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1

Introduction

The proliferation of documents, on both the Web and in private systems,
makes knowledge discovery in document collections arduous. As opposed to
traditional mining in numeric relational data, document mining faces several
additional issues. Documents are indeed characterized by a high-dimensional
feature space, often incurring in the curse of dimensionality problem. Other
related issues, which directly impact on the choice of document representa-
tion model, are the high sparsity and the varying document length. Yet, as
pieces of natural language information, documents normally suffer from lexical
ambiguity issues, which can further be exacerbated by linguistic peculiarities
depending on the particular language used in the writing of the documents in
a collection.

Document clustering has been long recognized as a useful analysis and
exploratory tool for the task. It groups like-items together, maximizing intra-
cluster similarity and inter-cluster distance. Document clustering can provide
insight into the make-up of a document collection and is often used as the
initial step in data analysis. Document clustering research was initially focused
on the development of general purpose strategies for grouping unstructured
text data. Recent studies have started developing new methodologies and
algorithms that take into account both linguistic and topical characteristics,
where the former include the size of the text and the type of language used to
express ideas, and the latter focus on the communicative function and targets
of the documents. In particular, the length of documents, their languages and
their topical variety are usually strongly interrelated.

Real-life collections are often comprised of very short or long documents.
While short documents do not contain enough text and they can be very noisy,
long documents often span multiple topics and this is an additional challenge
to general purpose document clustering algorithms that assume every docu-
ment is an indivisible unit for the text representation and for the similarity
computation, and tend to associate every document with a single topic. A key
idea to solving this problem is to consider the document as being made up of
smaller topically cohesive text blocks, named segments. When used as a base
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step in long document clustering, segmentation has indeed shown significant
performance improvements (e.g., [190]).

Documents often can be subject to different interpretations, as they reflect
multiple aspects, or views, that may represent side information or other sub-
jects of interest related to the topics discussed in the documents. Even assum-
ing to deal with this problem by first extracting a representation contextually
to each view and then obtaining a unique, consensus representation through
“fusion” or aggregation of the view-specific ones, the resulting representation
might cause loss of information such as correlation between the various views.
Limitations due to this kind of flat representation could be overcome by using
a multidimensional representation model that is able to explicitly capture the
characteristics and relations between the different facets of the documents in a
collection. Data tensor models, or simply tensors, lend themselves to be partic-
ularly appropriate to provide an effective representation model for multi-view
and high-dimensional data. The applicability of tensor models has in fact at-
tracted increasing attention in pattern recognition, information retrieval, and
data mining in the last two decades, due to the advanced expressiveness power
in representing the data through this multidimensional modeling paradigm.
Moreover, techniques for tensor decompositions, which can be viewed as a
generalization of multi-linear matrix factorizations, allow us to extract a low-
dimensional yet meaningful representation which incorporates, in addition to
the content information, the information related to the views’ interactions.

Another challenge in document clustering research arises from the multi-
lingualism of many document sources, which has growth in the last few years
due to the increased popularity of collaborative editing platforms, such as
Wikipedia, which involve contributors across the world. Detecting the struc-
ture of clusters in a multilingual document collection based on the different
languages can in principle aid a variety of applications in cross-lingual infor-
mation retrieval, including statistical machine translation and corpora align-
ment.

Summary of contributions

The research underlying this thesis is concerned with the definition of docu-
ment clustering frameworks in which the essential core of document modeling
is based on tensor models and decomposition techniques, which are originally
exploited to suitably deal with multi-topic, multi-view and multilingual doc-
uments. The key assumption is that many text repositories over the Web and
other online information sources often contain documents that discuss mul-
tiple thematic subjects (i.e., multi-topic), cover different aspects of some of
the topics or other external information (i.e., multi-view), and can be written
in different languages (i.e., multilingual). More precisely, the contributions of
this thesis address problems that fall into two main research lines:
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• Line 1 – Tensor modeling for multi-topic, multi-view documents. The
multi-faceted nature of documents is considered under two interpretations:
presence of multiple topics and views (i) across the documents in a collec-
tion, and (ii) within individual documents in a collection.
Concerning the first interpretation, we have developed a tensor-based
framework for document clustering in the context of availability of mul-
tiple document organizations of the same document collection. Multiple
document organizations are assumed to be available and the key idea is
to represent the document collection in a multidimensional way by taking
into account content information as well as information about how the
documents tend to group across the different organizations. In order to
extract this additional information, the documents are considered to be
items and the document clusters as transactions. A frequent pattern min-
ing algorithm is also developed in order to extract the frequent document
aggregations. Starting from the content information and that provided
by the frequent aggregations, a tensor model is defined considering three
dimensions: frequent aggregations, terms and documents. Experimental
evaluation has been performed on Reuters Corpus Volume 1 considering
different scenarios that correspond to varying characteristics of the avail-
able set of document classifications. This study, which has been originally
presented in [162], is the focus of Chapter 3.
With regards to the second interpretation, we have developed a document
clustering framework in which the documents are assumed to discuss mul-
tiple topics under different views that can be inferred from an explicit
or implicit segmentation provided over every document. Since document
segments represent topically cohesive text passages, they are treated as
mini-documents and subject to a clustering stage, thus obtaining groups
of document portions that discuss a single topic. These segment clusters
are interpreted as views and the documents in the collection are mod-
eled contextually to each of the views. A tensor model is built around the
dimensions documents, terms, and segment clusters. In experimental eval-
uation, three different types of document have been considered: news arti-
cles (with paragraph boundary based segmentation), hotel reviews (with
rating aspect based segmentation) and user’s tweets (with hashtag based
segmentation). This study, which has been originally presented in [163], is
the focus of Chapter 4.
Line 2 – Tensor modeling for multilingual documents. The key aspect in
this line of research is the definition of a representation model of multilin-
gual documents over a unified conceptual space. This is generated through
a large-scale multilingual knowledge base, namely BabelNet. Thematic
alignment across documents is accomplished by obtaining semantically co-
herent cross-lingual topics, so to enable language-independent preserving
of the content semantics. The multilingual documents are also decomposed
into topically-coherent segments in order to enable the grouping of linguis-
tically different portions of documents by content. Moreover, these two
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key aspects are integrated into a multidimensional data structure in order
to better capture the multi-topic multilingual nature of the documents.
For the experimental evaluation, we have used two different multilingual
datasets, Wikipedia and Reuters Corpus Volume 2. For both datasets,
we have considered three languages, namely, English, French and Italian.
This study, which has been originally presented in [164], is the focus of
Chapter 5.
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Background

In this chapter we provide basic notions that are functional to the under-
standing of the subsequent chapters. More precisely, in Section 2.1 we supply
basic notions about document representation models for the document cluster-
ing, providing details about the feature definition, identification, selection and
weighting steps. Subsequently, Section 2.2 provides a very brief overview of the
task of document clustering and related challenges, also detailing differences
between the clustering of long documents e short documents. In Section 2.3
basic notions about the lexical knowledge bases are given, focusing on Word-
Net, Wikipedia and BabelNet. Finally, in Section 2.4 the tensors and their
decompositions are described giving also details about the related algorithms.

2.1 Document modeling

Any data model for text representation should exhibit a number of charac-
teristics that allow for effective and efficient analysis of the text itself. Some
of these characteristics make sense solely by referring to the original text,
some others are related to the characteristics of representations of other texts
in a collection. The following sketches a summary of the desiderata for text
representations [129].

• Topic identification – A key aspect of text representations is the abil-
ity in characterizing the content of a target text, that is identifying its
concepts, or topics, and the underlying meanings. Moreover, topic identi-
fication should be user-oriented to allow a fine-grained representation.

• Text content reduction – Providing a condensed characterization, or pro-
totype, of the text content is fundamental, especially when dealing with
large document collections. The prototype is substantially a compact de-
scription obtained by abstracting, indexing, or selecting the original text.

• Text content discrimination – A good text representation should allow
for discriminating the associated content from other text representations’
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content. However, the more a text representation is reduced, the more its
ability in discriminating contents tends to get worse.

• Text content normalization – In natural language texts a concept, or se-
mantically related concepts, can be expressed using different syntactic
structures. Such structures are often characterized by lexical and mor-
phological variations, which should be reduced to a “standard” form to
attenuate semantic ambiguity .

The above gives evidence that creating an “optimal” text representation
is quite hard, since some characteristics represent conflicting requirements.
Therefore, a valid text representation should be designed depending on the
specific function to be accomplished.

2.1.1 Models

Classic text representation models have been developed in the Information
Retrieval (IR) context. A basic assumption is that a set of terms is identified
to represent the text content. Such representative terms are text content de-
scriptors as they exhibit semantics that allow for capturing the main topics
of a text. Besides reflecting content, these terms are used as access points or
identifiers of the text, by which the text can be located and retrieved in a text
collection, thus they are usually called index terms [129, 16]. The problem of
how to define index terms is postponed until next section. We now provide
an outline of the two major IR models for text representation, namely the
Boolean and the Vector space models.

Boolean model

The most simple representation model is based on the set theory and the
Boolean algebra. A text representation is seen as a binary vector defined over
the set of index terms: value 1 denotes the presence of a term, and 0 its absence,
in the text. The representation of a query is instead a Boolean expression in
disjunctive normal form, that is a disjunction of conjunctive vectors, each of
which is a binary vector defined over the set of index terms appearing in the
query [167, 16].

The Boolean model has been adopted by many commercial systems, thanks
to its inherent simplicity in terms of development and implementation. How-
ever, the model suffers from several drawbacks. Firstly, a Boolean query is
based on the assumption that a user knows exactly what he/she is getting
and is able to translate the information need into a Boolean expression. Sec-
ondly, and most seriously, the Boolean model is very rigid, as the binary
decision criterion imposes that a document is relevant to a query only if their
representations match exactly: the query satisfaction corresponds to an over-
lap measure, and no ranking of documents according to relevance is provided.
As a consequence, it is very difficult to control the number of documents
retrieved, since all matched documents are returned in response to a query.
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Vector space model

The overlap criterion used in the Boolean model does not consider two key
elements to prevent better retrieval performance: i) the degree of relevance of
any index term with respect to a given text, and ii) the text length.

The Vector space model [170] takes the above aspects into account to
allow partial matching between text representations. Given a collection D =
{d1, . . . , dn} of documents and a vocabulary V = {w1, . . . , wm}, any document
dj ∈ D is represented by a m-dimensional vector dj = [dj1, . . . , djm], such
that each component dji measures the importance of index term wi as a valid
descriptor of the content of document dj . As we shall discuss in Sect. 2.1.2,
the “importance” can be suitably quantified on the basis of a combination of
the frequency of occurrence of the term with respect to the document (local
term frequency) and to the whole collection (global term frequency).

The relevance of a document to a query is evaluated as a measure of prox-
imity between their respective vectors. A measure of proximity must satisfy
at least three main properties: if document d1 is near to document d2, then
d2 is near to d1 (symmetry); if d1 is near to d2, and d2 is near to d3, then
d1 is not far from d3 (transitivity); no document is closer to d than d itself
(reflexivity). A natural way to quantify the proximity between generic objects
could be to resort to a distance function defined on a geometrical space, so
that the distance between d1’s vector and d2’s vector would be the length
of the difference vector. Actually, this idea turns out to be inappropriate for
documents: indeed, the direct use of metrics does not address the issue of text
length normalization, so that long documents would be more similar to each
other by virtue of length, not topic.

The Vector space model proposes to quantify the proximity between doc-
uments by computing a function of similarity, typically expressed as the co-
sine of the angle between their respective vectors. Equipped with the cosine
measure, the Vector space model allows for effectively ranking documents ac-
cording to their degree of similarity to the query, which is represented as a
vector in the same space as the documents. In practice, this model allows
simple and efficient implementation for large document collections, and tends
to work quite well despite the following simplifying assumptions [156]:

• the model is based on a “bag-of-words”, that is terms are considered to be
independent each other;

• document vectors are pair-wise orthogonal;
• both syntactic information (e.g., phrase structure, word order, proximity

information) and semantic information (e.g., word sense) is missing;
• the model flexibility might be a shortcoming. For example, given a query

with two terms a and b, the model may lead to preferring a document that
contains a frequently but not b, over a document that contains both a and
b, but both less frequently.
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2.1.2 Feature identification

Our attention has been so far paid to functions and models for text represen-
tation. We have assumed the availability of a set of index terms representing
the content of a text, that is a set of terms whose lexical meanings recall the
main topics in the text. For this reason, such terms are used as attributes,
concepts, or features, for text representation.

In this section, we focus on properties that are useful for evaluating what
terms are worthy of being indexed. For instance, some terms (e.g., nouns)
are natural candidates since they have meaning by themselves that allows
for capturing text semantics, but the potential of meaning might be lowered
depending on the term popularity, or rarity, in the text.

Feature identification involves the following main activities: feature defini-
tion, which investigates how the syntactic structure of the text is to be bro-
ken to recognize distinct concepts, and feature selection or feature extraction,
which are devoted to reduce the concept space dimensionality. We examine
each of the above points in turn.

Feature definition

The basic unit of linguistic structure is a word. Words differently contribute
to the syntax and semantics of a text, depending on their syntactic class or
part-of-speech. According to its class,1 a word may refer to a precise kind of
subject: for instance, nouns describe classes of concepts or objects, adjectives
their properties, and verbs their relationships.

However, only some word classes are useful to reflect the text content,
therefore words are usually divided in content words and function words [74].
The former identify concepts, objects, events, relationships in the discourse
domain, thus they effectively serve as indicators of the text content. Nouns, ad-
jectives, verbs, and some adverbs belong to this category. By contrast, function
words are rather lexical elements that play a role in the syntactic structure,
by serving grammatical purposes, and are not able to identify any concept.
Example of function words are articles, pronouns, prepositions, connectives.

Besides syntactic category, any word is originally associated with a sense or
lexical meaning , which determines the word semantics. Actually, this associa-
tion is not always clear-cut, because of the following: a word may have multi-
ple meanings, which may be related (polysemy) or unrelated (homonymy),
and different words may have the same meaning (synonymy) or opposite
meanings (antonymy). Moreover, there are words with a meaning that broad-
ens/narrows the meaning of other words—hypernymy/hyponymy , for nouns;
hypernymy/troponymy , for verbs—and words with a meaning that is-part-
of/contains the meaning of other words—meronymy/holonymy , for nouns;

1 A word belongs to more parts-of-speech when its morphological form refers to
distinct concepts (e.g., noun ‘bear’ vs. verb ‘bear’, noun ‘play’ vs. verb ‘play’,
noun ‘major’ vs. adjective ‘major’ etc.).
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entailment/cause, for verbs. For example, ‘tree’ is hyponym of ‘plant’ (vice
versa, ‘plant’ is hypernym of ‘tree’), ‘ship’ is meronym of ‘fleet’ (vice versa,
‘fleet’ is holonym of ‘ship’), ‘walk’ is troponym of ‘move’, ‘drive’ entails ‘ride’.

Words form the components of which phrases are built. More precisely,
any phrase consists of a head word, which is typically a content word indicat-
ing the described subject, and optional remaining words (e.g., modifiers and
complements) that create the surrounding context of the head word. Depend-
ing on the part-of-speech of the head word, phrases can be of the following
types: noun, adjective, verb, adverbial, and prepositional phrases [7].

It is commonly agreed that phrases can be better indicators of text con-
tent than individual words. Indeed, a phrase is semantically less ambiguous
than the single constituent words, and may improve the specificity of the
concepts expressed in a text. However, treating phrases is non-trivial due to
their inherent complexity. For instance, phrases may contain anaphora (re-
spectively, cataphora), that is lexical elements naturally used to avoid ex-
cessive repetition of terms by referring to other elements that appear earlier
(respectively, later) in the text. Such referred elements identify the same con-
cept of anaphora/cataphora, but with more descriptive phrasing. Moreover, a
phrase can be characterized by the presence of ellipses. An ellipsis is a figure
of speech with a deliberate omission of one or more words that are, however,
understood in light of the grammatical context.

Feature selection

Feature selection is a complex activity that can be divided mainly into five
phases, each of which corresponds to one or more text operations [16, 167]:

1. lexical analysis
2. removal of stopwords
3. word stemming
4. part-of-speech tagging
5. recognition of phrases

Before discussing each of these phases, it is worthy noticing that the above
list does not represent a perfect outline of the feature selection process, be-
cause of a number of reasons. Firstly, a different ordering is possible, for
instance recognition of phrases can be accomplished before removal of stop-
words. Secondly, some application contexts require only some phases, while
some others are optional or never performed. Thirdly, some phases can be
seen as extraction of new features, rather than selection of existing ones: for
instance, stemming conflates a number of words to one single term that does
not necessarily appear in the text, while phrase formation groups individ-
ual words to obtain a new, complex feature. Feature extraction arises hard
problems, which will be briefly discussed later in this chapter.

At the time of lexical analysis text is regarded as a stream of characters to
be converted into a stream of tokens. Tokens are then transformed into words,
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which will be further processed and eventually selected as index terms. To-
ken transformation typically involves digits, hyphens, punctuation marks, and
case letters processing. Since digits are inherently vague if not contextualized,
numerical strings should be removed from text unless specified otherwise, for
example by means of regular expressions. Hyphens and punctuation marks are
usually neglected. The case of letters is also irrelevant for feature selection,
thus characters are often converted to either upper or lower case.

For each of the above, there are language-dependent exceptions that should
be carefully examined, by exploiting domain knowledge. For instance, proper
names, company suffixes and dates cannot be recognized if case of letters is
not preserved and all digits are neglected, respectively. Abbreviations and
acronyms may lose any sense if cleaned from punctuation, instead they could
be expanded using a machine-readable dictionary. Processing hyphenated to-
kens (i.e., compound words that include hyphens) is also more critical: break-
ing up these terms does not always improve the consistency of words, espe-
cially in case of proper names or words originally formed with hyphenation.

Consistency of words is also a major goal of spelling correction. This allows
for recovering the actual form of a target “mispelled” word by looking for
all words that most closely match it, within a predefined maximum number
of errors. Edit distance is typically exploited to evaluate proximity between
words,2 therefore the maximum number of allowed errors for a word to match
the target is measured as the maximum allowed edit distance. For example,
‘text minino’ is correctly replaced with ‘text mining’ (edit distance equals 1),
and ‘eterogeneiti’ with ‘heterogeneity’ (edit distance equals 2).

Removal of stopwords is devoted to check whether a candidate index term
is found in a stoplist, which is a negative list of words chosen among func-
tion words and terms that are highly frequent in the text or insufficiently
specific to bear upon the text content. Such words, referred to as stopwords,
are filtered out as irrelevant terms. Removal of stopwords acts as a pruning
step in the feature selection, thus improving the efficiency in further process-
ing of potential index terms and compressing the adopted storage structure
considerably [61, 167].

Stemming , or conflating words, consists in reducing morphological vari-
ants of words to a standard form, called root or stem. The basic assumption
is that words sharing a stem are semantically related or equivalent to the
understanding of the text user. From a text representation perspective, stem-
ming aims at improving the match between a candidate index term and its
morphological variants, thus contributing to enhance the retrieval recall and
to reduce the size of the text representation [105].

Four main approaches to stemming have been developed [61]: table lookup,
letter successor variety, n-grams, and affix removal. The table lookup strat-
egy consists in looking for word stems stored in a machine-readable dictio-

2 Edit distance between two strings is computed as the minimum number of inser-
tions, deletions, and replacements of characters needed to align the two strings.
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nary. Despite its simplicity and high accuracy, the method is dependent on
the specific domain language, and has to cope with problems of storage space
and efficient search. Letter successor variety stemming [73] exploits linguistic
knowledge and frequency of letter sequences to find morpheme boundaries as
a basis for detecting word stems. The method does not distinguish inflectional
from derivational affixes. The n-gram-based stemming acts on the number of
n-grams shared by words to be conflated [204, 3]. n-grams enable stemmers to
be language-independent and tolerate noise and misspelled words. However,
n-gram-based stemmers are not able to distinguish inflectional from deriva-
tional affixes; moreover, too many n-grams lead to dramatically increase the
size of feature set. The affix removal strategy is to trim affixes—prefixes and
suffixes (e.g., plurals, tenses, gerund forms)—from terms, by mainly exploiting
linguistic knowledge to infer the morphological form of stems. Many stemming
algorithms have been developed, especially for the English language [61], and
the leading ones are by Porter [154], Lovins [119] and Paice/Husk [143]. De-
spite a good trade-off between efficiency, accuracy and simplicity of develop-
ment, affix removal stemmers may behave unnaturally as they often generate
truncated pseudo-roots, instead of valid words, as stems.

The heterogeneity of existing stemming approaches has led to development
of a methodology of evaluation of the performance of a stemmer when it
is applied to test samples of words which have been previously organized
into classes of equivalence or conflation groups. More precisely, a stemmer
can be evaluated by counting two kinds of error that may occur, namely
under-stemming errors and over-stemming errors [144]: the former refer to
words that should be merged to the same stem (e.g., ‘adhere’ and ‘adhesion’)
but remain distinct after stemming, while the latter refer to words that are
really distinct (e.g., ‘experiment’ and ‘experience’) but are wrongly conflated.
Under-stemming causes a single concept to be spread over different stems,
thus negatively affecting retrieval recall, while over-stemming tends to dilute
the meanings of a stem, which leads to a decrease of retrieval precision [85].
The error-counting method is effective, although the manual construction of
the test sample of words is time-consuming and error-prone. Moreover, it is
sometimes unclear whether two words should be reduced to the same stem,
therefore the conflation groups should be sensitive to the specific topics of the
text.

The absolute improvement of retrieval effectiveness due to stemming is
still a matter of debate, although in most cases there has been overwhelm-
ing evidence in favor of stemming. Intuitively, stemming accuracy might be
increased by combining affix removal stemmers and spelling correction algo-
rithms, with the support of a dictionary composed of actual words. Additional
benefit might be possible by including domain-specific dictionaries in the stem
classes.

Part-of-speech (POS) tagging refers to labeling each word in a sentence
with its proper syntactic class. POS tagging is useful to create linguistically
motivated index terms, but also makes sense as intermediate task for detecting
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slot filler candidates in IE. Common approaches range from (hidden) Markov
models [41, 50] to transformation-based learning [24] and decision trees [123];
however, POS tagging performance is directly affected by the granularity and
complexity of the adopted tag set (e.g., Brown tag set, Penn Treebank tag
set) [122].

Selecting phrases as index terms entails two essential issues: the iden-
tification of meaningful phrases that possibly denote concepts relevant to
particular subject domains, and the normalization of recognized phrases to
a standard form. Phrase recognition can be accomplished according to two
main approaches, namely statistical phrase recognition and syntactic phrase
recognition. The former exploits statistical associations and constraints among
words, such as co-occurrence of words and proximity of phrase components
in the text [169, 38, 171]. The latter is based on the assumption that a syn-
tactic relationship between phrase components implies also a semantic re-
lationship [174, 38], and mainly exploits machine-readable dictionaries [55],
stochastic POS taggers [49], syntactic templates [51], and context-free gram-
mars [174].

