/90/0]s under uniaxial compression. Convergence of buckling loads
with mesh refinement.

3.3.3 Clamped box under torsional couple

The buckling analysis of a clamped box under torsional couple is presented here. The geometry,
boundary conditions, and load are shown in Fig. (3.14)). The geometrical data are [ = 1000
mm, ¢ = 100 mm and ¢ = 10 mm. The line load is ¢ = 25 kN/mm. Two LLS are considered:
[45/ — 45/45/ — 45/45]s and [15/ — 15/15/ — 15/15],. The elastic modula for the lamina are:
E; =104 GPa; E; = 10.3 GPa; G2 = 5.15 GPa and v;5 = 0.021.

The lower four buckling modes are listed in Table 3.7] where comparison with S8R elements

have been made, and h? convergence is shown in Fig. |3.15 Finally, buckling modes, for LSS

[45/ — 45/45/ — 45/45],, are shown in Fig.



LSS, LSS,
mesh )\1 >\2 )\3 )\4 >\1 )\2 )\3 >\4
2 1.1209 1.5855 2.1198 2.1807 | 0.6902 1.6842 2.0256 2.0550
4 1.1010 1.5750 1.6623 1.6963 | 0.6714 1.5714 1.6667 1.6882
8 1.0952 1.5483 1.5767 1.5859 | 0.6668 1.5299 1.5836 1.6029
16 1.0935 1.5242 1.5541 1.5760 | 0.6657 1.5186 1.5633 1.5811
16 (S8R) 1.0736 1.5164 1.5450 1.5919 | 0.6670 1.5200 1.5865 1.6080

Table 3.6: Clamped beam C-section for different LSS.
refinement. The values on the first column refer to the numbers of the element along b.

35

Convergence of buckling loads with mesh

Figure 3.14: Geometry, boundary conditions, and load for clamped box subjected to torque load.
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Figure 3.15: Clamped box under torsional couple for different LSS. Convergence of buckling
loads with mesh refinement. The solid line represents h? (for reference).

Figure 3.16: Clamped box under torsional couple with LSS [45/ — 45/45/ — 45/45],. Buckling
modes corresponding to buckling loads Ay -+ - Ay
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[45/ — 45/45/ — 45/45], [15/ — 15/15/ — 15/15],
mesh Al )\2 /\3 A4 /\1 )\2 Ag )\4
2 424.81 453.06 488.72 535.83 195.29 204.22 27238 278.44
4 241.50 306.71 316.28 391.71 123.95 130.78 193.82 200.86
8 202.34 261.70 273.92 334.97 111.71  119.92 171.88 179.67
16 190.19  246.10 263.15 314.52 107.76 116.36 167.09 175.02
20 187.82  242.93 261.78 311.30 107.08 115.71 166.43 174.38
24 186.18  240.76 260.90 309.56 106.64 115.29 166.03 173.99
24 (S8R) 184.83 242.78 258.47 307.13 106.53 115.63 165.14 173.40

Table 3.7: Clamped box under torsional couple for different LSS. Convergence of buckling loads
with mesh refinement. The values on the first column refer to the numbers of the element along
a.

3.4 Further remarks

A simple mixed quadrilateral 3D plate finite element with 6 dof/node for linear static and
buckling analysis of plate/folded plate has been presented. An assessment of performance is
given. In the linear analysis case, numerical results show a global convergence h? measured in
s-norm for different LSS and thickness-to-span ratios. The point-wise convergence is comparable
to that of displacement based elements with higher number of dof, such as S8R. This makes the
proposed element particularly suitable for stress resultant recovery in the case of coarse meshes.
The use of drilling rotation, within a symmetric formulation and without penalty functions (thus
avoiding spurious modes), and accurate evaluation of displacements and rotation, makes the
element suitable for folded plate structures and geometrically nonlinear analysis when coupled
with a corotational formulation. The same behavior shown in linear analysis of plates is preserved
for linear analysis and buckling analysis of folded plates. Not only h? convergence is shown for

the evaluation of buckling loads but also very low errors are seen, on average, for coarse meshes.



