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Introduction

The design of composite structures is most often dominated by buckling [1, 2]. For example,

the demands for fuel e�ciency is prompting the aircraft industry to revolutionize airframe con-

struction to save weight, and thus fuel. A promising concept is to let the airframe operate in

the postbuckling regime, where the skin of the composite sti�ened panels are allowed to buckle

in normal �ight conditions. This hinges upon the assumption that sti�ened panels, and thus the

entire airframe, are imperfection insensitive.

Imperfection sensitivity analysis requires the identi�cation of a large number of buckling

modes and their interaction. Because of the large number of possible modes and our a priori

ignorance about which ones would interact with each other, such analysis is prohibitively time

consuming. Continuation methods based on Riks scheme are often used [3]. In spite of the

simplicity of its numerical implementation, which requires only an approximation of the tangent

sti�ness matrix, the method su�ers in the case of multiple bifurcations, requiring ad-hoc branch

switch algorithms [4]. Continuation methods are time consuming, requiring a lengthy analysis

for each assumed imperfection. Furthermore, type and shape of imperfections are unknown,

either because the structure is in the design stage or because it is too di�cult to measure them.

Therefore, the aim of this work is to propose a robust and e�cient methodology to calculate

the imperfection sensitivity of laminated composite folded plates. The proposed methodology

does not require a priori knowledge of the shape and magnitude of imperfections and does not

rely on lengthy continuation analysis. Instead, it uses Koiter's perturbation approach [5, 6]

to calculate the bifurcation load, post-buckling path, and interaction between modes to detect

bifurcations on the post-buckling path of individual modes, as well as the paths emanating

from those bifurcations. The requirement for linearity of the constitutive equations is easily

met by composite materials, which have a broad, linear stress and strain range of operation in

compression [7].

The most recent implementations of Koiter's approach include spatial beam assemblages [8],

folded plates [9, 10], and composite structures [11]. Since the approach is based on fourth-order

energy expansion [8], a �nite element capable of accurately representing fourth-order terms is

1



Introduction 2

required for robustness of the analysis. The corotational approach [12, 13] ful�ls this requirement

allowing the complete reuse of a linear element for geometrically nonlinear analysis. A mixed

formulation is used to avoid extrapolation locking [14]. The recent 3D plate �nite element [15]

based on Hellinger-Reissner variational formulation guarantees an accurate evaluation of linear

elastic response and of rotation �elds [16], so it is very suitable to be used with a corotational

formulation to obtain a geometrically nonlinear formulation, which is accurate up to fourth order

energy terms [11].

Koiter's method provides robust prediction of the path emanating form interaction bifurca-

tions between three or more modes, thus providing a good estimate of the imperfection sensitive,

post-buckling trajectory (even when the shape and magnitude of the imperfections are unknown)

that otherwise would be very costly to follow by a continuation methods. Mode interaction often

produces the most deleterious imperfection sensitive path with the larger drop in load carrying

capacity [18, 19, 20]. The di�culty resides on how to select the set of modes that produces the

worst behavior.

The Monte Carlo method is proposed herein to �nd the modes that yield the most unfavor-

able, imperfection sensitive path. Although Monte Carlo is an expensive method, the computa-

tional cost is keep low thanks to the e�ciency of both the element used and Koiter's approach.

Also, Koiter's approach is quite demanding about the quality of higher order (up to 4th order)

derivatives of the energy, but the element formulation used in this work is uniquely suited to

satisfy those demands for accuracy at a low computational cost. The proposed methodology

allows us to run thousand of analysis in a few seconds, obtaining the worst imperfection using a

Monte Carlo simulation.



Chapter 1

Koiter's asymptotic approach

1.1 Introduction

The starting point for the analysis of slender elastic structures is the total potential energy Π[u],

where u are the con�guration variables. In particular we have

Π[u] = Φ[u]− λpu (1.1)

with Φ[u] the strain energy, λ the load control parameter and p the applied load. The solution

of the problem requires solving the nonlinear problem

Π′[u]δu = Φ′[u]δu− λpδu = 0 ∀δu (1.2)

where the prime denotes the Frèchet derivative with respect to u. Using a Finite Element

technique, Eq. 1.2, can be rewritten as

δuTr[u, λ] = 0 ∀δu r[u, λ] = (s[u]− λp) (1.3)

with u = Lu, p = Lp with L the interpolation operator, s[u] the structural response and p

the load vector. The solution of Eq. 1.3 and then the equilibrium path can be obtained using

the path-following approach and asymptotic approach. In the former, the equilibrium path is

obtained as a sequence of equilibrium points

{(u0, λ0), (u1, λ1), ....(ui, λi)} i = 0, 1..n (1.4)

3
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using an iterative scheme based on the Newton-Raphson method or its modi�cations [3]. The

Path-following approach is widely used as a solution scheme because of its ease of implementation

and its robustness. Its disadvantages are the computational cost that is directly related to the

numbers of variables of Finite Element discretization (i.e. the dimension u ); the need to

perform an analysis for each load case even in the case of small modi�cations (i.e. in the case

of imperfections) of the load and the di�culties that arise in the case of multiple and near

coincident buckling modes.

On the other hand, in the asymptotic analysis the equilibrium path is obtained in an ap-

proximate fashion through an asymptotic expansion with respect to the expansion parameters

ξi, i = 0..m red, 
u = u0 +

n∑
i=0

ξiu̇i +
1

2

m∑
i,j=0

ξiξjüij + · · ·+O(ξki )

λ = λ0 +

n∑
i=0

ξiλ̇i +
1

2

m∑
i,j=0

ξiξj λ̈ij + · · ·+O(ξki )

(1.5)

denoting with (·) the derivation with respect to ξ. The nonlinear system of equation 1.3, can be

rewritten as

r[ξ, λ] = 0 (1.6)

with ξ the vector collecting the ξi expansion parameters. The nonlinear system Eq. 1.6 has in

general a reduced number of variables. In practical contexts m is of the order of tens. Moreover,

as further explained in the next section once having recovered the terms of the Eq. 1.5, i.e.

the so-called 'perfect structure', all deviations of the assumed load (i.e. load imperfections),

geometrical or other kind of imperfections, i.e. loads applied eccentrically, require only the

solution of equation 1.6. This is a great advantage of the method because the nonlinear system

has a reduced dimension and so allows the easy testing of the e�ect of thousands of imperfections

with very low computational cost.

In the next section, a summary of the FE asymptotic analysis proposed by Casciaro et al.

[6] is presented. The described implementation is also called quadratic algorithm.

1.2 Foundamental equations

Asymptotic analysis is essentially the implementation of Koiter's nonlinear elastic stability ap-

proach [5] into the �nite element method (FEM) [6]. The solution process is based on an

expansion of the potential energy Φ in terms of load factor λ and modal amplitudes ξi. It can

be summarized as follows:
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i.. The fundamental path is obtained as a linear extrapolation

uf [λ] = u0 + λû (1.7a)

where u0 is an initial displacement, possibly null, and u = λû is the vector of kinematic

parameters, i.e., the space of degrees of freedom (dof) of the structure, and û = du/dλ is

obtained as the solution of the linear algebraic equation

K0 û = p̂ (1.7b)

where p̂ is the reference load and K0 = K[u0] is the sti�ness matrix, which contains the

coe�cients of the quadratic terms of the energy Φ′′.

ii.. A cluster of buckling loads λi, i = 1 · · ·m, and associated buckling modes v̇i are obtained

along uf [λ] by the critical condition

K[λi] v̇i = 0 , K[λ] = K[u0 + λû] (1.7c)

the eigenvalue problem is de�ned as fully nonlinear, to correctly recover the post-critical

behavior. The nonlinearity is introduced by updating the con�guration along the funda-

mental path.

Note that the size m of the subspace of buckling modes needed for the analysis is orders of

magnitude smaller than the number of dof used to discretize the structure, often as little

as m = 3.

We denote by V = {v̇ =
∑m
i=1 ξiv̇i} the subspace spanned by the buckling modes v̇i

(where ξi are the modal amplitudes) and by W = {w : w⊥v̇i , i = 1 · · ·m} its orthogonal

complement, de�ned by the orthogonality condition

w⊥v̇i ⇔ Φ′′′b ûv̇iw = 0 (1.7d)

where û = Lû, v̇i = Lv̇i, w = Lw and L is the linear operator of FEM interpolation.

We denote by λb an appropriate reference value for the cluster, e.g. the smallest of λi or

their mean value. Accordingly, a su�x "b" denotes quantities evaluated in correspondence

to ub = uf [λb].

iii.. De�ning ξ0 = (λ−λb) and v̇0 = û, the asymptotic approximation for any equilibrium path
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is approximated by a expansion in terms of mode amplitudes ξk as follows

u[λ, ξk] = ub +

m∑
i=0

ξiv̇i +
1

2

m∑
i,j=0

ξiξjwij (1.7e)

where wij ∈ W are quadratic corrections introduced to satisfy the projection of the equi-

librium equation (see[21, Section 3.3]) into W, obtained by the linear orthogonal equations

δwT (Kbwij + pij) = 0 , ∀w ∈ W (1.7f)

where Kb = K[uf [λb]] and vectors pij are de�ned as a function of modes v̇i ; i = 0 · · ·m,

by the energy equivalence δwTpij = Φ′′′b δw v̇j v̇j .

iv.. The following energy terms are computed for i, j = 0 · · ·m, k = 1 · · ·m:

Aijk = Φ′′′b v̇iv̇j v̇k

Bijhk = Φ′′′′b v̇iv̇j v̇hv̇k − Φ′′b (wijwhk + wihwjk + wikwjh)

Cik = Φ′′bw00wik

µk[λ] =
1

2
λb(λ−

1

2
λb)Φ

′′′
b û

2v̇k +
1

6
λ2
b(λb − 3λ)Φ′′′′b û3v̇k

(1.7g)

where the implicit imperfection factors µk are de�ned by the 4th order expansion of the un-

balanced work on the fundamental path, i.e., µk[λ] = (λp̂−Φ′[λû])v̇k (see [21, Eqs.(31,32)]).

v.. The equilibrium path is obtained by projecting the equilibrium equation [21, Section 3.4]

on V. According to eqs, (1.7a)�(1.7g), we have

1

2

m∑
i,j=0

ξiξjAijk +
1

6

m∑
i,j,h=0

ξiξjξhBijhk + µk[λ]− λb(λ−
1

2
λb)

m∑
i=0

ξiCik = 0 , k = 1 . . .m

(1.7h)

Equation (1.7h) is an algebraic nonlinear system of m equations in the m + 1 variables

ξ0, ξ1 · · · ξm, with known coe�cients.

The accuracy of equilibrium equation Eq. 1.7h requires that the mechanical behaviour of

the structure is adequately represented by a 4th-order energy expansion. Furthermore, it is also

related to the local linearization of the critical equation which implies (λi − λb) << 1 ∀λi.

This can be assumed in the case of nearly coincident buckling modes or in the case of linear

pre-critical buckling modes as generally occurs in compressed members. However the equation

has also been tested for distant buckling modes in the case of nonlinear pre-critical in paper

[9] where the recovered equilibrium path shows great accuracy compared with path-following

solution.
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The implementation of the asymptotic approach is quite easy and its computational cost

remains of the order of that required by a linear buckling analysis [6]. Once the preprocessor

phase of the analysis has been performed (steps i. to iv.), the presence of imperfections can be

taken into account in step 5, by adding additional imperfection terms in the expression for µk[λ],

allowing for an inexpensive imperfection sensitivity analysis.

1.3 Imperfection sensitivity analysis

The geometry and loads of thin-walled structures are a�ected by random distribution of small

imperfections. In the proposed asymptotic method, the presence of small imperfections expressed

by a load p̃[λ] and/or an initial displacement ũ a�ect Eq.(1.7g) only on the imperfection term

µk[λ] that becomes [6]

µk[λ] =
1

2
λb(λ−

1

2
λb)Φ

′′′
b û

2v̇k +
1

6
λ2
b(λb − 3λ)Φ′′′′b û3v̇k + µgk[λ] + µlk[λ] (1.8)

with

µgk[λ] + µlk[λ] = λ (Φ′′′c ûũv̇k − p̃[λ]v̇k) = λµ̄k (1.9)

The aim of the imperfection sensitivity analysis is to link the presence of geometrical and

load imperfections to the reduction of the limit load. For structures presenting coupled buckling

modes, even a small load or geometrical imperfection may result in a marked reduction of the

limit load with respect to the bifurcation load [27, 28, 29, 30, 31, 32]. Therefore, an e�ective

safety analysis should include an investigation of all possible imperfection shapes and sizes to

recover the worst case imperfection (see [33]).

The asymptotic approach provides a powerful tool for performing this extensive investigation.

In fact, the analysis for a di�erent imperfection only needs to update the imperfection factors

µgk[λ] and µlk[λ] through Eq.(1.8)�(1.9) and solve the nonlinear system (1.7g)�(1.7h). Even if

this system, which collects all the nonlinear parts of the original problem, proves to be highly

nonlinear and some care has to be taken in treating the occurrence of multiple singularities, its

solution through a path�following process is relatively easy because of the small number m of

unknowns involved.



Chapter 2

Corotational Formulation

2.1 Introduction

Asymptotic analysis exploits a fourth�order expansion of the strain energy and so it requires

that the energy expression is characterized by fourth�order accuracy at least. Satisfying this

requirement exactly is not an easy task. In fact, the usual plate and shell theories (the so

called "technical theories") and current �nite element (FE) technologies only provide second

order accuracy exactly and third order one with some approximations [34]. This introduces an

objectivity error into the element description, i.e. a non rational dependence of the strain energy

on the rigid body motion, which can lead to a poor recovery of the post�buckling behavior

of the structure at increasing displacements. At the moment, various proposals for the FE

asymptotic analysis of shells [34] su�er from this inconvenience, even if in some cases (e.g. when

the post�buckling behavior is largely dominated by stress redistribution, as discussed in [35])

the approximation made can be considered as acceptable.

The corotational formulation, as devised for example in [36, 37], provides an e�ective general

tool for performing fully objective, geometrically nonlinear �nite element analysis. The use of a

local reference frame, moving with the element, allows the rigid body motion from the description

of the element internal deformations to be �ltered and, so, decouple the geometrical nonlinearity

from the elastic response. In this way, the element response can be described, in the local frame,

using the standard linear theory. A remarkable contribution to the corotational approach was

[38]. Its main advantage lies in its ability to fully exploit the existing FE technology available

for linear analysis. Corotational algebra, that is algebra expressing the reference change between

a global �xed frame and the local moving element frames, as shown in [8], reduces to standard

algebraic procedures and recursive formulas expressing corotational derivatives can be obtained

in explicit form.