Syntactic recognition works better than statistical recognition [56]; how-
ever, the high demand of index storage space and computational resources,
which is only in part compensated by the slight improvement in text represen-
tation, seems to discourage the use of phrases as index terms. This tendency is
mainly due to a number of problems related to phrase normalization. Indeed,
a set of selected phrases often shows a marked lack of coherence with, most
glaringly, the presence of dangling anaphora/cataphora: a phrase containing
an anaphor but no antecedent (i.e., the term referred by the anaphor) may
be jarring, or even unintelligible. Therefore, phrase normalization needs to
handle ticklish cases, such as deciding whether a potential anaphor is actually
being used in an anaphoric sense, or determining whether an anaphor has an
antecedent within the same phrase or elsewhere.

Feature weighting

The above text operations produce features for text representation, that is
a set of index terms that are assumed to reflect at best the text content.
However, features have different discriminating power, as they contribute dif-
ferently in representing the semantics of a text. Therefore, it is necessary to
associate a relevance indicator, or weight, with each index term.

Many factors play a crucial role in weighting index terms, such as: statis-
tics on the text (e.g., size, number of different terms appearing in), relations
between an index term and the document containing it (e.g., location, number
of occurrences), and relations between an index term and the overall docu-
ment collection (e.g., number of occurrences). Term weights are commonly
computed on the basis of the distribution patterns of terms in the text, and
only rarely weighting relies upon expert knowledge on term relevance [182].
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Looking at the distribution patterns of terms in the text to recognize terms
that are good content bearing was suggested by Luhn [120]. He discovered
that both extremely frequent and extremely unfrequent words3 are not very
useful for representing the text content, while the most discriminative terms
have low-to-medium frequency. This claim is strictly related to the earlier
well-known constant rank-frequency law of Zipf [214].

The Zipf’s law models the frequency of occurrence of distinct objects in
particular sorts of collections. Applied to the the term weighting context, the
law states that the term with rank r (i.e., the r-th most frequent term) with
respect to a set V of terms will appear with a frequency

f(r) =
|V|

rθ ·Hθ(V)
,

where Hθ(V) is the harmonic number of order θ of V. The value of θ typically
ranges between 1 and 2, and is between 1.5 and 2 for the English text case.
Roughly speaking, the Zipf’s law says that the logarithm of the frequency
of each term and its rank is approximately constant, that is the r-th most
common word in a human language text occurs with a frequency inversely
proportional to r.

The implication of the Zipf’s law is that there is always a set of words in
a text that dominate most of the other words from a frequency of occurrence
viewpoint. This is true both of words in general, and of words that are specific
to a particular subject. Moreover, there is a smooth continuum of dominance
from most frequent to least, that is the smooth nature of the frequency curves
implies that specific frequency thresholds are not necessary.

Starting from the Zipf-Luhn findings, most term weighting functions have
been defined. A commonly used weighting function is based on the assumption
that a term frequently occurring in a text represents better the content of that
text than a rare term. Given a term w and a text d, the term frequency (tf)
function computes the number of times term w occurs in d [168].

The term frequency makes sense as a weighting function provided that
the text is not too short. In this case, information on term frequency may
be negligible. Moreover, function tf does not consider term scarcity in the
collection, while weighting should rely on the term distribution over all doc-
uments. Common terms tend to appear in many documents of the collection,
so a measure of informativeness of an index term should include its rarity
across the whole collection. Indeed, it has been observed that the higher the
number of documents in which a term appears, the lower its discriminating
power [182, 167]. The inverse document frequency (idf) function takes into
account the above observation. Given a term w and a text d in a collection
D, idf can be just defined as the inverse of the fraction of documents in D
that contain term w, but by far the most commonly used version includes the
logarithm to decrease the effect of inverse document frequency [182, 168].

3 Most words in a corpus are hapax legomena, that is words appearing only once.
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Two statistical criteria have hence to be considered to evaluate a term as a
valuable index term for a given document: high term density in the document,
and high term rarity in the collection. It follows that the effect of function
tf , which determines the term significance locally to a document, and the
effect of function idf , which indicates the discriminating power of a term with
respect to a document collection, have to be balanced out. This leads to define
a combination of the above weighting functions into a unique function able to
judge the best index terms as those appearing frequently within a text, but
rarely in the remaining texts of the collection. Formally, given a document
collection D = {d1, . . . , dn}, the tfidf function computes the weight of any
term w with respect to any document d ∈ D as:

tfidf(w, d) = tf(w, d)× idf(w) = freq(w, d)× log

(
|D|
|D(w)|

)
,

where freq(w, d) denotes the number of occurrences of w in d, and D(w) =
{d ∈ D | freq(w, d) ≥ 1}. It is worthy noticing that the function increases
with the number of occurrences within a document, as well as with the rarity
of the term across the reference collection.

Another important aspect is the normalization of document lengths. In-
deed, a collection may contain documents with different sizes: if the tf weights
remain high for long texts and low for short ones, the real term specificity will
be blurred. The importance of the raw term frequency should be hence re-
duced, so that the rarity of a term will have more negative impact in a long
text rather than a short text. Common methods of length normalization act
on the tf weight, for instance, by applying to it the logarithmic function, or
dividing it by the maximum tf weight computed for the same document, or
also dividing it by the squared root of the sum of the squared tf weights in the
document [182, 168]. More frequently, length normalization is accomplished
by applying the cosine normalization to the whole tfidf weight:

tfidf(w, d)√∑
u∈V tfidf(u, d)2

.

Many feature weighting approaches other than tfidf have been developed,
such as the probabilistic term relevance weight functions [160, 167], or the
connectivity-based term discrimination model [171, 167]. Interesting weighting
methods when features are not single words but phrases can be found in [113,
63, 38]. Nevertheless, phrase weighting has to cope with new issues, including
the anaphora resolution and the uncertainty whether considering a phrase
as a distinct concept (i.e., phrase weight is computed independently of the
composing word weights) or as a compound of words (i.e., phrase weight is
computed as the average weight of the composing word weights) [38].
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Semantic analysis for feature extraction

As stated at the beginning of this section, one of the major requirements for
text representation is content normalization, which aims at resolving semantic
ambiguity in the text. This is substantially accomplished by exploiting knowl-
edge on the usage of terms in certain subject domains to discover the meanings
contextually associated to terms and the semantic relationships among terms.
Viewed in this respect, a basic role is played by the construction and use of sub-
ject thesauri for transforming semantically related terms into more uniform
and general concepts. A thesaurus has the form of a machine-readable dictio-
nary, which is built on a vocabulary of important words in a given domain of
knowledge and provides each such words with a semantic class [167, 16, 129].
Any semantic class consists of a set of words having a related meaning, and is
labeled by a representative term. Most of thesaurus relationships refer to syn-
onymies and near-synonymies, and classes are often hierarchically organized
according to relationships of type is-a (hypernymy/hyponymy) and part-of
(meronymy/holonymy).

A typical function of a thesaurus is organizing synonyms, and near-
synonyms, into equivalence classes, so that any synonym in the text can be
replaced with the representative of its membership class (term clustering).
Besides synonyms, a thesaurus can be effectively used to control the problem
of polysemous and homonymous words, whose meaning has to be “disam-
biguated” with respect to a certain context of use of the words.

Word sense disambiguation (WSD) is frequently mentioned as one of the
most important problems in NLP research, and has been even described AI-
complete, that is a problem which can be solved only by first resolving all the
difficult problems in artificial intelligence (AI), such as the representation of
common sense and knowledge. WSD is not usually seen as an independent
task, but rather is essential at intermediate level for most language under-
standing applications, as well as for tasks and applications whose aim is not
language understanding, such as: machine translation, information retrieval
and document browsing (e.g., removing occurrences of words that are used in
an inappropriate sense), content and thematic analysis (e.g., including only
the instances of a word in its proper sense), POS tagging for grammatical anal-
ysis, correct phonetization of words in speech processing, spelling correction
and case folding in text processing [86].

WSD aims at associating a given word in a text or discourse with a seman-
tic definition, or sense, which is distinguishable from other potential senses
of that word. This can be accomplished substantially involving two steps: i)
identifying all the senses for each content word, and ii) assigning each instance
of a word to the (most) appropriate sense. While the definition of a word sense
is a matter of debate since the origins and usage of a word in certain contexts
determine its lexical meaning, there is no doubt that the assignment of word
to senses relies strictly on two major information sources: the context (i.e.,
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content of the text in which the word appears, and extra-linguistic information
about the text) and external knowledge bases (e.g., lexicons).

Many thesauri have been originally hand-built, mainly for convenience of
human readers. However, manually building up a thesaurus is time-consuming
and often is constrained to restricted subject domains. Nowadays, thesauri are
machine-readable versions of semantically coded dictionaries.

Thesaurus classes are functionally close to ontologies used in NLP. On-
tology is the branch of science concerned with the nature of being and rela-
tionships among things that exist [26, 27]. In computer science, term ontology
refers to some conceptualization, that is primarily a formal specification of a
certain knowledge domain, thus needs some knowledge representation [181].
While this is close to the definition of conceptual model, ontologies differ from
conceptual models by i) focusing on abstract models based on a set of domain
entities and a set of relationships among entities, and ii) having the explicit
goal of sharing knowledge by defining a common theoretical framework and
vocabulary so that interested agents can make, and share, a particular onto-
logical commitment [70].

Ontologies provide a means for encoding complex information on words
meaning and context [59]. Typical kinds of ontologies are taxonomies and in-
ference rules. A taxonomy defines classes of entities and relationships among
them. Classes are assigned with properties and subclasses are allowed to in-
herit such properties. Inference rules in ontologies use information about rela-
tionships among concepts underlying entities and their properties to conduct
automated reasoning.

In the effort of providing explicit specification of conceptualizations, on-
tology representation formalisms (e.g., first-order logic formalisms [36]) have
proved their potential in many application domains, including database inte-
gration, agent-based systems and distributed and federated data processing.
Such formalisms stems from the requirement that a conceptualization has to
be shared, i.e., using the same ontology implies the same view of the world
(or, at least, of the concepts therein); however, their associated research issues
are usually connected with the trade-off between the expressiveness and ro-
bustness of the formalism and the computational tractability of the inference
mechanisms.

Semantic issues such as synonymy, polysemy and term dependence, are
also addressed by Latent Semantic Indexing (LSI) [64, 48, 19, 145], which is
frequently used to reduce the dimensionality of the set of features for text
representation. The motivating reason is the indirect evidence that semantic
connections among documents may exist even if they do not share terms. For
example, terms ‘car’ and ‘auto’ cooccurring in a document may lead us to be-
lieve they are related. If ‘car’ and ‘auto’ are related, then they not only are ex-
pected to occur in similar sets of documents but also make other co-occurring
terms indirectly related, e.g., if a document contains ‘car’ and ‘engine’ and
another document contains ‘auto’ and ‘motor’, then ‘engine’ and ‘motor’ have
some relatedness. Extending this to a general case and representing, as usual,
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documents by the Vector space model, some rows and/or columns of the
term-by-document incidence matrix may be somewhat “redundant”, thus the
matrix may have a rank far lower than its dimensions.

LSI formalizes the above intuition, using notions from linear algebra, to
compress document vectors into a new, lower dimensional space. The new
dimensions, or features, of documents are obtained as linear combinations
of the original dimensions by looking at their patterns of co-occurrence. Co-
occurring terms are projected onto the same dimensions by means of some
similarity metric.

To perform dimensionality reduction, LSI typically applies the Singular
Value Decomposition (SVD) [67] to the incidence matrix A formed by the
original document vectors, and projects this matrix to a new matrix Ak in a
lower k-dimensional space, such that the distance ‖A −Ak‖2 is minimized.
Formally, a term-by-document matrix At×d is factorized into three matrices
Tt×nSn×n(Dd×n)T, where T is the column-orthogonal term matrix in the
new space, S is the diagonal matrix of the singular values of A (i.e., the
eigenvalues of AAT) in descending order, and D is the column-orthogonal
document matrix in the new space. LSI retains only some k singular values,
where k � n = min(t, d), together with the corresponding rows of T and D,
which induce an approximation to A, denoted as Ak = TkSk(Dk)T. Each
row of Tk represents a term as a k-dimensional vector, similarly each row of
Dk represents a document as a k-dimensional vector.

Major drawbacks in LSI are that newly obtained dimensions are not readily
understandable (a solution to this issue is proposed in [84]), and the discrim-
inating power of some original term may be lost in the new vector space.
Moreover, most LSI methods adopt the conventional tfidf weighting func-
tion (cf. Sect. 2.1.2) to produce the feature vectors. However, this approach
does not seem to be optimal as it has been observed that low-frequency terms
are underestimated, whereas high-frequency terms are overestimated. An im-
plementation of LSI without SVD has been presented in [202], and several
methods alternative to LSI have been proposed, such as probabilistic LSI [83],
Linear Least Squares Fit [205], and Iterative Residual Rescaling [10]. The ap-
plication of spectral analysis techniques to a variety of text mining tasks is
presented in [13].

2.2 Document clustering

Compared to the traditional clustering task on relational data, document
clustering faces several additional challenges. Corpora are high-dimensional
with respect to words, yet documents are sparse, are of varying length, and
can contain correlated terms [5]. Finding a document model, a set of features
that can be used to discriminate between documents, is key to the clustering
task. The clustering algorithm and the measure used to compute similarity
between documents is highly dependent on the chosen document model.
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Traditionally, documents are grouped based on how similar they are to
other documents. Similarity-based algorithms define a function for computing
document similarity and use it as the basis for assigning documents to clusters.
Each group (cluster) should have documents that are similar to each other
and dissimilar to documents in other clusters.

Clustering algorithms fall into different categories based on the underlying
methodology of the clustering algorithm (e.g., agglomerative or partitional),
the structure of the final solution (e.g., flat or hierarchical), or the multi-
plicity of cluster membership (hard or soft, overlapping, fuzzy). For instance,
agglomerative algorithms find the clusters by initially assigning each object
to its own cluster and then repeatedly merging pairs of clusters until a certain
stopping criterion is met. A number of different methods have been proposed
for determining the next pair of clusters to be merged, such as group average
(UPGMA) [11], single-link [180], complete link [100], CURE [71], ROCK [72],
and Chameleon [92]. Hierarchical algorithms produce a clustering that forms
a dendrogram, with a single all-inclusive cluster at the top and single-point
clusters at the leaves. On the other hand, partitional algorithms, such as k-
Means [121], k-Medoids [11, 94], graph partitioning based [11, 184, 208], and
spectral partitioning based clustering [21, 52], find the clusters by partition-
ing the entire dataset into either a predetermined or an automatically derived
number of clusters. Depending on the particular algorithm, a k-way cluster-
ing solution can be obtained either directly or via a sequence of repeated
bisections.

The Spherical k-Means algorithm (Sk-Means) [11] is used extensively for
document clustering due to its low computational and memory requirements
and its ability to find high-quality solutions. A spherical variant of the “fuzzy”
version of k-Means, called Fuzzy Spherical k-Means (FSk-Means ) [212, 109],
produces an overlapping clustering by using a matrix of degrees of membership
of objects with respect to clusters and a real value f > 1. The latter is usually
called the “fuzzyfier”, or fuzzyness coefficient, and controls the “softness” of
the clustering solution. Higher f values lead to harder clustering solutions.

In recent years, various researchers have recognized that partitional clus-
tering algorithms are well suited for clustering large document datasets due to
their relatively low computational requirements [4, 93]. A key characteristic
of many partitional clustering algorithms is that they use a global criterion
function whose optimization drives the entire clustering process4. The cri-
terion function is implicit for some of these algorithms (e.g., PDDP [21]),
whereas for others (e.g., k-Means) the criterion function is explicit and can
be easily stated. This later class of algorithms can be thought of as con-
sisting of two key components. The first is the criterion function that needs
to be optimized by the clustering solution, and the second is the actual al-

4 Global clustering criterion functions are an inherent feature of partitional clus-
tering algorithms, but they can also be used in the context of agglomerative
algorithms.
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gorithm that achieves this optimization. These two components are largely
independent of each other. Various clustering algorithms and criterion func-
tions are part of the CLUTO [91] clustering toolkit, which is available online
at http://www.cs.umn.edu/~cluto.

Not that there is a broad corpus of research in document clustering. How-
ever, a detailed discussion on the various existing methods for document clus-
tering is beyond the goal of this chapter. We refer the interested reader to [8]
for a recent overview of document modeling and clustering methods and re-
lated challenges.

2.2.1 Clustering long documents

Long documents often discuss multiple subjects. This presents added challenge
to general purpose document clustering algorithms that tend to associate a
document with a single topic. The key idea to solving this problem is to con-
sider the document as being made up of smaller topically cohesive text blocks,
named segments. Segments can be identified independent of or concurrent to
the clustering procedure.

Document segmentation

Text segmentation is concerned with the fragmentation of input text into
smaller units (e.g., paragraphs) each possibly discussing a single main topic.
Regardless of the presence of logical structure clues in the document, linguistic
criteria and statistical similarity measures have been mainly used to identify
thematically coherent, contiguous text blocks in unstructured documents [79,
18, 33].

The TextTiling algorithm [79] is the exemplary similarity block-based
method for text segmentation. TextTiling is able to subdivide a text into
multiparagraph, contiguous and disjoint blocks that represent passages, or
subtopics. More precisely, TextTiling detects subtopic boundaries by analyz-
ing patterns of lexical co-occurrence and distribution in the text. Terms that
discuss a subtopic tend to co-occur locally. A switch to a new subtopic is
detected when the co-occurrence of a given set of terms ends and the co-
occurrence of another set of terms starts. All pairs of adjacent text blocks
are compared using the cosine similarity measure and the resulting sequence
of similarity values is examined in order to detect the boundaries between
coherent segments.

Recent segmentation techniques have taken advantage of advances in gen-
erative topic modeling algorithms, which were specifically designed to identify
topics within text. Brants et al. [23] use PLSA to compute wordtopic distri-
butions, fold in those distributions at the block level (in their case blocks are
sentences), and then select segmentation points based on the similarity values
of adjacent block pairs. Sun et al. [188] use LDA on a corpus of segments, com-
pute intrasegment similarities via a Fisher kernel, and optimize segmentation
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via dynamic programming. Misra et al. [127] use a document-level LDA model,
treat segments as new documents and predict their LDA models, and then
perform segmentation via dynamic programming with probabilistic scores.

Clustering segmented documents

As previously discussed, a multi-topic document can be decomposed into seg-
ments that correspond to thematically coherent contiguous text passages in
the original document. Segmentation can be used as a base step in long doc-
ument clustering.

Tagarelli and Karypis [190] propose a framework for clustering of multi-
topic documents that leverages the natural composition of documents into text
segments in a “divide-et-impera” fashion. First, the documents are segmented
using an existing document segmentation technique (e.g., TextTiling). Then,
the segments in each document are clustered (potentially in an overlapping
fashion) into groups, each referred to as a segment-set. Each segment-set con-
tains the thematically coherent segments that may exist at different parts of
the document. Thinking of them as mini-documents, the segment-sets across
the different documents are clustered together into nonoverlapping themat-
ically coherent groups. Finally, the segment-set clustering is used to derive
a clustering solution of the original documents. The key assumption under-
lying this segment-based document clustering framework is that multi-topic
documents can be decomposed into smaller single-topic text units (segment-
sets) and that the clustering of these segment-sets can lead to an overlapping
clustering solution of the original documents that accurately reflects the mul-
tiplicity of the topics that they contain.

2.2.2 Clustering short documents

Clustering short documents faces additional challenges above those of gen-
eral purpose document clustering. Short documents normally address a single
topic, yet they may do so with completely orthogonal vocabulary. Noise, con-
tracted forms of words, and slang are prevalent in short texts.

There has been a relatively large corpus of study on alternative approaches
to the clustering of short texts. Wang et al. [200] propose a frequent-term-
based parallel clustering algorithm specifically designed to handle large col-
lections of short texts. The algorithm involves an information-inference mech-
anism to build a semantic text feature graph which is used by a k-NN-like
classification method to control the degree of cluster overlapping. Pinto et
al. [150] resort to the information-theory field and define a symmetric KL di-
vergence to compare short documents for clustering purposes. Since the KL
distance computation relies on the estimation of probabilities using term oc-
currence frequencies, a special type of back-off scheme is introduced to avoid
the issue of zero probability due to the sparsity of text. Carullo et al. [29]
describe an incremental online clustering algorithm that utilizes a generalized
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Dice coefficient as a document similarity measure. The algorithm requires two
thresholds as input, one to control the minimum accepted similarity that any
document must have to be assigned to a cluster, and the other to define the
maximum similarity of a document that can still contribute to the definition
of a cluster.

Particle-swarm optimization techniques and bio-inspired clustering algo-
rithms have also been proposed for short text data. Ingaramo et al. [88] de-
velop a partitional clustering algorithm to handle short texts of arbitrary size.
The key aspect of that study is the adaptation of the AntTree algorithm [75],
which integrates the “attraction of a cluster” and the Silhouette Coefficient
concepts, to detecting clusters. Each ant represents a single data object as
it moves in the clustering structure according to its similarity to other ants
already connected to the tree under construction. Starting from an artificial
support, all the ants are incrementally connected, either to that support or
to other already connected ants. This process continues until all ants are con-
nected to the structure, i.e., all objects are clustered.

2.2.3 Evaluation criteria

Evaluation of the effectiveness of a clustering task is usually accomplished by
adopting either external criteria or internal criteria. External criteria aim to
assess how well a clustering fits a predefined scheme of known classes (natural
clusters). By contrast, internal criteria are defined over quantities that involve
the data representations themselves, without any reference to external knowl-
edge. This type of evaluation is useful when ideal classification of documents
is not available. In this thesis we have considered a set of external criteria,
since for each of the used datasets a ground-truth was available.

F-measure [178] is the most commonly used external criterion. Given a
collection D of documents, let Γ = {Γ1, . . . , Γh} be the desired classification
of the documents in D, and C = {C1, . . . , Ck} be the output partition yielded
by a clustering algorithm. Precision of cluster Cj with respect to class Γi is
the fraction of the documents in Cj that has been correctly classified:

Pij =
|Cj ∩ Γi|
|Cj |

,

while recall of cluster Cj with respect to class Γi is the fraction of the docu-
ments in Γj that has been correctly classified:

Rij =
|Cj ∩ Γi|
|Γi|

.

For each pair (Cj , Γi), the F-measure FMij is defined as the harmonic
mean of precision and recall [178]. In case of hierarchical clustering, the cluster
structure can be flattened to also include the documents from all sub-clusters,
that is all the documents in the subtree of cluster Cj are considered as the
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documents in Cj [183]. The overall F-measure can be defined as the weighted
sum of the maximum F-measures for all the natural clusters:

FM(C,Γ ) =

h∑
i=1

|Γi|
|D|

max
j=1..k

{FMij}.