Chapter 4

Koiter asymptotic analysis of

laminated composite plates

4.1 Introduction

In the following, three benchmarks are analyzed using Koiter asymptotic analysis. The first
is a simply supported plate under uniaxial compression with different LSS [86]. The accuracy
in the recovery critical and post-critical behavior are shown and the performance in terms of
computational cost are compared with Riks path-following analysis. The second is a hinged
cylindrical roof, that is a classical test [I19] with a strong non linear precritical behavior and,
as in the first benchmark, with a post-critical dominated by the first buckling mode. The last
is a channel column, studied experimentally by [120] and aimed to show the accuracy and good
performance in the analysis of folded plate including buckling mode interaction [20].

The accuracy and reliability of the results are closely related to the use of geometrically exact
structural models and mixed formulation, the latter is necessary to prevent extrapolation locking
phenomena [I4]. The use of a corotational formulation coupled with a mixed finite element allows
to easily satisfy previous requirements.

Moreover, Koiter approach being based on asymptotic expansion, allows to recover the equi-
librium path in an approximate fashion. The best accuracy is available for the precritical and
the initial post-critical behavior. A study of convergence can be found in [121], for the Koiter
asymptotic approach called simple linear algorithm as proposed in [14] and very good results
was proven. The currently used approach called full quadratic algorithm (see [6] and references

therein) has shown better performance than simple linear one in all experiences done.
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4.2 Square plate under compression

The buckling and post-buckling analysis of a laminated, simply-supported square plate under
uniaxial membrane load [86] is presented and comparison with Riks path-following analysis using
ABAQUS [84] is made. The lamina materials properties are E; = 181 GPa, Fy = 10.27 GPa,
G12 = 7.17 GPa, v15 =0.28. The thickness is ¢t = 1.27210™* m while the length is [ = 0.508 m.
To evaluate accuracy, an test is performed for a simply supported [0/90]4s square plate (hxh)
subjected to uniaxial edge pressure A. The critical loads are listed in Table [f.1] and the buckling

modes are shown in Fig. Note that h? convergence is achieved for critical values as shown

in Fig. £.2]

[0/90]4s

mesh A Ao A3 Ay
4x4 1.7562 5.0349 12.089 12.543
8x8& 1.5472 4.0021 7.0816 9.0840
16x16 1.5002 3.7684 6.2008 &8.1365
32x32 1.4892 3.7126 6.0054 7.9138
64x64 1.4867 3.6990 5.958%  7.8593
64x64 (S8R) 1.4861 3.6947 5.9443 7.8414

Table 4.1: Square plate under uniaxial compression. Convergence of buckling loads with mesh
refinement.
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Figure 4.1: Square plate under uniaxial compression. Buckling modes corresponding to buckling

loads Ay, -+, Ag.



40

log( 1-\; / A"y
£
log( 1-Byy11 /By )

log(h) log(h)
(a) (b)
Figure 4.2: Square plate (h x h) under uniaxial compression. (a) convergence of buckling loads
and (b) convergence of post-critical quartic form. Solid line is for reference.

Then, the accuracy of the post-critical behavior is investigated by looking at the convergence
of the fourth order form B,z [6], which is reported in Fig. showing convergence of of order
h2.

Then, the post-critical behavior for different LLS was calculated. The equilibrium paths
graphed in Fig. when compared with those obtained using path-following analysis confirm
good accuracy both the pre-critical and in the initial post-critical behavior. As expected, up
to the initial post-critical range the two equilibrium paths coincide while over the accuracy
gradually decrease.

Finally, to compare the performance of Koiter’s analysis with that of Riks path—following
analysis, the computational cost of one analysis is reported. The aim is to evaluate the time
needed for both analysis. For Koiter analysis, a 64x64 element mesh (about 25000 dofs) was
employed to analyze only one imperfection. The most time is spent performing the linear analysis
(see eq. 3in [§]), the buckling (see eq. 4 in [8]) and to evaluate the post-critical energy variations
(see eq. 8 in [§]). Just a little fraction of the time is spent to recover the equilibrium path (eq.
9 in [8]). Note that only the last step needs to be redone for analyzing a different imperfection.
The total time spent for each problem was about 12 seconds, where less than a tenth of second
was spent for recovering the equilibrium path.

