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1

Introduction

Any set of informational objects (e.g., data objects, individual agents, groups
or components) interconnected with each other to form large sophisticated
networks can be de�ned, without loss of generality, as an information net-
work. Therefore, in this type of networks, the basic units being connected are
pieces of information, and links join pieces of information that are related
to each other in some fashion [49]. It is not di�cult to enumerate examples
of well-known information networks: social networks, the World Wide Web,
computer networks, research publication networks, biological and chemical
systems, neural networks, highway networks, and many others. Given the fact
that information networks are pervasive and can be considered as the building
blocks of modern information infrastructures, they gain increasing attention
from researchers in computer science, social science, physics, economics, biol-
ogy, and other disciplines.

The analysis of information networks is largely based on principles and al-
gorithms from graph theory, such as short paths and giant components. The
success of studies about information networks is certainly tied to the growth
of the World Wide Web, which is probably the most remarkable example of
such kind of networks. Research on information networks has a long history.
The hypertextual structure of the Web itself has in fact a relevant precursor in
the concept of citation network built among scholarly books and articles. The
structure of a citation network naturally forms a directed graph, with nodes
representing books and articles, connected by directed edges representing ci-
tations from one work to another (similar structures can be found in networks
which represent connections among patents or legal decisions). A main di�er-
ence between the Web and older kind of networks is in the role of the time
dimension. A citation which comes from an article (or a book, a patent or a
legal decision) always points to an �older� object, for the simple reason that an
article is a static object which is published at a speci�c point in time, and can
only refer to previous works. Conversely, Web pages are dynamical objects,
usually updated many times during their life, leading to a structure which
still contains directed links, but not necessarily from newer to older pages.
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Another information network model preceding the World Wide Web can be
found in the cross-references within a printed encyclopedia: cross-referencing
links de�ne explicit relations among the articles, allowing the browsing of an
encyclopedia across di�erent topics. By analyzing this cross-reference model,
it can be observed that relatively distant concepts are connected by short
paths, showing that the six degrees of separation phenomenon, often referred
to in social networks (where similarly short paths link apparently distant peo-
ple), also holds on this domain. This serendipitous browsing among chains of
related encyclopedia articles is closely related to the way our mind rapidly
associates di�erent ideas (stream-of-consciousness), a model which has also
been formalized through an information network, called semantic network.
In this kind of network nodes represent concepts, and edges represent some
logical or perceived relationship between two concepts.

Back to the prominent example of the World Wide Web, in the last decade
a lot of radical changes happened, which made the Web evolve to an even more
complex and dynamic network. This has changed so much the user perspec-
tive that the de�nition Web 2.0 [133] had to be created to describe this new
attitude. The major changes can be found in the growth of collective created
and maintained shared content, the growth of services to store and manage
personal data online, and the growth of services which are founded on on-line
connections among people and not just among documents. The social aspect
of the Web is constantly gaining importance, so that in most cases online web
sites and services become more appealing and generally more useful as their
audience grows larger. When the audience also contributes to the production
of a valuable collective informational artifact (e.g., collaborative authoring of
Wikipedia), we refer to a wisdom of crowd process, a phenomenon that ex-
plains the collective information residing in a large group. By contrast, the
large amount of personally authored content produces a long tail e�ect, where
there is a small amount of extremely popular content, and a long tail of content
which is enjoyed by a relatively small audience. Another phenomenon which
gained importance with the Web 2.0 paradigm is the social feedback mech-
anisms, which generated interesting studies concerning reputation and trust
systems, based on a network of judgments/ratings among users (or between
users and objects/services).

In the last years, research in network analysis has spanned a variety of in-
formation retrieval and knowledge discovery tasks, such as community discov-
ery, link prediction, keyword search, expert �nding, and information di�usion
related tasks. Particular attention has been devoted to the understanding of
the behavior of nodes, and underlying relations, that are relevant to a spe-
ci�c task due to their �centrality� in the network. The latter often implies a
ranking task over the nodes in the network, i.e., objects in the network should
be sorted according to importance, popularity, in�uence, authority, relevance,
similarity, and proximity, by utilizing link information in the network. With
the growth of the Web, which scrambled users' roles so that everyone is an
author and a searcher at the same time, the ranking problems (together with
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all kinds of problems surrounding information retrieval) exploded in scale and
complexity. The abundance and diversity of information which can be ex-
tracted from the Web takes the typical challenges of ranking problems to new
extremes: e.g., a ranking method should be able to recognize to what extent a
certain document is pertinent to a desired topic and at the same time what is
the level of expertise (or trust) of the document source. This scenario favors
an increasing demand for new generation ranking systems that are capable
of e�ectively taking into account the heterogeneity in the type of informa-
tion, producing personalized ranking based on users' pro�les and taking into
account the diversity of interactions among users.

Contributions

In this thesis we address research topics that are centered around the problem
of ranking in information networks. Speci�cally, three main research topics can
be distinguished:

Ranking problems in semantic networks over semi-structured data.
Labeled tree-data (e.g., XML trees) are a convenient model to describe real-
life objects and their structural relationships, since they allow the representa-
tion of semantic-rich information through a natural hierarchical organization.
However, the �exibility of this model is at the same time the key factor for its
success in the �eld of knowledge management and exchange, and the source
of lexical ambiguity issues: the semi-structured data model easily leads to
tree data which can be diverse across di�erent information sources and often
also within the same source. Thus, coupling the syntactic information within
labeled tree data with appropriate semantics, with the goal to obtain a contex-
tual ranking of all possible meanings of the tags in a tree data, is a challenging
task. The network of meanings underlying the structural constituents of tree
data can conveniently be represented as a labeled (weighted) graph, therefore
graph-based ranking methods are natural candidates to solve the structural
sense ranking problem. In this research line, the problem has been addressed
de�ning a multi-relational PageRank-based approach, applied to a heteroge-
neous information network built upon the di�erent structural relations among
the tags in the tree. Our intuition is that a multi-relational ranking method
should in principle be able to better leverage the semantics of annotations in
tree data that are structurally related at di�erent levels, propagating the im-
portance scores through di�erent multi-typed relations. The research line on
ranking in semantic networks de�ned over semi-structured data is the focus
of Chapter 3.

Ranking algorithms for package recommendation systems. In the
last years the advent of e-commerce and web search applications of increas-
ing complexity, together with the fundamental need to integrate these kinds
of applications with social media networks in order to enhance the degree of
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personalization, made recommender systems one of the most pervasive mech-
anisms on the entire Web. A key challenge in this scenario is to devise systems
that are capable of producing enhanced quality recommendations which take
into account the heterogeneity in the type of information to personalize and
deliver to the users. Moreover, an emerging trend, which showed to be a key
to successfully face a number of applications, is the design of methods capable
of recommending packages instead of single items. The problem is challenging
due to a variety of critical aspects, including context-based and user-provided
constraints for the items constituting a package, but also the high sparsity
and limited accessibility of the primary data used to solve the problem. Most
existing works on the topic have focused on a speci�c application domain (e.g.,
travel package recommendation), thus often providing ad-hoc solutions that
cannot be adapted to other domains. In this research line, a versatile package
recommendation approach has been de�ned that is substantially independent
of the peculiarities of a particular application domain. The proposed frame-
work is capable to exploit prior knowledge on package models (i.e., how the
di�erent item types should be grouped to form packages which meet the users'
needs) in order to learn a package set that represents the input of a recom-
mendation stage. This is �nally accomplished by performing a PageRank-style
method personalized w.r.t. the target user's preferences. The research line on
ranking algorithms for package recommendation is the focus of Chapter 4.