Rand Index (RI) [159] measures the percentage of decisions that are cor-
rect, penalizing false positive and false negative decisions during clustering.
It takes into account the following quantities: “true positives” (TP), i.e., the
number of pairs of documents that are in the same cluster in C and in the same
class in Γ ; “true negatives” (TN ), i.e., the number of pairs of documents that
are in different clusters in C and in different classes in Γ ; “false negatives”
(FN ), i.e., the number of pairs of documents that are in different clusters in
C and in the same class in Γ ; and “false positives” (FP), i.e., the number of
pairs of documents that are in the same cluster in C and in different classes
in Γ . Rand Index is hence defined as:

RI(C,Γ ) =
TP + TN

TP + TN + FP + FN

Another external clustering validity criterion is based on entropy [176].
For each cluster Cj , the class distribution of data is computed as the proba-
bility Pr(Γi|Cj) that a document in Cj belongs to class Γi. Using this class
distribution, the entropy of Cj is computed as

Ej = −
h∑
i=1

[Pr(Γi|Cj)× log
(
Pr(Γi|Cj)

)
].

where Pr(Γi|Cj) is estimated as Pij The overall entropy is defined as the sum
of the individual cluster entropies weighted by the size of each cluster:

E(C,Γ ) =
1

|D|

k∑
j=1

(|Cj | × Ej).

To compute purity, each cluster is assigned to the class which is most
frequent in the cluster, and then the accuracy of this assignment is measured
by counting the number of correctly assigned documents and dividing by total
number of documents [47]. Formally:

Pty(C,Γ ) =
1

|D|

k∑
j=1

max
i=1..h

|Cj ∩ Γi|

It has been shown that the mutual information I(C,Γ ) between a clus-
tering C and a reference classification Γ is a superior measure to purity or
entropy [53, 185]. Moreover, by normalizing this measure to lie in the range
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[0, 1], it becomes relatively impartial to the number of clusters. Normalized
mutual information (NMI) [213] can be information-theoretically interpreted
and is defined as

NMI(C,Γ ) =

∑h
i=1

∑k
j=1 |Γi ∩ Cj | log

(
|D||Γi∩Cj |
|Γi||Cj |

)
√(∑k

j=1 |Cj | log
|Cj |
|D|

)(∑h
i=1 |Γi| log |Γi|

|D|

)

2.3 Lexical knowledge bases

Lexical knowledge represents an essential component of language-oriented au-
tomatic tasks, including: question answering [76, 116], Word Sense Disam-
biguation (WSD) [39, 40, 136, 138], named entity disambiguation [25], text
summarization [134], text categorization [199, 65, 137], coreference resolu-
tion [153, 157], sentiment analysis [189, 198] and plagiarism detection [17].
Many forms of lexical knowledge are available, such as unstructured termi-
nologies, glossaries [57], thesauri [161], machine-readable dictionaries [155]
and full-fledged computational lexicons and ontologies. The latter includes
Cyc [111] and, more importantly, WordNet [60, 126].

2.3.1 WordNet

WordNet is a valuable resource for identifying taxonomic and networked re-
lationships among concepts due to the following characteristics. Related con-
cepts are grouped into equivalence classes, called synsets (sets of synonyms).
Each synset represents one underlying lexical concept and is described by
a short textual description (gloss). For example, {‘car’, ‘auto’, ‘automobile’,
‘machine’, ‘motorcar’} is a synset representing the sense defined by the gloss
“4-wheeled motor vehicle, usually propelled by an internal combustion en-
gine”. Synsets are explicitly connected to each other through existing relations
(e.g., synonymy, antonymy, is-a, part-of), which connect senses of words that
are used in the same part-of-speech.5 Lexical inheritance, which underlies the
is-a relationships between noun concepts6 is perhaps the distinguishing char-
acteristic of WordNet. Bipolar oppositions (antonymies) are used mainly to
organize adjectives, while the different relationships that link verb concepts
can be cast in terms of lexical entailment [125, 69, 58].

5 The second release of WordNet (summer of 2003) allows now for links between
derived forms of noun and verb concepts.

6 Is-a hierarchy also exists for verbs, although it is referred to as is-way-of-doing,
also known as troponymy, and is much shallower.
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2.3.2 Wikipedia

Recently, research has been attracted by the increasing availability of online
collaborative resources which contains semi-structured information in textual
and/or hyperlinked form. A significant example of this type of resource is
Wikipedia7, the largest and most popular collaborative and multilingual re-
source of world and linguistic knowledge.

Wikipedia is a multilingual Web-based encyclopedia. It is a collaborative
resource edited by volunteers from all over the world, providing a very large
wide-coverage repository of encyclopedic knowledge. Each page in Wikipedia
represents an article describing a particular concept or a named entity. The
title of each page is composed in such a way it contains the lemma related
to the concept plus an optional label (in parenthesis) in order to specify its
meaning in case the lemma is polysemic.

Various relations between the pages are available:

• Redirect pages: this kind of pages is used to forward to the page containing
the actual information about a concept of interest. This is the case of
alternative expressions for the same concept, and thus it models synonymy.

• Disambiguation pages: These pages model the homonymy and the poly-
semy. They report links for all possible concepts expressed by means of an
arbitrary expression.

• Internal links: The pages in Wikipedia typically contain hypertext linked
to other pages (concepts).

• Inter-language links: Each page in Wikipedia provides links to its coun-
terparts in other languages (i.e., corresponding concept described in other
languages).

• Categories: A Wikipedia page can be assigned to one or more categories.

Many works in literature have used this resource in order to extraction
structured information, including lexical and semantic relations between con-
cepts [166, 186], factual information [203], and transforming the Web ency-
clopedia into a full-fledged semantic network [135, 46, 131]. However, despite
its richness of explicit and implicit semantic knowledge, the encyclopedic na-
ture of Wikipedia represents a major limit, lacking full coverage for the lex-
icographic senses a particular lemma. Such lack of lexical coverage can be
provided by a highly-structured computational lexicon such as WordNet.

2.3.3 BabelNet

In the last two decades, the growing amount of text data that are written
in different languages, also due to the increased popularity of a number of
tools for collaboratively editing through contributors across the world, has
exacerbated the need of cross-lingual and multilingual tasks, fostering the

7 http://www.wikipedia.org.
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development of multilingual lexical knowledge bases. Manual efforts of mul-
tilingual knowledge bases are EuroWordNet [197], MultiWordNet [149] and
BalkaNet [195], but building them is an onerous task and requires many years
for each new language. Furthermore, an additional, but not less important,
cost is that required for interlinking the resources across different languages.
More recently defined multilingual knowledge base is BabelNet [139], charac-
terized by a wide-coverage and the automatic linking of two knowledge bases.
Despite the availability of these monolingual/multilingual lexical knowledge
bases, resources for non-English languages often suffer from a lack of coverage.

BabelNet [139] is a multilingual semantic network built with the goal to
supply a highly-structured computational lexicon. This knowledge resource is
obtained by linking Wikipedia with WordNet, that is, the largest multilingual
Web encyclopedia and the most popular computational lexicon. The linking
of the two knowledge bases was performed through an automatic mapping
of WordNet synsets and Wikipages, harvesting multilingual lexicalization of
the available concepts through human-generated translations provided by the
Wikipedia inter-language links or through machine translation techniques.
The result is an encyclopedic dictionary containing concepts and named en-
tities lexicalized in 50 different languages.

The multilingual semantic network has been generated in three main steps:
(i) combining WordNet and Wikipedia concepts by automatically acquiring
WordNet senses and wikipages, (ii) harvesting multilingual lexicalization of
the available concepts through human-generated translations provided by the
Wikipedia inter-language links or through machine translation, and (iii) estab-
lishing relations between concepts or named entities exploiting the relations
provided by WordNet as well as Wikipedia. The interested reader is referred
to [139] for the description of the detailed procedure.

Multilingual knowledge in BabelNet is represented as a labeled directed
graph in which nodes are concepts or named entities and edges connect pairs
of nodes through a semantic relation. Each edge is labeled with a relation type
(is-a, part-of, etc.), while each node corresponds to a BabelNet synset, i.e., a
set of lexicalizations of a concept in different languages.

Starting from all available WordNet word senses along with lexical or se-
mantic relations and from all Wikipedia concept along with relations provided
by hyperlinks, the intersection (in terms of concepts) of these two knowledges
was merged and

BabelNet can be accessed and easily integrated into applications by means
of a Java API provided by the toolkit described in [140]. The information can
be accessed at four main levels: lexicographic, encyclopaedic, conceptual, and
multilingual. That toolkit, besides information access, provides functionalities
for graph-based WSD in a multilingual context. Given an input set of words,
a semantic graph is built by looking for related synset paths and by merging
all them in a unique graph. Once the semantic graph is built, the graph nodes
can be scored with a variety of algorithms. Finally, this graph with scored
nodes is used to rank the input word senses by a graph-based approach.
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2.4 Tensor models and decompositions

In this section we provide basic definitions about tensors, operations on ten-
sors, and tensor decomposition methods which will be used throughout this
thesis. We will mainly refer to notations usually adopted in classic references
on tensor analysis, such as, e.g., [103, 35], to which the interested reader can
refer for further details.

2.4.1 Basic notions

Tensors are the natural generalization of the matrices. A tensor is a multidi-
mensional array. The number of dimensions (ways or modes) is called order
of the tensor, so that a tensor with order N is also said a Nth-order, N -way
or N -mode tensor and formally it is an element of the tensor product of N
vector spaces, each of them with its own coordinate system. A vector is a
first-order tensor, a matrix is a second-order tensor and a tensor with three
or more modes is a higher-order tensor.

A higher-order tensor is denoted by boldface calligraphic letters, e.g., X ;
a matrix is denoted by boldface capital letters, e.g., A; a vector is denoted
by boldface lowercase letters, e.g., a; a scalar is denoted by lowercase letters,
e.g., a. The i-th entry of a vector a, the element (i, j) of a matrix A, and the
element (i, j, k) of a third-order tensor X are denoted by ai, aij , and xijk,
respectively. Hereinafter, we also use the symbols in (with n = 1, . . . , N) and
their capital version to denote the index along the specific n-th mode (e.g.,
in = 1, . . . , In). Moreover, for the special case of third-order tensor, we will
also use symbols i, j, k to denote the indices along the first, the second and the
third mode. A superscript in parenthesis denotes an element in a sequence,
e.g., A(n) denotes the nth matrix of a sequence of matrices.

Tensor fibers

A one-dimensional fragment of tensor defined by varying one index and keep-
ing the others fixed is a 1-way tensor called fiber. Fibers are the higher-order
analogue of rows and columns of a matrix. A third-order tensor has column,
row and tube fibers (Figure 2.1), denoted by x:jk, xi:k and xij:, respectively.
A fiber in which the n-th mode is varying, is also called a mode-n fiber (e.g.,
a column fiber is said a mode-1 fiber).

Tensor slices

Analogously, a two-dimensional fragment of tensor, defined by varying two
indices and keeping the rest fixed, is a 2-way tensor called slice. A third-order
tensor has horizontal, lateral and frontal slices (Figure 2.2), denoted by Xi::,
X:j: and X::k, respectively.
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Fig. 2.1: Third-order tensor fibers [103]

Fig. 2.2: Third-order tensor slices [103]

Rank-one tensor

An Nth-order tensor is rank one if it can be expressed as the outer product
(denoted by “◦”) of N vectors. Formally, an Nth-order rank-one tensor X ∈
RI1×I2×...×IN can be expressed as:

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) (2.1)

where a(n) ∈ RIn , for n = 1, . . . , N , and xi1i2...iN = a
(1)
i1
a
(2)
i2
. . . a

(N)
iN

, for all
1 ≤ in ≤ In; Figure 2.3 report a graphical representation of a third-order
rank-one tensor.

Symmetric tensors

A cubical tensor (a tensor having all modes of the same size) is supersymmetric
if its elements remain constant with any permutation of its indices. Formally
for a 3-way tensor X ∈ RI1×I2×I3 , with I = I1 = I2 = I3



24 2 Background

Fig. 2.3: Third-order rank-one tensor [103]

xi1i2i3 = xi1i3i2 = xi2i1i3 = xi2i3i1 = xi3i1i2 = xi3i2i1 ∀i1, i2, i3 = 1, . . . , I
(2.2)

A tensor can be also symmetric in two or more modes. For instance, a
3-way tensor X ∈ RI1×I2×I3 , with I1 = I2, is symmetric in modes one and
two if all its frontal slices are symmetric

Xi3 = XT
i3 ∀i3 = 1, . . . , I3 (2.3)

Diagonal tensor

A tensor X ∈ RI1×I2×...×IN is called diagonal if xi1i2...iN 6= 0 only if
i1 = i2 = · · · = iN (Figure 2.4).

Fig. 2.4: Third-order digonal tensor [103]
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Tensor matricization

The matricization (or unfolding) is the process of reordering the elements of
an Nth-order tensor into a matrix. There are different definitions of the tensor
matricization [101]. In this section we present only a particular matricization,
which is relevant to our purposes. The mode-n matricization of a tensor X ∈
RI1×I2×···×IN , denoted as X(n), is obtained by arranging the mode-n fibers
as columns of the resulting matrix. Formally, (i1, i2, . . . , iN ) is mapped to the
element (in, j), where

j = 1 +

N∑
k=1,k 6=n

(ik − 1)Jk with Jk =

k−1∏
m=1,m 6=n

Im (2.4)

The following is the example reported in [103], useful for an easier under-
standing. Let the frontal slices of X ∈ R3×4×2 be

X1 =

1 4 7 10
2 5 8 11
3 6 9 12

 X2 =

13 16 19 22
14 17 20 23
15 18 21 24


Then the three mode-n unfoldings are

X(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24



X(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


X(3) =

[
1 2 3 4 5 . . . 9 10 11 12
13 14 15 16 17 . . . 21 22 23 24

]

2.4.2 Math operators for tensors

Norm of a tensor

The norm of a tensor is the analogous of the matrix Forbenius norm (i.e., the
square root of the sum of squares of all its elements) and, for a Nth-order
tensor X ∈ RI1×I2×...×IN it is defined as:

‖X‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

x2i1i2...iN (2.5)
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Inner product

The inner product of two tensors of the same size is defined as sum of the
products of their entries. Formally, for two 3-way tensors Y ,X ∈ RI1×I2×I3
is defined as

〈Y ,X 〉
I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

yi1i2i3xi1i2i3 (2.6)

It follows that 〈Y ,Y〉 = ‖Y‖2

Multiplying a tensor by a matrix

A tensor can be multiplied by a matrix in mode n. The n-mode product,
denoted by X ×n A, of an N -way tensor X ∈ RI1×I2×···×IN with a matrix
A ∈ RJ×In is a tensor of size I1 × · · · × In−1 × J × In+1 × · · · × In, whose
generic entry is defined as

(X ×n A)i1...in−1jin+1...iN
=

In∑
in=1

xi1i2...iNajin (2.7)

The matrix A multiplies each mode-n fiber, hence

Y = X ×n A ⇔ Y(n) = AX(n) (2.8)

In case of different modes in a series of n-mode products, the order of
multiplication is irrelevant

X ×n A1 ×m A2 = X ×m A2 ×n A1 (2.9)

A full treatment of tensor multiplication is reported in [15].

Matrix products

The Kronecker product of two matrices A ∈ RI×J and B ∈ RK×L, denoted
by A⊗B, is a matrix of size (IK)× (JL) defined as

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 (2.10)

The Khatri-Rao product of two matrices A ∈ RI×J and B ∈ RK×L, denoted
by A�B, is a matrix of size (IJ)×K defined as

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ] (2.11)

The Hadamard product is the element-wise matrix product. Given two matri-
ces A,B ∈ RI×J , it is defined as
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A ∗B =


a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI1 · · · aIJbI1

 (2.12)

The above matrix products have the following properties:

(A⊗B)(C⊗D) = AC⊗BD
(A⊗B)† = A† ⊗B†

A�B�C = (A�B)�C = A� (B�C)
(A�B)T(A�B) = ATA ∗BTB

(A�B)† = ((ATA) ∗ (BTB))†(A�B)T

(2.13)

where A† denotes the Moore-Penrose pseudo-inverse of A [68].

2.4.3 Tensor decompositions

To analyze tensors, several tensor decomposition algorithms have been pro-
posed in the literature [103], the most popular of which are based on the
more restricted CANDECOMP/PARAFAC [95] model or on the Tucker
model [194].

CANDECOMP/PARAFAC decomposition

In the CANDECOMP/PARAFAC (CP) decomposition, a tensor is expressed
in the polyadic form, i.e., as sum of a finite number of rank-one tensors (cf.
Section 2.4.1). The idea of expressing a tensor in the polyadic form was first
proposed by Hitchcock in the 1927 [81, 82]. Cattell proposed the idea of “par-
allel proportional analysis” in the 1944 [30] and the idea of “multiple axes
for analysis” [31]. In 1970, this kind of decomposition was introduced in the
psychometrics community by Carroll and Chang in the form of Canonical De-
composition (CANDECOMP) [28] and by Harshman in the form of parallel
factors (PARAFAC) [77]. Finally, Kiers proposed a standardized notation and
terminology for multiway analysis [95].

In the CP decomposition, the input tensor X ∈ RI1×I2×I3 is factorized as

X ≈
R∑
r=1

ar ◦ br ◦ cr (2.14)

where R is the number of rank-one tensors in which X is decomposed and
ar ∈ RI1 , br ∈ RI2 and cr ∈ RI3 for r = 1, . . . , R. The element-wise expression
of the generic X ’s entry is

xi1i2i3 ≈
R∑
r=1

ai1rbi2rci3r (2.15)
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Fig. 2.5: CP decomposition [103]

The CP decomposition is illustrated in Figure 2.5.
In this kind of decomposition, the factors matrices refer to the combi-

nation of the vector forming the rank-one components (tensors), i.e., A =
[a1 a2 . . . aR] and similarly for B and C.

Often, it useful to assume that the columns of the factor matrices are
normalized to length one with the weights absorbed into the vector λ ∈ RR

X ≈
R∑
r=1

λrar ◦ br ◦ cr (2.16)

Rank of tensor

The rank of a tensor X , denoted with rank(X ), is the smallest number of
rank-one tensors that generate X as their sum [81, 106]. By this definition
it follows that setting R = rank(X ) for the CP decomposition leads to an
“exact” decomposition, hence there is equality in Equation 2.14. An exact CP
decomposition with R = rank(X ) components is called the rank decomposi-
tion.

It can be observed an analogy of the tensor rank with the matrix rank. As
reported in [103], one difference between matrix rank and tensor rank is that
the rank of a real-valued tensor may be different over R and C. Furthermore,
there is no straightforward algorithm to determine the rank of a generic given
tensor, since the problem is NP-hard [78].

Computing CP decomposition

To compute the CP decomposition, the first issue that arises is how to choose
the number of rank-one component tensors. Most procedures compute mul-
tiple decompositions using different numbers of components until a “good”
one is reached, but, as argued in [103], by using this strategy many problems
can be encountered. On the other hand, assuming the number of components
R fixed, many algorithms for the computation of the CP decomposition are
available. The most popular one is the alternating least squares (ALS) algo-
rithm proposed by Carroll and Chang [28] and Harshman [77]. Given a third



2.4 Tensor models and decompositions 29

order tensor X ∈ RI1×I2×I3 , computing CP decomposition with R compo-
nents aims to find the set of R rank-one tensor that best approximate X .
Formally

min
X̂
‖X − X̂‖ with X̂ =

R∑
r=1

λrar ◦ br ◦ cr (2.17)

CP decomposition is easily generalizable to the case of Nth-order tensors.
Let X ∈ RI1×I2×···×IN be a Nth-order tensor. The CP decomposition of X is
defined as:

X =

R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r (2.18)

The ALS approach for an N -order is shown in Algorithm 1. As it can be seen,
at each iteration, each of the factor matrices is solved keeping fixed the other
ones. The algorithm iterates until a convergence criterion is satisfied.

Algorithm 1 CP-ALS

Require: A tensor X ∈ RI1×I2×···×IN and the number of components R
Ensure: The normalized factor matrices A(n) ∈ RIn×R for n = 1, 2, . . . , N , and

related norms λ
1: initialize A(n) ∈ RIn×R for n = 1, 2, . . . , N
2: repeat
3: for n = 1, 2, . . . , N do
4: V← A(1)A(1)T ∗ · · · ∗A(n-1)A(n-1)TA(n+1)A(n+1)T ∗ · · · ∗A(N)A(N)T

5: A(n) ← X(n)(A
(N) � · · · �A(n+1) �A(n-1) � · · · �A(1))V†

6: end for
7: until convergence or maximum number of iterations is reached
8: return λ, A(n) ∈ RIn×R for n = 1, 2, . . . , N

CP decomposition applications

CP decomposition was applied for first time in psychometrics. Carroll and
Chang [28] proposed CANDECOMP in for the analysis of multiple similarity
or dissimilarity matrices from a variety of subjects with the idea that simply
averaging the data for all the subjects leads to the loss of information about
the different points of view. Harshman [77] proposed the PARAFAC in pho-
netics with the aim of eliminating the ambiguity of a two-dimensional PCA,
providing better uniqueness properties. Appellof and Davidson [12] used the
CP decomposition in chemometrics and Andersson and Bro [9] provided a
survey about the use of CP decomposition in this context. Sidiropoulos et
al. [179] proposed the use of CP decomposition in the context of sensor ar-
ray processing. Mocks [128] independently discover the CP decomposition in
brain imaging.
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The CP decomposition has been applied also in data mining tasks. The
first was by Acar et al.[1, 2] in the context of discussion detanglement in online
chat rooms. Other applications were by Bader et a. [14] in text analysis, Chew
et al.[32] in cross-lingual information retrieval and Shashua and Levin [177] in
image compression and classification. Further details about the applications
of CP decomposition can be found in [103].

Tucker decomposition

The Tucker decomposition was proposed for the first time by Tucker in
1963 [192] and it was refined in subsequent works by Tucker [193, 194] and
Levin [112]. Tuckers work [194] is the most comprehensive of the early litera-
ture and is generally the most cited.

The Tucker decomposition is a class of decomposition and approximates
a tensor into a smaller core tensor and a factor matrix along each mode. It
can be considered a form of higher-order principal component analysis. For a
third-order tensor X ∈ RI1×I2×I3 , the Tucker decomposition is:

X ≈ G ×1 A×2 B×3 C =

=

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3ar1 ◦ br2 ◦ cr3
(2.19)

where A ∈ RI1×R1 , B ∈ RI2×R2 , and C ∈ RI3×R3 are the factor matri-
ces and can be seen as the principal components in each mode. The tensor
G ∈ RR1×R2×R3 is called core tensor and its entries intuitively express corre-
lations among the different principal components in each mode. Meaningful
information can be extracted from the factor matrices, although the choice of
the dimensions of the core tensor might be critical as it impacts on the iden-
tification of the mode principal components. Figure 2.6 illustrates the Tucker
decomposition.
The element-wise form of Equation 2.19 is

xi1i2i3 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3ai1r1bi2r2ci3r3 (2.20)

As we shall describe in the following, most fitting algorithms for the Tucker
decomposition make the assumption that the columns of the factor matrices
are pair-wise orthogonal, but the Tucker model in principle does not make
this assumption. In fact, the CP decomposition can be seen as a particular
case of the Tucker one, in which the factor matrices have the same number of
components (i.e., R1 = R2 = R3) and the core tensor is super-diagonal.