8
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The corotational approach to asymptotic analysis was investigated in [8] with reference to 3D

assemblages of beams, by Zagari et al. [9] with reference to shell structures and by Barbero et

al. [11] with reference to composites shell structures. The resulting solution procedure is really

e�ective and o�ers a robust tool to capture the pre- and post-buckling nonlinear behavior in a way

which is both qualitatively correct and quantitatively accurate. In addition, it is computationally

convenient with respect to path-following analysis, since imperfection sensitivity analysis can be

carried out very e�ectively.

Folded laminated plates are widely used in the form of structural pro�les [39, Fig. 10.1],

sti�ened panels [39, Section 11.3], cellular structures [40] and so on. Open or closed sections

composed of �at walls are attractive because they maximize the bending and torsional sti�ness

for minimum weight and at the same time they take advantage of the high strength of �ber

reinforced materials. Using laminated panels a�ords high �exibility to the design by virtue of the

broad range of sti�ness and strength that can be imparted to the walls. Ever increasing demands

for lightweight structures for transportation vehicles of all kinds requires the use of optimized

thin-walled structures for which buckling become the design constraint. Accurate computation

of buckling loads, modes, mode interaction [19], and imperfection sensitivity [22, 23] is thus

required. Since these calculations are computationally intensive, there is signi�cant interest in

developing accurate yet economical simulation methods. The use of corotational formulation

is quite attractive in this regard because it allows for simple extension to nonlinear analysis of

proven, accurate, computationally e�cient linear analysis elements.

A linear, mixed formulation element called MISS-4 is used as starting point for this work

[15]. The stress resultant interpolation, which accounts for the average distortion of the element,

is self-equilibrated and isostatic. Only 18 stress parameters are used into 6 constant, 8 linear,

and 4 quadratic stress shape functions. The kinematics uses 6 degrees of freedom (dof) per node

for an overall 24 dof. Convergence rate and accuracy is shown in this work to be comparable to

that of 48 dof, displacement based elements such as Abaqus S8R.

The performance of the linear element has been shown to be very good for the case of isotropic

material, both for the recovery displacements and rotations as well as for evaluation of stress

resultants. Numerical results, show s-norm h2 convergence rate [70]. Furthermore, the element is

free from locking. The element matrices are evaluated analytically along the contour. Moreover,

the element uses 6 standard degrees of freedom (dof) per node (3 displacements and 3 rotations),

thus allowing for trivial implementation as a user element into commercial codes [15, 58].

In this work, the drilling rotations are implemented as per [24, 25], without un-symmetric

formulation or penalty constraints [26], allowing for an accurate recovery of drilling rotation �eld;

thus enabling the element to be used for geometrically nonlinear analysis using a corotational
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formulation [8, 12, 13, 9, 11]. An incompatible cubic mode is used to eliminate the spurious zero

energy mode [16].

A review paper [60] describes the most recent available �nite elements based on various lam-

inated theories for buckling and post-buckling, free vibration, dynamics, failure, and damage.

Similarly, [61] o�ers an overview on di�erent strategies for modeling laminated composites plates.

Recently proposed elements range from assumed displacements [62, 63], mixed and hybrid for-

mulations [64, 65, 66, 68, 69], mixed interpolation of tensorial components (MITC) [71, 72],

NURBS-based isogeometric elements [73], radial point interpolation [74], thickness-stretch de-

formation elements [75] and zigzag elements in nonlinear context [76]. Comparison between

various laminated composite plate and �nite element results is provided in [77].

For this work, the laminate kinematics has been approximated by �rst order shear deforma-

tion theory (FSDT) [85, 42], which o�ers a good compromise between simplicity and accuracy in

the recovery of displacements, rotations, and stress resultants. Furthermore, the mixed stress-

displacement formulation chosen for this work allows for better recovery of stress pro�les than

displacement-only formulations [82, 83].

2.2 Geometrically linear formulation

As it was stated earlier, the formulation must be capable of accurate representation of fourth-

order terms on the potential energy. Therefore, we start with a mixed formulation. The initial

reference con�guration of the element is �at and referred to a local Cartesian frame {e1, e2 , e3}.

Furthermore, {x, y} is a vector lying on the middle surface Ω de�ned by the unit vectors {e1, e2},

s is the thickness along the e3 direction, and Γ is the boundary of Ω. On this frame, the Hellinger-

Reissner strain energy for a �at shell can be written as

Φ[t,d] =

∫
Ω

{
tTDd− 1

2
tTE−1t

}
dΩ

t =

tm
tf

 , d =

dm
df

 , D =

Dm 0

0 Df

 (2.1)



11

where tm, tf are the in- and out-of-plane stress parameters, respectively; and dm,df are the in-

and out-plane kinematical parameters, de�ned as follows

tm =


Nx

Ny

Nxy

 , tf =



Mx

My

Mxy

Sx

Sy


, dm =

dx
dy

 , df =


dz

ϕx

ϕy

 (2.2)

where N ,M ,S are the membrane, bending, and shear stress resultants, respectively; and d,ϕ

are the midsurface strains and rotations, respectively.

Using �rst-order shear deformable theory (FSDT) [42], the di�erential operators Dm and

Df are de�ned as

Dm =


∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x

 , Df =



0 0 −∂/∂x

0 ∂/∂y 0

0 ∂/∂x −∂/∂y

∂/∂x 0 1

∂/∂y −1 0


(2.3)

The constitutive matrix for a laminate with n layers can be written as

E =


Em Emb 0

Eb 0

sym. Es

 (2.4)

where

Em =

n∑
k

(zk − zk−1)E(k)
m

Emb =
1

2

n∑
k

(z2
k − z2

k−1)E(k)
m

Eb =
1

3

n∑
k

(z3
k − z3

k−1)E(k)
m

Es = κ�
n∑
k

(zk − zk−1)E(k)
s (2.5)

where zk, zk−1 are the top and bottom coordinates of k-th lamina, respectively, E(k)
m ,E(k)

s are

the lamina constitutive matrices referring to in-plane and transverse stress/strain, respectively
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[42] and [39, Eq.(6.16)]. Finally, symbol � denotes the component product (.* in [43]) that

allows us to introduce di�erent shear correction factors for each component of the Es matrix

[65, 66, 44]

κ =

κ11 κ12

κ12 κ22

 (2.6)

When the stress resultants are de�ned so that the equilibrium equations are satis�ed with zero

load, the following identity holds [45]

∫
Ω

tTDddΩ =

∫
Γ

tTNTddΓ =

∫
Γ

tTmN
T
mdm dΓ +

∫
Γ

tTfN
T
f df dΓ (2.7)

where N is the matrix collecting the components of the unit outward normal to the contour Γ,

that can be split into membrane Nm and bending Nf parts

N =

Nm 0

0 Nf

 (2.8)

2.2.1 Mixed �nite element

Assuming a mixed interpolation for the stress resultants and displacements, a discrete expression

for the Hellinger�Reissner mixed strain energy (2.1) can be evaluated. In general, the mixed

interpolation can be written as

t = Bte , d = Ude (2.9)

where B is the matrix collecting the assumed stress modes, te is the vector of stress parameters,

U is the matrix of the displacement shape functions and de is the vector of displacement and

rotation kinematical parameters. Substituting (2.9) into (2.1) and integrating on the element

domain Ωe leads to the evaluation of the element mixed energy

Φe[te,de] = tTeDede −
1

2
tTeHete ,


De =

∫
Ωe

{
BTDU

}
dΩ

He =

∫
Ωe

{
BTE−1B

}
dΩ

(2.10)

where De and He are the compatibility and �exibility matrices, respectively [46], [49].

When the assumed stress modes (shape functions) are chosen so that the stress resultants

identically satisfy equilibrium equations with zero load (self equilibrating stress �eld in the

element), the compatibility matrix can be evaluated on the element contour Γe, i.e., Eq. (2.7)

yields

De =

∫
Γe

BTNTU dΓ (2.11)
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Applying static condensation to the stress parameters te, the element energy can be evaluated

solely in terms of kinematic parameters de, and using (2.11), the displacements and rotations,

need to be interpolated only along the contour. Details of the element implementation are given

in �2.4.

2.3 Geometrically non linear formulation

A linear �nite element can be made geometrically nonlinear using corotational algebra to describe

the rigid body motion [8]. Following the original proposal by Rankin et. al [36, 37], this

framework is still used [51, 52, 53, 54, 55, 56]. With respect to the �xed frame {e1, e2, e3}, a

corotational (CR) frame {ē1, ē2, ē3} is de�ned as

ēk = Q[α]ek, k = 1..3 (2.12)

with Q being a rigid rotation, parametrized by the rotation vector α according to Rodrigues'

formulation [57] (see Fig. 2.1) . The origin is assumed to be translated by vector c. Denoting

by d and R the displacement and the rotation associated to position X in the �xed reference

frame, the following geometrical relationships hold

d̄ = QT (X + d− c)−X , R̄ = QTR (2.13)

with d̄ and R̄ being the displacement and the rotation in the corotational frame. Using a vector

parametrization for R̄ and R and denoting by ψ̄ and ψ the rotation vectors, we have

ψ̄ = log(R̄[ψ̄]) = log (QT [α]R[ψ]) (2.14)

A CR frame can be de�ned for each element through the element rotation vector αe which

is a function of the element kinematical parameters de in the �xed frame

αe = αe[de] (2.15)

The local kinematical parameters d̄e in the CR frame are related to de by the geometrical

transformation

d̄e = g[de] (2.16)

where g collects the CR transformations for displacements (2.13) and rotations (2.14) oppor-

tunely rearranged in terms of the local kinematical parameters d̄e of the �nite element. See [9]
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Figure 2.1: Corotational frame.

for further details.

Based on the above relations, the linear �nite element characterized by energy (2.10) can

be transformed into a geometrically nonlinear element simply by introducing a corotational

description and assuming that the element kinematical parameters in eq. (2.10) are referred to

the corotational frame. This leads to:

Φe[te,de] = tTeDeg[de]−
1

2
tTeHete (2.17)

The element energy can be expressed in terms of the element vector

ue = {te, de}T (2.18)

which collects all the parameters de�ning the element con�guration in a single vector and can

be related to the global con�guration vector u through the standard assemblage procedure

ue = Aeu (2.19)

where the matrix Ae implicitly contains the compatibility constraints between elements. For

the Hellinger-Reissner formulation used here, the components of u are the global displace-

ments/rotations of the nodes of the elements and the the stress parameters of each element.

Using static condensation, the stress parameters can be eliminated at the element level, and

then a compatible scheme can be employed [58].
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2.4 Element implementation

The Mixed Isostatic Self-equilibrated Stress �at shell element MISS-4 [15, 11] is used as the

starting point here. It is a 4�node quadrilateral externally de�ned by 24 kinematical dofs and

internally by an isostatic self�equilibrated stress expansion represented by 18 parameters.

It is described by four nodal coordinates on the plane Z = 0 of the global Cartesian system

{X, Y, Z} and the element connectivity ((2.2)).

Figure 2.2: Global, local and internal coordinate systems.

Next, a dimensionless internal system is de�ned over the element mid surface with {ξ, η},

−1 ≤ ξ ≤ 1,−1 ≤ η ≤ 1, which is implicitly de�ned by


X = a0 + a1ξ + a2ξ η + a3η

Y = b0 + b1ξ + b2ξ η + b3η

(2.20)

where 

a0 b0

a1 b1

a2 b2

a3 b3


=

1

4



1 1 1 1

−1 1 1 −1

1 −1 1 −1

−1 −1 1 1





X1 Y 1

X2 Y 2

X3 Y 3

X4 Y 4


(2.21)

where {Xi, Y i}, i = 1, .., 4 are the global nodal coordinates.

The third system is a local Cartesian system {x, y}, de�ned over the element mid surface,

centered and aligned with the element. To de�ne the local system, we introduce the Jacobian

matrix JG and its average J̄
G

JG =

X,ξ X,η

Y,ξ Y,η

 =

(a1 + a2η) (a3 + a2ξ)

(b1 + b2η) (b3 + b2ξ)


J̄
G

=
1

4

∫ 1

ξ=−1

∫ 1

η=−1

JG dξ dη =

a1 a3

b1 b3

 (2.22)
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The average Jacobian J̄
G

is decomposed into an orthogonal matrix R and a symmetric

matrix J̄ , so that

J̄
G

= RJ̄ (2.23)

R =

cosα − sinα

sinα cosα

 , α = arctan

(
a3 − b1
a1 + b3

)
, J̄ =

a c

c b


The local Cartesian system {x, y} has its origin at the element centroid (ξ = η = 0) and is

rigidly rotated by R with respect to {X,Y }. The coordinates {x, y} are de�ned according the

transformation x
y

 = RT

X − a0

Y − b0

 (2.24)

The use of a local system {x, y} allows us to eliminate the rigid part of the global element

distortion, providing a �nite element description that is objective with respect to a rigid body

motion of the element.

2.4.1 Assumed stresses

The stresses are assumed to be self equilibrated and isostatic, leading to a minimum set of

parameters, which are the 18 components of the vector βe. Then, the stress resultants can be

written as

t = Bβe =

Bm 0

0 Bf


βm
βf

 (2.25a)

where Bm and Bf are matrices representing the assumed stress modes for the membrane and

�exural generalized stresses, respectively, and βm,βf are 9-component vectors representing mem-

brane and �exural e�ects, respectively. For the membrane stresses, it is assumed that

Bm =


1 0 0 y 0 x 0 y2 −2 a2 x y

0 1 0 0 x 0 y −x2 2 b2 x y

0 0 1 0 0 −y −x 0 a2 y2 − b2 x2

 (2.25b)
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For the �exural stress, it is assumed that

Bf =

Bb

Bs

 with



Bb =


1 0 0 x 0 y 0 x y 0

0 1 0 0 x 0 y 0 x y

0 0 1 0 y c̄ x/c̄ 0 0 0


Bs =

0 0 0 −1 −c̄ 0 0 −y 0

0 0 0 0 0 −1/c̄ −1 0 −x


(2.25c)

with c̄ = a2/b2. Both, membrane and �exural stresses are obtained starting from a polynomial

expansion in Cartesian coordinates x, y and using Pian's equilibrium �lter [15, 16, 17].