Identi�cation and ranking of lurkers in social networks. Despite it
has been proved that the major part of members in an online community can
be considered lurkers (e.g., silent users, who take bene�ts from others' con-
tributions without producing anything on their own), the problem has never
been formally addressed in previous literature in computer science. This re-
search topic is characterized by the de�nition of computational methods for
lurkers identi�cation and ranking in social networks, which are based solely
on the network's topology. Both quantitative and qualitative experimental re-
sult demonstrated the e�ectiveness of our approach in identifying and ranking
lurkers in an online social network, unveiling lurking cases that are intuitive
yet non-trivial. An extension that also integrates time-aware features (e.g.,
amount and freshness of users' interactions) has been also proposed. Due to
the fact that social networks are by nature dynamic environments, a main
part of the study is based on the study of lurking behaviors over time, ana-
lyzing their role in the network from di�erent perspectives. In this research
line, the problem of identifying and ranking silent nodes was also studied on
application domains other than the online social networks, namely research
collaboration networks and social trust contexts. In the contexts of research
collaboration networks, the vicarious learning problem has been addressed,
which consists in the study of expert-apprentice or advisor-advisee relation-
ships focusing on an apprentice point of view. The study includes the de�niton
of methods for identi�cation and analysis of apprentice relations and in par-
ticular of vicarious learners. The study of lurking in social trust contexts is
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focused on the challenge to model the understanding of lurkers from a perspec-
tive of social trust computing. The study is based on a comparative evaluation
of lurker ranking methods against classic approaches to trust/distrust rank-
ing, and on a �rst attempt to combine the two families of methods. Results
indicate that lurkers should not be a-priori tagged as untrustworthy users,
and that trustworthy users can indeed be found among lurkers. The research
line on the identi�cation and ranking of lurkers in social networks is the focus
of Chapter 5.





2

Background

2.1 Summary

This chapter provides preliminary concepts that will help the understand-
ing of the techniques and models adopted in subsequent chapters. We �rst
introduce some background on topological characterization of networks (Sec-
tion 2.2), focusing on node degree properties (Section 2.2.1), path properties
(Section 2.2.3), transitivity (Section 2.2.4), and assortativity (Section 2.2.2).
In Section 2.3, we study the problem of vertex centrality in a network, �rst
describing basic centrality measures (Section 2.3.1), then introducing con-
cepts of eigenvector centrality and prestige in Section 2.3.2, deepening the
study of fundamental eigenvector centrality algorithms like PageRank in Sec-
tion 2.3.3 and HITS in Section 2.3.4. In Section 2.4, we introduce the concepts
behind heterogeneous network models, followed by an overview on ranking
(Section 2.4.1) and clustering (Section 2.4.2) algorithms for heterogeneous in-
formation networks. In Section 2.5, we discuss background about PageRank-
based algorithms for word sense disambiguation tasks, while in Section 2.6 we
review global (Section 2.6.2) and local (Section 2.6.3) trust ranking methods,
with particular attention to TrustRank and Anti-TrustRank (Section 2.6.1).
Chapter is concluded by Section 2.7, where the assessment criteria used in the
experimental phases of subsequent chapters are brie�y described.

2.2 Topological characterization

Let G = 〈V, E〉 denote a network graph, which consists of two sets V and E ,
such that V 6= ∅ and E is a set of pairs of elements of V. If the pairs in E are
ordered the graph is said directed, otherwise is undirected. The elements in
V are the vertices (or nodes) of G, while the elements in E are the edges (or
links) of G. A graph G can be completely described by its |V| × |V| adjacency
matrix, denoted with A, such that A(i, j) = 1 if (vi, vj) ∈ E , and A(i, j) = 0
otherwise. In general, we will use boldface letters to denote vectors (e.g., x)
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and boldface, capital letters to denote matrices (e.g.,X); moreover, the generic
i-th entry of vector x (resp., (i, j)-th entry of matrix X) will be denoted as
x(vi) (resp., X(vi, vj)), for any vi, vj ∈ V.

If G is undirected, for any vertex vi ∈ V, we denote with deg(vi) =∑
vj∈V A(i, j) the number of edges incident with vi, or degree of vi (sub-

sequently denoted also as ki), and with Vi = {vj |(vi, vj) ∈ E} the set of
neighbors of vi. If G is directed, the degree and the set of neighbors have two
components: we denote with Bi = {vj |(vj , vi) ∈ E} and Ri = {vj |(vi, vj) ∈ E}
the set of in-neighbors, or �backward vertices�, and the set of out-neighbors,
or �reference vertices�, of vi, respectively. The sizes of sets Bi and Ri are the
in-degree and the out-degree of vi, denoted as in(vi) and out(vi), respectively.

2.2.1 Node degree, degree distributions and correlations

The degree (or connectivity) ki of a node vi is the number of edges incident
with the node, and is de�ned in terms of the adjacency matrix A as:

ki =
∑
j∈V

A(i, j)

If the graph is directed, the degree of the node has two components: the
number of outgoing links out(vi) =

∑
j A(i, j) (referred to as the out-degree of

the node), and the number of ingoing links in(vi) =
∑
j A(i, j) (referred to as

the in-degree of the node). The total degree is de�ned as ki = out(vi)+ in(vi).
A list of the node degrees of a graph is called the degree sequence. The most
basic topological characterization of a graph G can be obtained in terms of
the degree distribution P (k), de�ned as the probability that a node chosen
uniformly at random has degree k or, equivalently, as the fraction of nodes in
the graph having degree k.

In the case of directed networks one needs to consider two distributions,
P (kin) and P (kout). Information on how the degree is distributed among
the nodes of a undirected network can be obtained by the calculation of the
moments of the distribution. The n-moment of P (k) is de�ned as:

〈k(n)〉 =
∑
k

knP (k). (2.1)

The �rst moment 〈k〉 is the mean degree of G. The second moment mea-
sures the �uctuations of the connectivity distribution.

The degree distribution completely determines the statistical properties of
uncorrelated networks. However a large number of real networks are correlated
in the sense that the probability that a node of degree k is connected to another
node of degree, say k′, depends on k. In these cases, it is necessary to introduce
the conditional probability P (k′|k) being de�ned as the probability that a link
from a node of degree k points to a node of degree k′ [21].
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Although the degree correlations are formally characterized by P (k′|k), a
direct evaluation of the conditional probability gives extremely noisy results
for most of the real networks because of their �nite size N = |V|. This problem
can be overcome by de�ning the average nearest neighbors degree of a node
vi as:

knn,i = 1/ki
∑
j∈V i

kj = 1/ki

N∑
j=1

A(i, j)kj , (2.2)

where Vi is the set of direct neighbors of vi. By using Eq. 2.2 one can calculate
the average degree of the nearest neighbors of nodes with degree k, denoted as
knn(k), obtaining an expression that implicitly incorporates the dependence
on k. Such a quantity can be, indeed, expressed in terms of the conditional
probability as

knn(k) =
∑
k′

k′P (k′|k). (2.3)

2.2.2 Assortativity

If there are no degree correlations, Eq. 2.3 gives knn(k) = 〈k2〉/〈k〉, i.e., knn(k)
is independent from k. Correlated graphs are classi�ed as assortative if knn(k)
is an increasing function of k, whereas they are referred to as disassortative
when knn(k) is a decreasing function of k. In other words, in assortative net-
works the nodes tend to connect to their connectivity peers, while in disassor-
tative networks nodes with low degree are more likely connected with highly
connected ones. Degree correlation are usually quanti�ed by reporting the nu-
merical value of the slope of knn(k) , or by calculating the Pearson correlation
coe�cient of the degrees at either ends of a link.

The existence of degree correlations among nodes is an important property
of real networks. Thus, many social networks show that nodes having many
connections tend to be connected with other highly connected nodes. In the
literature this characteristic is usually denoted as assortativity or assortative
mixing [128]. Let εij be the probability that a randomly selected edge of the
network connects two nodes, one with degree ki and another with degree kj .
The probabilities εij determine the correlations of the network. We say that
a network is uncorrelated when:

εij = (2− δij)
kiP (ki)

〈ki〉
kjP (kj)

〈kj〉
:= εrij , (2.4)

i.e., when the probability that a link is connected to a node with a certain
degree is independent from the degree of the attached node. Here 〈ki〉 = 〈kj〉
denotes the �rst moment of the degree distribution.