The Tucker decomposition in the matricized forms (one for each mode) is
as follows [101]:
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Fig. 2.6: Tucker decomposition [103]

X(1) ≈ AG(1) (C⊗B)
T

X(2) ≈ BG(2) (C⊗A)
T

X(3) ≈ CG(3) (B⊗A)
T

(2.21)

Although the Tucker decomposition was introduced for the three-way case,
it can be easily generalized to the N -way case [90]. Formally, a tensor X ∈
RI1×I2×···×IN is decomposed as

X = G ×1 A(1) ×2 A(2) · · · ×N A(N) (2.22)

where A(n) ∈ RIn×Rn for n = 1 . . . N and G ∈ RR1×R2×···×RN . The element-
wise form of Equation 2.22 is

xi1i2...iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

gr1r2...rNa
(1)
i1r1

a
(2)
i2r2

. . . a
(N)
iNrN

for in = 1, . . . , In and n = 1, . . . , N

(2.23)

while the matricized form is

X(n) = A(n)G(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
(2.24)

Two variants of the decomposition are commonly used. In first one, called
Tucker2 decomposition, one the factor matrices is set to be an identity ma-
trix. In the second variant, called Tucker1 decomposition, two of the factor
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matrices are set to be identity matrices. Formally, for a third-order tensor
X ∈ RI1×I2×I3 , the Tucker2 decomposition is defined as

X ≈ G ×1 A(1) ×2 A(2) (2.25)

where A(1) ∈ RI1×R1 , A(2) ∈ RI2×R2 and G ∈ RR1×R2×I3 ; Equation 2.25 is
the same as Equation 2.19 but with R3 = I3 and A(3) = II3 (i.e., the I3 × I3
identity matrix). Similarly, the Tucker1 decomposition is defined as

X ≈ G ×1 A(1) (2.26)

where A(1) ∈ RI1×R1 and G ∈ RR1×I2×I3 ; Equation 2.26 is the same as
Equation 2.19 but with R2 = I2, R3 = I3, A(2) = II2 (i.e., the I2× I2 identity
matrix) and A(3) = II3 , (i.e., the I3 × I3 identity matrix). Intuitively, in the
Tucker2 and Tucker1 models, the factor matrices are incorporated in the core
tensor.

The n-rank

The n-rank of a tensor X ∈ RI1×I2×···×IN , denoted rankn (X ), is the column
rank of the mode-n matricization of X . In other words, the rank-n of X is the
dimension of the vector space spanned by the columns of X(n) (i.e., the mode-n
fibers). A rank-(R1, R2, . . . , RN ) tensor is a tensor for which Rn = rankn (X )
for n = 1, . . . , N .

Computing Tucker decomposition

There are three main approaches to the computation of the Tucker decom-
position [194]. In the first one, the basic idea is to extract those components
that best capture the variation in mode n, independently of the other modes.
This method is today known as Higher-Order Singular Value Decomposition
(HOSVD) from a work of De Lathauwer, De Moor, and Vandewalle [43], in
which they showed as the HOSVD is a generalization of the matrix Singular
Value Decomposition. In the HOSVD, the factor matrices A(n) (n = 1, . . . , N)
are orthogonal matrices and the core tensor G is an all-orthogonal and ordered
tensor of the same dimension as the data tensor X . It should be noted that,
in this definition of HOSVD, the number of components for a particular mode
is equal to the dimension of the data tensor in that mode, that is In = Rn for
n = 1, . . . , N .

The result of the HOSVD is an ordered orthogonal basis for multidimen-
sional representation of input data. The dimensionality reduction in each
space is achieved by projecting the data sample onto subspace defined by
the principal axis and keeping only the components related to the leading
(largest) singular values in that subspace. This leads to the concept of best
rank-R1, R2, ..., RN approximation [44], formulated as follows: “Given a real
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Nth-order tensor X ∈ RI1×I2...×IN find a lower rank tensor X̂ of the same di-
mension which minimizes the FIT”. In this kind of decomposition, called Trun-
cated HOSVD (T-HOSVD), Rn is much smaller than In, for n = 1, . . . , N .
T-HOSVD is then computed in two steps:

1. For each mode, compute the tensor matricization X(n) from X and their

standard SVD: X(n) = U(n)S(n)V(n)T . The orthogonal matrix U(n) rep-
resents the leading left singular vectors of Y(n) and it will be the factor

matrix for the mode n (i.e., A(n) = U(n)).
2. Compute the core tensor as

G ≈ X ×1 A(1)T ×2 A(2)T · · · ×N A(N)T (2.27)

The T-HOSVD is hence computed by means of N standard singular value
decompositions. This method is shown in Algorithm 2

Algorithm 2 Trucated Higher-Order SVD

Require: A tensor X ∈ RI1×I2×···×IN and the number of components of for mode
R1, R2, . . . , RN

Ensure: Core tensor G ∈ RR1×R2×···×RN and factor matrices A(n) ∈ RIn×R for
n = 1, 2, . . . , N

1: for n = 1, 2, . . . , N do
2: A(n) ← Rn leading left singular vectors of X(n)

3: end for
4: G ← X ×1 A(1)T ×2 A(2)T · · · ×N A(N)T

5: return G, A(n) ∈ RIn×R for n = 1, 2, . . . , N

The HOSVD does not minimize the loss function ‖X −X̂‖2F , and does not
produce an optimal lower rank-R1, R2, ..., RN approximation to X , since it
optimizes for each mode separately without taking into account interactions
among the modes. Nevertheless, the HOSVD often produces a close to opti-
mal low rank approximation and is relatively fast in comparison with other
iterative algorithms, including those discussed next.

The computation of the best rank approximation of a tensor requires an it-
erative ALS algorithm called Higher-Order Orthogonal Iteration (HOOI) [44]
(Algorithm 3). The HOOI uses the HOSVD to initialize the matrices. In each
step of the iteration, only one of the basis matrices is optimized, while keeping
others fixed. The HOOI algorithm has been introduced by De Lathauwer, De
Moor and Vandewalle [44] and recently extended and implemented by Kolda
and Bader in [103] in their MATLAB Tensor Toolbox.
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Algorithm 3 Higher Order Orthogonal iterations (HOOI)

Require: A tensor X ∈ RI1×I2×···×IN and the number of components of for mode
R1, R2, . . . , RN

Ensure: Core tensor G ∈ RR1×R2×···×RN and factor matrices A(n) ∈ RIn×R for
n = 1, 2, . . . , N

1: initialize A(n) ∈ RIn×R for n = 1, 2, . . . , N using HOSVD
2: repeat
3: for n = 1, 2, . . . , N do
4: Y ← X ×1 A(1)T · · · ×n-1 A(n-1)T ×n+1 A(n+1)T · · · ×N A(N)T

5: A(n) ← Rn leading left singular vectors of Y(n)

6: end for
7: until convergence or maximum number of iterations is reached
8: G ← X ×1 A(1)T ×2 A(2)T · · · ×N A(N)T

9: return G, A(n) ∈ RIn×R for n = 1, 2, . . . , N

Tucker decomposition applications

Examples of Tucker decomposition applications are provided by Henrion [80]
in chemical analysis and by Kiers and Van Mechelen [96] in psychometrics.
De Lathauwer and Vandewalle [45] and Muti and Bourennane [133] applied
Tucker decomposition in signal processing. Vasilescu and Terzopoulos [196]
pioneered Tucker decomposition in the context of computer vision.

In data mining, Tucker decomposition was applied in the handwritten
digits identification by Savas and Eldén [173]. Acar et al.[1, 2] applied Tucker
decomposition in the context of discussion detanglement in online chat rooms.
Tucker decomposition was also used by Sun et al. [187] to analyze web site
click-through data. Liu et al. [117] proposed an extension of the vector space
model. Further applications of Tucker decomposition can be found in [103].

Non-negative Tucker decomposition

Another type of Tucker decomposition is the nonnegative Tucker decompo-
sition (NTD) [97, 146, 148], which is characterized by the presence of non-
negative constraints (i.e., factor matrices and core tensor have nonnegative
entries). Such a decomposition has already found some applications in neuro-
science, bioinformatics and chemometrics.

Algorithms that implement an NTD are usually ALS algorithms and are
characterized by multiplicative global learning rules and in which, generally,
at each iteration of the decomposition, each of the factor matrices is up-
dated by multiplying it with a term that is function of the core tensor and
of the other factor matrices; the update rule for the core tensor is similarly
formulated [97, 98, 62, 132]. Large-scale problems, with the raw data tensor
and its temporary variables stored in memory, are very large-scale and of-
ten cause memory overflow error during the decomposition process. To avoid
this problem, one possible solution is to process and update the tensor and
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its factors following block-wise or vector procedures, instead of operating on
whole matrices or tensors [146, 148, 147]. This approach is referred to as a
local decomposition or local learning rule.

A major advantage due to the application of such multiplicative rules is
that the decomposition algorithm is able to more easily capture correlations
among all modes of the tensor. Moreover, as discussed in [35], NTDs can be
profitably exploited to produce clustering solutions that might be meaning-
ful on each particular mode. Recently, a particularly effective formulation of
NTD that uses a beta divergence has been successfully applied for PCA and
clustering, robust ICA and robust NMF/NTF [34].

The ALS algorithms for NTD often require the initialization of the factor
matrices; the HOSVD and HOOI are often used as initialization method,
especially in those cases in which the factor matrices are sparse, orthogonal or
close to orthogonality. An advantage in using HOSVD and HOOI approaches
over standard ALS is that they are able to estimate the dimension of the core
tensor by analyzing the singular values.





3

Tensor-based Clustering for Multiple
Document Classifications

3.1 Introduction

Nowadays, with the diffusion of the new technologies, a huge amount of doc-
ument is produced and in many real-world applications multiple clustering
solutions might be available for the same document collection, therefore a
challenge is to effectively cope with this knowledge to provide a unique yet
meaningful clustering solution.

In this chapter we are interested in extending the task of document clus-
tering, which is traditionally performed according only to the textual con-
tent information of the documents, to the case in which a single clustering
is desired starting from multiple organizations of the documents. Such exist-
ing document organizations can be seen as multiple views over a document
collection which might correspond to user-provided, possibly alternative or-
ganizations, or to the results separately obtained by one or more document
clustering algorithms or supervised text classifiers. For example, news arti-
cles can be clustered based on the topics they discuss, or by citation-links, or
to reflect some existing categorization of major themes or different types of
meta-information (e.g., author, newswire source) they are related to. In the
following, we refer to the existing multiple document organizations simply as
document classifications.

The underlying assumption of our approach is that, when the documents
can be naturally grouped in multiple ways, a single new clustering encom-
passing all existing document classifications can be obtained by integrating
the textual content information with knowledge on the groupings of the doc-
uments through the available classifications. However, since no information
about any labels of the available groups of documents is assumed to be re-
quired, our key idea to accomplish the task relies on the identification of
frequent co-occurrences of documents in the groups across the existing clas-
sifications, in order to capture how documents tend to be grouped together
orthogonally to the different views. Based on the discovered frequent associa-
tions of the documents as well as on the usual term-document representation
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Fig. 3.1: Overview of the tensor-based clustering approach for multiple document
organizations

of the text contents, a novel tensor model is built and decomposed to finally
establish a unique clustering of documents that might be suited to reflect the
multidimensional structure of the initial document classifications.

Figure 3.1 shows the main modules and data flows in the proposed frame-
work. For a given document collection, a set of classifications of the documents
is assumed to be available as a result of an independent process of multi-view
document categorization. The collection of documents is initially subject to a
standard preprocessing step, which yields the usual vector-space representa-
tion of the collection in the form of a term-document matrix, while, inspired
by the classic task of frequent pattern discovery in transactional data, another
module is in charge of discovering frequently occurring subsets of documents
across the multiple classifications, in the form of closed frequent document-sets.
The central part of the framework consists of the steps for the construction
and the decomposition of the tensor model. A third-order tensor is built over
the outputs of the two previous steps, so that three dimensions are considered
together in the tensor, namely the terms, the documents, and the closed fre-
quent document-sets extracted from the multiple views. A new term-relevance
weighting scheme is also developed to compute the tensor entries. The tensor
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decomposition module is in charge of producing a new tensor and three factor
matrices, where the new tensor (core-tensor) is much smaller than the original
one and expresses the hidden interactions among the three dimensions, and
the factor matrices express the strength of each term, document, and frequent
document-set, respectively, along the components pertaining to a specific di-
mension of the data. Finally, a single encompassing document clustering is
induced by analyzing a factor matrix of the decomposed tensor.

The chapter is organized as follows. In Section 3.2 basic notions on fre-
quent pattern mining will be given. Then, Section 3.3 describes in detail the
proposed approach. Subsequently, in Section 3.4 the experimental evaluations
and the results are shown and Section 3.5 contains the related works. Finally,
Section 3.6 summarizes the chapter.

3.2 Preliminaries on frequent itemset mining

The frequent itemset mining problem is well-known in data mining research
as it aims to discover all frequent itemsets in a transactional dataset. Given
a set I of categorical values, or items, a transactional dataset T is a multiset
of transactions, such that each transaction t is a subset of the item domain.
Given any subset of I, or itemset, its support is the number of transactions
in T that contain it. An itemset is said frequent if if its support is not lower
than a user-specified minimum-support threshold, minsup.

The number of frequent itemsets may be huge since the problem is ex-
ponential with the number of items. To reduce the number of patterns to
be mined, some work has shifted toward the mining of closed and maximal
itemsets. An itemset is closed if it is frequent and none of its supersets has
exactly the same support. For a given support, the complete set of frequent
itemsets can be obtained from the (typically much smaller) set of closed item-
sets (including their support information). Moreover, a closed itemset is called
maximal if none of its proper supersets is frequent. All frequent itemsets can
be obtained from the set of maximal frequent itemsets, although not their sup-
port. Therefore, the set of maximal frequent itemsets is only an approximation
of the information in the set of all frequent itemsets.

A particularly efficient method for mining closed frequent itemsets is
CHARM algorithm [209] that uses a search space called IT-Tree in which
each node is an IT-Pair, i.e., a pair itemset-tid-set (where tid-set is a set of
transactions IDs in which the itemset appears). Despite CHARM can reduce
the search space by pruning techniques, the large number of items can still
make the task intractable in practice. By contrast, “bottom-up” approaches
based on intersections between transactions can be more suited for solving the
frequent itemset problem in the case that the number of transactions is com-
parable or even larger than the number of items. This case has been however
much less studied in the literature. Two algorithms that follow this strategy
are described in [22]. The first one works by enumerating sets of transactions
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and intersecting them to find the frequent closed itemsets. The second one is
based on a repository of all closed itemsets which is updated by intersecting
it with the transaction.

3.3 Proposed method

We are given a collection D = {d1, . . . , d|D|} of documents, which are repre-
sented over a set V = {w1, . . . , w|V|} of terms. We are also given a set of alter-
native organizations of the documents in D, denoted as CS = {C1, . . . , CH},
such that each Ch = {C1, . . . , Cnh

} represents a set of nh homogeneous groups.
We hereinafter generically refer to each of the document organization as a
document clustering and to each of the homogeneous groups of documents as
document cluster.1

In the following we describe in detail the proposed framework. As previ-
ously shown in Figure 3.1, we organize the presentation into four main steps,
namely extraction of closed document-sets from multiple document organi-
zations, construction of the tensor model, decomposition of the tensor, and
induction of a document clustering.

3.3.1 Extracting closed frequent document-sets

In our setting, an item e ∈ I corresponds to a document d ∈ D, hence an
itemset is a document-set. A transaction t ∈ T corresponds to a cluster C that
belongs to any of the clusterings in CS. As a transactional dataset is a multiset
of transactions, there will be as many transactions as the number of clusters
over all document clusterings in CS. A frequent pattern mining algorithm
applied to the above defined transactional dataset will extract document-sets
that frequently occur over the clusters in the available document clusterings.
Moreover, the frequent document-sets being discovered need to be closed, since
we desire to minimize the size of the set of patterns discovered, while ensuring
the completeness of such a set (cf. Section 3.2). Note also that we could not
deal with maximal frequent patterns (as to further minimize the size of the
set of patterns discovered), since we need to keep the support information to
define the term relevance weighting function used for the tensor construction,
which will be clarified in the next section.

As previously mentioned, a peculiarity of our transactional context is that,
unlike any typical scenario of transactional data, the size of the transactional
dataset (i.e., the number of document clusters) is much lower than the size
of the item domain (i.e., the number of documents). As a consequence, in or-
der to extract (closed) frequent document-sets, a traditional (closed) frequent

1 Although the input document organizations might derive from a supervised text
categorization task, no class labels or label correspondence scheme are assumed
to be available.
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itemset mining approach could be prohibitive, as it would require a cost which
is exponential with the number of documents.

Let T ⊆ T denote a set of transactions (transaction-set) and IT =
⋂
t∈T t

denote the itemsets (i.e., documents) shared by the transactions (i.e., clusters)
in T . A transaction-set containing d transactions is said a d-transaction-set,
with 1 ≤ d ≤ |T |. Moreover, we assume that a total ordering exists among the
transactions in the input dataset T based on the transaction ids (TIDs); this
ordering is also exploited to compare transaction-sets: for any two transaction-
sets Ti and Tj , it holds that Ti < Tj if and only if there exists an index
p ∈ [1..min{Ti, Tj} − 1] such that tip = tjp and tip+1 = tjp+1 .

Algorithm 4 shows the proposed closed frequent itemset miner, which
uses a level-wise search where d-transaction-sets are used to explore (d + 1)-
transaction-sets. To perform the search, an enumeration tree is incrementally
built such that each node represents a pair of the form (T, IT ); initially, each
individual transaction (and its set of items) forms a pair in its own (Line 2).
This initial set of 1-transaction-sets is used to compute (1 + it)-transaction-
sets, at each iteration it of the search procedure; this procedure terminates
after |T | levels, i.e., when all transactions have been considered in a single
union set. To avoid redundant unions among transaction-sets (hence, inter-
sections among their itemsets), the ordering between the first transactions
of any two transaction-sets is involved at each iteration (Lines 10 and 12).
Note that, as the search space is being explored, the support of the itemsets
obtained by the intersection of a growing number of transactions is monoton-
ically non-decreasing. Therefore, every candidate closed itemset (Line 13) is
checked to be a frequent itemset (Line 15).

The merge function (Line 5) searches for all pairs that have the same com-
mon itemset and yields a single pair containing the union of the transaction-
sets, formally for each (T, IT ) and (T ′, IT ′) such that IT = IT ′ = I and
T 6= T ′, the two pairs are replaced with the new pair (T ∪ T ′, I). Finally, the
set CI of all closed frequent itemsets from CIT-P is returned (Line 6). Fig-
ure 3.2 illustrates an example of extraction of closed frequent itemsets from
four transactions using Algorithm 4.

3.3.2 Building a tensor for multiple document organizations

We define a third-order tensor to model a set of documents contextually to
multiple available organizations of the documents. Our key idea is to represent
the content information of each document (based on the vocabulary terms)
over each frequent aggregation of the document across the various organiza-
tions. Within this view, we assign the three modes the following meaning:

• Mode-1: the closed frequent document-sets extracted from the set of doc-
ument organizations;

• Mode-2: the terms representing the document contents;
• Mode-3: the documents.
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Algorithm 4 Intersection-based Closed Frequent Itemset Miner

Input: A transactional dataset T , a minimum support threshold minsup
Output: A set CI of closed frequent itemsets
1: CIT-P ← ∅
2: P ← {({t}, t) | t ∈ T }
3: P0 ← P
4: search(P0, P, CIT-P)
5: CIT-P ← merge(CIT-P)
6: CI ← flatten(CIT-P)
7:
8: procedure search(P ′, J1, CIT-P)
9: for all (T, IT ) ∈ P ′ do

10: let t be the first transaction in T
11: P ′′ ← ∅
12: for all ({ti}, ti) ∈ J1, t < ti do
13: Tj ← T ∪ {ti}, ITj ← I ∩ {ti}
14: P ′′ ← IP ′′ ∪ {

(
Tj , ITj

)
}

15: if sup(ITj ) ≥ minsup then
16: remove from CIT-P all (Tk, ITk ) such that Tj ⊇ Tk and ITk = ITj

17: if ITj is a closed itemset for the itemsets in CIT-P then
18: CIT-P ← CIT-P ∪ {(Tj , ITj )}
19: end if
20: end if
21: end for
22: search(P ′′, P, CIT-P)
23: end for

Formally, we define a tensor X ∈ RI1×I2×I3 , where I1 is the num-
ber of mined closed frequent document-sets, I2 = |V| is the number of
terms, and I3 = |D| is the number of documents. We hereinafter denote as
CDS = {CDS1, . . . , CDSI1} the set of closed frequent document-sets ex-
tracted from CS.

Figure 3.3 shows our proposed three-order tensor. The i3-th slice of the
tensor refers to document di3 and is represented by a matrix of size I1 × I2,
where the (i1, i2)-th entry will be computed to determine the relevance of
term wi2 in document di3 contextually to the document-set CDSi1 .

Given a document d, a term w, and a frequent document-set CDS (we
omit here the subscripts for the sake of readability of the following formulas),
our aim is to incorporate the following aspects in the term relevance weight:

1. the popularity of the term in the document;
2. the rarity of the term over the collection of documents;
3. the rarity of the term locally to the frequent document-set;
4. the support of the frequent document-set.

Aspects 1 and 2 refer to the notions of term frequency and inverse docu-
ment frequency that compose the classic tf.idf term relevance weighting func-
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Fig. 3.2: Example of intersection-based closed frequent itemset extraction.

Fig. 3.3: Our tensor model for multiple document organizations.

tion. Formally, the frequency of term w in document d, denoted as tf(w, d), is
equal to the number of occurrences of w in d. The inverse document frequency
of term w in the document collection is defined as idf(w) = log(|D|/N(w)),
where N(w) is the number of documents in D that contain w.

To account for aspect 3, we introduce an inverse document-set frequency
factor:
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idsf(w,CDS) = log

(
1 +

|CDS|
N(w,CDS)

)
where |CDS| is the number of documents belonging to the frequent document-
set CDS, and N(w,CDS) denotes the number of documents in CDS that
contain w. Moreover, the idsf weight is defined to be equal to zero if term w is
absent in all documents of CDS; otherwise, note that idsf weight is always a
positive value even in case of maximum popularity of the term in the frequent
document-set.

Finally, to account for aspect 4, we exploit the support of the frequent
document-set:

s(CDS) = exp

(
supp(CDS)

maxCDS∈CDS supp(CDS
′)

)
where supp(CDS) is the support of CDS, i.e., the number of document groups
(clusters) in every C ∈ CS that contain CDS. Note that the support of a
document set is bounded by the number of document organizations (i.e., size
of CS) in case each document is originally assigned to only one group (cluster),
in each of the organizations.