2.4.2 Assumed displacements

The interpolation of the displacement �eld u is controlled by the 24-component vector ue,

collecting displacements and rotations of the four nodes of the element. Since the stress ap-

proximation satis�es the equilibrium equation, the internal work can be obtained by integrating

on the element contour. Therefore, only contour displacements are needed. The displacement

interpolation uk along element side k is de�ned as the sum of three contributions

uk[ζ] = ukl[ζ] + ukq[ζ] + ukc[ζ] (2.26a)

where −1 ≤ ζ ≤ 1 is a one-dimensional coordinate along element side k. The �rst term is a

linear expansion

ukl[ζ] =
1

2
[(1− ζ)ui + (1 + ζ)uj ],


ui = [uix, u

i
y, u

i
z]
T

uj = [ujx, u
j
y, u

j
z]
T

(2.26b)

where superscripts i, j denote the nodes of element side k. The second and third terms correspond

to quadratic and cubic expansions for the normal component of the element side displacements

ukq[ζ] =
1

8
Lk(ζ2 − 1)

 (ϕiz − ϕjz)nk

−(ϕi −ϕj)Tnk

 , ukc[ζ] =
1

4
Lk(ζ − ζ3)

nk
0

 θ (2.26c)

with

ϕi = [ϕix, ϕ
i
y]T , ϕj = [ϕjx, ϕ

j
y]T (2.26d)
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where nk = [nkx, nky]T is the normal to the element side and Lk is the side length; and θ is the

average in-plane distortional rotation, de�ned as

θ =
1

4

4∑
i=1

ϕiz − ϕ̄z (2.26e)

with ϕ̄z the average in-plane rigid rotation of the element

ϕ̄z = N θume (2.26f)

N θ =
1

4Ωe
[−d4y, d4x, −d1y, d1x, −d2y, d2x, −d3y, d3x]

By de�nition, the linear part ukl and the quadratic part ukq are continuous at the inter-

element boundaries. The cubic contribution ukc corresponds to an incompatible mode, which

is added to avoid rank defectiveness [16]. Finally, a simple bilinear interpolation for bending

rotations is used along the side

ϕk[ζ] =
1

2
[(1− ζ)ϕi + (1 + ζ)ϕj ], ϕk[ζ] = [ϕx, ϕy]T (2.26g)

2.4.3 Compliance and compatibility

Introducing assumed stress (2.25) and assumed displacements (2.26) into the mixed strain energy

(2.1), the mixed strain energy Φe of the element can be de�ned as follows

Φe = βTeDeue −
1

2
βTeHeβe (2.27a)

where He and Qe are the element compliance matrix and the compatibility matrix respectively.

The compliance matrix can be written as follows

He =


Hm Hmb 0

Hb 0

sym Hs

 (2.27b)

where

Hm =

∫
Ωe

{
BT
mE

−1
m Bm

}
dΩ, Hmb =

∫
Ωe

{
BT
mE

−1
mbBb

}
dΩ (2.27c)

and

Hb =

∫
Ωe

{
BT
b E
−1
b Bb

}
dΩ, Hs =

∫
Ωe

{
BT
s E
−1
s Bs

}
dΩ (2.27d)

Since the compatibility matrix is due to self-equilibrated stress interpolation, and it is eval-
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uated trough analytical contour integration, it can be written as follows

Qe =

Qm 0

0 Qf

 , Qm =

4∑
k=1

Qmk +Qc , Qf =

4∑
k=1

Qfk (2.27e)

The matrices Qmk and Qfk are de�ned as follows

βTmQmkuem =

∫ 1

−1

tTm[ζ]NT
mkumk[ζ] dζ

βTmQcuem =

∫ 1

−1

tTm[ζ]NT
mkuc[ζ] dζ

βTfQfkuef =

∫ 1

−1

tTf [ζ]NT
fkufk[ζ] dζ (2.27f)

where the vectors uem and uef collect the nodal displacements and rotations describing the mem-

brane and �exural behavior, respectively. Finally, the matrices Nmk,Nfk split the components

of the normal to the element side, as follows

Nmk =

nkx 0 nky

0 nky nkx

 , Nfk =


0 0 0 nkx nky

nkx nky 0 0 0

−nky 0 −nkx 0 0

 . (2.27g)

2.5 High order energy variations

To apply the asymptotic approach to the corotational version of element MISS-4, explicit ex-

pressions for the second-, third- and fourth�order energy variations need to be computed [8]

with respect to a con�guration that can be either the initial (u0 in (1.7a)) or the bifurcation

one (u0 + λû in (1.7a)). For computation of second or higher order terms, the constant terms

u0 and u0 + λû are irrelevant, so at the element level we can assume de = 0.

The corotational approach is very convenient to express the strain energy variations, because

the only nonlinearity is limited to the geometrical relationship g[de], eq. (2.16). The Taylor

expansion of this relationship can be written as

g[de] = g1[de] +
1

2
g2[de,de] +

1

6
g3[de,de,de] +

1

24
g4[de,de,de,de] + · · · (2.28)

where gn are n�multilinear symmetric forms which express the nth Fréchet variations of function

g[de]. In the following, the vector ui (i = 1 . . . 4) denotes a generic variation of the global �nite

element con�guration vector and the vector uei = Aeui = {tei,dei}T denotes the corresponding

vector at the element level, that collects stress and displacement parameters. With the same

notation, u0 and ue0 are the global and element reference con�guration vectors.
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2.5.1 Second-order variations

Second�order energy variations are used in the evaluation of the fundamental path (1.7a) and

the buckling modes v̇. In both cases, using expansion (2.28) and the energy expression (2.17),

the contribution of the element to the energy variation can be expressed as

Φ
′′

eue1ue2 = tTe1Deg1[de2] + tTe2Deg1[de1]− tTe1Hete2 + tTe0Deg2[de1,de2] (2.29)

Introducing matrices L1 and G[te] through the following equivalences

L1dej = g1[dej ] , d
T
e1G[te0]de2 = tTe0Deg2[de1,de2], (2.30)

eq. (2.29) can be rearranged in a more compact form:

uTe1Φ
′′

eue2 = uTe1Keue2 , Ke =

 −He DeL1

LT1D
T
e G[te0]

 (2.31)

The mixed tangent matrix of the element Ke can be directly used, through a standard

assemblage process, to obtain the overall sti�ness matrix K

uT1 Φ
′′
u2 = uT1Ku2 , K =

∑
e

AT
eKeAe (2.32)

2.5.2 Third-order variations

Third-order energy variations are used in Koiter analysis to evaluate the third�order coe�cients

and are also used to evaluate the secondary force vectors. The element contribution to the scalar

coe�cients can be easily calculated using the general formula

Φ
′′′

e ue1ue2ue3 = tTe1Deg2[de2,de3] + tTe2Deg2[de3,de1] + tTe3Deg2[de1,de2]

+ tTe0Deg3[de1,de2,de3]

(2.33)

Then the element contributions can be simply added to get the global values. On the other

hand, taking advantage of the above expression, the element contribution to vector secondary

force vector can be evaluated by

Φ′′′e ue1ue2 = pe =

 Deg2[de1,de2]

G[te1]de2 +G[te2]de1 + q[te0,de1,de2]

 (2.34)
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where vector q is de�ned according to the following condition:

dTe3q[te0,de1,de2] = tTe0Deg3[de1,de2,de3] (2.35)

Then, the overall vector is obtained by standard assemblage

Φ′′′u1u2 =
∑
e

AT
e pe[ue1,ue2]

2.5.3 Fourth-order variations

Finally, fourth-order energy variations, used to evaluate the fourth�order coe�cients, can be

computed by summing the relevant element contributions based on the following expression

Φ
′′′′

e ue1ue2ue3ue4 = tTe1Deg3[de2,de3,de4] + tTe2Deg3[de3,de4,de1]

+ tTe3Deg3[de4,de1,de2] + tTe4Deg3[de1,de2,de3]

+ tTe0Deg4[de1,de2,de3,de4]

(2.36)



Chapter 3

MISS-4 �at shell �nite element:

numerical assessment

3.1 Introduction

In this chapter, an investigation on the performance of the proposed shell element for linear

static and buckling analysis of laminated composite folded plates is presented. First, the static

linear analysis of laminated composite plates for di�erent laminate stacking sequences (LSS)

and span-to-thickness ratios is performed. Particular attention is given to the point-wise and

global convergence of the stress resultant to elucidate the behavior of the element for regular and

distorted mesh. Then, buckling of simply supported plates is reported. Buckling modes, loads,

and their convergence are reported. Finally, linear static and buckling analysis of three folded,

laminated-composite, are reported. The �rst is a clamped Ω section under shear force. The

second is a clamped C shaped section under shear force while the third is a clamped box under

torsional couple. Di�erent LSS are considered. Global convergence for linear static analysis and

convergence on buckling load, buckling modes and comparison with S8R are given.

3.2 Linear static analysis of laminated plates

The benchmark for static linear analysis is a simply supported square plate of side a (see �g. 3.1)

under uniform distributed load q. The lamina elastic properties are: E1 = 25, E2 = 1, G12 =

G13 = 0.5, G23 = 0.2, ν12 = 0.25.

Cross-ply and angle-ply laminates are considered, as follows:

i.. A symmetric cross-ply laminate [0/90/0] with SS1 boundary [67, Section 3.1.3] and shear

factors k11 = 235445/404004, k12 = 0, k22 = 289/360 [68];

22
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Figure 3.1: Simply supported square plate. Geometry and mesh.

ii.. An antisymmetric cross-ply laminate [0/90], with SS1 boundary and shear factors k11 =

k22 = 297680/362481, k12 = 0 [68];

iii.. An antisymmetric angle-ply [−45/45] [69];

iv.. An angle-ply [−30/60/− 60/30], with SS2 boundary condition and shear factors k11 =

k22 = k12 = 5/6 [69].

All results are obtained for side-length/thickness ratio a/t = 10, 20, 100. Analytical solutions

[42] are used as reference, using the following dimensionless parameters for displacement and

stress resultants:

w̄ = w
100E2

qt (a/t)
4 , N̄x = Nx

100

q t (a/t)
2 , S̄y = Sy

100

q t (a/t)
(3.1)

and 
M̄x

M̄y

M̄xy

 =
100

q t2 (a/t)
2


Mx

My

Mxy

 (3.2)

being w the transversal displacement of the plate.

Point-wise converge for displacements and stress resultant are listed in Tables 3.1, 3.2,

3.3 and 3.4. The percentage error is de�ned as

error% = 100× numerical− analytical

analytical
(3.3)

It can be seen in Tables 3.1�3.4 that the convergence to the analytical solution is very fast

for all values of span-to-thickness ratio.

Stress resultant convergence are graphed in Figs. 3.2, 3.3, 3.4 and 3.5. The solid line repre-

senting h2 is shown for reference; where h is the element size of the regular mesh, or span over

number of elements per side for irregular meshes. It can be seen that the element displays h2

convergence for a variety of laminates and span-to-thickness ratios, and that the h2 convergence
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is maintained for distorted mesh (Fig. 3.6).

Point-wise and overall convergence properties are investigated using also distorted mesh with

d = 0.2 a (see Fig. 3.1). The convergence rate measured using s-norm [70], shows that the rate

of convergence is preserved also for distorted mesh (Fig. 3.6).

The results are compared with the S8R laminated plate elements implemented in the commer-

cial software Abaqus [84, 67] and when available with mixed �nite element available in literature

[68].

% error
a/t Mesh w̄A M̄E

x M̄E
y M̄E

xy S̄E
y

10 4x4 3.152 1.197 8.011 21.016 6.552
8x8 0.745 0.127 1.053 4.986 1.963
16x16 0.188 -0.019 0.2 1.199 0.506
32x32 0.051 -0.006 0.043 0.316 0.111
64x64 0.017 -0.001 0.009 0.095 0.016

20 4x4 3.931 -0.569 9.537 22.012 1.151
8x8 0.929 -0.174 1.441 4.463 1.402
16x16 0.226 -0.067 0.315 0.983 0.481
32x32 0.063 -0.017 0.079 0.227 0.11
64x64 0.013 -0.003 0.023 0.038 0.015

100 4x4 4.886 -4.264 9.921 24.363 -17.493
8x8 1.087 -0.338 1.711 4.56 -3.414
16x16 0.268 -0.086 0.38 0.904 0.015
32x32 0.06 -0.022 0.101 0.205 0.068
64x64 0.015 -0.004 0.025 0.041 0.005

Dimensionless analytical values
a/t - w̄A M̄E

x M̄E
y M̄E

xy S̄E
y

10 - -1.168 7.016 1.15 -0.317 18.955
20 - -0.796 7.432 0.888 -0.264 19.976
100 - -0.671 7.594 0.789 -0.243 20.448

Table 3.1: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments and shear forces at point E, for regular mesh and
span-to-thickness ratios on a simply supported square plate [0/90/0] under uniform distributed
load.

3.2.1 Buckling analysis of a laminated square plate

The buckling analysis of a laminated square plate (l × l × t) is presented here. The geometry,

material properties, boundary, and load conditions are taken from [86]. The plate is simply

supported on its boundary and loaded with a uniform edge pressure λ. The thickness is t =

1.272 10−4 m. The length is l = 0.508 m. The LLS is [0/90/90/0]S . The lamina materials

properties are E1 = 181 GPa, E2 = 10.27 GPa, G12 = 7.17 GPa, ν12 = 0.28. The critical loads

are listed in Table 4.1 and the buckling modes are shown in Fig. 4.1. Note that h2 convergence

is achieved for buckling loads (i.e., eigenvalues) as shown in Fig. 4.2. While the results obtained

using the proposed element coincide with those obtained using Abaqus S8R elements when both

use a 64x64 mesh, it must be noted that the proposed element has only 24 dof in comparison to

48 dof for S8R.
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Figure 3.2: Simply supported square plate [0/90/0]. Convergence of bending moments and
shear forces at point E, for regular for various values of span-to-thickness ratio. The solid
line represents h2 (shown for reference). S8R (Abaqus) and HQ4 [68] results are shown for
comparison.
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Figure 3.3: Simply supported square plate [0/90]. Convergence graphs for �exural moments,
shear stress resultant, and axial stress resultant at point E for di�erent span-to-thickness ratio
using regular mesh. S8R (Abaqus) and HQ4 [68] results are shown for comparison.
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Figure 3.4: Simply supported square plate [−45/45]. Convergence graphs for �exural moments
resultant at points A and C for di�erent span-to-thickness ratios using regular mesh. S8R
(Abaqus) and HQ4 [68] results are shown for comparison.
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Figure 3.5: Simply supported square plate [30/− 60/60/− 30]. Convergence graphs for �exural
moments resultant at points A for di�erent span-to-thickness ratio using regular mesh. S8R
(Abaqus) and HQ4 [68] results are shown for comparison.