The Riks analysis is performed using a coarser, 40x40 mesh of linear S4R elements (about

9600 dofs) in Abaqus. The analysis is particularly sensible to the Risk control settings, including



41

2.5 1190 £ <0[75>]54
4[0190] 45

A2 [0 + <0|15>],¢

[0 + <0[45>]
1.5

Figure 4.3: Square plate under compression. Equilibrium paths recovered using Koiter asymp-
totic analysis compared with that obtain Riks analysis. The load factor is indicated with A while
w denotes the transversal displacement of the center of the plate.

the initial imperfection, which must be chosen by the analyst either in the load or in the initial
geometry. For this comparison only, a geometrical imperfection in the form of the first buckling
mode with the maximum magnitude displacement equal to 10~ mm is used. The initial step
length is assumed to be a tenth of the total arc length, and the later is assumed to be 1.0. The
maximum incrementation is assumed to be 10. The other Riks control settings are left at their
Abaqus default values. These control settings are optimized trough a careful tuning for this
particular test. Note that each new test needs news settings.

Each Riks analysis takes about 60 steps within a 1 or 2 equilibrium iterations, which impose
matrix reforming, decomposition, and solving a linear system for each iteration. Note that the
run must be fully redone for each new imperfection. The total time spent for one imperfection
is reported in Table The computations are performed on a Intel(R) Xeon(R) CPU E5-2620
2.00Ghz Dual Core, 32 GB Ram on a single core for both, Koiter and Riks analysis.

A shown in Table [£.2] the Koiter analysis is faster for every analysis. Obviously, Koiter’s
analysis becomes even more efficient when different imperfections are analyzed. When analyzing
multiple imperfections, each imperfection requires the same time for Riks analysis, while the
cost of Koiter’s analysis becomes becomes negligible because only the nonlinear system (see eq.

9 on [8]) needs to be solved.
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problem Koiter Riks

1 11 s 39 s
2 14 s 38 s
3 13 s 54 s
4 13 s 37 s
5 11 s 36 s
6 13 s 58 s
7 13 s 44 s

Average 12.5s 43.7s

Table 4.2: Koiter’s vs Riks analysis timing

4.3 Hinged cylindrical roof

The popular hinged cylindrical roof [119, [IT6] is analyzed in this section. The geometry, bound-
ary condition and load are represented in Fig. [{:4] The lenght is | = 2.54 m, the radius is
R = 25.40 m and the angle is 8 = 0.1 rad. The base load is P = 103 N.

Figure 4.4: Hinged cylindrical roof. Geometry, boundary and load condition.

Three cases are considered. The first is a single layer with isotropic material and elastic
modula E = 3102.75 MPa, v = 0.3 and the thickness ¢ = 0.127 m. The second and the third
are laminated composite with LSS [0/90/0] and [90/0/90] respectively. The materials constants
are /1 = 3300 MPa, Es; = 1100 Mpa, G152 = 660 Mpa, v = 0.25, and the thickness is ¢t = 0.127
m. The interesting aspect of this test is the strong nonlinearity of the pre-critical path. The
first buckling load is A\; = 4.5607 for isotropic single layer, A\; = 3.5849 and \; = 2.2177 for
LSS [0/90/0] and [90/0/90] respectively. The corresponding mode is represented in Fig. for
isotropic single layer.

The equilibrium path recovered for laminated composite and for isotropic material are re-
ported in Fig in comparison with Riks analysis. Note that the limit load is about one-half
of the value of the first buckling load, for all cases.