By combining all four factors, the overall term relevance weighting function
has the form:

weight(CDS,w, d) = tf(w, d) idf(w) idsf(w,CDS) s(CDS)

It can be noted that the proposed weighting function increases with the
popularity of a term in a document, with the rarity of a term in the document
collection, with the rarity of a term in a frequent document-set, and with the
support of a closed frequent document-set.

3.3.3 Tensor decomposition

Recently, a particularly effective formulation of NTD that uses a beta diver-
gence has been successfully applied for PCA and clustering, robust ICA and
robust NMF/NTF [35]. We chose this type of NTD, known as Fast Beta NTD,
to define our tensor decomposition algorithm.

Figure 3.4 shows our modified Fast Beta NTD algorithm for a third-order
tensor. In the figure, the symbol A⊗−n denotes the Kronecker product between
all factor matrices except A(n), i.e.,

A⊗−n = A(1) ⊗ . . .⊗A(n−1) ⊗A(n+1) ⊗ . . .⊗A(N)

The expression G×{A} denotes the product G ×1 A(1) ×2 A(2) × . . .×N A(N).
The Fast Beta NTD algorithm has multiplicative update rules defined in

function of the tensor X and its current approximation X̂ . Unfortunately,
X̂ is a large yet dense tensor and hence it cannot be easily kept in primary
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Modified Fast Beta NTD Algorithm

Input:
X : input data of size I1 × I2 × I3,
J1, J2, J3: number of basis for each factor,
β: divergence parameter.

Output:

three factors A(1) ∈ RI1×J1+ , A(2) ∈ RI2×J2+ , A(3) ∈ RI3×J3+

core tensor G ∈ RJ1×J2×J3
begin

1. Nonnegative ALS initialization for all A(n) and G
2. repeat

3. X̂ ’ = G ×1 A(1) ×2 A(2)

4. X” = computeStep1(X ,X̂ ’,A(3),n,β) // compute X ~ X̂
5. for n = 1 to 3 do

6. A(n) ← A(n)~ computeStep2(X”,A,G,n) � computeStep3(X̂ ’,A,G,β,n)

7. a
(n)
jn
← a

(n)
jn
/ ‖ a

(n)
jn
‖p

8. end

9. G ← G ~
[
X”× {AT }

]
�
[
X̂ .[β] × {AT }

]
10. until a stopping criterion is met
end

Fig. 3.4: Modified Fast Beta NTD Algorithm

memory. To avoid this issue, we decompose the tensor following the lead of
the approach proposed in [104]. Hereinafter,

Let us consider the update rule for the factor matrices A⊗−n :

A(n)←A(n) ~
[(

X(n) ~ X̂
.[β−1]
(n)

)
A⊗−nGT

(n)

]
�(

X̂
.[β]
(n)A

⊗−nGT
(n)

)
(3.1)

In the above rule, the most expensive operations are X(n)~X̂
.[β−1]
(n) , A⊗−nGT

(n)

and X̂
.[β]
(n)A

⊗−nGT
(n), which clearly rely on the large numbers I1, I2, and espe-

cially I3. In order to cope with the computational difficulties of this update
rule, we decompose the problem into three smaller steps. In the first step, the

product X ~ X̂
.[β−1]

is computed by taking into account only the nonzero

entries of X . In the second step, the product
(
X(n) ~ X̂

.[β−1]
(n)

)
A⊗−nGT

(n) is

computed in a block-wise manner, so that we can control the use of primary

memory. The third step, which is required to compute X̂
.[β]
(n)A

⊗−nGT
(n), is

performed analogously to the second step.
To avoid storing the entire tensor X̂ , we keep in memory only an inter-

mediate result X̂ ’ = G ×1 A(1) ×2 A(2) (Line 3), and then partially compute

the final approximated tensor as X̂ = X̂ ’ ×3 A(3) only for a limited number
of slices at time, for each mode.
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We observe that the products X(n) ~ X̂
.[β−1]
(n) for n ∈ {1, 2, 3} are the

matricizations of the same tensor element-wise product X ~ X̂
.[β−1]

hence
we can compute such a product once and then obtain the matricizations.

Moreover, since X ~ X̂
.[β−1]

is the element-wise product of a sparse tensor
with a dense one, the resulting tensor will also be a sparse tensor whose
nonzero entries are in the same positions as those within X . Another aspect
that should be considered is that the matricization of a tensor is a matrix in
which the slices are placed side by side (cf. Section 2.4.1).

By taking into account the above considerations, in order to compute

X(n) ~ X̂
.[β−1]
(n) for n ∈ {1, 2, 3}, we first obtain X ~ X̂

.[β−1]
by considering

only the nonzero entry of X (Line 4), and hence by computing only the corre-

sponding entry of X̂
.[β−1]

starting from intermediate result X̂ ’, and then we
obtained the matricizations of the resulting tensor. For instance, the matri-

cization along the mode 1 of the tensor resulting from the product X~X̂
.[β−1]

will have the same form of Y(n) and will be exactly X(n)~X̂
.[β−1]
(n) , with n = 1.

If we consider that A⊗−nGT
(n) is exactly the transpose of the matricization

along the mode n of the tensor resulting from G×−n{A}, it can be noted that(
X(n) ~ X̂

.[β−1]
(n)

)
A⊗−nGT

(n) is the product between the matricizations along

the mode n of two tensors (X ~ X̂
.[β−1]

and G ×−n {A}) that have the same

number of slices along the mode n. For instance, for n = 1, X(n) ~ X̂
.[β−1]
(n)

will be formed by I3 slices (I1× I2) and A⊗−nGT
(n) will be formed by I3 slices

(J1 × I2). Thus, it can be observed that
(
X(n) ~ X̂

.[β−1]
(n)

)
A⊗−nGT

(n) will be

exactly the sum of I3 matrix products, such that each slice of X(n) ~ X̂
.[β−1]
(n)

will be multiplied with the corresponding slice of A⊗−nGT
(n). If we denote

with Li3 the i3-th slice that forms X(n) ~ X̂
.[β−1]
(n) and Mi3 the i3-th slice

that forms A⊗−nGT
(n), then

(
X(n) ~ X̂

.[β−1]
(n)

)
A⊗−nGT

(n) =
∑I3
i3=1 Li3M

T
i3

and this operation is computed at Line 6 (computeStep2()) for each mode.
This product, for mode 1, is shown in Figure 3.5

The computation of X̂
.[β]
(n)A

⊗−nGT
(n) (Line 6, computeStep3()) is analogous:

X̂
.[β]
(n) is a matrix in which the slices of X̂

.[β]
are placed side by side, so that

X̂
.[β]
(n)A

⊗−nGT
(n) can be rewritten as the sum of a certain number of matrix

products.
In the computation of the core tensor update rule (Line 9), the most

expensive operation is X̂
.[β]
×{AT }. In this case we compute a normal mode-

n product but each entry of X̂
.β

is computed starting from the intermediate
result X̂ ’.
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Fig. 3.5:
(
X(n) ~ X̂

.[β−1]

(n)

)
A⊗−nGT

(n) computation.

3.3.4 Induction of document clustering

We consider different ways of inducing a document clustering solution from
the decomposed tensor. One simple way is to derive a monothetic clustering
from the third factor matrix (A(3)) by assigning each document to the com-
ponent (cluster) corresponding to the highest relevance value stored in the
matrix. A direct way is to input a standard document clustering algorithm
with A(3). An alternative way, which does not explicitly involve A(3), is to
consider a clustering solution obtained by applying a document clustering
algorithm to the projection of the matrix of the term-frequencies (over the
original document collection) to A(2)—the rationale here is to project the
original document vectors of term-frequencies along the mode-2 components,
which express discriminative information for the term grouping, hence deriv-
ing a clustering of the documents that are mapped to a lower dimensional
space. We hereinafter refer to the different ways as monothetic, direct, and
tf -projected document clustering, respectively.

3.4 Evaluation and results

Reuters Corpus Volume 1 (RCV1) [114] is a major benchmark for text clas-
sification/clustering research, which consists of thousands of newswire stories
in XML format. RCV1 lends itself particularly well for our case study since
every news, besides its plain-text fields (i.e., body and headlines) is originally
provided with alternative categorizations according to three different category
fields (metadata): Topics (i.e., major subjects of a news), Industries (i.e.,
types of businesses discussed), and Regions (i.e., geographic locations as well
as economic/political information about a news).
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Function computeStep1

Input:
X : input data of size I1 × I2 × I3,

X̂ ’: intermediate result for X̂ computation

A(3): the third factor matrix of size I1 × J1
n: the selected mode
β: the β-divergence coefficient

Output:

X”: the tensor resulting from the product X ~ X̂
begin
11. for each xi1i2i3 such that xi1i2i3 6= 0

12. compute x̂i1i2i3 starting from X̂ ’and A(3)

13. set x′′i1i2i3 = xi1i2i3 x̂
β−1
i1i2i3

14. end
end

Function computeStep2

Input:

X”: the tensor resulting from the product X ~ X̂ .[β−1]

A(1),A(2),A(3): the factor matrices
G: the core tensor
n: the selected mode

Output:

R: the matrix resulting from
(
X(n) ~ X̂ .[β−1]

(n)

)
A⊗−nGT(n)

begin
15. Let ms be the maximum number of slices that can be loaded into primary memory
16. Let fs be the first slice under consideration
17. Let R be an all-zero matrix of size In × Jn
18. repeat
19. Let be S1 sub-tensor built by taking X”slices from the fs-th one to the (fs+ms)-th one
20. Let be S2 sub-tensor built by taking G ×−n {A} slices from the fs-th one to the (fs+ms)-th one
21. R = R+ S1S

T
2

22. until all slices are computed
end

Function computeStep3

Input:

X̂ ’: the tensor resulting from the product G ×1 A(1) ×2 A(2)

A(1),A(2),A(3): the factor matrices
G: the core tensor
β: the β-divergence coefficient
n: the selected mode

Output:

R: the matrix resulting from
(
X(n) ~ X̂ .[β−1]

(n)

)
A⊗−nGT(n)

begin
23. Let ms be the maximum number of slices that can be loaded into primary memory
24. Let fs be the first slice under consideration
25. Let R be an all-zero matrix of size In × Jn
26. repeat

27. Let be S1 sub-tensor built by taking
[
X̂ ’×3 A(3)

].β
slices from the fs-th one to the (fs+ms)-th one

28. Let be S2 sub-tensor built by taking G ×−n {A} slices from the fs-th one to the (fs+ms)-th one
29. R = R+ S1S

T
2

30. until all slices are computed
end

Fig. 3.6: Tensor decomposition functions for the modified Fast Beta NTD algorithm.

From the whole RCV1 collection, we filtered out very short news (i.e.,
XML documents with size less than 6KB), and any news that did not have at
least one value for each of the three category fields. Then we selected the news
labeled with one of the Top-5 categories for each of the three category fields.
This resulted in a dataset of 3081 news. From the textual components of the



3.4 Evaluation and results 49

Table 3.1: Document classification sets.

news text clust. size
fields params params

CS1 headline lf = 0 k ∈ [5..20] 4 (50)
body lf = {0, 1, 5} k ∈ [5..20] 12 (150)

CS2 headline lf = 5 k ∈ [5..43] 20 (480)
+ body

CS3 headline lf = 0 k ∈ [5..20] 4 (50)
body lf = 0 k ∈ [5..20] 4 (50)

metadata – – 3 (19)

news, we discarded strings of digits, retained alphanumerical terms, performed
removal of stop-words and word stemming (based on Porter’s algorithm2), and
filtered out terms with a document-frequency greater than 50%.

We generated various sets of classifications obtained over the RCV1
dataset, according to the textual content information as well as to the Top-
ics/Industries/Regions metadata. For the purpose of generating the text-based
classifications, we used the bisecting k-means algorithm implemented in the
well-known CLUTO clustering toolkit [91] to produce clustering solutions of
the documents represented over the space of the terms contained in the body
and/or headlines. Table 3.1 summarizes the main characteristics of the three
sets of document classifications used in our evaluation. Columns text params
and clust. params refer to the lower document-frequency cut threshold (lf ,
percent) used to select the terms for the document representation, and to the
number of clusters (k, with increment of 5 in CS1,CS3 and 2 in CS2) taken as
input to CLUTO to generate the text-based classifications. Moreover, column
size reports the number of classifications (and relating groups of documents,
within brackets) that rely on the same type of information (i.e., body, head-
line, metadata).

For each of the three document classification sets, we derived different
tensors according to different settings of the closed frequent document-set
extraction. More specifically, we varied not only the minsup threshold (with
increments of 0.1%) but also the minimum length desired for a closed frequent
document-set CDS (with increments of 10), until the full coverage of the
documents was ensured by the patterns discovered. We observed how the
average number of patterns per document varied consequently, and finally we
selected up to four configurations that corresponded to the best coverage of
patterns per document. Table 3.2 reports on details about the tensors built
upon the selected configurations. Note that, in each of the tensors, mode-2
corresponded to the space of terms extracted from the body and headline of
the news (2692 terms) and mode-3 to the average number of clusters in the
corresponding classification sets (i.e., 13 for CS1, 24 for CS2, and 11 for CS3).

For each of the tensors constructed, we run the algorithm in Figure 3.4
with different settings to obtain two decompositions: the first one led to a
core-tensor with a number of components on mode-3 equal to the average

2 http://www.tartarus.org/∼martin/PorterStemmer/.
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Table 3.2: Tensors and their decompositions for the various document classification
sets.

min lengthno. of avg % of TD-S TD-L
of CDS CDS CDS per doc. size size

CS1 Ten1 50 17443 3.29% 174× 27× 13 1740× 270× 130
CS1 Ten2 100 5871 5.25% 58× 27× 13 580× 270× 130
CS1 Ten3 150 2454 7.12% 24× 27× 13 240× 270× 130
CS1 Ten4 200 1265 8.53% 12× 27× 13 120× 270× 130
CS2 Ten1 50 12964 3.78% 129× 27× 24 1290× 270× 240
CS2 Ten2 100 7137 4.87% 71× 27× 24 710× 270× 240
CS2 Ten3 150 3129 5.89% 31× 27× 24 310× 270× 240
CS2 Ten4 180 918 7.53% 9× 27× 24 90× 270× 240
CS3 Ten1 50 2806 3.09% 28× 27× 11 280× 270× 110
CS3 Ten2 100 843 5.15% 8× 27× 11 80× 270× 110
CS3 Ten3 150 326 7.15% 3× 27× 11 30× 270× 110

Table 3.3: Results on the various tensor decompositions.

clustering F Qtf.idf Qtensor clustering F Qtf.idf Qtensor

CS1 Ten1 TD-S monoth. 0.509 0.603 0.658 CS1 Ten1 TD-L direct 0.556 0.601 0.665
tf-proj. 0.610 0.838 0.891 tf-proj. 0.665 0.881 0.951

CS1 Ten2 TD-S monoth. 0.534 0.599 0.654 CS1 Ten2 TD-L direct 0.570 0.603 0.665
tf-proj. 0.625 0.838 0.889 tf-proj. 0.688 0.884 0.949

CS1 Ten3 TD-S monoth. 0.542 0.598 0.652 CS1 Ten3 TD-L direct 0.586 0.601 0.666
tf-proj. 0.624 0.835 0.886 tf-proj. 0.689 0.889 0.944

CS1 Ten4 TD-S monoth. 0.533 0.598 0.651 CS1 Ten4 TD-L direct 0.579 0.605 0.665
tf-proj. 0.624 0.838 0.887 tf-proj. 0.687 0.837 0.946

CS2 Ten1 TD-S monoth. 0.494 0.603 0.659 CS2 Ten1 TD-L direct 0.599 0.604 0.669
tf-proj. 0.569 0.847 0.898 tf-proj. 0.625 0.893 0.957

CS2 Ten2 TD-S monoth. 0.496 0.603 0.658 CS2 Ten2 TD-L direct 0.556 0.601 0.660
tf-proj. 0.561 0.843 0.892 tf-proj. 0.629 0.889 0.952

CS2 Ten3 TD-S monoth. 0.495 0.603 0.657 CS2 Ten3 TD-L direct 0.560 0.604 0.660
tf-proj. 0.570 0.846 0.894 tf-proj. 0.635 0.895 0.953

CS2 Ten4 TD-S monoth. 0.497 0.604 0.656 CS2 Ten4 TD-L direct 0.555 0.602 0.658
tf-proj. 0.577 0.848 0.895 tf-proj. 0.639 0.890 0.957

CS3 Ten1 TD-S monoth. 0.556 0.597 0.653 CS3 Ten1 TD-L direct 0.619 0.600 0.661
tf-proj. 0.617 0.837 0.890 tf-proj. 0.677 0.888 0.937

CS3 Ten2 TD-S monoth. 0.556 0.597 0.651 CS3 Ten2 TD-L direct 0.619 0.599 0.658
tf-proj. 0.620 0.837 0.888 tf-proj. 0.686 0.839 0.930

CS3 Ten3 TD-S monoth. 0.553 0.597 0.650 CS3 Ten3 TD-L direct 0.610 0.596 0.656
tf-proj. 0.620 0.837 0.886 tf-proj. 0.680 0.887 0.933

number of clusters in the original classification set, whereas the other two
modes were set equal to the number of closed document-sets and number of
terms, respectively, scaled by a factor of 0.01; the second decomposition was
devised to obtain a larger core-tensor with components of each mode equal
to an increment of a multiplicative factor of 10 w.r.t. the mode in the core-
tensor obtained by the first decomposition. The last group of two columns in
Table 3.2 contains details about the tensor decompositions; note that we use
suffixes TD-S and TD-L to denote the first (smaller) and second (larger) de-
compositions of a tensor, respectively. Note that, while choosing the number of
components for the modes of a tensor would deserve an extensive experimen-
tation (since, in general, there are no available specialized techniques for it),
the objective of our evaluation was to observe how the clustering performance
varies from a configuration in which the core-tensor mode-3 is chosen as equal
to the average number of clusters per classification-set to a configuration in
which the core-tensor is proportionally larger on all modes.

From the result of a TD-S decomposition, we derived a monothetic or, al-
ternatively, a tf -projected clustering solution, with number of clusters equal to
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the number of mode-3 components; analogously, from a TD-L decomposition,
we derived a direct or a tf -projected clustering solution (cf. Section 3.3.4).

All clustering solutions were evaluated in terms of both standard external
and internal validity criteria. Precisely, we computed the average F-measure
(F ) between a clustering solution derived from the tensor model and each of
the input document classifications. We also computed the inter-cluster simi-
larity as the average of the pair-wise similarities of the cluster centroids, and
the intra-cluster similarity as the average of the weighted (by the cluster size)
summations of the similarities between the cluster centroid and the documents
assigned to the cluster. An overall “quality” score of the clustering is finally
given as the difference between the intra-cluster similarity and the inter-cluster
similarity; as for the vectorial representation of the documents, we resorted
to the original tf.idf representation (based on the text of body plus headline
fields of the news) and, alternatively, to the representation derived by averag-
ing the row vectors of a frontal slice of the tensor, for each document—recall
that the tensor entries are computed using our proposed weighting function
(cf. Section 3.3.2). We will denote the corresponding quality scores as Qtf.idf
and Qtensor, respectively. Note also that, when the CLUTO algorithm was
used, multiple runs (50) were executed so that an average performance score
was finally presented, for any given data setting.

Table 3.3 shows our main experimental results. At a first glance, perfor-
mance evaluation in terms of Qtensor was generally better than those in terms
of Qtf.idf , which is not surprising at all since the clusterings were induced
by taking into account the term relevance scores computed by tensor-based
weighting function instead of the standard tf.idf .

Looking at each classification-set tensors, both for the monothetic vs. tf -
projected clustering case and the direct vs. tf -projected clustering case, we
observed that a lower average percentage of closed document-sets generally
led to slightly better performance for classification-sets characterized by con-
ceptually different views (i.e., CS1 and CS3), whereas an inverse tendency
occurred for a more homogeneous classification-set (CS2). However, we also
observed no significant differences in the overall average performance obtained
by varying the number of components in mode-1, which would indicate a rela-
tively small sensitivity of the tensor approximation to the mode-1 (i.e., space
of the mined closed document-sets). Also, the F-measure evaluation for the
CS3 tensors was comparable or even better than for the other tensors, which
would suggest the ability of our tensor model to handle document classifica-
tion sets which express possibly alternative views (i.e., different content-based
views along with metadata-based views).

Comparing the performance of the different types of induced clustering, the
tf -projected solutions achieved higher quality than the monothetic clusterings
(for the case TD-S) and the direct clusterings (for the case TD-L); this was
particularly evident in terms of internal quality scores (gains up to 0.24 for
the case TD-S and up to 0.29 for the case TD-L).
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A final remark is that the relatively small scores (especially for F ) were
partly due to a certain overlap of the closed document-sets across the various
clusters of a given clustering solution: note that this fact, if on the one hand
it reflects the frequent associations of the documents through the multiple
classifications, on the other hand it would likely be better captured from a
soft clustering scheme and validation.

3.5 Related work

One of the earliest proposals to bring tensor models into text representation
is presented in [117]. A corpus of N documents is modeled as a character-level
higher-order tensor where each document is represented by an (n-1)-order
tensor, if an n-gram model is chosen to capture the word information. HOSVD
is applied for dimensionality reduction.

In [102], a tensor model is used to integrate the anchor text information
in the well-known HITS method for web hyperlink analysis. Each frontal slice
in the tensor corresponds to the adjacency matrix obtained by using only a
particular term for the web structure representation.

In the context of scientific publication clustering, [175] introduces a ten-
sor decomposition called Implicit Slice Canonical Decomposition, and used
it for grouping publications with multiple similarities. This decomposition is
shown to be equivalent to CP and each frontal slice is implicitly stored as the
product between two sparse matrices, an object-feature matrix and its trans-
pose. In [54], multiple link types are assumed to build a tensor by stacking
the adjacency matrix for each link type to form a three-dimensional array.
CP decomposition is used to extract features vectors, and applied for the
analysis of publication data where each link type corresponds to a particular
similarity measure. [118] proposes an extension of graph clustering based on
Tucker-2 model to cluster scientific publications by integrating information
on citation-links and lexical similarities of the documents. The method con-
sists of three steps: construction of a similarity tensor from a set of similarity
matrices, Tucker-2 truncated decomposition of the similarity tensor, and final
partitioning of the obtained optimal subspace for producing the clustering
solution.

[210] defines a nonnegative Tucker decomposition for third-order tensors
which aims to integrate the subspace identification (i.e., the low-dimensional
representation with a common basis for a set of matrices) and the detection of
the cluster structure in the data. This model, which can be seen as an extension
of Tri-factor NMF, has been applied to author clustering in bibliographic data,
image clustering, and image reconstruction.

[110] proposes a tensor to represent structural and content information
from XML documents. A set of common sub-trees is extracted from a collec-
tion of XML documents and then a clustering method is used to group similar
sub-trees. These clusters of common sub-trees represent a dimension of the
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third-order tensor being built. The other two dimensions are documents and
terms. Each frontal slice corresponds to a single document and each entry
represents the number of occurrences of a particular term in a certain cluster
of common sub-trees for that document. SVD decomposition is applied to the
unfolded tensor and the factorized matrices are used to partition the set of
documents.