Assortativity means that highly connected nodes tend to be connected
to each other with a higher probability than in an uncorrelated network.
Moreover, the nodes with similar degrees tend to be connected with larger
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probability than in the uncorrelated case, i.e., εij > εrij∀i. The degree of
assortativity of a network can thus be characterized by the quantity:

A =

∑
i εii −

∑
i ε
r
ii

1−
∑
i ε
r
ii

(2.5)

which takes the value 0 when the network is uncorrelated and the value 1
when the network is totally assortative.

2.2.3 Shortest path lengths and diameter

Shortest paths play an important role in transferring information through
a network. The shortest path between two nodes in a graph G, de�ned as
d(i, j), is the length of the geodesic from node vi to node vj . The maximum
value of d(i, j) is called the diameter of the graph. A measure of the typical
separation between two nodes in the graph is given by the average shortest
path length, also known as characteristic path length, de�ned as the mean of
geodesic lengths over all couples of nodes [174]:

L =
1

|V|(|V| − 1)

∑
i,j∈V ,i6=j

d(i, j) (2.6)

A problem with this de�nition is that L diverges if there are disconnected
components in the graph. One possibility to avoid the divergence is to limit
the summation in Eq. 2.6 only to couples of nodes belonging to the largest
connected component [174]. An alternative approach, that is useful in many
cases is to consider the harmonic mean of geodesic lengths, and to de�ne the
so-called e�ciency of G as:

E =
1

|V|(|V| − 1)

∑
i,j∈V ,i6=j

1

d(i, j)
(2.7)

Such a quantity is an indicator of the tra�c capacity of a network, and
avoids the divergence of formula 2.6, since any couple of nodes belonging to
disconnected components of the graph yields a contribution equal to zero to
the summation in Eq. 2.7 [21].

2.2.4 Transitivity

Transitivity, is a typical property of acquaintance networks, where two indi-
viduals with a common friend are likely to know each other [173]. In terms
of a generic graph G, transitivity means the presence of a high number of
triangles. This can be quanti�ed by de�ning the transitivity T of the graph as
the relative number of transitive triples, i.e., the fraction of connected triples
of nodes (triads) which also form triangles:
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T =
3×#triangles in G

#of connected triples of vertices in G
(2.8)

The factor 3 in the numerator compensates for the fact that each complete
triangle of three nodes contributes three connected triples, one centered on
each of the three nodes, and ensures that 0 ≤ T ≤ 1, with T = 1 for KN . An
alternative possibility is to use the graph clustering coe�cient C, a measure
introduced by in [174], and de�ned as follows. A quantity ci (the local clus-
tering coe�cient of node vi) is �rst introduced, expressing how likely ajm = 1
for two neighbors vj and vm of node vi. Its value is obtained by counting the
actual number of edges (denoted by ei) in Gi (the subgraph of neighbors of
vi).Notice that Gi can be, in some cases, unconnected. The local clustering
coe�cient is de�ned as the ratio between ei and ki(ki − 1)/2, the maximum
possible number of edges in Gi:

ci =
2ei

ki(ki − 1)
=

∑
j,m aijajmami

ki(ki − 1)
(2.9)

The clustering coe�cient of the graph is then given by the average of ci over
all the nodes in G:

C = 〈c〉 = 1

N

∑
i∈V

ci. (2.10)

By de�nition, 0 ≤ ci ≤ 1, and 0 ≤ C ≤ 1. It is also useful to consider c(k), the
clustering coe�cient of a connectivity class k, which is de�ned as the average
of ci taken over all nodes with a given degree k.

2.3 Centrality and prestige

2.3.1 Basic measures

A primary problem in network analysis is the identi�cation of the most central
vertices in a network. The term central commonly resembles that of impor-
tance or prominence of a vertex in a network, i.e., the status of being located in
strategic locations within the network. There is no unique de�nition of central-
ity, as for instance one may postulate that a vertex is important if it is involved
in many direct interactions, or if it connects two large components (i.e., if it
acts as a bridge), or if it allows for quick transfer of the information also by
accounting for indirect paths that involve intermediaries. Consequently, there
are only very few desiderata for a centrality measure, which can be expressed
as follows:

� A vertex centrality is a function that assigns a real-valued score to each
vertex in a network. The higher the score, the more important or promi-
nent the vertex is for the network.
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� If two graphs G1, G2 are isomorphic and m(v) denotes the mapping func-
tion from a node v in G1 to some node v′ in G2, then the centrality of v
in G1 needs to be the same as the centrality of m(v) = v′ in G2. In other
terms, the centrality of a vertex is only depending on the structure of the
network.

The term centrality is originally designed for undirected networks. In the
case of directional relations, which imply directed networks, the term central-
ity is still used and refers to the �choices made�, or outdegrees of vertices, while
the term prestige is introduced to examine the �choices received�, or indegrees
of vertices [173]. Moreover, the vertex centrality scores can be aggregated over
all vertices in order to obtain a single, network-level measure of centrality, or
alternatively centralization, which aims to provide a clue on the variability
of the individual vertex centrality scores with respect to a given centrality
notion. In the following we overview well-known measures of centrality, and
their de�nitions for undirected and directed networks. A comprehensive expla-
nation and implication behind centrality and prestige measures can be found
in [173].

Vertex-level centrality

The most intuitive measure of centrality for any vertex v ∈ V is the degree
centrality, which is de�ned as the degree of v:

cD(v) = degree(v) (2.11)

Being dependent only on adjacent neighbors of a vertex, this type of centrality
focuses on the most �visible� vertices in the network, as those that act as
major point of relational information; by contrast, vertices with low degrees
are peripheral in the network. Moreover, the degree centrality depends on the
graph size: indeed, since the highest degree for a network (without loops) is
|V| − 1, the relative degree centrality is:

ĉD(v) =
cD(v)

|V| − 1
=
degree(v)

|V| − 1
(2.12)

The above measure is independent on the graph size, and hence it can be
compared across networks of di�erent sizes. The de�nitions of both absolute
and relative degree centrality and degree prestige of a vertex in a directed
network are straightforward. Note also that the degree centrality is also the
starting point for various other measures; for instance, the span of a vertex,
which is de�ned as the fraction of of links in the network that involves the
vertex or its neighbors, and the ego density, which is the ratio of the degree
of the vertex to the theoretical maximum number of links in the network.

Unlike degree centrality, closeness centrality takes also into account in-
direct links between vertices in the network, in order to score higher those
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vertices that can quickly interact with all others because of their lower dis-
tance to the other vertices [140]:

cC(v) =
1∑

u∈V d(v, u)
(2.13)

where d(v, u) denotes the graph theoretic, or geodesic, distance (i.e., length of
shortest path) between vertices v, u. Since a vertex has the highest closeness
if it has all the other vertices as neighbors, the relative closeness centrality is
de�ned as:

ĉC(v) = (|V| − 1)cC(v) =
|V| − 1∑
u∈V d(v, u)

(2.14)

In the case of directed networks, closeness centrality and prestige can be com-
puted according to outgoing links (i.e., how many hops are needed to reach
all other vertices from the selected one) or incoming links (i.e., how many
hops are needed to reach the selected vertex from all other vertices), respec-
tively. Note that the closeness centrality is only meaningful for a connected
network�in fact, the geodesics to a vertex that is not reachable from any
other vertex are in�nitely long. One remedy to this issue is to de�ne closeness
by focusing on distances from the vertex v to only the vertices that are in the
in�uence range of v (i.e., the set of vertices reachable from v) [173].