28

-4

-3

-2

-1

 0

-2 -1  0

lo
g
(E

σ/
E

re
f)

log(h)

-4

-3

-2

-1

 0

-2 -1  0
lo

g
(E

σ/
E

re
f)

log(h)

[0/90/0] [0/90]

-5

-4

-3

-2

-1

 0

-2 -1  0

lo
g
(E

σ/
E

re
f)

log(h)

-4

-3

-2

-1

 0

-2 -1  0

lo
g
(E

σ/
E

re
f)

log(h)

[−45/45] [30/− 60/60/− 30]

Figure 3.6: Simply supported square plate for di�erent LSS. Convergence graphs using s-norm,
for di�erent span-to-thickness ratio using regular and distorted mesh.
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Figure 3.7: Square plate [0/90/90/0]S under uniaxial compression. Buckling modes.
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Figure 3.8: Square plate [0/90/90/0]S under uniaxial compression. Convergence of buckling
loads with mesh re�nement. The solid line represents h2 (for reference).
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% error
a/t Mesh w̄A M̄E

x M̄E
xy S̄E

y

10 4x4 1.553 1.683 7.541 -29.66
8x8 0.359 0.231 2.138 -16.246
16x16 0.087 0.032 0.474 -8.555
32x32 0.021 0.002 0.062 -4.389
64x64 0.005 -0.005 -0.025 -2.222

20 4x4 1 0.677 9.609 -30.793
8x8 0.244 0.126 3.044 -16.347
16x16 0.057 0.008 0.812 -8.538
32x32 0.006 -0.005 0.171 -4.372
64x64 0 -0.006 0.006 -2.213

100 4x4 0.724 -0.144 11.321 -32.146
8x8 0.194 0.008 4.041 -16.747
16x16 0.041 -0.008 1.257 -8.618
32x32 0.006 -0.008 0.34 -4.376
64x64 0 -0.008 0.071 -2.21

Dimensionless analytical values
a/t - w̄A M̄E

x M̄E
xy S̄E

y

10 - -1.951 6.268 -1.604 -34.703
20 - -1.759 6.291 -1.577 -34.881
100 - -1.698 6.301 -1.559 -34.937

Table 3.2: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments and shear forces at point E, for regular mesh and
span-to-thickness ratios on a simply supported square plate [0/90] under uniform distributed
load.

3.3 Linear and buckling analysis of laminated folded plates

The linear static and buckling analysis of three folded plate structures are here presented here.

The �rst is a clamped beam with Ω-section under shear force, the second is a clamped beam

with C-section under shear forces, and the third is a clamped box beam subjected to torque.

Each folded section is analyzed for various laminate stacking sequences (LSS). For the �rst

section, static linear analysis is performed and the convergence using s-norm is reported. For

the second and third sections, buckling convergence as a function of mesh re�ning is discussed.

The predictions are compared with results obtained using element S8R in Abaqus.

3.3.1 Clamped beam with Ω-section under shear force

Linear static analysis of a clamped beam with Ω section is reported here. The geometry is

shown in Fig. 3.9. The length is l = 100 mm and the width is a = 2.5 mm. Three thickness

are considered a/t = 2, 5/2, 10/3. The mechanical properties of each lamina are E1 = 104

GPa; E2 = 10.3 GPa; G = 5.15 GPa; ν12 = 0.021 and two LSS are analyzed, [0/90/0/90] and

[0/45/0/45]. A line load q = 25 kN/mm is applied. The global convergence using s-norm is

reported in Fig. 3.10 and a rate of convergence h2 is shown.
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Figure 3.9: Clamped beam with Ω-section. Geometry, boundary conditions and mesh.
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Figure 3.10: Clamped beam with Ω-section for di�erent LSS. Convergence graphs using s-norm,
for di�erent values of a/t using regular mesh. The solid line represents h2 (shown for reference).
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% error
a/t Mesh w̄A M̄A

x M̄C
xy S̄B

y N̄C
x

10 4x4 1.29 9.298 5.699 -30.38 -21.691
8x8 0.305 2.132 2.862 -16.845 -11.659
16x16 0.078 0.511 1.109 -8.961 -5.901
32x32 0.023 0.121 0.363 -4.621 -2.492
64x64 0.008 0.027 0.098 -2.345 -0.93

20 4x4 0.513 8.206 5.899 -31.78 -18.554
8x8 0.147 2.054 2.659 -17.046 -6.974
16x16 0.037 0.497 0.998 -9.026 -3.673
32x32 0.009 0.117 0.33 -4.656 -1.808
64x64 0 0.024 0.087 -2.365 -0.761

100 4x4 0.136 7.741 6.274 -33.255 -17.434
8x8 0.078 2.008 2.885 -17.702 -3.964
16x16 0.019 0.493 0.991 -9.173 -1.077
32x32 0 0.12 0.288 -4.679 -0.421
64x64 0 0.027 0.066 -2.371 -0.234

Dimensionless analytical values
a/t - w̄A M̄A

x M̄C
xy S̄B

y N̄C
x

10 - -1.279 3.72 -4.381 -32.788 -0.774
20 - -1.091 3.745 -4.479 -32.517 -0.697
100 - -1.031 3.755 -4.552 -32.398 -0.641

Table 3.3: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments at points A, C, shear forces at point B and membrane
stress resultant at point C, for regular mesh and span-to-thickness ratios on a simply supported
square plate [−45/45] under uniform distributed load.

3.3.2 Clamped beam C-section under shear force

The buckling analysis of folded C-section [118] is presented here. The geometrical data (Fig. 3.11)

are l = 36 m, b = 2.025 m, a = 6.05 m and t = 0.05m. The concentrated load is F = 250 KN.

The mechanical properties of each lamina are E1 = 30.6 GPa; E2 = 8.7 GPa; G12 = 3.24 GPa;

G23 = 2.29 GPa; ν12 = 0.29 and two LSS, here called LSS1 and LSS2, are analyzed. LSS1 is

shown in Fig. 3.11 and LSS2 is a [0/90/0] for all three panels in the C-section. Buckling loads

are reported in Table. 3.6, achieving h2 convergence, as shown in Fig.3.12. The corresponding

modes are graphed in Fig. 3.13.

Figure 3.11: Clamped beam C-section. Geometry, boundary condition and mesh.
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Figure 3.12: Clamped beam with C-section under shear forces for di�erent LSS. Convergence of
buckling loads with mesh re�nement. The solid line represents h2 (for reference).

λ1 λ2

λ3 λ4

Figure 3.13: Clamped beam with C-section for LSS=LSS1. Buckling modes corresponding to
buckling loads λ1..λ4.
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% error
a/t Mesh w̄A M̄A

x M̄A
y S̄D

y

10 4x4 2.818 0.413 2.057 -27.937
8x8 0.54 -0.211 0.038 -15.242
16x16 0.097 -0.1 -0.084 -7.994
32x32 0.011 -0.034 -0.034 -4.096
64x64 0 -0.014 -0.014 -2.071

20 4x4 2.313 -0.345 1.507 -28.723
8x8 0.397 -0.32 -0.02 -15.368
16x16 0.055 -0.121 -0.091 -8.029
32x32 0 -0.04 -0.036 -4.109
64x64 0 -0.016 -0.014 -2.08

100 4x4 2.066 -0.465 1.573 -29.419
8x8 0.329 -0.366 -0.034 -15.88
16x16 0.045 -0.128 -0.088 -8.1
32x32 0 -0.042 -0.036 -4.11
64x64 0 -0.016 -0.016 -2.078

Dimensionless analytical values
a/t - w̄A M̄A

x M̄A
y S̄D

y

10 - -0.926 7.126 4.419 -37.18
20 - -0.731 7.274 4.413 -37.117
100 - -0.668 7.326 4.412 -37.109

Table 3.4: Percentage error with respect to the analytical solution values [85] on the transversal
displacement at point A, bending moments at point A and shear force at point D, for regular
mesh and span-to-thickness ratios on a simply supported square plate [30/− 60/60/− 30] under
uniform distributed load.

mesh λ1 λ2 λ3 λ4 λ5 λ6

4x4 1.757 4.505 11.140 11.852 17.938 19.140
8x8 1.548 3.575 7.083 8.008 10.677 11.827
16x16 1.500 3.365 6.202 7.166 8.9565 10.438
32x32 1.489 3.315 6.006 6.968 8.5765 10.131
64x64 1.486 3.303 5.959 6.911 8.4855 10.057

64x64 (S8R) 1.486 3.299 5.944 6.904 8.460 10.033

Table 3.5: Square plate [0/90/90/0]S under uniaxial compression. Convergence of buckling loads
with mesh re�nement.

3.3.3 Clamped box under torsional couple

The buckling analysis of a clamped box under torsional couple is presented here. The geometry,

boundary conditions, and load are shown in Fig. (3.14). The geometrical data are l = 1000

mm, a = 100 mm and t = 10 mm. The line load is q = 25 kN/mm. Two LLS are considered:

[45/ − 45/45/ − 45/45]s and [15/ − 15/15/ − 15/15]s. The elastic modula for the lamina are:

E1 = 104 GPa; E2 = 10.3 GPa; G12 = 5.15 GPa and ν12 = 0.021.

The lower four buckling modes are listed in Table 3.7, where comparison with S8R elements

have been made, and h2 convergence is shown in Fig. 3.15. Finally, buckling modes, for LSS

[45/− 45/45/− 45/45]s, are shown in Fig. 3.16.
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LSS1 LSS2

mesh λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

2 1.1209 1.5855 2.1198 2.1807 0.6902 1.6842 2.0256 2.0550
4 1.1010 1.5750 1.6623 1.6963 0.6714 1.5714 1.6667 1.6882
8 1.0952 1.5483 1.5767 1.5859 0.6668 1.5299 1.5836 1.6029
16 1.0935 1.5242 1.5541 1.5760 0.6657 1.5186 1.5633 1.5811
16 (S8R) 1.0736 1.5164 1.5450 1.5919 0.6670 1.5200 1.5865 1.6080

Table 3.6: Clamped beam C-section for di�erent LSS. Convergence of buckling loads with mesh
re�nement. The values on the �rst column refer to the numbers of the element along b.

Figure 3.14: Geometry, boundary conditions, and load for clamped box subjected to torque load.
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Figure 3.15: Clamped box under torsional couple for di�erent LSS. Convergence of buckling
loads with mesh re�nement. The solid line represents h2 (for reference).

λ1 λ2

λ3 λ4

Figure 3.16: Clamped box under torsional couple with LSS [45/ − 45/45/ − 45/45]s. Buckling
modes corresponding to buckling loads λ1 · · ·λ4.
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[45/− 45/45/− 45/45]s [15/− 15/15/− 15/15]s
mesh λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

2 424.81 453.06 488.72 535.83 195.29 204.22 272.38 278.44
4 241.50 306.71 316.28 391.71 123.95 130.78 193.82 200.86
8 202.34 261.70 273.92 334.97 111.71 119.92 171.88 179.67
16 190.19 246.10 263.15 314.52 107.76 116.36 167.09 175.02
20 187.82 242.93 261.78 311.30 107.08 115.71 166.43 174.38
24 186.18 240.76 260.90 309.56 106.64 115.29 166.03 173.99

24 (S8R) 184.83 242.78 258.47 307.13 106.53 115.63 165.14 173.40

Table 3.7: Clamped box under torsional couple for di�erent LSS. Convergence of buckling loads
with mesh re�nement. The values on the �rst column refer to the numbers of the element along
a.

3.4 Further remarks

A simple mixed quadrilateral 3D plate �nite element with 6 dof/node for linear static and

buckling analysis of plate/folded plate has been presented. An assessment of performance is

given. In the linear analysis case, numerical results show a global convergence h2 measured in

s-norm for di�erent LSS and thickness-to-span ratios. The point-wise convergence is comparable

to that of displacement based elements with higher number of dof, such as S8R. This makes the

proposed element particularly suitable for stress resultant recovery in the case of coarse meshes.

The use of drilling rotation, within a symmetric formulation and without penalty functions (thus

avoiding spurious modes), and accurate evaluation of displacements and rotation, makes the

element suitable for folded plate structures and geometrically nonlinear analysis when coupled

with a corotational formulation. The same behavior shown in linear analysis of plates is preserved

for linear analysis and buckling analysis of folded plates. Not only h2 convergence is shown for

the evaluation of buckling loads but also very low errors are seen, on average, for coarse meshes.



Chapter 4

Koiter asymptotic analysis of

laminated composite plates

4.1 Introduction

In the following, three benchmarks are analyzed using Koiter asymptotic analysis. The �rst

is a simply supported plate under uniaxial compression with di�erent LSS [86]. The accuracy

in the recovery critical and post-critical behavior are shown and the performance in terms of

computational cost are compared with Riks path-following analysis. The second is a hinged

cylindrical roof, that is a classical test [119] with a strong non linear precritical behavior and,

as in the �rst benchmark, with a post-critical dominated by the �rst buckling mode. The last

is a channel column, studied experimentally by [120] and aimed to show the accuracy and good

performance in the analysis of folded plate including buckling mode interaction [20].

The accuracy and reliability of the results are closely related to the use of geometrically exact

structural models and mixed formulation, the latter is necessary to prevent extrapolation locking

phenomena [14]. The use of a corotational formulation coupled with a mixed �nite element allows

to easily satisfy previous requirements.

Moreover, Koiter approach being based on asymptotic expansion, allows to recover the equi-

librium path in an approximate fashion. The best accuracy is available for the precritical and

the initial post-critical behavior. A study of convergence can be found in [121], for the Koiter

asymptotic approach called simple linear algorithm as proposed in [14] and very good results

was proven. The currently used approach called full quadratic algorithm (see [6] and references

therein) has shown better performance than simple linear one in all experiences done.

38
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4.2 Square plate under compression

The buckling and post-buckling analysis of a laminated, simply-supported square plate under

uniaxial membrane load [86] is presented and comparison with Riks path-following analysis using

ABAQUS [84] is made. The lamina materials properties are E1 = 181 GPa, E2 = 10.27 GPa,

G12 = 7.17 GPa, ν12 =0.28. The thickness is t = 1.27210−4 m while the length is l = 0.508 m.

To evaluate accuracy, an test is performed for a simply supported [0/90]4S square plate (h×h)

subjected to uniaxial edge pressure λ. The critical loads are listed in Table 4.1 and the buckling

modes are shown in Fig. 4.1. Note that h2 convergence is achieved for critical values as shown

in Fig. 4.2.

[0/90]4S

mesh λ1 λ2 λ3 λ4

4x4 1.7562 5.0349 12.089 12.543
8x8 1.5472 4.0021 7.0816 9.0840
16x16 1.5002 3.7684 6.2008 8.1365
32x32 1.4892 3.7126 6.0054 7.9138
64x64 1.4867 3.6990 5.9588 7.8593

64x64 (S8R) 1.4861 3.6947 5.9443 7.8414

Table 4.1: Square plate under uniaxial compression. Convergence of buckling loads with mesh
re�nement.

λ1 λ2

λ3 λ4

Figure 4.1: Square plate under uniaxial compression. Buckling modes corresponding to buckling
loads λ1, · · · , λ4.
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(a) (b)
Figure 4.2: Square plate (h× h) under uniaxial compression. (a) convergence of buckling loads
and (b) convergence of post-critical quartic form. Solid line is for reference.