Comparison with Ensemble Clustering and Multi-view Clustering. We would
like to point out that the problem of extracting a single clustering from multi-
ple existing ones is actually not novel. A large corpus of research in advanced
data clustering has been developed to address the problem of consensus clus-
tering, also known as ensemble clustering : given an ensemble of clustering
solutions, the goal is to derive a consensus clustering as a (new) clustering by
the optimization of a certain objective function which expresses how well any
candidate consensus clustering complies with the solutions in the ensemble
(see [66] for an overview). In this work we face the problem of extraction of
a unique clustering from an available set of multiple clusterings from a differ-
ent perspective, which relies on an integrated representation of all aspects in
the set of clusterings and enables the induction of a single meaningful clus-
tering from the unfolding of the multi-aspect representation. Moreover, our
approach relaxes a main assumption in ensemble clustering methods, which
limits the optimization of the consensus function to only use information on
the object-to-cluster and feature-to-cluster assignments, whereas the feature
relevance values are assumed to be unavailable.

It is also worth noticing that the problem addressed in this paper is oppo-
site to what is known as multi-view clustering [20, 89], which seeks multiple
clusterings in different subspaces of a data space, thus uncovering disparate or
alternative clusterings that reflect the different groupings inherent in the data
and are also decorrelated (i.e., alternative clusterings under the constraint of
orthogonality of the subspaces). No assumption of decorrelation among the
existing document organizations is required in our approach.

3.6 Chapter review

This chapter has presented a tensor-based approach to deal with multiple
organizations of a document collection in order to produce a unique organi-
zation encompassing the available ones. This approach is motivated by many
real-world clustering-based applications which are increasingly demanding for
taking into account some knowledge about the multi-faceted nature of docu-
ment collections when performing the clustering task.

Besides considering the usual information on the text-based content of
the documents, the key idea was to exploit frequent associations of the docu-
ments in the groups across the existing classifications, in order to capture how
documents tend to be grouped together orthogonally to the different views.
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The main contribution of this study was the definition of a third-order
tensor model that takes into account both the document content informa-
tion and the ways the documents are grouped together across the available
classifications. For this purpose, a (closed) frequent itemset mining algorithm
(which is suited for dealing with transactional datasets in which the number
of items is much larger than the number of transactions) was developed to
discover the frequent associations of the documents through the existing clas-
sifications. Furthermore, a novel weighting fuction, capable to cope with this
knowledge, was defined for the tensor construction.

A third-order tensor for the document collection was defined over both the
space of terms and the space of the discovered frequent document-associations,
and then it was decomposed to finally establish a unique encompassing clus-
tering of documents. To this purpose, a fast-beta NTD algorithm has been
used for the tensor decomposition, whereas different ways of inducing a single
document clustering solutions have been shown.

Experiments conducted on a document clustering benchmark have shown
the potential of the approach to capture the multi-view structure of existing
organizations for a given collection of documents.
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Tensor-based Clustering for View-Segmented
Documents

4.1 Introduction

The study described in this chapter leverages on a common property that
many documents have in reflecting a target set of views or aspects already
defined over the data. These views can be of different kinds. Views can refer
to an application target, which is the case of different rating aspects in the
review of a certain product or service. For example, in a hotel review, dif-
ferent portions of the textual review typically refer to location, cleanliness,
checkin/front desk, business service, etc. Other times, views can refer to user-
driven goals, e.g., microblogs posted by the same user. Therefore, a multi-view
document is a document that can still be seen in terms of its constituent seg-
ments modeling the different views.

Our research stems from an interest in exploring the effect, and presumed
benefits, of a combination of document segmentation with a multidimensional
data structure, the result being able to capture a segment-grained view-
oriented topical representation of the documents. This representation will be
eventually used for clustering purposes.

In this chapter we describe a tensor-based document clustering framework
that explicitly treats multi-view documents in terms of their constituent, view-
based text segments, while representing them under a multidimensional data
structure. Important features of the proposed framework are modularity, since
alternate methods for document clustering and tensor analysis can in principle
be applied, and domain versatility. Note also that the text segmentation is
actually descoupled from the construction of the tensor model, i.e., any text
segmentation algorithm can be applied in order to extract topically-cohesive
segments (e.g., [190, 152]).

The framework has been evaluated over different real-world scenarios, us-
ing document collections with different notions of “view”.

Note that the problem we arise in this work is also related to the field
of multi-view clustering [20], where the goal is to produce a partition of the
instances exploiting all the different representations/views describing them.
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Fig. 4.1: The view-segmented document clustering framework.

Multi-view clustering methods have also demonstrated to be effective on doc-
ument clustering tasks (e.g., [158, 87]). In particular, co-clustering approaches
have shown to be a valuable tool to cluster sparse data. We will hence com-
pare our approach with a recently proposed multi-view co-clustering approach
which is specifically conceived to deal with text data [87].

The remainder of this chapter is structured as follows. Section 4.2 describe
the proposed framework, giving details about the various steps. Then, in Sec-
tion 4.3 the experimental settings are shown and Section 4.4 illustrates the
results. Finally, in Section 4.5, a review of chapter is reported.

4.2 View-segmented document clustering

Given a collection of documents D = {di}Ni=1, we assume that each document
is relatively long to be comprised of smaller textual units each of which can
be considered cohesive w.r.t. a view over the document. The type of view is
domain-dependent, and the way views are recognized in a document is sup-
posed either to follow a topic detection approach or to reflect a metadata-level
structuring of the documents. In the latter case, metadata can be of logical
or descriptive type, such as, e.g., paragraph boundaries, specific subjects of
discussion, or user-oriented aspects. We hereinafter refer to the view-oriented
parts of a document with the term view-segment, or more simply segment.
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The proposed view-segmented document clustering framework is shown in
Fig. 4.1. The framework can be summarized by the following steps, which are
discussed in detail next:

1. Clustering the document segments, or exploiting meta-data to derive a
grouping of the segments;

2. Computing a representation of the original document collection for each
of the obtained clusters of segments;

3. Computing a third-order tensor for the document collection, upon the
segment-cluster based representations.

4. Decomposing the tensor using a Truncated HOSVD;
5. Performing any document clustering algorithm on the mode-1 factor ma-

trix to obtain the final document clustering solution.

Inducing view-segment clusters

We are given a collection of segments S = {sj}nj=1 over D, which can in
principle be disjoint or not.

The first step of our framework is in charge of producing a clustering of the
segments C = {Cs}ks=1, by applying any document clustering algorithm over
the segment collection S. The obtained clusters of segments can be disjoint
or overlapping.

Segment-cluster based representation

Upon the segment clustering, each document is represented by its segments as-
signed to possibly multiple segment clusters. Therefore, we derive a document-
term matrix for each of the k segment clusters. For this purpose, we define
four alternative approaches which are described next.

The basic approach is based on term-frequency information. Given a seg-
ment cluster Cs and the relating set of feature terms F(Cs), the representation
of any document di in that cluster is defined as a vector of length |F(Cs)| that
results from the sum of the feature vectors of the di’s segments belonging to
Cs; the feature vector of a segment is a vector of term-frequencies. We here-
inafter refer to this approach as TF. An intuitive refinement of the TF model
is to weight the appearance of a document in a cluster based on its segment-
based portion covered in the cluster. The weighted TF model (henceforth
WTF ) is thus defined in such a way that the document vector of any di for
a cluster Cs is multiplied by a scalar representing the portion of di’s terms
that appear in the segments belonging to Cs. Further alternative models can
be obtained by normalizing each term-column in the document-term matrix
obtained for each cluster via either TF or WTF model. We refer to these
models as NTF and NWTF, respectively.
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Fig. 4.2: The third-order tensor model for the document collection representation
based on the produced view-segment clusters.

Tensor model

The document-term matrices corresponding to the k segment-clusters are used
to form a third-order tensor. Recall that a tensor is a multidimensional array
X ∈ RI1×I2×···×ID , and the number D of dimensions (or modes) is called
order of the tensor. A two-dimensional fragment of tensor defined by varying
two indices and keeping the rest fixed is a 2-mode tensor called slice.

Our third-order tensor model is built by arranging as frontal slices the k
segment-cluster matrices. However, since the segment clusters have possibly
different feature subspaces and might cover different subsets of the document
collection, the resulting matrices will have a different number of rows/columns.
Therefore, in order to build the tensor, each matrix needs to be properly filled
with as many zero-valued rows as the number of non-covered documents and
with as many zero-valued columns as the number of non-covered feature terms.
The resulting tensor will be X ∈ RI1×I2×I3 , with I1 = |D|, I2 = max

1≤s≤k
|F(Cs)|,

and I3 = k. The proposed tensor model is sketched in Fig. 4.2.

Tensor decomposition

Although several tensor decomposition algorithms have been proposed [43,
44, 35, 103], most of them have an iterative nature and are designed to reach
the best fit in terms norm of the difference, hence, they could be not suitable
for clustering task.

The third-order tensor is decomposed through a Truncated Higher Order
SVD (T-HOSVD) [43, 44] in order to obtain a low-dimensional representation
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Table 4.1: Evaluation datasets.

Dataset Type of Segment Segment # docs # segs fraction of avg # terms avg # terms
Document granularity clue nonzero entries∗ per doc per seg

RCV1 news paragraph paragraph 15,813 128,031 4.6E-4 200 25
article boundaries

TripAdvisor hotel review rating aspect metadata 170,867 810,314 1.1E-3 75 16

Twitter user’s tweets tweets by hashtag keywords 9,289 36,763 1.4E-3 147 37

∗ It refers to the segment-term matrix of the dataset.

of the segment-cluster-based representation of the document collection; for
document clustering purposes, we will consider the mode-1 factor matrix.
Recall that T-HOSVD is a generalization of SVD [43, 44], as it approximates
a tensor into an orthogonal component matrix along each mode and a smaller
all-orthogonal and ordered core tensor.

If we denote with r the number of output components for each mode
required by T-HOSVD, the decomposed tensor is defined as X ≈ G×1A(1)×2

A(2)×3 A(3) (cf. Section 2.4.3). It is worth also noting that the key idea of T-
HOSVD is to capture the variation in each of the modes independently from
other ones, which makes T-HOSVD particularly appropriate for clustering
purposes.

Document clustering

The mode-1 factor matrix is provided in input to a clustering method to
obtain a final organization of the documents into K clusters. Note that there
is no principled relation between the number K of final document clusters and
k, however K is expected to reflect the number of views of interest for the
document collection. Also, possibly but not necessarily, the same clustering
algorithm used for the segment clustering step can be employed for this step.

4.3 Experimental evaluation

4.3.1 Data

We used three collections of documents that fall into very different application
scenarios (Table 4.1). The peculiarities of each dataset prompted us to identify
segments at different granularity levels, exploiting different clues.

Scenario 1: Documents with paragraph-based views

We used a subset of the Reuters Corpus Volume 1 (RCV1) [114]. We filtered
out very short news (i.e., original XML documents with size less than 3KB)
and highly structured news (e.g., lists of stock prices), then we performed
tokenization, stopword removal and word stemming. Each paragraph in a
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news article was regarded as a segment.1 We exploited the availability of topic-
labels associated with the news articles (i.e., values of Reuters TOPICS field)
to sample the original dataset in order to select documents that satisfy certain
requirements on the set of covered topics. For this purpose, we followed the
lead of a methodology introduced in [151], whereby topic-sets are induced as
sets of topic-labels that may overlap, whereas documents are kept organized in
disjoint groups. Therefore, the assignment of topic-sets to documents results in
a multi-topic, hard classification for the documents in the dataset. Moreover,
we kept only the second-level topic-labels in order to ensure that there are
no relations of containment between the topic-labels used to form the topic-
sets. Upon the evaluation of frequency distribution of each possible set of
second-level topic-labels occurring in the documents, we selected only topic-
sets having at least two topic-labels and covering at least 1% of documents.
Once the topic-sets were extracted, we collected all associated documents. The
final dataset was composed of 15,813 documents belonging to 18 topic-sets.

Scenario 2: Documents with metadata-based views

We used the full DAIS TripAdvisor dataset2, which is a collection of 170,867
hotel reviews. A nice feature of this dataset is that all text reviews are already
provided as segmented according to eight rating-aspects, namely “Overall rat-
ing”, “Value”, “Rooms”, “Location”, “Cleanliness”, “Check in/front desk”,
“Service” and “Business Service”.

Scenario 3: Documents with user-driven views

We used a collection of tweets from the Twitter UDI dataset [115]. Our key
idea was to consider all tweets of a particular user as a document and to ex-
ploit the appearance of hashtags to group related tweets in the user’s thread.
However, many tweets can have a very few number of words, and the distri-
bution of hashtags over the tweets can be very sparse. Therefore, we imposed
constraints on the number of words per tweet and on the number of hashtags
per user, in order to reflect the characteristic average length of tweet (around
5.9 in the original dataset) and to ensure high variability in the hashtags
utilized by a user. We hence selected the users who posted at least 5 tweets
having at least 6 content words, and for which at least 3 hashtags were used
in his/her tweets. We then computed the user popularity of hashtags and we
selected the top-25 most popular ones. Finally, we collected all tweets related
to the users for which the above constraints are still valid. The dimensions of
the final dataset are 161,623 tweets related to 9,289 users, with average num-
ber of tweets per user of 17.4, average number of hashtags per user of 3.96,

1 Note that clearly one can resort to text segmentation algorithms to induce
segments at sentence level, and we indeed adopted this approach in previous
work [190]; however, text segmentation typically requires the setting of several
interrelated parameters, whose tuning is not an easy task.

2 http://sifaka.cs.uiuc.edu/wang296/Data/index.html.
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and average number of tweets per segment of 4.8. Note also that we found a
negligible average degree of segment overlapping (0.064 shared tweets).

Reference classification.

In RCV1, each of the 18 topic-sets is a document class. Similarly, in Twit-
ter, each of the top-25 selected hashtags defines a class, and a user’s tweet-
document is assigned to the class that corresponds to the most frequently
occurring hashtag in the tweets of that user. In TripAdvisor, the reviews are
categorized according to the 8 rating aspects. Each review document is as-
signed to the class that corresponds to the most descriptive aspect of that
review, i.e., the aspect described by the largest portion of terms.

4.3.2 Competing methods

We compared our approach with two baseline clustering methods and a multi-
view co-clustering algorithm.

In the first baseline method, dubbed DocClust, documents were repre-
sented by the conventional vector-space model equipped with the tf.idf term
relevance weighting scheme. Clustering of the documents was performed by us-
ing the Bisecting K-Means [183] algorithm, which is widely known to produce
high-quality (hard) clustering solutions in high-dimensional, large datasets.

The second baseline method, dubbed SegClust, utilizes the same text repre-
sentation model and clustering scheme as the first baseline, however it applies
on the collection of document segments. Once computed the clustering of seg-
ments, a document clustering solution is finally induced via majority voting.
This approach was first explored in [190] and has shown to improve the final
document clustering performance for relatively long multi-topic documents.

The multi-view co-clustering algorithm CoStar [87] searches for a solution
that maximizes cross-association of the objects given the different views and
viceversa. The clustering algorithm is formulated as a Pareto optimization
problem and it does not require any parameter as input. Moreover, CoStar
explores the search space choosing automatically the number of clusters.

4.3.3 Parameter settings and assessment criteria

Our approach requires the setting of two parameters, namely the number k of
view-segment clusters, and the number of output components r for each mode
by T-HOSVD. We varied k from 2 to

√
n (n is the total number of segments

over D) with increment of 2 and r from 5 to 100 with increment of 5.
We resorted to standard clustering validation criteria, namely F-Measure

(FM), Entropy (E), Purity (Pty), and Normalized Mutual Information
(NMI). We recall here that a larger (smaller) value is desirable for FM ,
Pty, and NMI (resp. E) to indicate better clustering quality. The interested
reader is referred to [183] and [213] for details on the various assessment cri-
teria.
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Table 4.2: Best performance scores on RCV1. The best-performing setup of k and r
is reported for each assessment criterion and tensor-slice representation model.

model FM k r E k r Pty k r NMI k r

TF 0.581 10 80 0.412 2 55 0.589 2 55 0.582 2 55

WTF 0.606 2 95 0.424 2 95 0.602 2 95 0.568 2 95

NTF 0.608 2 50 0.394 2 50 0.602 2 50 0.601 2 35

NWTF 0.566 4 75 0.418 12 70 0.579 4 75 0.582 12 70

Table 4.3: Best performance scores on TripAdvisor. The best-performing setup of k
and r is reported for each assessment criterion and tensor-slice representation model.

model FM k r E k r Pty k r NMI k r

TF 0.406 10 5 0.686 8 5 0.496 8 5 0.127 8 5

WTF 0.531 8 5 0.618 6 5 0.578 8 5 0.210 8 5

NTF 0.475 12 10 0.635 6 5 0.540 8 5 0.176 6 5

NWTF 0.558 8 5 0.580 6 5 0.606 8 5 0.250 6 5

4.4 Results

Tables 4.2–4.4 report on the best performance results by our method, with
corresponding parameter settings, where the number of final document clus-
ters was set equal to the number of dataset-specific reference classes. It can be
noted that the tensor-slice representation models with normalization mostly
led to higher quality scores. More precisely, NWTF was always the best-
performing model on TripAdvisor and Twitter, while NTF led to the best
results on RCV1. The latter would hint that in RCV1 the segments are more
uniformly distributed along the segment clusters, thus reducing the weighting
factor’s influence.

A major remark is that, on all datasets, the best results were consistently
achieved by using a quite small number of segment clusters; more precisely, k
was mostly below 10, or even equal to the minimum value (i.e., 2). Moreover,
in TripAdvisor, the best-performing results also occurred with very few tensor
components (i.e., 5). This in general was not the case for the other datasets as
well. In this regard, Figures 4.3–4.4 provide more insights by comparing the
various tensor-slice representation models. In the figures, the distributions of
performance scores are plotted over different numbers of tensor components.
It can be noted that NWTF or NTF models generally corresponded to better
performance on average. (Only results for FM and E criteria were shown due
to space limits, but analogous remarks could be done for the other criteria.)

Comparison with baselines

Table 4.5 compares the best performance obtained by our approach and the
two baseline methods, DocClust and SegClust. Our method outperformed the
baselines according to all assessment criteria, with gains up to 0.256 FM ,
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Table 4.4: Best performance scores on Twitter. The best-performing setup of k and
r is reported for each assessment criterion and tensor-slice representation model.

model FM k r E k r Pty k r NMI k r

TF 0.356 12 100 0.649 12 100 0.414 12 80 0.294 12 90

WTF 0.371 12 40 0.62 10 35 0.434 12 90 0.333 10 35

NTF 0.388 22 85 0.622 22 100 0.42 22 100 0.328 10 20

NWTF 0.402 22 55 0.603 20 95 0.438 26 80 0.346 10 15
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Fig. 4.3: F-measure distribution over different numbers of tensor components.
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Fig. 4.4: Entropy distribution over different numbers of tensor components.

0.198 E, 0.247 Pty, and 0.223 NMI. It should be emphasized that the maxi-
mum gains achieved by our method corresponded to TripAdvisor, where both
the documents and segments are more than in the other datasets, but also
shorter on average (cf. Table 4.1). From a qualitative viewpoint, by exploring
the cluster descriptions in the form of top-ranked descriptive and discrimi-
nating terms [183], we observed an evident ability of our approach to detect
clusters that better capture and separate the expected view-based classes. For
instance, on TripAdvisor, DocClust and SegClust found clusters that mainly
corresponded only to the classes “Overall rating” and “Rooms”, while our
method was able to discriminate also among the other classes.
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Table 4.5: Best performance comparison with baseline algorithms.

criteria
RCV1 TripAdvisor Twitter

DocClust SegClust our method DocClust SegClust our method DocClust SegClust our method

FM 0.504 0.523 0.608 0.315 0.302 0.558 0.366 0.225 0.402

E 0.474 0.467 0.394 0.762 0.778 0.580 0.659 0.787 0.603

Pty 0.501 0.521 0.602 0.396 0.359 0.606 0.398 0.255 0.438

NMI 0.528 0.540 0.601 0.045 0.027 0.250 0.293 0.135 0.346

Comparison with CoStar

As previously discussed in Section 4.3.2, CoStar automatically detects the
number of clusters. When applied to our evaluation datasets, CoStar consis-
tently obtained a larger number of clusters (e.g., 50 clusters on Twitter) than
the dataset-specific reference classes. Therefore, in order to fairly compare our
method with CoStar, we carried out an agglomerative hierarchical clustering
method over the partition originally produced by CoStar, cutting the den-
drogram at the level corresponding to the right number of reference classes.
Moreover, since CoStar has a non-deterministic clustering behavior, we ran it
multiple times (50) and hence evaluated each of the final CoStar clustering
solutions w.r.t. the reference classification. Upon this, by comparing the best
performance scores obtained by CoStar and by our method, we observed a
similar behavior on Twitter and TripAdvisor, with marginal improvements
by our method (i.e., order of 0.05 or less, for each assessment criterion). How-
ever, on RCV1, our method outperformed CoStar, with the following gains:
0.11 FM , 0.10 E, 0.09 Pty, and 0.09 NMI.

We conducted a further experimental session in which we constrained the
number of document clusters to be produced by our method as equal to the
number of clusters originally produced by CoStar. Using NMI (which is a
symmetric evaluation index), we compared each of the multiple CoStar clus-
terings with those produced by our method, at varying parameter values.
Results (here not shown due to space limits of this paper) have revealed a
moderate alignment between the two methods, up to around 0.6 on average;
also, the best alignment was again consistently achieved by very low values of
our method’s parameters, (from k = 6, r = 10 on RCV1 to k = 8, r = 20 on
Twitter).

4.5 Chapter review

In this chapter we have addressed the problem of multi-view document clus-
tering, by proposing a tensor-based clustering framework for view-segmented
documents. The framework is designed to exploit a view-based document seg-
mentation into a third-order tensor model, whose decomposition result can
enable any standard document clustering algorithm to better reflect the multi-
faceted and multi-topic nature of the documents. Experimental results on doc-
ument collections featuring paragraph-based, metadata-based, or user-driven
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views have shown the significance of the proposed approach, highlighting per-
formance improvement in the document clustering task.





5

Tensor-based Semantic Clustering for
Multilingual Documents

5.1 Introduction

A major challenge in document clustering research arises from the growing
amount of text data that are written in different languages, also due to the
increased popularity of a number of tools for collaboratively editing through
contributors across the world. Multilingual document clustering (MDC) aims
to detect clusters in a collection of texts written in different languages. This
can aid a variety of applications in cross-lingual information retrieval, includ-
ing statistical machine translation and corpora alignment.