Besides (shortest) distance, another important property refers to the abil-
ity of a vertex to have the control over the �ow of information in the network.
The idea behind betweenness centrality is to compute the centrality of a vertex
v as the fraction of the shortest paths between all pairs of vertices that pass
through v [56]:

cB(v) =
∑

u,z∈V ,u 6=v,z 6=v

mu,z(v)

mu,z(V)
(2.15)

where mu,z(v) is the number of shortest paths between u and z and passing
through v, and mu,z(V) is the total number of shortest paths between u and
z. This centrality is minimum (zero) when the vertex does not fall on any
geodesic, and maximum when the vertex falls on all geodesics, which is equal
to (|V| − 1)(|V| − 2)/2. Analogously to the other centrality measures, it's
recommended to standardize the betweenness to obtain a relative betweenness
centrality :

ĉB(v) =
2cB(v)

(|V| − 1)(|V| − 2)
(2.16)

which should be divided by 2 for directed networks. Note that, unlike closeness,
betweenness can be computed even if the network is disconnected.

It should be noted that the computation of betweenness centrality is the
most resource-intensive among the above discussed measures: while standard
algorithms based on Dijkstra's or breadth-�rst search methods require O(|V|3)
time and O(|V|2) space, algorithms designed for large, sparse networks require
O(|V|+|E|) space andO(|V||E|) andO(|V||E|+|V|2 log |V|) time on unweighted
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and weighted networks, respectively [25]. A number of variants of betweenness
centrality has also been investigated, for instance related to extensions to edges
and to valued networks [26].

Besides computational complexity issue, a criticism to betweenness cen-
trality is that it assumes that all geodesics are equally likely when calculating
if a vertex falls on a particular geodesic. However, a vertex with large inde-
gree is more likely to be found on a geodesic. Moreover, in many contexts,
there may be equally likely that other paths than geodesics are chosen for
the information propagation, therefore the paths between vertices should be
weighted depending on their length. The index de�ned by Stephenson and
Zelen [149] builds upon the above generalization, by accounting for all paths,
including geodesics, and assigning them with weights, which are computed as
the inverse of the path lengths (geodesics are given unitary weights). The same
researchers also developed an information centrality measure, which focuses
on the information contained in all paths that originate and end at a speci�c
vertex. The information of a vertex is a function of all the information for
paths �owing out from the vertex, which in turn is inversely related to the
variance in the transmission of a signal from a vertex to another. Formally,
given an undirected network, possibly with weighted edges, a |V|× |V| matrix
X is computed as follows: the i-th diagonal entry is equal to 1 plus the sum
of weights for all incoming links to vertex vi, and the (i, j)-th o�-diagonal
entry is equal to 1, if vi and vj are not adjacent, otherwise is equal to 1 minus
the weight of the edge between vi and vj . For any vertex vi, the information
centrality is de�ned as:

cI(vi) =
1

yii +
1

|V | (
∑
vj∈V yjj − 2

∑
vj∈V yij)

(2.17)

where {yij} are the entries of the matrix Y = X−1. Since function cI is only
lower bounded (the minimum is zero), the relative information centrality for
any vertex vi is obtained by dividing cI(vi) by the sum of the cI values for all
vertices.

Network-level centrality

A basic network-level measure of degree centrality is simply derived by taking
into account the (standardized) average of the degrees:∑

v∈V cD(v)
|V||V − 1|

=

∑
v∈V ĉD(v)
|V|

(2.18)

which is exactly the density of the network.
Focusing on a global notion of closeness, a simpli�cation of this type of

centrality stems from the graph-theoretic center of a network. This is in turn
based on the notion of eccentricity of a vertex v, i.e., the distance to a vertex
farthest to v. Speci�cally, the Jordan center of a network is the subset of
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vertices that have the lowest maximum distance to all other vertices, i.e., the
subset of vertices within the radius of a network.

A unifying view of network-level centrality is based on the notion of net-
work centralization, which expresses how the vertices in the network di�er in
centrality [57]:

C =

∑
v∈V maxC− C(v)

max
∑
v∈V maxC− C(v)

(2.19)

where maxC(·) is a function that expresses a selected measure of relative cen-
trality, and maxC is the maximum value of relative centrality over all vertices
in the network. Therefore, centralization is lower when more vertices have
similar centrality, and higher when one or few vertices dominate the other
vertices; as extreme cases, a star network and a regular (e.g., cycle) network
have centralization equal to 1 and 0, respectively. According to the type of
centrality considered, the network centralization assumes di�erent form. More
speci�cally, considering the degree, closeness, and betweenness centralities, the
denominator in Eq. (2.19) is equal to (n− 1)(n− 2), (n− 1)(n− 2)/(2n− 3),
and (n− 1), respectively.

2.3.2 Eigenvector centrality and prestige

None of the previously discussed measures re�ects the importance of the ver-
tices that interact with the target vertex when looking at (in)degree or dis-
tance aspects. Intuitively, if the in�uence range of a vertex involves many
prestigious vertices, then the prestige of that vertex should also be high; con-
versely, the prestige should be low if the involved vertices are peripheral.
Generally speaking, a vertex's prestige should depend on the prestige of the
vertices that point to it, and their prestige should also depend on the vertices
that point to them, and so �ad in�nitum� [144]. It should be noted that the
literature usually refers to the above property as status, or rank.

The idea behind status or rank prestige by Seeley, denoted by function
r(·), can be formalized as follows:

r(v) =
∑
u∈V

w(u, v)r(u) (2.20)

where w(u, v) is equal to 1 if u points to v (i.e., u is a in-neighbor of v), and 0
otherwise. Equation (2.20) corresponds to a set of |V| linear equations (with
|V| unknowns) which can be rewritten as:

r = ATr (2.21)

where r is a vector of size |V| storing all rank scores, and A is the adjacency
matrix. Or, rearranging terms, we obtain (I−AT)r = 0, where I is the identity
matrix of size |V|.

Katz [85] �rst recommended to manipulate the matrix A by constraining
every row in A to have sum equal to 1, thus enabling Eq. 2.21 to have �nite
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solution. In e�ect, Eq. 2.21 is a characteristic equation used to �nd the eigen-
system of a matrix, in which r is an eigenvector of AT corresponding to an
eigenvalue of 1. In general, Eq. 2.21 has no non-zero solution unless AT has
an eigenvalue of 1.

A generalization of Eq. 2.21 was suggested by Bonacich [22], where the
assumption is that the status of each vertex is proportional (but not neces-
sarily equal) to the weighted sum of the vertices to whom it is connected. The
result, known as eigenvector centrality, is expressed as follows:

λr = ATr (2.22)

Note that the above equation has |V| solutions corresponding to |V| values of
λ. Therefore, the general solution can be expressed as a matrix equation:

λR = ATR (2.23)

where R is a |V| × |V| matrix whose columns are the eigenvectors of AT and
λ is a diagonal matrix of eigenvalues.

Katz [85] also proposed to introduce in Eq. 2.21 an �attenuation parameter�
α ∈ (0, 1) to adjust for the lower importance of longer paths between vertices.
The result, known as Katz centrality, measures the prestige as a weighted sum
of all the powers of the adjacency matrix:

r =

∞∑
i=1

αiATir (2.24)

When α is small, Katz centrality tends to probe only the local structure of
the network; as α grows, more distant vertices contribute to the centrality of a
given vertex. Note also that the in�nite sum in the above equation converges
to r = [(I−αAT)−1−I]1 as long as |α| < 1/λ1, where λ1 is the �rst eigenvalue
of AT.