Then, the accuracy of the post-critical behavior is investigated by looking at the convergence

of the fourth order form Bijhk [6], which is reported in Fig. 4.2, showing convergence of of order

h2.

Then, the post-critical behavior for di�erent LLS was calculated. The equilibrium paths

graphed in Fig. 4.3 when compared with those obtained using path-following analysis con�rm

good accuracy both the pre-critical and in the initial post-critical behavior. As expected, up

to the initial post-critical range the two equilibrium paths coincide while over the accuracy

gradually decrease.

Finally, to compare the performance of Koiter's analysis with that of Riks path�following

analysis, the computational cost of one analysis is reported. The aim is to evaluate the time

needed for both analysis. For Koiter analysis, a 64x64 element mesh (about 25000 dofs) was

employed to analyze only one imperfection. The most time is spent performing the linear analysis

(see eq. 3 in [8]), the buckling (see eq. 4 in [8]) and to evaluate the post-critical energy variations

(see eq. 8 in [8]). Just a little fraction of the time is spent to recover the equilibrium path (eq.

9 in [8]). Note that only the last step needs to be redone for analyzing a di�erent imperfection.

The total time spent for each problem was about 12 seconds, where less than a tenth of second

was spent for recovering the equilibrium path.

The Riks analysis is performed using a coarser, 40x40 mesh of linear S4R elements (about

9600 dofs) in Abaqus. The analysis is particularly sensible to the Risk control settings, including
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Figure 4.3: Square plate under compression. Equilibrium paths recovered using Koiter asymp-
totic analysis compared with that obtain Riks analysis. The load factor is indicated with λ while
w denotes the transversal displacement of the center of the plate.

the initial imperfection, which must be chosen by the analyst either in the load or in the initial

geometry. For this comparison only, a geometrical imperfection in the form of the �rst buckling

mode with the maximum magnitude displacement equal to 10−4 mm is used. The initial step

length is assumed to be a tenth of the total arc length, and the later is assumed to be 1.0. The

maximum incrementation is assumed to be 10. The other Riks control settings are left at their

Abaqus default values. These control settings are optimized trough a careful tuning for this

particular test. Note that each new test needs news settings.

Each Riks analysis takes about 60 steps within a 1 or 2 equilibrium iterations, which impose

matrix reforming, decomposition, and solving a linear system for each iteration. Note that the

run must be fully redone for each new imperfection. The total time spent for one imperfection

is reported in Table 4.2. The computations are performed on a Intel(R) Xeon(R) CPU E5-2620

2.00Ghz Dual Core, 32 GB Ram on a single core for both, Koiter and Riks analysis.

A shown in Table 4.2, the Koiter analysis is faster for every analysis. Obviously, Koiter's

analysis becomes even more e�cient when di�erent imperfections are analyzed. When analyzing

multiple imperfections, each imperfection requires the same time for Riks analysis, while the

cost of Koiter's analysis becomes becomes negligible because only the nonlinear system (see eq.

9 on [8]) needs to be solved.
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problem Koiter Riks

1 11 s 39 s
2 14 s 38 s
3 13 s 54 s
4 13 s 37 s
5 11 s 36 s
6 13 s 58 s
7 13 s 44 s

Average 12.5 s 43.7 s

Table 4.2: Koiter's vs Riks analysis timing

4.3 Hinged cylindrical roof

The popular hinged cylindrical roof [119, 116] is analyzed in this section. The geometry, bound-

ary condition and load are represented in Fig. 4.4. The lenght is l = 2.54 m, the radius is

R = 25.40 m and the angle is β = 0.1 rad. The base load is P = 103 N.

Figure 4.4: Hinged cylindrical roof. Geometry, boundary and load condition.

Three cases are considered. The �rst is a single layer with isotropic material and elastic

modula E = 3102.75 MPa, ν = 0.3 and the thickness t = 0.127 m. The second and the third

are laminated composite with LSS [0/90/0] and [90/0/90] respectively. The materials constants

are E1 = 3300 MPa, E2 = 1100 Mpa, G12 = 660 Mpa, ν = 0.25, and the thickness is t = 0.127

m. The interesting aspect of this test is the strong nonlinearity of the pre-critical path. The

�rst buckling load is λ1 = 4.5607 for isotropic single layer, λ1 = 3.5849 and λ1 = 2.2177 for

LSS [0/90/0] and [90/0/90] respectively. The corresponding mode is represented in Fig. 4.5 for

isotropic single layer.

The equilibrium path recovered for laminated composite and for isotropic material are re-

ported in Fig 4.6 in comparison with Riks analysis. Note that the limit load is about one-half

of the value of the �rst buckling load, for all cases.

The good representation of pre-critical behavior, limit load, and initial post-critical path
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λ1

Figure 4.5: Hinged cylindrical roof. Buckling mode corresponding to buckling load λ1.
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Figure 4.6: Hinged cylindrical roofs. Equilibrium paths. The load factor is indicated with λ
while denotes w (mm) is the transversal displacement of the center of the cylindrical roofs.
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is clear also in Fig. 4.6 for this particularly di�cult case. Really, the Koiter equilibrium path

coincide with that of Riks analysis up to the limit point. The expected accuracy is shown while

over the limit point the accuracy gradually decrease.

4.4 Channel section under compression

Figure 4.7: Channel section. Geometry, boundary, and load conditions. Dimensions are ex-
pressed in mm.

A channel section under compression is analyzed next. Experimental results for this problem

are available in [120], being one of their more recent results in this �eld [122, 123, 124]. The

geometry, load, and boundary conditions, as well as the LSS for each panel of the channel section

are reported in Fig. 4.7.

The material data are E1 = 130.71 GPa, E2 = 6.36 GPa, G12 = 4.18 GPa, ν = 0.32.

The results of buckling analysis are reported in Fig. 4.8 for the six lower buckling modes. The

analysis is performed with a �ne mesh (16 elements on the wings, 32 on the web, and 120 along

the height). Mode de�ections involve both the wings and the web. Moreover, some of the critical

loads are very close.

The equilibrium paths are reported in Fig. 4.9. Koiter's analysis is performed with a rough

mesh (8 element on the wings, 16 on the web, and 60 along the height). The �rst six modes
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λ1 = 2983.38 λ2 = 3346.53 λ3 = 3835.87

λ4 = 3980.08 λ5 = 4390.66 λ6 = 4454.69

Figure 4.8: Channel section. Buckling modes corresponding to buckling loads λ1, λ2, · · ·λ6.
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are reported. Two displacements components are plotted: the axial displacement u (mm) of the

end section and the transversal displacement w (mm) at a quarter of the height in the center

of the web. The equilibrium path recovered with Koiter's analysis is compared with Rik's path-

following analysis. The results clearly show the accuracy in the recovery the initial post-critical

behavior.
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Figure 4.9: Channel section. Equilibrium paths recovered using Koiter asymptotic analysis
compared with that obtain Riks analysis. Load factor is indicated with λ and it is normalized
on the �rst buckling load λ1. In the abscissa are plotted the axial displacement u of the end
section and the transversal displacement w at a quarter of the height in the center of the web.

4.5 Further remarks

Koiter's asymptotic analysis represents a valid, less computational expensive alternative to Riks

path-following analysis for the recovery the initial post-critical behavior of composite structures,

even those displaying strong pre-critical behavior and buckling mode interaction. Its use in

the context of laminated composite folded plate (shell) structures has been demonstrated (see

also [48]). The accuracy of the proposed element has been checked and the convergence of

the critical and post-critical quantities show good performance, which can be attributed to the

simplicity of the linear �nite element employed and the choice of corotational formulation for

the extension to nonlinear analysis of folded laminated composites. The computational cost has
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been monitored and the results show the advantage of Koiter's analysis versus Riks analysis,

including considerations of accuracy and robustness for di�cult test cases.



Chapter 5

Imperfection sensitivity analysis

5.1 A rack member in compression

In the following, an imperfection sensitivity analysis for RS 125 x 3.2 upright pallet racks in

compression with and without perforations (net and brut) is presented. In the following, the

brut section is indicated with the acronym RSB, while the perforated section with RSN. The

geometry of the cross-section is shown in Fig. (5.1), while the details relating to the cross-section,

perforations, material, experimental tests and numerical simulations can be found in [94, 95],

the thickness considered for RSB and RSN sections is equal to 3.2 mm.

Figure 5.1: Geometry of RS 125 section (dimensions are expressed in mm) and boundary con-
ditions.

The experimental work done in [94] covers various lengths of the columns, i.e. (i) stub

columns; (ii) upright member specimens to check the in�uence of distortional buckling; (iii)

48
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specimens of lengths equal to the half-wave length of distortional buckling; (iv) specimens of

lengths corresponding to interactive buckling range. It is well known that the e�ect of imper-

fections is at its maximum in the interactive buckling range. Due to the coupling of buckling

modes and imperfections the ultimate load drops signi�cantly. According to [94] the interactive

point is 2200 mm. Our interest is to see the in�uence of imperfections in the coupling range and

the participation of the buckling modes. Consequently, the lengths considered in the analyses

range from 1400 mm to 2500 mm. Increments of 100 mm have been considered. Firstly, only

geometrical imperfections have been considered, in particular the ũ (see Eqs. (1.8) and (1.9))

being assumed as

ũ = ũg + ũd (5.1)

where ũg and ũd are global and distortional/local imperfections that are assumed as linear

combinations of global v̇gi and distortional/local v̇di buckling modes, that is

ũ(g) =
∑
i

riv̇
g
i i = 1 · · ·mg , ũ(d) =

∑
i

riv̇
d
i i = 1 · · ·md (5.2)

where ri are random numbers, and mg and md are the number of global and distortional/local

buckling modes. The maximum values of ũgmax and ũdmax are assumed to be less than those of

a assumed tolerances

ũgmax ≤ ũ
g
tol , ũdmax ≤ ũdtol (5.3)

with ũgtol = L/1000 and ũdtol = 1.5 · t, where L and t are, respectively, the thickness and the

length of the upright pallet rack (see Fig.5.1).

Figure 5.2: Type of imperfections for numerical analysis (a) distortional and (b) global.

Note that geometrical imperfections with a shape di�erent from Eq. 5.2 can be considered

(for more details see [98]). However, our aim is to �nd the worst cases of Eq. 1.7h in terms

of minimum limit load so only geometric imperfections in the space of the buckling modes

have been considered. The random process Eq. 5.2 is used to reach the previous goal. In

our framework, the distribution of random numbers does not have any relationship with real

imperfection distribution. A uniform distribution is employed but after their generation, the
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random numbers are scaled so that Eq. 5.3 are satis�ed with regard to the equality. In fact,

assuming an equal shape for the imperfection the minimum limit load depends on their maximum

amplitude.

From a computational point of view, the Koiter asymptotic analysis (see Eqs. (1)) has been

performed using a corotational approach [9] within a mixed formulation based on MISS-4 �nite

element [15]. Further details about the implementation of this can be found in [11].

X

Y

Z

G

G

A

Y

u

u
u

X
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Z

L/2

L/2

Figure 5.3: Geometry, boundary conditions of the member, reference point ("A") for displace-
ments.

Figure 5.4: Detail of mesh for RS 125 x 3.2 section.
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5.1.1 Buckling analysis

For each length, the �rst four buckling modes (see Eq. (1.7c)) are considered (see Tables (5.1)

for RSB 125 x 3.2 and (5.2) for RSN 125 x 3.2, respectively). For the numerical simulation the

end supports of the rack were modelled as they were in the experimental tests, i.e. pinned at

one end and simply supported at the other, with rotation restrained at both ends as shown in

Fig.(5.3). The details of the mesh are shown in Fig. (5.4).

Eight distortional buckling modes and two global buckling mode have been detected, as

shown in Tables (5.1), (5.2) and Figs. (5.5), (5.6). For each of the buckling modes the following

abbreviations have been used, for the consider length range, i.e. 1400 − 2500 mm, i.e. S -

symmetric, A - antisymmetric, F - �exural and FT - �exural torsional buckling. Fig. (5.9)

shows the buckling loads and lengths of the upright members. The lengths corresponding to

global/distorsional interactive buckling can be clearly seen, i.e. 2200 mm.

L (mm) λ1 Mode λ2 Mode λ3 Mode λ4 Mode
1400 507.20 d1 S 532.56 d2 S 712.98 d3 A 747.96 d4 A
1500 505.62 d1 S 509.71 d2 S 696.83 d4 A 698.64 d3 A
1600 492.74 d2 S 504.91 d1 S 663.13 d4 A 686.27 d3 A
1700 481.05 d2 S 501.60 d1 S 643.12 d4 A 677.45 d3 A
1800 473.77 d2 S 494.39 d6 S 635.60 d4 A 652.43 d5 S
1900 469.95 d2 S 484.83 d6 S 611.59 d4 A 632.25 d5 S
2000 468.51 d2 S 475.23 d6 S 563.65 e1 F 593.01 d5 S
2100 467.00 d6 S 468.23 d7 S 516.16 e1 F 550.02 e2 FT
2200 460.69 d6 S 467.60 d7 S 473.42 e1 F 509.33 e2 FT
2300 435.12 e1 F 456.36 d6 S 465.88 d7 S 471.94 e2 FT
2400 401.18 e1 F 437.92 e2 FT 453.77 d6 S 462.39 d8 S
2500 370.90 e1 F 407.09 e2 FT 452.58 d6 S 458.01 d8 S

Table 5.1: The �rst four buckling loads corresponding to the investigated length range for RSB
125 x 3.2 section. The buckling loads are expressed in kN. The buckling modes speci�ed by
letters d (d1, d2 ... d8) and e (e1, e2) are respectively distorsional and global. The abbreviations
S, A, F and FT indicate respectively: symmetric, antisymmetric, �exural and �exural torsional
(see Fig. 5.5).

5.1.2 Post-buckling and imperfection sensitivity analysis

The post-buckling behavior (see Eq. (1.7h)) for the members with lengths L = 1400 ... 2500 mm

have been analysed. The multimodal analysis has been performed considering the four buckling

modes presented above. Five hundred random geometric imperfections have been considered.