Existing approaches to MDC rely on structural and linguistic characteris-
tics of the target evaluation corpora. More specifically, research works can be
divided in two broad categories, depending on whether a parallel corpus rather
than a comparable corpus is used [108]. A parallel corpus is typically com-
prised of documents with their related translations [99]. These translations are
usually obtained through machine translation techniques based on a selected
anchor language. Within this view, a common approach is to represent doc-
uments written in different languages into a common feature space (e.g., the
union of language-specific term spaces [201]). This would simplify the cluster-
ing task, since any standard document clustering technique could be applied
once all documents are made comparable over the same feature space. How-
ever, this approach also requires a preliminary translation of all documents
in an anchor language, which is time-consuming and error-prone. Conversely,
a comparable corpus is a collection of multilingual documents written over
the same set of classes [141, 207] without any restriction about translation
or perfect correspondence between documents. To mine this kind of corpus,
external knowledge is employed to map concepts or terms from a language
to another [108, 107], which enables the extraction of cross-lingual document
correlations. In this case, a major issue lies in the definition of a cross-lingual
similarity measure that can fit the extracted cross-lingual correlations. Also,
from a semi-supervised perspective, other works attempt to define must-link
constraints to detect cross-lingual clusters [207]. This implies that, for each
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different dataset, the set of constraints needs to be redefined; in general, the
final results can be negatively affected by the quantity and the quality of
involved constraints [42].

To the best of our knowledge, existing clustering approaches for compara-
ble corpora are customized for a small set (two or three) of languages [130].
Most of them are not generalizable to many languages as they employ bilin-
gual dictionaries and the translation is performed sequentially considering only
pairs of languages. Therefore, the order in which this process is done can seri-
ously impact the results. Another common drawback concerns the way most
of the recent approaches perform their analysis: the various languages are an-
alyzed independently of each other (possibly by exploiting external knowledge
like Wikipedia to enrich documents [108, 107]), and then the language-specific
results are merged. This two-step analysis however may fail in profitably ex-
ploiting cross-language information from the multilingual corpus.

We address the problem of MDC by proposing a framework that features
three key elements, namely: (1) to model documents over a unified conceptual
space, with the support of a large-scale multilingual knowledge base; (2) to de-
compose the multilingual documents into topically-cohesive segments; and (3)
to describe the multilingual corpus under a multidimensional data structure.

The first key element prevents loss of information due to the translation
of documents from different languages to a target one. It enables a conceptual
representation of the documents in a language-independent way preserving
the content semantics. BabelNet [139] is used as multilingual knowledge base.
To the extent of our knowledge, this is the first work in MDC that exploits
BabelNet.

The second key element, document segmentation, enables us to simplify
the document representation according to their multi-topic nature. Previous
research has demonstrated that a segment-based approach can significantly
improve document clustering performance [190]. Moreover, the conceptual
representation of the document segments enables the grouping of linguistically
different (portions of) documents into topically coherent clusters.

The latter aspect is leveraged by the third key element of our proposal,
which relies on a tensor-based model [103] to effectively handle the high di-
mensionality and sparseness in text. Tensors are considered as a multi-linear
generalization of matrix factorizations, since all dimensions or modes are re-
tained thanks to multi-linear structures which can produce meaningful com-
ponents. The applicability of tensor analysis has recently attracted growing
attention in information retrieval and data mining, including document clus-
tering (e.g., [118, 162]) and cross-lingual information retrieval (e.g., [32]).

The rest of the chapter is organized as follows. We describe our proposal
in Section 5.2. Data and experimental settings are described in Section 5.3,
while results are presented in Section 5.4. We summarize our main findings in
Section 5.5, finally Section 5.6 concludes the chapter.
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Algorithm 5 SeMDocT (Segment-based MultiLingual Document Cluster-
ing via Tensor Modeling)

Input: A collection of multilingual documents D, the number k of segment clusters,
the number of tensorial components r.

Output: A document clustering solution C over D.
1: Apply a text segmentation algorithm over each of the documents in D to produce

a collection of document segments S.
2: Represent S in either a bag-of-words (BoW) or a bag-of-synsets (BoS) space.
3: Apply any document clustering algorithm on S to obtain a segment clustering
CS = {Csi }ki=1.

4: Represent CS in either a bag-of-words (BoW) or a bag-of-synsets (BoS) space.
5: Model S as a third-order tensor X ∈ RI1×I2×I3 , with I1 = |D|, I2 = |F|, and
I3 = k.

6: Decompose the tensor using a Truncated HOSVD.
7: Apply a document clustering algorithm on the mode-1 factor matrix to obtain

the final clusters of documents C = {Ci}Ki=1.

5.2 Proposed approach

5.2.1 Multilingual document clustering framework

We are given a collection of multilingual documents D =
⋃L
l=1Dl, where each

Dl = {dli}
Nl
i=1 represents a subset of documents written in the same language,

with N =
∑L
l=1Nl = |D|. Our framework can be applied to any multilingual

document collection regardless of the languages, and can deal with balanced
as well as unbalanced corpora. Therefore, no restriction is given on both the
number L of languages and the distribution of documents over the languages
(i.e., Ni Q Nj , with i, j = 1..L, i 6= j).

Real-world documents often span multiple topics. We assume that each
document in D is relatively long to be comprised of smaller textual units, or
segments, each of which can be considered cohesive w.r.t. a topic over the
document. This represents a key aspect in our framework as it enables the
use of a tensor model to conveniently address the multi-faceted nature of the
documents.

Our overall framework, named SeMDocT (Segment-based MultiLingual
Document Clustering via Tensor Modeling), is shown in Algorithm 5. In the
following, we shall describe in details each of the steps involved in SeMDocT.

Computing within-document segments

Text segmentation is concerned with the fragmentation of an input text into
multi-paragraph, contiguous and disjoint blocks that represent subtopics. Re-
gardless of the presence of logical structure clues in the document, linguistic
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criteria [18] and statistical similarity measures [79, 33, 37] have been mainly
used to detect subtopic boundaries between segments. A common assumption
is that terms that discuss a subtopic tend to co-occur locally, and a switch
to a new subtopic is detected by the ending of co-occurrence of a given set of
terms and the beginning of the co-occurrence of another set of terms.

Our SeMDocT does not depend on a specific algorithmic choice to perform
text segmentation; in this work, we refer to the classic TextTiling [79], which
is the exemplary similarity-block-based method for text segmentation.

Inducing document segment clusters

The result of the previous step is a collection of document segments, hence-
forth denoted as S. Each segment in S is represented as a vector of feature
occurrences, where a feature can be either lexical or semantic. This corre-
sponds to two alternative representation models: the standard bag-of-words
(henceforth BoW ), whereby features correspond to lemmatized, non-stopword
terms, and the obtained feature space results from the union of the vocabular-
ies of the different languages; and bag-of-synsets (henceforth BoS ), whereby
features correspond to BabelNet synsets. We shall devote Section 5.2.2 to a
detailed description of our proposed BoS representation.

The segment collection S is given in input to a document clustering algo-
rithm to produce a clustering of the segments CS = {Csi }ki=1. The obtained
clusters of segments can be disjoint or overlapping. Again, our SeMDocT is
parametric to the clustering algorithm as well; here, we resort to a state-of-
the-art clustering algorithm, namely Bisecting K-Means [183], which is widely
known to produce high-quality (hard) clustering solutions in high-dimensional,
large datasets [211]. Note however that it requires as input the number of clus-
ters. To cope with this issue, we adopt the method described in [172], which
explores how the within-cluster cohesion changes by varying the number of
clusters. The number of clusters for which the slope of the plot changes dras-
tically is chosen as a suitable value for the clustering algorithm.

Segment-cluster based representation

Upon the segment clustering, each document is represented by its segments as-
signed to possibly multiple segment clusters. Therefore, we derive a document-
feature matrix for each of the k segment clusters. The features correspond ei-
ther to the BoW or BoS model, according to the choice made for the segment
representation.

Let us denote with F the feature space for all segments in S. Given a
segment cluster Cs, the corresponding document-feature matrix is constructed
as follows. The representation of each document d ∈ D w.r.t. Cs is a vector of
length |F| that results from the sum of the feature vectors of the d’s segments
belonging to Cs. Moreover, in order to weight the appearance of a document
in a cluster based on its segment-based portion covered in the cluster, the
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Fig. 5.1: The third-order tensor model for the representation of a multilingual doc-
ument collection based on segment clusters.

document vector of d w.r.t. Cs is finally obtained by multiplying the sum of
the segment-vectors by a scalar representing the portion of d’s features that
appear in the segments belonging to Cs. The document-feature matrix of Cs

resulting from the previous step is finally normalized by column.

Tensor model and decomposition

The document-feature matrices corresponding to the k segment-clusters are
used to form a third-order tensor.

Our third-order tensor model is built by arranging as frontal slices the
k segment-cluster matrices. The resulting tensor will be of the form X ∈
RI1×I2×I3 , with I1 = |D|, I2 = |F|, and I3 = k. The proposed tensor model is
sketched in Fig. 5.1.

The resulting tensor is decomposed through a Truncated Higher Order
SVD (T-HOSVD) [43] in order to obtain a low-dimensional representation
of the segment-cluster-based representation of the document collection. For
further details about T-HOSVD, please refer to Section 2.4.3.

The ability of T-HOSVD in effectively capturing the variation in each of
the modes independently from the other ones, is particularly important to
alleviate the problem of concentration of distances, thus making T-HOSVD
well-suited to clustering purposes. In this work, in order to obtain a final
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clustering solution of the documents, we will consider the mode-1 factor matrix
A(1) of the T-HOSVD.

Document clustering

The mode-1 factor matrix is provided in input to a clustering method to obtain
a final organization of the documents into K clusters, i.e., C = {Ci}Ki=1. Note
that there is no principled relation between the number K of final document
clusters and k. However, K is expected to reflect the number of topics of
interest for the document collection. Also, possibly but not necessarily, the
same clustering algorithm used for the segment clustering step (i.e., Bisecting
K-Means) can be employed for this step.

5.2.2 Bag-of-synset representation

In the BoS model, our objective is to represent the document segments in
a conceptual feature space instead of the traditional term space. Since we
deal with multilingual documents, this task clearly relies on the multilingual
lexical knowledge base functionalities of BabelNet. Conceptual features will
hence correspond to BabelNet synsets.

The segment collection S is subject to a two-step processing phase. In the
first step, each segment is broken down into a set of lemmatized and POS-
tagged sentences, in which each word is replaced with related lemma and
associated POS-tag. Let us denote with 〈w,POS(w)〉 a lemma and associ-
ated POS-tag occurring in any sentence sen of the segment. In the second
step, a WSD method is applied to each pair 〈w,POS(w)〉 to detect the most
appropriate BabelNet synset σw for 〈w,POS(w)〉 contextually to sen. The
WSD algorithm is carried out in such a way that all words from all languages
are disambiguated over the same concept inventory, producing a language-
independent feature space for the whole multilingual corpus. Each segment is
finally modeled as a |BS|-dimensional vector of BabelNet synset frequencies,
being BS the set of retrieved BabelNet synsets.

As previously discussed in Section 2.3.3, BabelNet provides WSD algo-
rithms for multilingual corpora. More specifically, the authors in [140] sug-
gest to use the Degree algorithm [138], as it showed to yield highly com-
petitive performance in a multilingual context as well. Note that the Degree
algorithm, given a semantic graph for the input context, simply selects the
sense of the target word with the highest vertex degree. Clearly, other graph-
based methods for (unsupervised) WSD, particularly PageRank-style meth-
ods (e.g., [124, 6, 206, 191]), can be plugged in to address the multilingual
WSD task based on BabelNet. An investigation of the performance of existing
WSD algorithms for a multilingual context is however out of the scope of this
chapter.
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RCV2 Topics English French Italian

Balanced Corpus

C15 - PERFORMANCE 850 850 850

C18 - OWNERSHIP CHANGES 850 850 850

E11 - ECONOMIC PERFORMANCE 850 850 850

E12 - MONETARY/ECONOMIC 850 850 850

M11 - EQUITY MARKETS 850 850 850

M13 - MONEY MARKETS 850 850 850

Total 5 100 5 100 5 100

Unbalanced Corpus

C15 - PERFORMANCE 850 850 0

C18 - OWNERSHIP CHANGES 850 850 0

E11 - ECONOMIC PERFORMANCE 0 850 850

E12 - MONETARY/ECONOMIC 850 0 850

M11 - EQUITY MARKETS 0 850 850

M13 - MONEY MARKETS 850 0 850

Total 3 400 3 400 3 400

Table 5.1: Number of documents for each topic and language.

5.3 Evaluation methodology

In order to evaluate our proposal we need a multilingual comparable docu-
ment collection with annotated topics. For this reason, we used Reuters Corpus
Volume 2 (RCV2), a multilingual corpus containing news articles in thirteen
language.1 In the following, we present the corpus characteristics and com-
peting methods used in our analysis.

5.3.1 Data preparation

We consider a subset of the RCV2 corpus corresponding to three languages:
English, French and Italian. It covers six different topics, i.e., different labels
of the RCV2 TOPICS field. Topics are chosen according with their coverage
in the different languages. The language-specific documents were lemmatized
and POS-tagged through the Freeling library [142] in order to obtain a suitable
representation for the WSD process.

To assess the robustness of our proposal, we design two different scenar-
ios. The first (Balanced Corpus) is characterized by a completely balanced
dataset. Each language covers all topics and for each pair language/topic the
same number of documents is selected. The second scenario corresponds to an
Unbalanced Corpus. Starting from the balanced corpus, we removed for each
topic all the documents belonging to one language. In this way, we obtained
a corpus in which each topic is covered by only two of the three languages.

Main characteristics of both evaluation corpora are reported in Table 5.1
and Table 5.2. In the latter table, we report the number of documents, num-
ber of terms, number of synsets and the dataset density for both representa-
tions. To quantify the density of each corpus/representation combination, we

1 http://trec.nist.gov/data/reuters/reuters.html
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Statistics Balanced Corpus Unbalanced Corpus

# of docs 15 300 10 200

# of terms 58 825 44 535

# of synsets 16 395 14 339

BoW Density 1.5× 10−3 2.0× 10−3

BoS Density 2.6× 10−3 3.1× 10−3

Table 5.2: Main characteristics of the corpora.

RCV2 Topics English French Italian

C15 - PERFORMANCE 3.41 3.67 3.27

C18 - OWNERSHIP CHANGES 3.20 3.32 2.40

E11 - ECONOMIC PERFORMANCE 4.89 3.17 2.07

E12 - MONETARY/ECONOMIC 5.22 3.69 2.05

M11 - EQUITY MARKETS 4.29 2.94 2.15

M13 - MONEY MARKETS 3.31 3.12 2.10

Table 5.3: Average number of document segments, for each topic and language.

English French Italian
RCV2 avg BoS avg BoW avg BoS avg BoW avg BoS avg BoW
Topics seg. leng. seg. leng. seg. leng. seg. leng. seg. leng. seg. leng.

C15 21.76 36.32 11.54 34.92 10.58 37.75

C18 20.94 36.87 10.94 35.62 11.24 41.20

E11 22.90 37.24 11.47 34.73 11.96 38.60

E12 22.70 37.70 11.50 37.44 12.59 43.63

M11 22.04 36.83 10.91 32.76 11.57 42.39

M13 22.22 36.97 11.34 34.75 11.72 39.36

Table 5.4: Average length of document segment in the BoW and BoS spaces, for
each topic and language.

counted the non-zero entries of the induced document-synset matrix (alterna-
tively, document-term matrix) and we divided this value by the size of such
matrix. This number provides an estimate about the density/sparseness of
each dataset. Lower values indicate more sparse data. We can note that BoS
model yields more dense datasets for both Balanced Corpus and Unbalanced
Corpus.

As our proposal explicitly models document segments, we also report
statistics, considering both topics and languages, related to the average num-
ber of segments per document (Table 5.3), and the average length of segments
per document (Table 5.4). The latter statistic is computed separately for BoW
and BoS representations. We made this distinction because a term cannot have
a mapping to a synset, or it can be mapped to more than one synset in the
BoS space during the WSD process (Section 5.2.2).

Looking at the average number of segments per document in Table 5.3, it
can be noted that English documents contain, for all topics, a larger number
of segments. This means that English documents are generally richer than
the ones in the other languages. Italian language corresponds to the smallest
documents, each of them containing between 2 and 3.2 segments on average. A
sharper difference appears in the MONETARY/ECONOMIC topic for which
English documents contain 5.2 segments, while the Italian ones are composed,
on average, by only 2 segments.
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Table 5.4 shows the average length of segments per document for both
space representations. Generally, segments in the BoS representation are
smaller than the corresponding segments in the BoW space. More in detail, if
we consider the ratio between the segment length in BoS and the one in BoW,
this ratio is around 2/3 for the English language, while for both French and
Italian it varies between 1/4 and 1/3. This disequilibrium is induced by the
multilingual concept coverage of BabelNet, as stated by its authors [139], [140].
In particular, the WSD process tightly depends from the concept coverage
supplied from the language-specific knowledge base.

5.3.2 Competing methods and settings

We compare our SeMDocT with two standard approaches, namely Bisecting
K-Means [183], and Latent Semantic Analysis (LSA)-based document clus-
tering (for short, LSA). Given a number K of desired clusters, Bisecting K-
Means produces a K-way clustering solution by performing a sequence of K-1
repeated bisections based on standard K-Means algorithm. This process con-
tinues until the number K of clusters is found. LSA performs a decomposition
of the document collection matrix through Singular Value Decomposition in
order to extract a more concise and descriptive representation of the docu-
ments. After this step, Bisecting K-Means is applied over the new document
space to get the final document clustering.

All the three methods, SeMDocT, Bisecting K-Means and LSA are coupled
with either BoS or BoW representation models. The comparison between BoS
and BoW representations allows us to evaluate the presumed benefits that
can be derived by exploiting synsets instead of terms for the multilingual
document clustering task.

Both SeMDocT and LSA require the number of components as input; as
concerns specifically SeMDocT, we varied r1 (cf. Section 5.2.1) from 2 to 30,
with increments of 2. To determine the number of segment clusters k, we
employed an automatic way as discussed in Section 5.2.1. By varying k from
2 to 40, for Balanced Corpus and Unbalanced Corpus, respectively, the values
of k obtained were 22 and 23 under BoS, and 25 and 11 under BoW.

As concerns the step of text segmentation, TextTiling requires the setting
of some interdependent parameters, particularly the size of the text unit to be
compared and the number of words in a token sequence. We used the setting
suggested in [79] and also confirmed in [190], i.e., 10 for the text unit size and
20 for the token-sequence size.

Performance of the different methods are evaluated using two standard
clustering validation criteria, namely F-Measure and Rand Index.

Note that for each method, results were averaged over 30 runs and the
number of final document clusters K was set equal to the number of topics in
the document collection (i.e., 6).
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5.4 Results

We present here our main experimental results. We first provide a comparative
evaluation of our SeMDocT with the competing methods, on both balanced
and unbalanced corpus evaluation cases. Then we provide a per language
analysis focusing on SeMDocT.

5.4.1 Evaluation with competing methods

Evaluation on balanced corpus

Figure 5.2 shows FM and RI results obtained by the various methods coupled
with the two document representations on the Balanced Corpus. Several re-
marks stand out. First, the BoS space positively influences the performance
of all the employed approaches. This is particularly evident for Bisecting K-
Means and LSA that clearly benefit from this kind of representation. The
former almost doubles its performance in terms of FM and significantly im-
proves its result w.r.t. RI. LSA shows improvements in both cases. SeMDocT-
BoS generally outperforms all the competitors for both FM and RI when the
number of components is greater than 16. Note that, under the BoW model,
SeMDocT-BoW still outperforms the other methods.

Evaluation on unbalanced corpus

Figure 5.3 reports results for the Unbalanced Corpus. Also in this evaluation,
the best performances for all the methods are reached using the BoS represen-
tation. SeMDocT-BoS shows similar behavior according to the two measures.
It always outperforms the competitors considering a number of components
greater than or equal to 12. More precisely, SeMDocT-BoW obtains a gain of
0.047 and 0.103 in terms of FM and 0.006 and 0.058 in terms of RI, w.r.t.
LSA-BoW and Bisecting K-Means-BoW, respectively. Similarly, SeMDocT-
BoS obtains improvements of 0.05 in terms of FM w.r.t. both BoS competi-
tors, while in terms of RI the differences in performance are 0.012 and 0.019
for LSA-BoS and Bisecting K-Means-BoS, respectively.

5.4.2 Per language evaluation of SeMDocT-BoS

Starting from the clustering solutions produced by SeMDocT-BoS in both
balanced and unbalanced cases, for each language we extracted a language-
specific projection of the clustering. After that, we computed the clustering
validation criteria according to language specific solutions to quantify how well
the clustering result fits each specific language. The results of this experiment
are reported in Fig. 5.4 and Fig. 5.5.

On the Balanced Corpus, SeMDocT-BoS shows comparable performance
for English and French documents, while it behaves slightly worse for Italian
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Fig. 5.2: Average F-Measure (a) and Rand Index (b) on the Balanced Corpus using
BoW and BoS document representation and varying the number of components for
both SeMDocT and LSA.

texts. This trend is highlighted for both clustering evaluation criteria. In-
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Fig. 5.3: Average F-Measure (a) and Rand Index (b) on the Unbalanced Corpus using
BoW and BoS document representation and varying the number of components for
both SeMDocT and LSA.

specting the results for the Unbalanced Corpus, we observe a different trend.
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BoW BoS avg # synsets
Dataset Language size size per term (β)

Balanced
English 29 999 12 065 0.4021
French 17 826 5 310 0.2978
Italian 16 951 4 471 0.2637

Unbalanced
English 19 432 10 387 0.5345
French 14 439 4 431 0.3068
Italian 14 743 4 012 0.2721

Table 5.5: Balanced corpus: language statistics.

Results obtained for the English texts are generally better than the results
for the French and Italian documents. For this benchmark, SeMDocT-BoS
obtains similar results for documents written in French and in Italian.

We gained an insight into the above discussed performance behaviors by
computing some additional statistics that we report in Table 5.5: for each lan-
guage and each dataset, the size of the term and synset dictionaries and the
average number of synsets per lemma (β) we retrieved with BabelNet accord-
ing to the related corpus. More in detail, β is the ratio between the BoS and
the BoW dictionaries. This quantity roughly evaluates how many synsets are
produced per term during the multilingual WSD process (Section 5.2.2). As
we can observe, this value is always smaller than one, which means that not all
the terms have a corresponding mapping to a synset. The β ratio can explain
the discrepancy in (language-specific) performances in the two scenarios. In
particular, the difference in the β statistic between English and the other lan-
guages is more evident for the Unbalanced Corpus (i.e., 0.23 between English
and French), while it is lower for the Balanced Corpus (around 0.1). The rela-
tively large gap in β between the first and the second language (respectively,
English and French) for the Unbalanced Corpus reduces the relative gap be-
tween the second and the third languages (respectively, French and Italian)
while this trend is less marked for the Balanced Corpus as β range is narrower.
In summary, we can state that our framework works well if BabelNet knowl-
edge base provides a good coverage of the terms in the analyzed language.
Experimental evidence shows that, if this condition is met, SeMDocT-BoS
provides better clustering results w.r.t. the competing approaches.