All the above measures may fail in producing meaningful results for net-
works that contain vertices with null indegree: in fact, according to the as-
sumption that a vertex has no status if it does not receive choices from other
vertices, vertices with null indegree do not contribute to the status of any
other vertex. A solution to this problem is to allow every vertex some status
that is independent of its connections to other vertices. The Bonacich & Lloyd
centrality [23], probably better known as alpha-centrality, is de�ned as:

r = αATr+ e (2.25)

where e is a |V|-dimensional vector re�ecting exogenous source of information
or status, which is assumed to a vector of ones. Moreover, parameter α here
re�ects the relative importance of endogenous versus exogenous factors in
determining the vertex prestiges. The solution of Eq. 2.25 is:

r = (I− αAT)−1e (2.26)

It can easily be proved that Eq. 2.26 and Eq. 2.24 di�er only by a constant
(i.e., one) [23].
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2.3.3 PageRank

There are four key ideas behind PageRank. The �rst two are also shared
with the previously discussed eigenvector centrality methods, that is: a page
is prestigious if it is chosen (pointed to) by other pages, and the prestige of
a page is determined by summing the prestige values of all pages that point
to that page. The third idea is that the prestige of a page is propagated to
its out-neighbors as distributed proportionally. Let W be a |V| × |V| matrix
such that columns refer to those vertices whose status is determined by the
connections received from the row vertices:

W (i, j) =

{
1/out(vi) if (vi, vj) ∈ E
0 otherwise

(2.27)

Note that W = D−1outA, where A is the adjacency matrix and Dout is a di-
agonal matrix storing the outdegrees of the vertices (i.e., Dout = diag(A1)).
Using matrix W, the �rst three ideas underlying the PageRank can be ex-
pressed as r = WTr, or equivalently, for every vi ∈ V:

r(vi) =
∑
vj∈Bi

r(vj)

out(vj)
(2.28)

Therefore, vector r is the unique eigenvector of the matrix corresponding to
eigenvalue 1. It should be noted that Eq. 2.28 is well-de�ned only if the graph
is strongly connected (i.e., every vertex can be reached from any other vertex).
Under this assumption, this equation has an interpretation based on random
walks, called the random surfer model [27]. It can be shown that vector r is
proportional to the stationary probability distribution of the random walk on
the underlying graph. It should be remarked that, in contrast to PageRank,
alpha-centrality does not have a natural interpretation in terms of probability
distribution, i.e., the sum of the values in the alpha-centrality vector (cf.
Eq. 2.25) is not necessarily equal to 1.

However, the assumption of graph connectivity behind Eq. 2.28 needs to
be relaxed for practical application of PageRank, since the Web and, in gen-
eral, real-world networks are far from being strongly connected. It might be
useful to recall here that the Web and many other directed networks have a
structure which is characterized by �ve types of components (cf, e.g., [138]):
(i) a large strongly connected component (SCC), (ii) an in-component, which
contains vertices that can reach the SCC but are not reachable from the SCC,
and an out-component, which contains vertices that are reachable from the
SCC but cannot reach the SCC, (iii) in-tendrils and out-tendrils, which are
vertices that are only connected to the out-component (via out-links) and ver-
tices that are only connected to the in-component (via in-links), (iv) tubes,
which are vertices reachable from the in-component and able to reach the
out-component, but have neither in-links nor out-links with the SCC, and (v)
isolated components, which contain vertices that are disconnected from each
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of the previous components. Most of these components violate the assump-
tions needed for the convergence of a Markov process. In particular, when
a random surfer enters the out-component, she will eventually get stuck in
it; as a result, vertices that are not in the out-component will receive a zero
rank, i.e., one cannot distinguish the prestige of such vertices. More speci�-
cally, Eq. 2.28 needs to be modi�ed to prevent anomalies that are caused by
two types of structures: rank sinks, or �spider traps�, and rank leaks, or �dead
ends�. The former are sets of vertices that have no links outwards, the latter
are individual vertices with no out-links.

If leak vertices would be directly represented in matrixW, then they would
correspond to columns of zero, thus making W substochastic: as a result,
by reiterating Eq. 2.28 for a certain number k of times (i.e., by computing
WTkr), then some or all of the entries in r will go to 0. To solve this issue,
two approaches can be suggested: (i) modi�cation of the network structure,
and (ii) modi�cation of the random surfer behavior. In the �rst case, leak
vertices could be removed from the network so that they will receive zero
rank; alternatively, leak vertices could be �virtually� linked back to their in-
neighbors, or even to all other vertices. The result will be a row-stochastic
matrix, that is, a matrix that is identical to W except that it will have the
columns corresponding to leak vertices that sum to 1. If we denote with d
a vector indexing the leak vertices (i.e., d(i) = 1 if vi has no outlinks, and
d(i) = 0 otherwise), this row-stochastic matrix S is de�ned as:

S = W + d1T/|V| (2.29)

However, Eq. 2.29 will not solve the problem of sinks. Therefore, Page
and Brin [27] also proposed to modify the random surfer behavior by allowing
for teleportation, i.e., the random surfer who gets stuck in a sink, or simply
gets �bored� occasionally, she can move by randomly jumping to any other
vertex in the network. This is the fourth idea behind the PageRank measure,
which is implemented by a damping factor α ∈ (0, 1) that enables to weigh
the mixture of random walk and random jump:

r = αSTr+ (1− α)p (2.30)

Above, vector p, usually called personalization vector, is by default set to
1/|V|, but it can be any probability vector. Equation 2.30 can be rewritten
as:

G = αS+ (1− α)E (2.31)

where E = 1pT = 11T/|V|. The convex combination of S and E makes the
resulting �Google matrix� G to be both stochastic and irreducible.1 This is
important to ensure (i) the existence and uniqueness of the PageRank vec-
tor as stationary probability distribution π, and (ii) the convergence of the

1 A matrix is said irreducible if every vertex in its graph is reachable from every
other vertex.
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underlying Markov chain (at a certain iteration k, i.e., π(k+1) = Gπ(k)) in-
dependently of the initialization of the rank vector.2

Computing PageRank

As previously indicated, the computation of PageRank requires to solve
Eq. 2.31, which is equivalent to �nd the principal eigenvector of matrix G.
Therefore, similarly to other eigenvector centrality methods, the power iter-
ation algorithm is commonly used. Starting from any random vector r(0), it
iterates through Eq. 2.30 until some termination criterion is met; typically,
the power method is assumed to terminate when the residual (as measured by
the di�erence of successive iterations) is below some predetermined threshold.
Actually, as �rst observed by Haveliwala (cf. [95]), the ranking of the Page-
Rank scores are more important than the scores themselves, that is, the power
method can be iterated until ranking stability is achieved, thus leading to a
signi�cant saving of iterations on some datasets.

The power iteration method lends itself to e�cient implementation thanks
to the sparsity of real-world network graphs. Indeed, computing and storing
matrix S (cf. Eq. 2.29), and hence G, is not required, since the power method
can be rewritten as:

πT(k+1) = πT(k)G = απT(k)W + (απT(k)d)1T/|V|+ (1− α)pT (2.32)

which indicates that only sparse vector/matrix multiplications are required.
When implemented in this way, each step of the power iteration method re-
quires nonzero(W) operations, where nonzero(W) is the number of nonzero
entries in W, which approximates to O(|V|).

Choosing the damping factor

The damping factor α is by default set to 0.85. This choice actually �nds
several explanations. One is intuitively based on the empirical observation
that a web surfer is likely to navigate following 6 hyperlinks (before discon-
tinuing this navigation chain and randomly jumping on another page), which
corresponds to a probability α = 1 − (1/6) ≈ 0.85. In addition, there are
also computational reasons. With the default value of 0.85, the power method
is expected to converge in about 114 iterations for a termination tolerance
threshold of 1.0E-8 [95]. Moreover, since the second largest eigenvalue of G
is α [119], it can be shown that the asymptotic rate of convergence of the

2 Recall that the property of irreducibility of a matrix is related to those of prim-
itivity and aperiodicity. A nonnegative, irreducible matrix is said primitive if it
has only one eigenvalue on its spectral circle; a simple test by Frobenius states
that a matrix X is primitive if and only if Xk > 0 for some k > 0, which is useful
to determine whether the power method applied to X will converge [119]. An
irreducible Markov chain with a primitive transition matrix is called an aperiodic
chain.
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power method is − log10 0.85 ≈ 0.07, which means that about 14 iterations
are needed for each step of accuracy improvement (in terms of digits).

In general, higher values of α imply that the hyperlink structure is more
accurately taken into account, however along with slower convergence and
higher sensitivity issues. In fact, experiments with various settings of α have
shown that there can be signi�cant variation in rankings produced by di�erent
values of α, especially when α approaches 1; more precisely, signi�cant varia-
tions are usually observed for mid-low ranks, while the top of the ranking is
usually only slightly a�ected [136, 95].