The equilibrium paths for RSN 125 x 3.2 with length L = 2000 mm have been reported in

Figs. 5.12 and 5.13. This length (see Fig. (5.18)) shows a strong erosion (i.e. the reduction in

minimum critical load) even if the buckling modes are not so coincident. In the Fig. 5.12, the

equilibrium paths in terms of load ampli�cation factor λ normalized on the minimum critical

load λmin versus the modal amplitude ξi, i = 1..4 are presented. Each modal component ξi
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L (mm) λ1 Mode λ2 Mode λ3 Mode λ4 Mode
1400 441.77 d1 S 474.30 d2 S 627.87 d3 A 652.37 d4 A
1500 438.64 d1 S 452.94 d2 S 610.10 d3 A 626.31 d5 S
1600 436.14 d2 S 437.97 d1 S 589.27 d5 S 597.46 d3 A
1700 423.80 d2 S 436.98 d1 S 564.69 d5 S 586.87 d3 A
1800 415.38 d2 S 433.41 d1 S 551.71 d5 S 573.22 d3 A
1900 410.20 d2 S 426.92 d7 S 546.53 d6 S 547.35 d3 A
2000 407.55 d2 S 419.02 d7 S 504.71 e1 F 516.26 d3 A
2100 406.60 d2 S 411.34 d7 S 463.19 e1 F 480.49 e2 FT
2200 404.82 d7 S 406.41 d2 S 425.29 e1 F 445.97 e2 FT
2300 391.28 e1 F 399.81 d7 S 405.97 d2 S 413.88 e2 FT
2400 360.93 e1 F 384.47 e2 FT 396.33 d7 S 404.40 d2 S
2500 333.79 e1 F 357.73 e2 FT 394.21 d7 S 401.55 d8 S

Table 5.2: The �rst four buckling loads corresponding to the investigated length range for RSN
125 x 3.2 section. The buckling loads are expressed in kN. The buckling modes speci�ed by
letters d (d1, d2 ... d8) and e (e1, e2) are respectively distorsional and global. The abbreviations
S, A, F and FT indicate respectively: symmetric, antisymmetric, �exural and �exural torsional
(see Fig. 5.6).

Figure 5.5: Distorsional d1, d2 ... d8 and global e1, e2 buckling modes for RSB 125 x 3.2 section
in the range L = 1400 ... 2500 mm.
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Figure 5.6: Distorsional d1, d2 ... d8 and global e1, e2 buckling modes for RSN 125 x 3.2 section
in the range L = 1400 ... 2500 mm.

Figure 5.7: Buckling modes for RSB 125 x 3.2 section with L = 2200 mm.



54

Figure 5.8: Buckling modes for RSN 125 x 3.2 section with L = 2200 mm.
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Figure 5.9: Buckling load and corresponding length for RSN 125 x 3.2 section. The length
L = 2200 mm corresponding to global/distortional interactive buckling has been denoted.
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has been represented using di�erent colours. This graph clearly shows the modal interaction

between the four modes because all ξ components have values other than zero. In the Fig. 5.13

the equilibrium paths in terms of λ versus the displacements are reported.

Finally, for the net section, other equilibrium paths for di�erent lengths in terms of modal

amplitude ξi, i = 1..4 are presented in Figs. (5.14), following the mode classi�cation given

in Table (5.2) and Fig. (5.6). The graphs clearly show the modal interaction and type of

interaction: distortional/distortional for the shorter specimens and global/distortional for the

longer ones.

Figure 5.10: Quadratic corrections for RSB 125 x 3.2 section with L = 2200 mm.

Figure 5.11: Quadratic corrections for RSN 125 x 3.2 section with L = 2200 mm.

5.1.3 Limit load and worst case imperfection

The results of the post-buckling analysis have been summarized. The frequencies for the limit

loads are reported in Fig. (5.15). For the specimens with strong buckling interaction , the values

are very close to the peak of the distribution.
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lowest critical load found.
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Figure 5.14: Equilibrium paths λ versus ξi i = 1 · · · 4 for four lengths. λmin is the lowest critical
load found.

The probability density function, used to model the frequency for the limit load, is the

Gumbel Max distribution:

f(λlim/λmin|µ, σ) =

(
1

σ

)
exp

(
−exp

(
− (λlim/λmin − µ)

σ

)
− (λlim/λmin − µ)

σ

)
(5.4)

where µ is the location parameter and σ is the scale parameter.

The probability distribution functions for RSN 125 x 3.2, with the values of µ and σ, are

showed in Fig. (5.17). The probability curves considering di�erent numbers of imperfection

are also shown for the specimen L = 2000 mm (Fig. (5.17)). As can be seen �ve hundred

imperfection allow a good evaluation of the parameters of the probability function. The Monte

Carlo simulation also allows the worst imperfection case to be found as shown in Fig. (5.16)

for the length L = 2000 mm and in Table 5.3 where the participation in percentage (%) of

buckling modes to worst imperfection is reported. The evaluation of the erosion is also given

in [94]. In particular, for the studied cases the strongest erosion has been detected for the

specimens L = 2000 mm and L = 2200 mm (see Fig. (5.18)), which is in agreement with the

results obtained in papers [94, 95, 96]. It can be observed that based on the above parametric

study, the obtained maximum nondimensional erosion is of 0.42 for the net section RS 125 x

3.2. In a direct comparison with the results obtained via the Erosion of Critical Bifurcation

Load (ECBL) approach [27], it can be observed that the maximum erosion is a good agreement

with the one obtained in [94], i.e. 0.44 for the RS 125 x 3.2 section, but for a combination of
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(a) (b)

Figure 5.15: Frequency distribution of the limit load found λlim for the brut section (a) and net
section (b).

imperfections (ũgmax = L/750 and ũdmax = 1.5t). The maximum erosion obtained in [96] via the

ECBL approach, i.e. 0.395 for the RS 125 x 3.2 section, is also close to the one presented above

but have been obtained for a combination of imperfections (ũgmax = L/1000 and ũdmax = 1.0t).

To show the sensitivity of the structure to the imperfection, once the worst imperfection ũw

is obtained a further sensitivity analysis has been performed assuming

ũ = α ũw (5.5)

with α being an ampli�cation parameter. The results are shown in Fig. 5.19. The graphs

show the specimens with maximum erosion, con�rming the results shown in Fig. 5.9, and their

sensitivity to the worst imperfection.

L (mm) % Mode 1 % Mode 2 % Mode 3 % Mode 4
1400 82.49 (−) 7.68 (−) 7.33 (−) 2.50 (−)
1500 92.88 (−) 2.46 (−) 0.16 (−) 4.51 (−)
1600 56.05 (−) 33.92 (+) 0.49 (−) 9.55 (−)
1700 1.03 (−) 58.12 (+) 38.94 (+) 1.90 (−)
1800 50.93 (−) 43.32 (−) 0.03 (−) 5.72 (−)
1900 73.16 (−) 2.27 (−) 24.47 (−) 0.11 (+)
2000 70.69 (+) 4.46 (+) 22.42 (+) 2.43 (+)
2100 1.76 (+) 76.20 (−) 21.34 (−) 0.69 (+)
2200 76.67 (−) 0.59 (−) 21.37 (−) 1.37 (+)
2300 22.16 (−) 0.14 (+) 35.13 (−) 42.58 (−)
2400 21.96 (−) 0.40 (+) 74.61 (−) 3.02 (−)
2500 21.90 (−) 0.98 (+) 73.72 (−) 3.41 (−)

Table 5.3: Participation of buckling modes in worst imperfection in percentage (%) corresponding
to the investigated length range for RSN 125 x 3.2 section. The buckling modes are normalized
as reported in Eq. ??. The sign in brackets indicates how the mode is accounted for with respect
to the normalization.

Finally, note that the imperfection sensitivity analysis in the context of Koiter's approach

allows us to perform a Monte Carlo simulation with very low computational cost. Table 5.4 shows
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(a) (b)

Figure 5.16: Section RS 125 x 3.2, brut and net, with length of 2200 mm: (a) initial shapes
for worst imperfection ampli�ed by factor 5.0, (b) deformed shapes at limit load for worst
imperfection ampli�ed factor 2.5.
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Figure 5.17: (a) Probability distribution functions, for 500 geometric imperfections, correspond-
ing to the investigated length range for RSN 125 x 3.2 section; (b) Probability distribution
functions for L = 2000 mm for various numbers of imperfections. The values of the parameters
of the probability distribution function (eq. (5.4)) are reported in the tables.

Figure 5.18: Section RSN 125 x 3.2 L = 1400 ... 2500 mm: the minimum limit load λminlim is
normalized on the �rst buckling load for each length. The specimen with maximum erosion is
highlighted in red.
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Figure 5.19: Section RS 125 x 3.2 L = 1400 ... 2500 mm: Sensitivity curve for the worst
imperfection.

the time needed for the analysis. The computations are performed on an Intel(R) Xeon(R) CPU

E5-2620 2.00Ghz Dual Core, 32 GB Ram on a single processor. Each value in Table 5.4 requires

the solution of Eq. (1.7h) for as many random imperfections as indicated in the heading for that

column.

The average times required for the steps i. to iv. have been studied [11], and remain of the

order of seconds. This could allow users to run Monte Carlo simulations to account for other

types of imperfections (i.e., load imperfection, residual stress) in order to obtain even more

realistic evaluations of the worst structural performance.

Time (s)
L (mm) Nv 500 imp. 1000 imp. 2000 imp. 5000 imp. 10000 imp.
1400 81011 7.040 16.143 30.681 76.307 151.766
1500 86555 7.580 16.976 31.165 85.254 166.156
1600 92099 8.259 17.738 32.432 91.276 168.527
1700 97643 7.513 17.984 29.624 75.458 167.950
1800 103187 6.548 13.322 26.192 91.681 144.472
1900 108731 9.070 18.805 36.020 91.728 191.864
2000 114275 9.100 18.518 36.334 102.258 213.065
2100 119819 8.650 18.330 49.168 87.095 177.278
2200 125363 10.400 22.620 46.832 120.245 216.871
2300 130907 9.324 19.594 35.880 96.923 180.056
2400 136451 9.045 19.251 49.823 89.310 177.996
2500 141995 9.364 20.358 37.628 110.245 203.174

Table 5.4: Section RS 125 x 3.2 L = 1400 ... 2500 mm: Computational costs. Nv denotes the
numbers of variables.
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5.1.4 A virtual laboratory for imperfection sensitivity analysis

Experimental study on pallet rack uprights in compression has been carried out at the Politehnica

University of Timisoara. The experimental program was extensively presented in [94, 95]. The

same cross-sections to the previous paragraphs are considered: the geometry of the cross-section

is shown in Figure ((5.1)), while the details relating to the cross-section, perforations, material,

experimental tests and numerical simulations can be found in [94, 95]. In the following, are

Figure 5.20: Section RSB 125 x 3.2 L = 1400 ... 2500 mm: initial shapes for worst imperfection.

reported the results of an intensive imperfection sensitivity analysis for the pallet rack uprights

in compression. For each section are considered �ve thicknesses: 1.0, 1.4, 2.0, 2.6 and 3.2 mm.

A total of 120 beams are analyzed. In the Figures (5.20) and (5.21) are shown the initial shapes

for worst imperfection for the brut and net cross sections with t = 3.2 mm, respectively. The

deformed shapes at limit load, for the brut and net cross sections with t = 3.2 mm, obtained

using the initial shapes for worst imperfection (Figures (5.20) and (5.21)) are shown in Figures

(5.22) and (5.23).
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Figure 5.21: Section RSN 125 x 3.2 L = 1400 ... 2500 mm: initial shapes for worst imperfection.

Figure 5.22: Section RSB 125 x 3.2 L = 1400 ... 2500 mm: deformed shapes at limit load for
worst imperfection.
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Figure 5.23: Section RSN 125 x 3.2 L = 1400 ... 2500 mm: deformed shapes at limit load for
worst imperfection.

5.1.5 Remarks on Koiter's asymptotic analysis

The accuracy of the method in the recovery of the equilibrium path of steel perforated sections

is also shown in Fig. 5.30. The comparison of Koiter's analysis versus a Riks path following

analysis shows, also in this case, the accuracy of the method in the recovery of the pre-critical,

critical and initial post-critical behaviours.

A crucial point in Koiter's analysis is the selection of the number of buckling modes to be

included. No a-priori theoretical information is generally available that allows it to be stated

if a certain number of modes is enough. However, an a-posteriori study varying the numbers

of modes can be performed. The di�erences in the recovery of the equilibrium path with an

assigned imperfection for the length L = 2000 mm have been reported in Fig. 5.28. The

number of modes varies from 2 to 7. The equilibrium paths show di�erent behaviour, above all

in the post-critical range. However the limit point is well detected starting from the 4 modes

considered. This statement is also supported by Table 5.5 where the minimum limit load λminlim

and the maximum limit load λmaxlim have been reported for the length L = 2000 mm varying

the number of modes and considering 500 imperfections. Starting from 4 the range between

the maximum and minimum limit load is well-represented. So we can reasonably conclude that

using 4-modes the non linear behaviour is correctly accounted for, at least for the statistical
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(a) t=1.0 mm (b) t=1.4 mm

(c) t=2.0 mm (d) t=2.6 mm

(e) t=3.2 mm

Figure 5.24: Section RSB 125: Frequency distribution of the limit load found λlim.
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(a) t=1.0 mm (b) t=1.4 mm

(c) t=2.0 mm (d) t=2.6 mm

(e) t=3.2 mm

Figure 5.25: Section RSN 125: Frequency distribution of the limit load found λlim.
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(e) t=3.2 mm

Figure 5.26: Section RSB 125 L = 1400 ... 2500mm: Sensitivity curve for the worst imperfection.
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Figure 5.27: Section RSN 125 L = 1400 ... 2500mm: Sensitivity curve for the worst imperfection.
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evaluation of limit load.
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Figure 5.28: Section RS 125 x 3.2, length L = 2000 mm: equilibrium paths λ/λmin versus the
displacements ux for di�erent numbers of buckling modes considered for Koiter's analysis. For
each analysis, the worst imperfection in the buckling modes space has been used.

n modes λminlim λmaxlim

2 0.5570 0.5659
3 0.6113 0.6628
4 0.6117 0.8645
5 0.6040 0.8364
6 0.6095 0.8378
7 0.6109 0.8598

Table 5.5: Section RS 125 x 3.2, length L = 2000 mm: λminlim and λmaxlim for varying numbers of
buckling modes accounted for in Koiter's analysis.

The study of structures sensitive to imperfections requires testing several imperfections to

�nd the worst cases and then the minimum limit load. The use of GMNIA analysis is often

prohibitive in terms of computational cost and time [97]. On the other hand, Koiter's method

allows the e�ects of thousands of imperfections to be tested with very low computational cost,

even if it requires the validity of the elastic behaviour. In the case of the critical and initial

post-critical behaviour these are characterized by a predominantly elastic behaviour, that is

more recurrent for slender structures. The Koiter method can be used to select the worst cases

that can then be analysed in a single GMNIA to take into account the geometrical and material

nonlinear e�ects.