The good representation of pre-critical behavior, limit load, and initial post-critical path
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Figure 4.5: Hinged cylindrical roof. Buckling mode corresponding to buckling load A;.

vod ] RN\ -

O _ ,,,,,,, ;f' ,,,,,,,,,,,,,,,,,,,,,, b Foeneen e “\ . .-
- Riks - ]
- ‘ Koiter :

Figure 4.6: Hinged cylindrical roofs. Equilibrium paths. The load factor is indicated with A
while denotes w (mm) is the transversal displacement of the center of the cylindrical roofs.
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is clear also in Fig. for this particularly difficult case. Really, the Koiter equilibrium path
coincide with that of Riks analysis up to the limit point. The expected accuracy is shown while

over the limit point the accuracy gradually decrease.

4.4 Channel section under compression
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Figure 4.7: Channel section. Geometry, boundary, and load conditions. Dimensions are ex-
pressed in mm.

A channel section under compression is analyzed next. Experimental results for this problem
are available in [120], being one of their more recent results in this field [122], 123, 124]. The
geometry, load, and boundary conditions, as well as the LSS for each panel of the channel section
are reported in Fig. [4.7]

The material data are F; = 130.71 GPa, F; = 6.36 GPa, G2 = 4.18 GPa, v = 0.32.
The results of buckling analysis are reported in Fig. for the six lower buckling modes. The
analysis is performed with a fine mesh (16 elements on the wings, 32 on the web, and 120 along
the height). Mode deflections involve both the wings and the web. Moreover, some of the critical
loads are very close.

The equilibrium paths are reported in Fig. Koiter’s analysis is performed with a rough

mesh (8 element on the wings, 16 on the web, and 60 along the height). The first six modes
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Figure 4.8: Channel section. Buckling modes corresponding to buckling loads A1, Ag, - - - Ag.
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are reported. Two displacements components are plotted: the axial displacement u (mm) of the
end section and the transversal displacement w (mm) at a quarter of the height in the center
of the web. The equilibrium path recovered with Koiter’s analysis is compared with Rik’s path-
following analysis. The results clearly show the accuracy in the recovery the initial post-critical

behavior.

25— 7
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Figure 4.9: Channel section. Equilibrium paths recovered using Koiter asymptotic analysis
compared with that obtain Riks analysis. Load factor is indicated with A and it is normalized
on the first buckling load A;. In the abscissa are plotted the axial displacement w of the end
section and the transversal displacement w at a quarter of the height in the center of the web.

4.5 Further remarks

Koiter’s asymptotic analysis represents a valid, less computational expensive alternative to Riks
path-following analysis for the recovery the initial post-critical behavior of composite structures,
even those displaying strong pre-critical behavior and buckling mode interaction. Its use in
the context of laminated composite folded plate (shell) structures has been demonstrated (see
also [48]). The accuracy of the proposed element has been checked and the convergence of
the critical and post-critical quantities show good performance, which can be attributed to the
simplicity of the linear finite element employed and the choice of corotational formulation for

the extension to nonlinear analysis of folded laminated composites. The computational cost has
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been monitored and the results show the advantage of Koiter’s analysis versus Riks analysis,

including considerations of accuracy and robustness for difficult test cases.



Chapter 5

Imperfection sensitivity analysis

5.1 A rack member in compression

In the following, an imperfection sensitivity analysis for RS 125 x 3.2 upright pallet racks in
compression with and without perforations (net and brut) is presented. In the following, the
brut section is indicated with the acronym RSB, while the perforated section with RSN. The
geometry of the cross-section is shown in Fig. (5.1]), while the details relating to the cross-section,
perforations, material, experimental tests and numerical simulations can be found in [94] O3],

the thickness considered for RSB and RSN sections is equal to 3.2 mm.

b

>
n
|~
o

T1T1T_]

Figure 5.1: Geometry of RS 125 section (dimensions are expressed in mm) and boundary con-
ditions.

The experimental work done in [94] covers various lengths of the columns, i.e. (i) stub

columus; (ii) upright member specimens to check the influence of distortional buckling; (iii)
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specimens of lengths equal to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>