Choosing the personalization vector

As previously discussed, the personalization vector p can be replaced with
any vector whose non-negative components sum up to 1 and that can be used
to boost the PageRank score for a speci�c subset of vertices. In particular,
if we denote with B ⊆ V a subset of vertices of interest, then p = 1/|V| is
replaced with another vector biased by B, pB whose entries are set to 1/|B|
only for those vertices that belong to B, and zero otherwise.

Intuitively, this way of altering the behavior of random sur�ng re�ects the
di�erent preferences and interests that the random surfer may have, making
the PageRank be query-dependent, or topic-sensitive. Google also originally
used personalization mechanisms to speci�cally control spamming due to the
so-called link farms. We shall discuss implications and relating algorithms in
trust/distrust contexts later in Section 2.6.

2.3.4 Hubs and authorities

A di�erent approach to the computation of vertex prestige is based on the
notions of hubs and authorities. In a Web search context, given a user query,
authority pages are ones most likely to be relevant to the query, while hub
pages act as indices of authority pages without being necessarily authorities
themselves. These two types of Web pages are related to each other by a
mutual reinforcement mechanism: in fact, if a page is relevant to a query,
one would expect that it will be pointed to by many other pages; moreover,
pages pointing to a relevant page are likely to point as well to other relevant
pages, thus inducing a kind of bipartite graph where pages that are relevant by
content (authorities) are endorsed by special pages that are relevant because
they contain hyperlinks to locate relevant contents (hubs)�although, it may
be the case that a page is both an authority and a hub.

The above intuition is implemented by the Kleinberg's HITS (Hyperlink
Induced Topic Search) algorithm [87, 88]. Like PageRank and other eigen-
vector centrality methods, HITS still handles an iterative computation of a
�xedpoint involving eigenvector equations; however, it originally views the
prestige of a page as a two-dimensional notion, thus resulting in two ranking
scores for every vertex in the network. Also in contrast to PageRank, HITS
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produces ranking scores that are query-dependent. In fact, HITS assumes that
hubs and authorities are identi�ed and ranked for vertices that belong to a
query-focused subnetwork. This is usually formed by an initial set of randomly
selected pages containing the query terms, which is expanded by also including
the neighborhoods of those pages.

Let a and h be two vectors storing the authority and hub scores, respec-
tively. The hub score of a vertex can be expressed as proportional to the sum
of the authority scores of its out-neighbors; analogously, the authority score
of a vertex can be expressed as proportional to the sum of the hub scores of
its in-neighbors. Formally, HITS equations are de�ned as:

a = µATh (2.33)

h = λAa (2.34)

where µ, λ are two (unknown) scaling constants that are needed to avoid that
the authority and hub scores will grow beyond bounds; in practice, a and h are
normalized so that the largest value in each of the vectors equals 1 (or, alter-
natively, all values in each of the vectors sum up to 1). Therefore, HITS works
as follows: it initializes hub and authority score (e.g., to 1) for every vertex in
the expanded query-focused subnetwork, then iterates through Eq. 2.33 and
Eq. 2.34, normalizing both vectors at each iteration, until convergence (i.e.,
a termination tolerance threshold is reached). Note that, at the �rst itera-
tion, a and h are none other than the vertex in-degrees and the out-degrees,
respectively.

By substituting Eq. 2.33 and Eq. 2.34 in each other, hub and authority can
in principle be computed independently of each other, through the computa-
tion of AAT (for the hub vector) and ATA (for the authority vector). Note
that, the (i, j)-th entry in matrix AAT corresponds to the number of pages
jointly referred by pages i and j; analogously, the (i, j)-th entry in matrix
ATA corresponds to the number of pages that jointly point to pages i and j.
However, both matrix products lead to matrices that are not as sparse, hence
the only convenient way to compute a and h is iteratively in a mutual fashion
as described above. In this regard, just as in the case of PageRank, the rate
of convergence of HITS depends on the eigenvalue gap, and the ordering of
hubs and authorities becomes stable with much less iterations than the actual
scores.

It should be noted that the assumption of identifying authorities by means
of hubs might not hold in other information networks other than the Web;
for instance, in citation networks, important authors typically acknowledge
other important authors. This has somehow impacted on the probably less
popularity of HITS with respect to PageRank�which, conversely, has been
successfully applied to many other contexts, including citation and collabora-
tion networks, lexical/semantic networks inferred from natural language texts,
recommender systems, and social networks.
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The TCK e�ect

Beyond limited applicability, HITS seems to su�er from two issues that are
related to both the precision and coverage of the query search results. More
precisely, while the coverage of search results directly a�ects the size of the
subnetwork, the precision can signi�cantly impact on the tightly knit commu-
nities (TCK) e�ect, which occurs when relatively many pages are identi�ed as
authoritative via link analysis although they actually pertain to one aspect of
the target topic; for instance, this is the case when hubs point both to actual
relevant pages and to pages that are instead relevant to �related topics� [100].
The latter phenomenon is also called topic drift.

Classic solutions to attenuate the TCK e�ect include accounting for the
analysis of contents and/or the anchor texts of the Web pages (e.g., [20, 37]).
However, other link analysis approaches have been developed to avoid overly
favoring the authorities of tightly knit communities. Lempel and Morgan [100]
propose the Stochastic Approach for Link Structure Analysis, dubbed SALSA.
This is a variation of Kleinberg?s algorithm: it constructs an expanded query-
focused subnetwork in the same way as HITS, and likewise it computes an
authority and a hub score for each vertex in the neighborhood graph (and
these scores can be viewed as the principal eigenvectors of two matrices).
However, instead of using the straight adjacency matrix, SALSA weighs the
entries according to their in and out-degrees. More precisely, the authority
scores are determined by the stationary distribution of a two-step Markov
chain through random walking over in-neighbors of a page and then random
walking over out-neighbors of a page, while the hub scores are determined
similarly with inverted order of the two steps in the Markov chain. Formally,
the Markov chain for authority scores has transition probabilities:

pa(i, j) =
∑

vq∈Bi∩Bj

1

in(vi)

1

out(vk)
(2.35)

and the Markov chain for hub scores has transition probabilities:

ph(i, j) =
∑

vq∈Ri∩Rj

1

out(vi)

1

in(vk)
(2.36)

Lempel and Morgan proved that the authority stationary distribution a is
such that a(vi) = in(vi)/

⋃
v∈V in(v), and that the hub stationary distribution

h is such that h(vi) = out(vi)/
⋃
v∈V out(v). Therefore, SALSA does not follow

the mutual reinforcement principle used in HITS, since hub and authority
scores of a vertex depend only on the local links of the vertex. Also, in the
special case of a single-component network, SALSA can be seen as a one-step
truncated version of HITS [24]. Nevertheless, the TCK e�ect is overcome in
SALSA through random walks on the hub-authority bipartite network, which
imply that authorities can be identi�ed by looking at di�erent communities.
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2.4 Heterogeneous information networks

So far we have discussed information networks under the common assumption
of representation as homogeneous networks, i.e., nodes are objects of the same
entity type (e.g., web pages, users) and links are relationships of the same type
(e.g., hypertext linkage, friendship). However, it's also the case that nodes and
node relations can be of di�erent types. For instance, in a research publication
network context, nodes can represent authors, publications and venues, while
relations can be of type �written by� (between publication nodes and author
nodes), �cited by� (between publication nodes), co-authorship (between author
nodes), and so on. As another example, an online social network consists non
only of persons, but also of di�erent objects like photos, tags, texts, and so
on; moreover, di�erent kinds of relations may occur among di�erent objects
(e.g., a photo may be labeled with a certain tag, a person can upload a photo,
write a text or request friendship to another person). Similar scenarios can
be found in a variety of application domains, including online e-commerce
systems, medical systems, and many others. Consequently, such real-world
networks might be conveniently modeled as heterogeneous or typed networks,
in order to better capture the (possibly subtly) di�erent semantics underlying
the di�erent types of entities and relationships.