For completeness the study of length L = 2000 mm for the worst imperfection using GMNIA

will be presented. The details used for the elasto-plastic analysis can be found in [94, 95]. In
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Figure 5.29: Section RS 125 x 3.2, length L = 2000 mm: Yield stress increase due to cold
forming (%fy).
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Figure 5.30: Section RS 125 x 3.2, length L = 2000 mm: equilibrium paths λ/λmin versus the
displacements uy using Koiter's and Riks elastic analysis and GMNIA. For each analysis the
worst imperfection (see Table5.3) has been used.
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Figure 5.31: Section RS 125 x 3.2 L = 2000 mm: (a) deformed shape at limit load for worst im-
perfection obtained by Koiter approach; (b) deformed shape at limit load for worst imperfection
obtained by Riks analysis.

particular the yield stress used is fy = 465.18 N/mm2 while the increments of yield stress due

to cold forming are reported in Fig. 5.29. The equilibrium paths recovered with Koiter analysis

and GMNIA analysis have been reported in Fig. 5.30. As clear shown the plasticity starts in the

critical/ initial post-critical range producing an additional erosion in limit load. The deformed

shapes at the limit load are reported in Fig. 5.31 for Koiter and GMNIA analysis, con�rming

that plasticity does not change the critical/initial post-critical behaviour in terms of deformation

but only in terms of limit load reduction.

5.2 A laminated composite hinged box in compression

In the following, the box shown in Figure 5.32 is analyzed. The geometrical data are L = 1000

mm, a = 500 mm. Three witdh/thickness ratios are considered: a/t = 1/500, 1/400, 3/1000.

The ply properties are E1 = 123.55 GPa; E2 = 8.708 GPa; G = 5.695 GPa; ν12 = 0.32. The

laminate stacking sequence is [0/0/19/ − 19/37/ − 37/45/ − 45/51/ − 51]. The bottom end of

the box is hinged. The load is a uniform edge pressure applied at the top end of the box.

5.2.1 Buckling analysis

Once the fundamental path is evaluated (eq. 1.7a), a buckling analysis (eq. 1.7c) is performed.

The �rst eight buckling loads are reported in Table 5.6 for di�erent values of width/thickness

ratio. The buckling modes for t/a = 1/400 are shown in Figure 5.33. The buckling modes are
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Figure 5.32: Geometry, boundary conditions, and load for the box in compression.

then used to generate random geometrical imperfections.

t/a λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

1/500 608.28 760.38 760.38 920.14 1005.10 1102.10 1281.22 1281.22
1/400 1187.16 1484.52 1484.52 1796.78 1961.72 2151.00 2501.40 2501.40
3/1000 2049.80 2564.00 2564.00 3104.00 3387.40 3714.20 4319.40 4319.40

Table 5.6: Buckling loads (in Newtons) for the box in compression at several t/a ratios.

v̇1 v̇2 v̇3 v̇4

v̇5 v̇6 v̇7 v̇8

Figure 5.33: Buckling modes for the box in compression at t/a = 1/400.

5.2.2 Post-buckling and imperfection sensitivity analysis

Some of the quadratic corrections (eq.1.7d) are shown in Figure (5.34) and used to recover the

structural behaviour of the imperfect structure. Only geometrical imperfections ũ have been

considered. In particular, they are generated as linear combinations of the buckling modes v̇i,

that is

ũ =

m∑
i

riv̇i (5.6)

where ri are random numbers, and m is the number buckling modes included in the expansion

(1.7e). For this example, m = 8 is used. Note that our aim is to �nd the worst imperfection.
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Then, the real shape of the imperfection is not required and only the linear combinations of

buckling modes are considered. The maximum value of ũmax is assumed to be bound by a

tolerance

ũmax/t ≤ tol (5.7)

For this example, ũmax/t = 1.5 is used, while in practice the amplitude of the imperfection

depends on the manufacturing process. Obviously, the amplitude of the imperfection a�ects the

results in term of limit loads, as shown in the following.

The equilibrium paths for 500 random geometrical imperfections have been graphed in Figure

(5.35) in terms of mode amplitude ξi, i = 1..8, and in Figure (5.36) in terms of nodal displace-

ments. Loss of stability in the post-critical range and the presence of attractive paths [99, 100]

can be seen in the �gures. Even if the random imperfections generate di�erent behaviour within

a range, the imperfect paths manifest a convergent behaviour to some particular paths (i.e. at-

tractive paths). This is also clear in Figure 5.37, where the interaction between the �rst mode

and the remaining seven modes are shown, as well as in Figure 5.38 in terms of deformed con�g-

urations. A-priori knowledge of attractive paths could be used to increase the e�ciency of the

Monte Carlo simulation, by reducing the space of trial imperfections.

Monte Carlo simulation allows us to evaluate the frequency of occurrence of limit load (Figure

5.39), the worst imperfection (Figure 5.40), and the shape of the structure at the minimum limit

load (Figure 5.41).

Finally, to show the sensitivity of the structure to the worst imperfection magnitude ũw,

further sensitivity analysis has been performed varying ũmax/t. The results are shown in Figure

5.42, showing that this composite box is very sensitive to imperfections.

w11 w12 w13 w14

w15 w16 w17 w18

Figure 5.34: Quadratic corrections for the box in compression, with t/a = 1/400.
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A

B

C

Figure 5.35: Equilibrium paths λ versus ξi, i = 1...8 for the box in compression, with t/a = 1/400.
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Figure 5.36: Equilibrium paths λ versus u for the box in compression, with t/a = 1/400. The
displacement component ux is measured at point A in Fig.(5.32).
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Figure 5.37: Interaction between the �rst mode (with amplitude ξ1) and the remaining modes
ξj , j = 2..8. The presence of attractive paths is clear.

A B C

Figure 5.38: Deformed con�guration at points A, B and C, labeled in Figure (5.35).

Figure 5.39: Frequency distribution of the lowest limit load found λlim for the clamped box in
compression and several values of t/a.
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Figure 5.40: Shape of the worst imperfection for the box in compression, with t/a = 1/400.

Figure 5.41: Mode shape at minimum limit load with the worst imperfection for the box in
compression, with t/a = 1/400.
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Figure 5.42: Load sensitivity to worst imperfection amplitude ũmax/t for the box in compression
at several values of t/a.
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5.3 A laminated composite box beam in compression

To illustrate some of the capabilities of the proposed element, the box beam shown in Figure 5.43

is analyzed [46]. The side �anges and webs have a width a = 2.5 mm and the top �ange is 2a.

Three thickness are considered t/a = 1/5, 3/10, 1/2. The ply properties are E1 = 104 GPa;

E2 = 10.3 GPa; G = 5.15 GPa; ν12 = 0.21. The laminate stacking sequence is [0/90/0/90]. The

box beam is loaded and simply supported at both ends while the side �anges are free. The load

is a uniform edge pressure applied at the column ends on the skin only (fore more details see

[47]).

Figure 5.43: Box beam loaded axially. Geometry, boundary, and load conditions.

5.3.1 Buckling analyses

Once the fundamental path is evaluated (eq. 1.7a), a buckling analysis (eq. 1.7c) is performed.

The �rst four buckling loads are shown in Table 5.7 for di�erent length and thickness. The

buckling modes for L = 20mm, t/a = 3/10 are reported in Figure 5.44. The buckling modes are

then used to generate random geometrical imperfections.
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λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

L t/a = 1/5 t/a = 3/10 t/a = 1/2
20 4879 5290 5322 5565 9811 10758 13031 1389 18282 25402 30795 32161
40 2976 4856 5339 5660 4558 10050 10627 1212 8052 18704 24702 26058
60 1589 4354 4985 5341 2420 6730 10115 9631 4230 12069 17657 16689
80 963 3021 4157 4450 1463 4628 6386 6751 2548 8181 11533 10835
100 639 2169 3085 2912 971 3310 4671 4427 1687 5809 7944 7489
120 453 1613 2240 2128 688 2458 3386 3229 1195 4297 5748 5454
140 337 1239 1692 1617 512 1885 2555 2449 888 3288 4331 4136
160 260 977 1318 1267 395 1486 1992 1917 686 2588 3373 3238
180 207 789 1055 1018 314 1199 1593 1541 545 2086 2696 2601
200 168 649 862 835 255 986 1302 1263 443 1714 2202 2134

Table 5.7: Buckling loads (in Newtons) for the box beam loaded axially. The used mesh for the
analysis is reported in Fig. 5.43.

v̇1 v̇2

v̇3 v̇4

Figure 5.44: Buckling modes for the box beam with L=20 mm, t/a=3/10.
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5.3.2 Post-buckling and imperfection sensitivity analyses

For this example, utol = 1.5 t is used (see Eq.(5.6) and (5.7)), while in practice the amplitude of the

imperfection depends on the manufacturing process. The equilibrium paths for 500 random geometrical

imperfections have been graphed in Figure (5.46) in terms of mode amplitude, and in Figure (5.47) in

terms of nodal displacements. Monte Carlo simulation allows us to evaluate the frequency of occurrence

of limit load (Figure 5.48), the worst imperfection (Figure 5.49), and the shape of the structure at the

minimum limit load (Figure 5.50).

Finally, to show the sensitivity of the structure to the imperfection, once obtained the worst imper-

fection ũw a further sensitivity analysis has been performed assuming

ũ = α ũw (5.8)

being α an ampli�cation parameter. The results are shown in Figure 5.51. For this case the sensitivity

to imperfection is not so high. Really, amplifying α from 1 to 2 the minimum limit load has a variation

at most 10%.

w11 w12

w13 w14

Figure 5.45: Quadratic corrections for the box beam with L=20 mm, t/a=3/10.



80

0.0

0.3

0.6

0.9

1.2

-600 -450 -300 -150  0  150

0.0

0.3

0.6

0.9

1.2

-600 -450 -300 -150  0  150  300

0.0

0.3

0.6

0.9

1.2

-200 -150 -100 -50  0  50  100

L = 20 L = 40 L = 60

0.0

0.3

0.6

0.9

1.2

-100 -80 -60 -40 -20  0  20  40

0.0

0.3

0.6

0.9

1.2

-80 -60 -40 -20  0  20  40

0.0

0.3

0.6

0.9

1.2

-60 -50 -40 -30 -20 -10  0  10  20  30

L = 80 L = 100 L = 120

0.0

0.3

0.6

0.9

1.2

-50 -40 -30 -20 -10  0  10  20  30

0.0

0.3

0.6

0.9

1.2

-50 -40 -30 -20 -10  0  10  20  30

0.0

0.3

0.6

0.9

1.2

-45 -40 -35 -30 -25 -20 -15 -10 -5  0  5

L = 140 L = 160 L = 180

0.0

0.3

0.6

0.9

1.2

-40 -35 -30 -25 -20 -15 -10 -5  0  5

L = 200

Figure 5.46: Equilibrium paths λ versus ξi (see (1.7e)) for the box beam loaded axially with
uniform edge-pressure and simply supported at both ends on skin only, L = 20, 40...200 mm,
t/a=3/10. Ordinate: λ/λmin. Abscissa: mode amplitudes ξi, with i = 1...4 denoted by colors
orange, grey, yellow, and red, respectively. λmin is the lowest critical load found.
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Figure 5.47: Equilibrium paths λ versus edge displacement u for the box beam loaded axially with
uniform edge-pressure and simply supported at both ends on skin only, t/a=3/10. Ordinate:
λ/λmin. Abscissa: edge displacement u, for three cases denoted by colors orange, grey, and
yellow, corresponding to column length L = 20, 40, 200 mm, respectively. λmin is the lowest
critical load found.
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Figure 5.48: Frequency distribution of the lowest limit load found λlim for the box beam
loaded axially with uniform edge-pressure and simply supported at both ends on skin only,
L = 20, 40, ...200 mm; t/a=3/10.

L = 20 mm L = 40 mm L = 100 mm

L = 120 mm L = 160 mm L = 180 mm

Figure 5.49: Shapes of the worst imperfection for the box beam loaded axially with uniform
edge-pressure and simply supported at both ends on skin only, L = 20, 40, 100, 120, 160, 180
mm mm, t/a=3/10.
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L = 20 mm L = 40 mm L = 100 mm

L = 120 mm L = 160 mm L = 180 mm

Figure 5.50: Mode shapes at minimum limit load with the worst imperfection for the box beam
loaded axially with uniform edge-pressure and simply supported at both ends on skin only,
L = 20, 40, 100, 120, 160, 180 mm, t/a=3/10.
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Figure 5.51: Sensitivity curve using the worst imperfection for the box beam loaded ax-
ially with uniform edge-pressure and simply supported at both ends on skin only, L =
20, 40, 100, 120, 160, 180 mm, t/a=3/10.
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5.4 Laminated composite cylindrical shells in compression

The proposed methodology for imperfection sensitivity analysis is general in the sense that it can be

applied to any type of slender structure. The particular FE formulation used in this work is based on a

�at shell �nite element (MISS-4,[15]) that is particularly suitable for the analysis of folded plates [46].

However, curved shells can be analyzed using MISS-4 by approximating the curved shell as a collection

of small �at elements with characteristic size h, retaining h2 convergence of the solution, as shown in

[15, Section 4.3] and [109].

The buckling load of thin-walled cylindrical shells is overestimated by theoretical methods mainly

due to the high sensitivity to geometrical imperfections of such structures. To tackle this problem,

industry currently makes use of the Kock-Down Factor (KDF) approach, es-tablished by NASA in its

space vehicle structural guide-lines, published in the 1960s [102]. This method has proved to be robust,

but it does not take into account all the laminated composites mechanical properties, which can strongly

in�uence the buckling behaviour [103], thus, lead-ing in most of the cases to overly conservative results

[104], [105]. Moreover, these guidelines were built from em-pirical test data from 1930â��s to 1960â��s

and therefore the NASA SP-8007 can be considered outdated from the point of view of the new materials

and technological so-lutions developed since then.

Since 1970s a considerable number of experimental and numerical observations have been found

to support new stochastic and deterministic methods for calculating more realistic knock-down factors

(KDFs) for conical and cylindrical shell structures (fore more details see [2], [106],[107] [108], [110], [111],

[30]).

In this section, two cylinders labeled Z32 and Z33 [107], are analyzed. These cylinders have been

applied as benchmark cases of imperfection sensitivity [112, 114, 113]. The ply properties are E1 = 123.6

GPa; E2 = 8.7 GPa; G = 5.7 GPa; ν12 = 0.32. The laminate stacking sequence is IN [−51/51/ −

45/45/−37/37/−19/19/0/0]OUT and IN [0/0/19/−19/37/−37/45/−45/51/−51]OUT for Z32 and Z33,

respectively. The height is 510mm, the radius R = 250mm and the laminate thickness t = 1.25mm.

In addition to the radius/thickness R/t = 200, the ratios R/t = 50, 100, 400, 800 have been analysed.

The cylinders are clamped on top and bottom, except for the axial displacement at the top edge,

which is free to allow the application of a distributed load. The imperfection sensitivity analysis has

been carried out for di�erent radius versus thickness ratio. A mesh of square elements (6.8×6.8 mm) is

used for all cases.