5.4.3 Runtime of tensor decomposition

As previously discussed, T-HOSVD of a third-order tensor can be computed
through three standard SVDs. Furthermore, for clustering purposes, we con-
sidered only the mode-1 factor matrix of the decomposition. To compute the
SVD, we used the svds() function of MATLAB R2012b, which is based on
an iterative algorithm.2 Experiments were carried out on an Intel Core I7-
3610QM platform with 16GB DDR RAM.

Figure 5.6 shows the execution time of the SVD over the mode-1 ma-
tricization of our tensor for the Balanced Corpus, by varying the number

2 http://www.mathworks.it/it/help/matlab/ref/svds.html
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Fig. 5.4: Average F-Measure (a) and Rand Index (b) for language specific solutions
on the Balanced Corpus obtained by SeMDocT-BoS.

of components, for both BoW and BoS representation models. As it can be
observed, in both cases the runtime is linear in the number of components.
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Fig. 5.5: Average F-Measure (a) and Rand Index (b) for language specific solutions
on the Unbalanced Corpus obtained by SeMDocT-BoS.

However, the SVD computation in the BoS setting is one order of magnitude
faster than time performance in the BoW setting. This is mainly due to a large
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difference in size between the feature spaces of BoW and BoS (cf. Table 5.2),
since the selected number of segment clusters (k) was nearly the same (25 for
BoW, and 22 for BoS). Therefore, by providing a more compact feature space,
BoS clearly allows for a much less expensive SVD computation for our tensor
decomposition.
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Fig. 5.6: Time performance of SVD over the mode-1 matricization of the Balanced
Corpus tensor.

5.5 Discussion

Our work paves the way for the use of a multilingual knowledge base to deal
with the multilingual document clustering task. Here we sum up our main
findings.

SeMDocT vs. LSA. LSA achieved its best results for a number of
components generally smaller than the one for which SeMDocT obtained its
maximum. This is due to the initial information that the two methods sum-
marize. LSA tries to capture the variation of the initial document-term (al-
ternatively, document-synset) matrix representing the texts in a lower space,
whereas SeMDocT does the same starting from a richer representation of the
documents (i.e., a third-order tensor model). For this reason, SeMDocT tends
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to employ relatively more components in order to summarize the documents
content; however, a number of components between 16 and 30 is generally
enough to ensure good performance of SeMDocT. Moreover, in most cases,
the highest performance results by SeMDocT are better than the highest per-
formances of LSA. for

BoS vs. BoW. Our results have highlighted the better quality in mul-
tilingual clustering supplied by synsets compared with the one provided by
terms. BoS produces a smaller representation space over which documents
are projected, but it is enough rich to well capture the documents content. In
particular, BoS benefits from the WSD process that is able to discriminate
the same term w.r.t. the context in which it appears.

BabelNet. BabelNet is a recent project that supports many different
languages. As the intention of the authors is to enrich this resource, in the
future our framework will benefit of this fact. Moreover, our framework can
deal with documents written in many different languages as they are repre-
sented through the same space; the only constraint is related to the available
language support in BabelNet. On the other hand, we point out that any other
multilingual knowledge base and WSD tools can in principle be integrated in
our framework.

5.6 Chapter review

This chapter has focused on the problem of clustering documents written in
different languages. A major issue in clustering multilingual documents arises
from the computation of the similarity the documents. Comparing documents
with respect to the original language-specific dictionaries result to be im-
practicable due to poor lexical overlap between the languages. Therefore, the
problem is traditionally approached by translating all documents in an anchor
language or making use of bilingual dictionaries, to evaluate document similar-
ities. However, the required transformations may alter the original document
semantics, especially in case of poor-resourced languages.

To cope with this issue, the framework presented in this chapter (i) exploits
a large-scale multilingual knowledge base, (ii) takes advantage of the multi-
topic nature of the text documents, and (iii) employs a tensor-based model
to deal with high dimensionality and sparseness. The proposed approach has
been compared with common document clustering approaches on a real mul-
tilingual corpus considering both balanced and unbalanced language coverage
per topic. Experiments have shown the significance of the proposed approach,
and its better performance w.r.t. classic document clustering approaches, in
both a balanced and an unbalanced corpus evaluation.
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Conclusion and future work

In this thesis we have addressed document clustering problems, focusing on
the fact that many text repositories over the Web and other online informa-
tion sources often contain documents that discuss multiple thematic subjects
(i.e., multi-topic documents), cover different aspects of some of the topics or
other external information (i.e., multi-view documents), and can be written
in different languages (i.e., multilingual documents). A distinctive, unifying
aspect of our study is the definition of document clustering framework that
rely on a multidimensional representation model paradigm for the documents
in the input collection. This paradigm refers to the definition of tensor mod-
els (and decomposition techniques) which are a powerful tool to explicitly
capture the characteristics and relations between the different facets of high-
dimensional data. Tensors are in fact particularly appropriate to provide an ef-
fective representation model for multi-topic, multi-view documents; moreover,
tensor decompositions, which can be viewed as a generalization of multi-linear
matrix factorizations, allow us to extract a low-dimensional yet meaningful
representation which incorporates, in addition to the content information, the
information related to the views’ interactions.

In Chapter 3, the underlying assumption of the approach presented is
that, when the documents can be naturally grouped in multiple ways, a sin-
gle new clustering encompassing all existing document classifications can be
obtained by integrating the textual content information with knowledge on
the groupings of the documents through the available classifications. However,
since no information about any labels of the available groups of documents
is assumed to be required, our key idea to accomplish the task relies on the
identification of frequent co-occurrences of documents in the groups across
the existing classifications, in order to capture how documents tend to be
grouped together orthogonally to the different views. Based on the discovered
frequent associations of the documents as well as on the usual term-document
representation of the text contents, a tensor model is built and decomposed
to finally establish a unique clustering of documents that might be suited to
reflect the multidimensional structure of the initial document classifications.
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Experiments conducted on a document clustering benchmark have shown the
potential of the approach to capture the multi-view structure of existing or-
ganizations for a given collection of documents.

We presented a tensor-based clustering framework for view-segmented doc-
uments in Chapter 4. Multi-view documents are treated in terms of their
constituent, view-based text segments, while representing them under a mul-
tidimensional data structure. The goal was to explore the benefits deriving
from a combination of document segmentation with a multidimensional data
structure, the result being able to capture a segment-grained view-oriented
topical representation of the documents. Experimental results have supported
our intuition on the clustering improvement performance over different chal-
lenging datasets.

Finally, we addressed the multi-topic and multilingual document cluster-
ing problem in Chapter 5. In this context, we defined a language-independent
representation model with the support of a multilingual lexical knowledge
base (BabelNet). Thematic alignment across documents is accomplished by
obtaining semantically coherent cross-lingual topics, so to enable language-
independent preserving of the content semantics. The multilingual documents
are decomposed into topically-coherent segments in order to enable the group-
ing of linguistically different portions of documents by content. Moreover,
these two key aspects are integrated into a multidimensional data structure in
order to better capture the multi-topic multilingual nature of the documents.
We evaluated our approach w.r.t. standard document clustering methods, us-
ing both term and synset representations. Results have shown the benefits
deriving from the use of a multilingual knowledge base in the analysis of com-
parable corpora, and also shown the significance of our approach in both a
balanced and an unbalanced corpus evaluation. Our tensor-based represen-
tation of topically-segmented multilingual documents can also be applied to
cross-lingual information retrieval or multilingual document categorization.

Future research. There are many open questions and emerging chal-
lenges that we would like to address. In the following we briefly provide point-
ers for future research.

• Tensor-based corpus modeling – In this thesis our focus was only on two
tensor decompositions, namely Non-negative Tucker decomposition and
Higher-order SVD. Therefore, a natural extension of our work is to be
devoted to an investigation of the opportunities offered by other tensor
decomposition models and their capabilities (and limitations) as concerns
clustering performances.
Tensor decompostions provide a meaningful and low-dimensional repre-
sentation for each dimension. A further study we plan to conduct is the
jointly exploitation of mode-1 and mode-2 factor matrices in order to per-
form co-clustering tasks.
Furthermore, another challenge is the interpretability of the factorizations
provided by tensor decompositions. In this context, it would be interesting
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to investigate regularization methods in order to support the above aspect.
Other study should be devoted to the development of methods that can
support the detection of a suitable number of components for the tensor
decomposition in our domains of interest.

• Tensor models for supervised and semi-supervised learning tasks – The
multilingual document classification task is traditionally addressed in a
inductive learning setting by translating all documents in an anchor lan-
guage or with the support of bi-lingual resources. A major issue in this
setting is the availability of a full-labeled corpora.
Our view of the problem of multilingual document classification is different
from the standard inductive learning setting: on the one hand, we look at
a supervised learning fashion as we want to exploit the available a-priori
knowledge on the topic-classes assigned to the (multilingual) documents;
on the other hand, we recognize that high-quality labeled datasets are dif-
ficult to obtain due to costly and time-consuming annotation processes.
This particularly holds for the multilingual scenario where the documents
belong to different languages, and hence more, language-specific experts
need to be involved in the annotation process. Transductive learning offers
an effective approach to deal with this issue. We have started to study the
problem, and preliminary evaluation has shown promising results [165]. As
a further step, we plan to investigate the definition of a tensor model capa-
ble of providing a suitable low-dimensional representation of multilingual
documents in a transductive learning framework.

• Enhancing multilingual document modeling – Our use of BabelNet was
restricted to its multilingual lexical dictionary capabilities. However, Ba-
belNet also offers ontological functionalities. Therefore, an urgent enhance-
ment of our conceptual document representation approach will be devoted
to the enrichment of our bag-of-synsets model with information such as
the relations between the synsets.

• Applications – While the study described in this thesis has focused on
relatively long documents, there exist several application domains charac-
terized by a huge amount of short documents; this is for instance the case
social media networks, like Twitter, which offers microblogging services.
Mining short documents leads to several new challenges, mainly because of
the poor content information which characterizes this kind of documents.
Therefore, it would be interesting to investigate the development of tensor
models that are capable of coping with short documents, also in multilin-
gual contexts.
Although collaborative editing environments, like Wikipedia, are powerful
tools for sharing knowledge, in multilingual contexts often there is not ex-
act alignment of the topical knowledge across the various languages. This
is the case of resource-poor languages, in which it easily happens that a
topic is not as well covered as in other languages. We believe that, by
exploiting the ability of tensor models and decomposition techniques in
leveraging interactions between different facets of documents in a collec-
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tion, multilingual document clustering can support document fertilization,
i.e., recommendation of topics poorly covered by documents written in a
given language.
Information networks and their evolution over time also represent chal-
lenging scenarios due to the multiple perspectives through which they can
be analyzed. Tensor-based network models can be helpful in developing
new approaches to several tasks, such as relation prediction, community
detection, and topic evolution.
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142. L. Padró and E. Stanilovsky. Freeling 3.0: Towards wider multilinguality. In
Proceedings of the Eight International Conference on Language Resources and
Evaluation, 2012.

143. C. D. Paice. Another Stemmer. SIGIR Forum, 24(3):56–61, 1990.
144. C. D. Paice. A Method for the Evaluation of Stemming Algorithms based

on Error Counting. Journal of the American Society for Information Science,
47(8):632–649, 1996.

145. C. H. Papadimitriou, P. Raghavan, Raghavan, and S. Vempala. Latent Se-
mantic Indexing: A Probabilistic Analysis. Journal of Computer and System
Sciences, 61(2):217–235, 2000.

146. A. H. Phan and A. Cichocki. Fast and efficient algorithms for nonnegative
tucker decomposition. In Proceedings International Symposium on Neural Net-
works: Advances in Neural Networks, pages 772–782, 2008.

147. A. H. Phan and A. Cichocki. Multi-way nonnegative tensor factorization using
fast hierarchical alternating least squares algorithm (hals). In Proceedings of
The 2008 International Symposium on Nonlinear Theory and its Applications,
2008.

148. A. H. Phan and A. Cichocki. Local Learning Rules for Nonnegative Tucker De-
composition. In Proceedings International Conference on Neural Information
Processing, pages 538–545, 2009.

149. E. Pianta, L. Bentivogli, and C. Girardi. Developing an aligned multilingual
database. In Proceedibgs 1st Intenrnational Conference on Global WordNet,
2002.

150. D. Pinto, J.-M. Bened, and P. Rosso. Clustering narrow-domain short texts
by using the kullback-leibler distance. In Computational Linguistics and Intel-
ligent Text Processing, pages 611–622. Springer, 2007.

151. G. Ponti and A. Tagarelli. Topic-based hard clustering of documents using
generative models. In Proceedings of the 18th International Symposium on
Foundations of Intelligent Systems, pages 231–240, 2009.

152. G. Ponti, A. Tagarelli, and G. Karypis. A statistical model for topically seg-
mented documents. In Proceedings of the 14th International Conference on
Discovery Science, pages 231–240, 2011.

153. S. P. Ponzetto and M. Strube. Knowledge derived from wikipedia for computing
semantic relatedness. Journal of Artificial Intelligence Research, 30(1), 2007.

154. M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
155. P. Proctor, editor. Longman Dictionary of Contemporary English. Longman

Group, 1978.
156. V. V. Raghaven and S. K. M. Wong. A critical analysis of vector space model

for information retrieval. Journal of the American Society for Information
Science, 37(5):279–287, 1986.

157. A. Rahman and V. Ng. Narrowing the modeling gap: A cluster-ranking ap-
proach to coreference resolution. Journal of Artificial Intelligence Research,
40(1):469–521, 2011.

158. D. Ramage, P. Heymann, C. D. Manning, and G.-M. Hector. Clustering the
tagged web. In Proceedings of Web Search and Data Mining, pages 54–63,
2009.

159. W. M. Rand. Objective criteria for the evaluation of clustering methods. Jour-
nal of the American Statistical association, 66:846–850, 1971.

160. S. E. Robertson and K. Sparck Jones. Relevance Weighting of Search Terms.
Journal of the American Society for Information Science, 27(3):129–146, 1976.



98 References

161. P. M. Roget. Rogets International Thesaurus,1st edition. Cromwell, 1911.
162. S. Romeo, A. Tagarelli, F. Gullo, and S. Greco. A tensor-based clustering

approach for multiple document classifications. In Proceedings of International
Conference on Pattern Recognition Applications and Methods, pages 200–205,
2013.

163. S. Romeo, A. Tagarelli, and D. Ienco. Clustering view-segmented documents
via tensor modeling. In Proceedings of International Symposium on Methodolo-
gies for Intelligent Systems, volume 8502 of Lecture Notes in Computer Science,
pages 385–394. 2014.

164. S. Romeo, A. Tagarelli, and D. Ienco. Semantic-based multilingual document
clustering via tensor modeling. In Proceedings of Conference on Empirical
Methods in Natural Language Processing, pages 600–609, 2014.

165. S. Romeo, A. Tagarelli, and D. Ienco. Knowledge-based representation for
transductive multilingual document classification. To Appear in Proceedings
of 37th European Conference on Information Retrieval, 2015.

166. M. Ruiz-Casado, E. Alfonseca, and P. Castells. Automatic assignment of
wikipedia encyclopedic entries to wordnet synsets. In Proceedings of the Third
International Conference on Advances in Web Intelligence, pages 380–386,
2005.

167. G. Salton. Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. Addison-Wesley, 1989.

168. G. Salton and C. Buckley. Term-Weighting Approaches in Automatic Text
Retrieval. Information Processing and Management, 24(5):513–523, 1988.

169. G. Salton, C. Buckley, and M. Smith. On the Application of Syntactic Method-
ologies in Automatic Text Analysis. Information Processing and Management,
26(1):73–92, 1990.

170. G. Salton and M. E. Lesk. Computer evaluation of indexing and text process-
ing. Journal of the ACM, 15(1):8–36, 1968.

171. G. Salton, C. C. Yang, and C. T. Yu. A Theory of Term Importance in
Automatic Text Analysis. Journal of the American Society for Information
Science, 26(1):33–44, 1975.

172. S. Salvador and P. Chan. Determining the number of clusters/segments in
hierarchical clustering/segmentation algorithms. In Proceedings of 16th IEEE
International Conference on Tools with Artificial Intelligence, pages 576–584,
2004.

173. B. Savas and L. Eldén. Handwritten digit classification. Pattern Recognition,
40(3):993–1003, 2007.

174. C. Schwarz. Automatic Syntactic Analysis of Free Text. Journal of the Amer-
ican Society for Information Science, 41(6):408–417, 1990.

175. T. M. Selee, T. G. Kolda, W. P. Kegelmeyer, and J. D. Griffin. Extracting
clusters from large datasets with multiple similarity measures using imscand.
In CSRI Summer Proceedings 2007, pages 87–103, 2007.

176. C. E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27:379–423/623–656, 1948.

177. A. Shashua and A. Levin. Linear image coding for regression and classification
using the tensor-rank principle. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 1, pages I–
42. IEEE, 2001.



References 99

178. W. M. Shaw, R. Burgin, and P. Howell. Performance Standards and Eval-
uations in IR Test Collections: Cluster-based Retrieval Models. Information
Processing and Management: an International Journal, 33(1):1–14, 1997.

179. N. D. Sidiropoulos, R. Bro, and G. B. Giannakis. Parallel factor analysis in
sensor array processing. IEEE Transactions on Signal Processing, 48(8):2377–
2388, 2000.

180. P. H. A. Sneath and R. R. Sokal. Numerical taxonomy. The principles and
practice of numerical classification. Freeman, 1973.

181. J. F. Sowa. Knowledge Representation: Logical, Philosophical and Computa-
tional Foundations. Brooks Cole, 2000.

182. K. Sparck Jones. Index Term Weighting. Information Storage and Retrieval,
9:619–633, 1973.

183. M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In KDD Workshop on Text Mining, 2000.

184. A. Strehl and J. Ghosh. A scalable approach to balanced, high-dimensional
clustering of market-baskets. In High Performance Computing, pages 525–536.
Springer, 2000.

185. A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for
combining multiple partitions. The Journal of Machine Learning Research,
3:583–617, 2003.

186. F. M. Suchanek, G. Ifrim, and G. Weikum. Combining linguistic and statistical
analysis to extract relations from web documents. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 712–717, 2006.

187. J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: A novel approach
to personalized web search. In Proceedings of the 14th International Conference
on World Wide Web, pages 382–390, 2005.

188. Q. Sun, R. Li, D. Luo, and X. Wu. Text segmentation with lda-based fisher
kernel. In Proceedings of the 46th Annual Meeting of the Association for Com-
putational Linguistics on Human Language Technologies: Short Papers, pages
269–272. Association for Computational Linguistics, 2008.

189. M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede. Lexicon-based
methods for sentiment analysis. Computational Linguistics, 37(2):267–307,
2011.

190. A. Tagarelli and G. Karypis. A segment-based approach to clustering multi-
topic documents. Knowledge and Information Systems, 34(3):563–595, 2013.

191. G. Tsatsaronis, I. Varlamis, and K. Norvag. Semanticrank: Ranking keywords
and sentences using semantic graphs. In Proceedings of the International Con-
ference on Computational Linguistics, pages 1074–1082, 2010.

192. L. R. Tucker. Problems in Measuring Change, chapter Implications of fac-
tor analysis of three-way matrices for measurement of change, pages 122–137.
University of Wisconsin Press, 1963.

193. L. R. Tucker. The extension of factor analysis to three-dimensional matrices.
In H. Gulliksen and N. Frederiksen, editors, Contributions to mathematical
psychology. Holt, Rinehart and Winston, 1964.

194. L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3):279–311, 1966.

195. D. Tufis, D. Cristea, and S. Stamou. Balkanet: Aims, methods, results and
perspectives. a general overview. Romanian Journal on Science and Technology
of Information, pages 3–4, 2004.



100 References

196. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles:
Tensorfaces. In Computer Vision, volume 2350, pages 447–460. 2002.

197. P. Vossen, editor. EuroWordNet: A Multilingual Database with Lexical Seman-
tic Networks. Kluwer Academic Publishers, 1998.

198. X. Wan. Bilingual co-training for sentiment classification of chinese product
reviews. Computational Linguistics, 37(3):587–616, 2011.

199. P. Wang and C. Domeniconi. Building semantic kernels for text classifica-
tion using wikipedia. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 713–721, 2008.

200. Y. Wang, Y. Jia, and S. Yang. Short documents clustering in very large text
databases. In Web Information Systems–WISE 2006 Workshops, pages 83–93.
Springer, 2006.

201. C.-P. Wei, C. C. Yang, and C.-M. Lin. A latent semantic indexing-based
approach to multilingual document. Decision Support Systems, 45(3):606–620,
2008.

202. P. M. Wiemer-Hastings. How Latent is Latent Semantic Indexing? In Proceed-
ings of International Joint Conference on Artificial Intelligence, pages 932–941,
1999.

203. F. Wu and D. S. Weld. Automatically refining the wikipedia infobox ontology.
In Proceedings of the 17th International Conference on World Wide Web, pages
635–644, 2008.

204. J. Xu and W. B. Croft. Corpus-based Stemming Using Coocurrence of Word
Variants. ACM Transactions on Information Systems, 16(1):61–81, 1998.

205. Y. Yang and C. G. Chute. An Example-based Mapping Method for Text
Categorization and Retrieval. ACM Transactions on Information Systems,
12(3):252–277, 1994.

206. E. Yeh, D. Ramage, C. D. Manning, E. Agirre, A. Soroa, and I. Taldea. Wiki-
walk: Random walks on wikipedia for semantic relatedness. In Workshop on
Graph-based Methods for Natural Language Processing, pages 41–49, 2009.

207. D. Yogatama and K. Tanaka-Ishii. Multilingual spectral clustering using docu-
ment similarity propagation. In Proceeding of Conference on Empirical Methods
in Natural Language Processing, pages 871–879, 2009.

208. C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt
clusters. Computers, IEEE Transactions on, 100(1):68–86, 1971.

209. M. J. Zaki and C.-J. Hsiao. CHARM: An Efficient Algorithm for Closed Itemset
Mining. In Proceedings SIAM International Conference on Data Mining, pages
457–473, 2002.

210. Z.-Y. Zhang, T. Li, and C. Ding. Non-negative tri-factor tensor decomposition
with applications. Knowledge and Information Systems, 34(2):243–265, 2013.

211. Y. Zhao and G. Karypis. Empirical and theoretical comparison of selected
criterion functions for document clustering. Machine Learning, 55(3):311–331,
2004.

212. Y. Zhao and G. Karypis. Soft clustering criterion functions for partitional
document clustering: a summary of results. In Proceedings of the thirteenth
ACM international conference on Information and knowledge management,
pages 246–247, 2004.

213. S. Zhong and J. Ghosh. A unified framework for model-based clustering. Jour-
nal of Machine Learning Research, 4:1001–1037, 2003.

214. G. K. Zipf. Human Behavior and the Principle of Least Effort: an Introduction
to Human Ecology. Addison-Wesley, 1949.