Following [152], a heterogeneous information network (HIN) is de�ned as
a directed graph G = (V, E) with a vertex type mapping function τ : V → T
and an edge type mapping function φ : E → R, where each vertex v ∈ V
belongs to one particular vertex type τ(v) ∈ T , each edge e ∈ E belongs to a
particular relation φ(e) ∈ R. If two edges belong to the same relation type,
they share the same starting vertex type as well as the ending vertex type.
Moreover, it holds that either |T | > 1 or |R| > 1; otherwise, as a particular
case, the information network is homogeneous.

The network schema, denoted as SG = (T ,R), is a meta template for a
heterogeneous network G = (V, E) with set of vertex types T and set of edge
types R.

Managing and mining HINs is intuitively more di�cult than the ho-
mogeneous case. Based on their previous studies in di�erent mining tasks
(e.g., ranking-based clustering [155, 158], ranking-based classi�cation [78, 79]),
meta-path-based similarity search [154], relationship prediction [151, 153], re-
lation strength learning [150, 156] and network evolution [157]), the authors
in [152] provides a set of suggestions to guide systematic analysis of HINs,
which are reported as follows.

1. Information propagation. A �rst challenge is how to propagate infor-
mation across heterogeneous types of nodes and links; in particular, how
to compute ranking scores, similarity scores, and clusters, and how to
make good use of class labels, across heterogeneous nodes and links. Ob-
jects in HINs are interdependent and knowledge can only be mined using
the holistic information in a network.
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2. Exploring network meta structures. The network schema provides a
meta structure of the information network. It provides guidance of search
and mining of the network and helps analyze and understand the semantic
meaning of the objects and relations in the network. Meta-path-based
similarity search and mining methods can be useful to explore network
meta structures.

3. User-guided exploration of information networks. A certain
weighted combination of relations or meta-paths may best �t a speci�c
application for a particular user. Therefore, it is often desirable to au-
tomatically select the right relation (or meta-path) combinations with
appropriate weights for a particular search or mining task based on user's
guidance or feedback. User-guided or feedback-based network exploration
can be a useful strategy.

2.4.1 Ranking in heterogeneous information networks.

Ranking models are central to address the new challenges in managing and
mining large-scale heterogeneous information networks. In fact many propos-
als have been developed for a variety of tasks such as keyword search in
databases (e.g., [15]), Web object ranking (e.g., [130]), expert search in digital
libraries (e.g., [63, 183, 45]), link prediction (e.g., [42]), recommender systems
and Web personalization (e.g., [73, 98, 84]). Some work has also been devel-
oped using path-level features in the ranking models, such as path-constrained
random walk [96] and PathSim [154] for top-k similarity search based on
meta-paths. Moreover, there has been an increasing interest in integrating
ranking with mining tasks, like the case of ranking-based clustering addressed
by RankClus [155] and NetClus [158] methods. In the following, we focus on
ranking in heterogeneous information networks and provide a brief overview
of main methods.

ObjectRank

One of the �rst attempts to use a random-walk model over a heterogeneous
network is represented by ObjectRank [15]. The algorithm is an adaptation
of topic-sensitive PageRank to a keyword search task in databases modeled
as labeled graphs.

The HIN framework in ObjectRank consists of a data graph, a schema
graph and an authority transfer graph. The data graph GD(VD, ED) is a labeled
directed graph where every node v has a label λ(v) and a set of keywords.
Nodes in VD represent database objects which may have a sub-structure (i.e.,
each node has a tuple of attribute name/attribute value pairs). Moreover, each
edge e ∈ ED is labeled with a �role� λ(e) which describes the relation between
the connected nodes.

The schema graph GS(VS , ES), is a directed graph which describes the
structure of GD, i.e., it de�nes the set of node and edge labels. A data graph
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GD(VD, ED) conforms to a schema graph GS(VS , ES) if there is a unique
assignment µ such that:

1. for every node v ∈ VD there is a node µ(v) ∈ VS such that λ(v) = λ(µ(v));
2. for every edge e ∈ ED from node u to node v there is an edge µ(e) ∈ ES

from µ(u) to µ(v) and λ(e) = λ(µ(e)).

The authority transfer graph can refer to both a schema graph or a data
graph. The authority transfer schema graph GA(VS , EA) re�ects the authority
�ow through the edges of the graph. In particular, for each edge in ES two
authority transfer edges are created, which carry the label of the schema graph
edge forward and backward and are annotated with a (potentially di�erent)
authority transfer rate. The authority transfer schema graph can be based on
a trial and error process or on a domain expert task.

A data graph conforms to an authority transfer schema graph if it conforms
to the corresponding schema graph. From a data graph GD(VD, ED) and a
conforming authority transfer schema graph GA(VS , EA) a authority transfer
data graph GAD(VD, EAD) can be derived. Edges of the authority transfer
data graph are annotated with authority transfer rates as well, controlled by
a formula which propagates the authority from a node based on the number
of its outgoing edges.

ObjectRank can be used to obtain a keyword-speci�c ranking as well as a
global ranking. Given a keyword w, the keyword-speci�c ObjectRank is a biased
PageRank in which the base set is built upon the set of nodes containing the
keyword w:

rw = dArw +
1− d
|S(w)|

s (2.37)

where S(w) is the base set, and si = 1 if vi ∈ S(w) and si = 0 otherwise. The
global ObjectRank is basically a standard PageRank. The �nal score of a node
given a keyword w is then obtained by combining the keyword-speci�c rank
and the global rank.

In [15], Balmin et al. also discussed an optimization of the ranking task
in the case of directed acyclic graphs (DAGs). More speci�cally, the authors
showed how to serialize the ObjectRank evaluation over single-pass Objec-
tRank calculations for disjoint, non-empty subsets L1, . . . , Lq obtained by
partitioning the original set of vertices in a DAG. Upon a topological order-
ing of Lh (h = 1..q) that imposes no backlink from every vertex in Lj to
any vertex in Li, with i < j, the ranking of nodes is �rst computed on L1

ignoring the rest of the graph, then only the ranking scores of vertices in L1

connected to vertices in L2 are reused to calculate ObjectRank for L2, and so
on. In Section 3.6.2.1 of Chapter 3, we shall resort to this serialization mech-
anism to investigate the e�ciency bene�ts deriving from a DAG-constrained
serialization of our proposed method.
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PopRank

In [130], PopRank is proposed to rank heterogeneous web objects of a speci�c
domain by using both web links and object relationship links. The rank of an
object is calculated based on the ranks of objects of di�erent types connected
to it, and a parameter called popularity propagation factor is associated to
every type of relation between objects of di�erent types.

The PopRank score vector rτ for objects of type τ0 is de�ned as a com-
bination of the individual popularity r and in�uence from objects of other
types:

rτ = αr+ (1− α)
∑
τt

γτtτ0M
T
τtτ0rτt (2.38)

where γτtτ0 is the popularity propagation factor of the relationship link from
an object of type τt to an object of type τ0 and

∑
τt
γτtτ0 = 1, Mτtτ0 is the

row-normalized adjacency matrix between type τt and type τ0 , and rτt is the
PopRank score vector for type τt. In order to learn the popularity propagation
factor γτtτ0 , a simulated annealing-based algorithm is proposed, according to
partial ranking lists given by domain experts.

Path-based ranking

The Path Ranking Algorithm (PRA) proposed in [96] is a Personalized Page-
Rank that treats edge label sequences as features for a linear model. Given a
set of query entities, for any relation path of bounded length a distribution is
de�ned, and hence a linear model is built by assigning a weight to every path.
The weight parameters are estimated using a supervised process involving op-
timization procedures (L-BFGS) and loss functions (binomial log-likelihood).

PRA is used as a proximity measure in various relational retrieval tasks
such as venue recommendation, reference recommendation, expert �nding and
gene recommendation that can be formulated as typed proximity queries. The
method also supports two additional types of experts: query independent ex-
perts, that returns a PageRank-like global ranking scheme, and popular entity
experts, that allows the ranking to be adjusted for particular entities that
are especially important by adding biases and query-conditioned biases to the
target entities.