5.4.1 Buckling analysis

The results on buckling loads are reported in Tables 5.8 and 5.9. Buckling modes are shown in Figure

5.52, and the quadratic correction functions are shown in Figure 5.53. Eight buckling modes have

been considered for the multi-modal analysis. The limit load distribution considering one thousand

imperfections with maximum amplitude ũmax/t = 0.2 is shown in Figure 5.54. The shape of the

worst imperfection and the deformed shape at minimum limit load are shown in Figures 5.55 and 5.56,
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respectively. The load sensitivity as a function of the amplitude of the worst imperfection is reported in

Figure 5.57, where it can be seen that cylinder Z33 is more imperfection sensitive that Z32.

R/t λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

50 1680.540 1689.500 1701.370 1701.370 1722.910 1722.890 1771.550 1771.560
100 411.049 413.328 413.613 413.612 417.888 417.891 422.512 422.514
200 103.349 103.562 103.578 103.578 104.278 104.278 104.662 104.660
400 26.744 26.756 26.756 26.767 26.885 26.885 26.887 26.886
800 7.215 7.215 7.217 7.220 7.231 7.231 7.242 7.242

Table 5.8: Buckling loads (in kN) for cylinder Z32 as a function of radius/thickness ratio.

R/t λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

50 3195.180 3195.200 3305.300 3305.820 3312.270 3313.840 3355.110 3355.580
100 800.113 800.100 800.496 800.497 804.968 804.982 824.417 825.567
200 199.055 199.055 200.314 200.313 201.449 201.454 202.234 202.236
400 50.578 50.578 50.579 50.579 50.674 50.674 51.056 51.056
800 12.945 12.945 12.957 12.957 13.034 13.034 13.066 13.066

Table 5.9: Buckling loads (in kN) for cylinder Z33 as a function of radius/thickness ratio.

v̇1 v̇2 v̇3 v̇4

v̇5 v̇6 v̇7 v̇8

Figure 5.52: Buckling modes for cylinder Z33 with R/t = 200.

5.4.2 Post-buckling and imperfection sensitivity analysis
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w11 w12 w13 w14

w15 w16 w17 w18

Figure 5.53: Quadratic corrections for cylinder Z33 with R/t = 200.

Z32 Z33

Figure 5.54: Frequency distribution of the lowest limit load λlim for cylinders Z32 on the left
and Z33 on the right at several values of radius-to-thickness ratios.

R/t = 50 R/t = 100 R/t = 200

R/t = 400 R/t = 800

Figure 5.55: Shapes of the worst imperfection for cylinder Z33 at several radius-to-thickness
ratios.
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R/t = 50 R/t = 100 R/t = 200

R/t = 400 R/t = 800

Figure 5.56: Mode shapes at minimum limit load with the worst imperfection for cylinder Z33
and several radius-to-thickness ratios.

Figure 5.57: Limit load sensitivity to worst imperfection amplitude for cylinders Z32 and Z33
and several radius-to-thickness ratios.
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5.4.3 A virtual laboratory for imperfection sensitivity analysis of lam-

inated composite cylindrical shells

In the following, are reported the results of an intensive imperfection sensitivity analysis for several

cylinders. Geometrical and mechanical parameters, for each cylinder, are reported in Table (5.10), while

the laminate stacking sequence are reported in Table (5.11). For the cylinders Z07, Z15, Z33 and Z36

the imperfection sensitivity analysis has been carried out for di�erent radius versus thickness ratio.

Eight buckling modes have been considered for the multi-modal analysis. The �rst eight buckling

load, for the cylinder considered, are reported in the Tables (5.12). The buckling load for the cylinders

Z07, Z15, Z33 and Z36, for di�erent radius versus thickness ratio, are reported in the Tables (??),

(5.13), (5.14) and (5.15). One thousand imperfections with maximum amplitude are considered during

the simulations. The shape of the worst imperfection and the deformed shape at minimum limit load

are shown in Figures 5.58 and 5.59, respectively.

The load sensitivity as a function of the amplitude of the worst imperfection are reported in Figure

5.60, where it can be seen that cylinder Z33 is more imperfection sensitive than the cylinders analyzed.

Cylinder R [mm] H [mm] t [mm] E1 [GPa] E2 [GPa] ν12 G12 [GPa] G13 [GPa] G23 [GPa]

Z07 250 510 0.125 142.500 8.700 0.28 5.100 5.100 5.100

Z11 250 510 0.125 123.550 8.708 0.319 5.695 5.695 3.400

Z12 250 510 0.125 123.550 8.708 0.319 5.695 5.695 3.400

Z14 250 510 0.125 123.550 8.708 0.319 5.695 5.695 3.400

Z15 250 500 0.11575 157.400 8.600 0.28 5.300 5.300 5.300

Z18 250 510 0.125 123.550 8.708 0.319 5.695 5.695 3.400

Z21 250 510 0.125 123.550 8.708 0.319 5.695 5.695 3.400

Z36 400 800 0.125 142.500 8.700 0.28 5.100 5.100 5.100

Table 5.10: Geometrical and mechanical parameters for the cylinders analyzed.

Cylinder LSS
Z07 IN [24,−24, 41,−41]OUT
Z11 IN [60,−60, 0, 0, 68,−68, 52,−52, 37,−37]OUT
Z12 IN [51,−51, 45,−45, 37,−37, 19,−19, 0, 0]OUT
Z14 IN [51,−51, 90, 90, 40,−40]OUT
Z15 IN [24,−24, 41,−41]OUT
Z18 IN [−37, 37,−52, 52,−68, 68, 0, 0,−60, 60]OUT
Z21 IN [39,−39, 0, 0, 50,−50]OUT
Z36 IN [34,−34, 0, 0, 53,−53]OUT

Table 5.11: The LSS for each cylinder analyzed.

Cylinder λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Z07 32.571 32.571 32.770 32.770 33.098 33.098 32.619 33.261
Z11 284.079 284.079 285.139 285.140 287.204 287.204 289.283 293.045
Z12 101.066 101.282 101.285 101.285 101.285 101.963 102.308 102.309
Z14 86.756 86.756 86.783 86.784 87.007 87.008 87.089 87.089
Z15 29.429 29.429 29.816 29.816 29.914 29.914 30.032 30.032
Z18 233.439 233.439 233.517 233.564 234.636 234.642 234.964 234.973
Z21 73.977 73.977 74.058 74.058 74.203 74.203 74.415 74.415
Z36 90.151 90.151 90.228 90.228 90.269 90.280 90.501 90.502

Table 5.12: Buckling loads (in kN) for the cylinders Z07, Z11, Z12, Z14, Z15, Z18, Z21 and
Z36.
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R/t λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

414 50.852 50.852 59.510 51.773 51.773 51.833 52.240 52.240
439 44.947 44.948 52.041 45.654 45.654 46.088 46.243 46.243
464 40.130 40.130 46.177 40.532 40.532 41.025 41.361 41.361
489 36.108 36.108 41.053 36.212 36.212 36.746 36.942 36.942
514 32.535 32.535 36.530 32.699 32.699 33.068 33.196 33.196
539 29.429 29.429 32.770 29.816 29.816 29.914 30.032 30.032
639 20.678 20.678 22.501 20.727 20.727 20.979 21.010 21.010
739 15.318 15.318 16.336 15.507 15.507 15.567 15.622 15.622
839 11.852 11.852 12.454 11.854 11.854 11.970 11.984 11.984
939 9.367 9.367 9.745 9.471 9.471 9.495 9.501 9.501
1039 7.637 7.637 7.888 7.658 7.658 7.705 7.727 7.727

Table 5.13: Buckling loads (in kN) for the cylinders Z15 as a function of R/t.

R/t λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

75 1404.934 1404.937 1414443.00 1414.469 1448.244 1448.275 1469.149 1469.149
100 789.015 789.018 790795.90 790.801 797.558 797.570 809.825 810.264
125 502.389 502.391 503868.20 503.871 505.992 505.995 514.126 514.156
150 344.372 344.372 346655.40 346.655 349.181 349.181 353.277 353.327
175 255.233 255.233 255883.70 255.883 256.690 256.691 258.643 258.643
200 199.055 199.055 200.314 200.313 201.449 201.454 202.234 202.236
300 86.661 86.661 86865.41 86.865 86.995 86.995 87.174 87.173
400 48.861 48.861 48981.09 48.981 48.993 48.993 49.176 49.176
500 31.353 31.353 31419.36 31.419 31.435 31.435 31.508 31.508
600 21.819 21.819 21876.92 21.876 21.882 21.882 21.897 21.897
700 16.074 16.074 16094.15 16.094 16.136 16.136 16.139 16.139

Table 5.14: Buckling loads (in kN) for the cylinders Z33 as a function of R/t.

R/t λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

408 151.504 151.504 151.705 151.710 151.719 151.730 152.329 152.328
433 134.912 134.913 135.075 135.076 135.088 135.124 135.592 135.595
458 120.972 120.973 121.105 121.106 121.135 121.151 121.540 121.542
483 108.965 108.965 109.074 109.075 109.105 109.126 109.443 109.444
508 98.940 98.941 99.032 99.032 99.069 99.081 99.348 99.349
533 90.151 90.151 90.228 90.228 90.269 90.280 90.501 90.502
633 64.693 64.693 64.734 64.734 64.768 64.779 64.896 64.897
733 48.804 48.804 48.828 48.828 48.858 48.862 48.933 48.933
833 38.236 38.236 38.251 38.251 38.275 38.278 38.323 38.323
933 30.826 30.826 30.836 30.836 30.856 30.857 30.888 30.888
1033 25.428 25.428 25.436 25.436 25.451 25.453 25.475 25.475

Table 5.15: Tthe cylinders Z36 as a function of R/t .
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(a) Z07 (b) Z11 (c) Z12

(d) Z14 (e) Z15 (f) Z18

(g) Z21 (h) Z32 (i) Z33

(j) Z36

Figure 5.58: Shapes of the worst imperfection for several cylinders using 1000 geometrical im-
perfection.
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(a) Z07 (b) Z11 (c) Z12

(d) Z14 (e) Z15 (f) Z18

(g) Z21 (h) Z32 (i) Z33

(j) Z36

Figure 5.59: Shapes of the worst deformation for several cylinders using 1000 geometrical im-
perfection.
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Figure 5.60: Limit load sensitivity to worst imperfection amplitude for cylinders Z07, Z11, Z12,
Z14, Z15, Z18, Z21, Z32, Z33 and Z36 using 1000 geometrical imperfection.
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Figure 5.61: Limit load sensitivity to worst imperfection amplitude for cylinder Z07 and several
radius-to-thickness ratios.
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Figure 5.62: Limit load sensitivity to worst imperfection amplitude for cylinder Z15 and several
radius-to-thickness ratios.
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Figure 5.63: Limit load sensitivity to worst imperfection amplitude for cylinder Z33 and several
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94

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2

 λ
li

m
 /

 λ
m

in
 

 u
~

max
 / t

R/t=408

R/t=433

R/t=458

R/t=483

R/t=508

R/t=533

R/t=633

R/t=733

R/t=833

R/t=933

R/t=1033

Figure 5.64: Limit load sensitivity to worst imperfection amplitude for cylinder Z36 and several
radius-to-thickness ratios.

5.4.4 Further remarks

The imperfection sensitivity analysis in the context of Koiter's approach allows us to perform Monte

Carlo simulation with very low computational cost. Analysis time is reported in Table 5.16. The

computations are performed on a Intel(R) Xeon(R) CPU E5-2620 2.00Ghz Dual Core, 32 GB Ram on a

single core. Each value in Table 5.16 requires the solution of eq. (1.7h) for as many random imperfections

as indicated in the heading for that column.

The average time required for the steps i. to iv. have been studied [11], and they remain of the order

of seconds. The times are also a few seconds for a very large number of imperfections. This could allow

users to run Monte Carlo simulations to account for other types of imperfections (i.e., load imperfection,

residual stress, and so on) in order to obtain even more realistic evaluations of structural performance.

For the example studied, an imperfection in the shape of the �rst buckling mode (see v̇ in Figure

5.52) does not necessarily produce the worst imperfection (see Figure 5.55). Also, the buckling modes

for minimum limit load do not resemble the worst imperfection. These observations provide empirical

justi�cation for performing a full exploration of the imperfection space, as proposed in this work.

The accuracy, robustness, and reliability of the results are closely related to the use of geometrically

exact structural models and mixed formulation. The latter is necessary to prevent extrapolation locking

phenomena [14]. The use of a corotational formulation coupled with a mixed �nite element allows to

easily satisfy these requirements. Moreover, Koiter's approach being based on asymptotic expansion,

allows to recover the equilibrium path in an approximate fashion. The best accuracy is available for the

pre-critical and the initial post-critical behavior. A numerical comparison between Riks' and Koiter's

method for the recovery a single equilibrium path, as implemented in this paper, can be found in [8, 9, 11].

The accuracy of imperfection sensitivity of Koiter's analysis compared to Riks' analysis are shown

(numerically) in Figure 5.65. The path-following solution is obtained using Riks' standard implemen-

tation in Abaqus [84] along withS4R element. The accuracy of our implementation of Koiter's method



95

(Section 1) decreases with the imperfection amplitude. This is due to the fact that the imperfections

are incorporated during post-processing, i.e. eq. (1.7h), in order to keep the computational cost to a

minimum. A method for improving the imperfection amplitude range of Koiter's method is reported by

[117] along with an extensive discussion on calculations of imperfection sensitivity curves for unsti�ened

and sti�ened cylinders is also reported.

Time (s)
R/t 100 imp. 500 imp. 1000 imp. 5000 imp. 10000 imp.
50 18.011 89.688 270.346 5344.72 10764.88
100 14.403 67.853 242.540 5434.89 10599.07
200 14.643 77.345 249.089 5350.40 10480.74
400 19.964 97.050 285.614 5275.00 10193.00
800 11.652 60.923 217.769 5106.57 10694.88

Table 5.16: Computational cost for cylinder Z33 and several radius-to-thickness ratios. The cost
refers to the solution of equation (1.7h).
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Figure 5.65: Load sensitivity to worst imperfection ũmax for cylinder Z33 with R/t = 200.



Conclusions

The advantages of using Koiter's asymptotic approach for the analysis of slender elastic structures has

been shown. The possibility of performing an e�cient and reliable imperfection sensitivity analysis,

including cases with modal interaction, based on Monte Carlo simulation has been demonstrated. The

computational cost needed to account for a large sample of imperfections is, on average, in the range of

a few seconds. The worst imperfections can be detected without a-priori knowledge about the shape of

such imperfections. The load capacity can evaluated statistically and its sensitivity to the amplitude of

the worst imperfection can be calculated easily.
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