Closely related to multi-relational PageRank models are also the methods
developed in [122, 123]. In [122], a lazy random graph walk is applied to an
entity-relation heterogeneous graph to derive an extended measure of entity
similarity; the model is called �lazy� since a �xed probability is set to halt
the walk at each step, which makes short walks more probable while reducing
the probability of reaching nodes distant from the starting point of the walk.
Two learning approaches for tuning the edge weights are described: a hill-
climbing method based on error back-propagation, and a re-ranking method;
both methods are based on the analysis of the set of paths leading to every
candidate node. The framework in [122] is also exploited in [123] for hetero-
geneous graphs built over a parsed text collection. A set of dependency parse
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trees is modeled, where each tree has labelled directed links between words
that describe relevant grammatical relations (e.g., nominal subject, indirect
object). A major novelty in [123] is the introduction of a path-constrained
graph walk, which relies on a dynamic evaluation of the edge weights during
the walk.

2.4.2 Ranking-based clustering

RankClus

In [155], the RankClus algorithm is introduced, which integrates clustering and
ranking on a bi-typed information network G = (V, E), such that V = V0∪V1,
with V0∩V1 = ∅. Hence, the nodes in the network belong to one of two prede-
termined types, herinafter denoted as τ0, τ1. The authors use a bibliographic
network as running example, which contains venues and authors as nodes.
Two types of links are considered: author-venue publication links, with edge
weights indicating the number of papers an author has published in a venue,
and co-authorship links, with edge weights indicating the number of times
two authors have collaborated. A formal de�nition of bi-typed information
network is reported as follows.

A key issue in clustering tasks over network objects is that, unlike in tra-
ditional attribute based datasets, object features are not explicit. RankClus
explores rank distribution for each cluster to generate new measures for tar-
get objects, which are low-dimensional. The clusters are improved under the
new measure space. More importantly, this measure can be further enhanced
during the iterations of the algorithm, so that the quality of clustering and
ranking can be mutually enhanced in RankClus.

Two ranking functions over bi-typed bibliographic network are de�ned
in [155]: Simple Ranking and Authority Ranking. Simple Ranking is based on
the number of publications, which is proportional to the number of papers
accepted by a venue or published by an author. Using this measure, authors
publishing more papers will have higher rank score, even if these papers are
all in junk venues. Authority Ranking is de�ned to give an object higher rank
score if it has more authority. Iterative rank score formulas for authors and
venues are de�ned based on two principles: (i) highly ranked authors publish
many papers in highly ranked venues, and (ii) highly ranked venues attract
many papers from highly ranked authors. When considering the co-author
information, the rank of an author is enhanced if s/he co-authors with many
highly ranked authors.

Di�erently from Simple Ranking (which takes into account only the neigh-
borhood of a node), the score of an object with Authority Ranking is based
on the score propagation over the whole network. Assuming to have an ini-
tial (e.g., random) partition of K clusters {Ck}Kk=1 of nodes of target type
τ0 of a bi-typed information network, the conditional rank of τ1-type nodes
should be very di�erent for each of the K clusters of τ0-type nodes (e.g., in
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the bibliographic network case, the rank of authors should be di�erent for
each venue-cluster). The idea is that, for each cluster Ck, conditional rank of
V1, rV1|Ck , can be viewed as a rank distribution of V1 , which in fact is a

measure for cluster Ck. Then, for each node v ∈ V0, the distribution of object
u ∈ V1 can be viewed as a mixture model over K conditional ranks of V1, and
thus can be represented as a K dimensional vector in the new space [155]. The
authors use an expectation-maximization algorithm to estimate parameters of
the mixture model for each target object, and then de�ne a cosine similarity
based distance measure between an object and a cluster.

Given a bi-typed information network G = (V0 ∪V1, E), the ranking func-
tions for V0 and V1, and a number K of clusters, RankClus produces K
clusters over V0 with conditional rank scores for each v ∈ V0, and conditional
rank scores for each u ∈ V1. The main steps of the RankClus algorithm are
summarized as follows.

� Step 0: Initialization. Assign each target node with a cluster label from 1
to K randomly.

� Step 1: Ranking for each cluster. Based on current clusters, calculate con-
ditional ranks for nodes of type V1 and V0 and within-cluster ranks for
nodes of type V0. In this step, we also need to judge whether any cluster is
empty, which may be caused by the improper initialization or biased run-
ning results of the algorithm. When some cluster is empty, the algorithm
needs to restart in order to generate K clusters.

� Step 2: Estimation of the mixture model component coe�cients. Estimate
the parameter Φ in the mixture model, get new representations for each
target object and centers for each target cluster: sv and sCk . In practice,
the iteration number t for calculating Φ only needs to be set to a small
number.

� Step 3: Cluster adjustment. Calculate the distance from each object to
each cluster center and assign it to the nearest cluster.

� Repeat Steps 1, 2 and 3 until clusters change only by a very small ratio ε
or the iteration number is bigger than a prede�ned number of iterations.

NetClus

NetClus [158] extends RankClus from bi-type information networks to multi-
typed heterogeneous networks with a star network schema, where the objects
of di�erent types are connected via a unique �center� type. An information
network, G = (V, E ,W ), with T + 1 types of objects such that V = {Vt}Tt=0),
has a star network schema if ∀ e = (vi, vj) ∈ E , vi ∈ V0 ∧ vj ∈ Vt(t 6= 0) or
vice versa. Type τ0 is called the center or target type, whereas τt(t 6= 0) are
attribute types.

Examples of star networks are tagging networks, usually centered on a
tagging event, and bibliographic networks, which are centered on papers. In
general, a star network schema can be used to map any n-nary relation set
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(e.g., records in a relational database, with each tuple in the relation as the
center object and all attribute entities linking to the center object).

NetClus aims to discover a set of sub-network clusters, and within each
cluster a generative model for target objects is built given the ranking distri-
butions of attribute objects in the network. This ranking distribution is calcu-
lated using an authority ranking process based on a power iteration method
that combines the weight matrices de�ned between the various types and the
center type. The clusters generated are not groups of single typed objects but
a set of sub-networks with the same topology as the input network, called net-
clusters. Each net-cluster is a sub-layer representing a concept of community
of the network, which is an induced network from the clustered target objects,
and attached with statistic information for each object in the network.

NetClus maps each target object, i.e., that from the center type, into a
K-dimensional vector measure, where K is the number of clusters speci�ed
by the user. The probabilistic generative model for the target objects in each
net-cluster is ranking-based, which factorizes a net-cluster into T indepen-
dent components, where T is the number of attribute types. NetClus uses the
same ranking functions de�ned for RankClus (Simple Ranking and Authority
Ranking) adapted to the star network case. The core steps of the NetClus
algorithm, given the desired number of clusters K, are summarized as follows.

� Step 0: Generate initial partitions for target objects and induce initial
net-clusters from the original network according to these partitions, i.e.,
{C0

k}Kk=1.
� Step 1: Build ranking-based probabilistic generative model for each net-
cluster, i.e., {P (v|Ctk)}Kk=1.

� Step 2: Calculate the posterior probabilities for each target object (P (Ctk|v))
and then adjust their cluster assignment according to the new measure
de�ned by the posterior probabilities to each cluster.

� Step 3: Repeat Step 1 and 2 until the cluster does not change signi�cantly,
i.e., {C∗k}Kk=1 = {Ctk}Kk=1 = {Ct−1k }Kk=1

� Step 4: Calculate the posterior probabilities for each attribute object
(P (C∗k |v)) in each net-cluster.

2.5 PageRank for WSD problems.

In word sense disambiguation (WSD), the goal is to associate a given word
in a text or discourse context with a semantic de�nition, or sense, which
is distinguishable from other potential senses of that word. We acknowledge
the existence of important studies concerning the application of PageRank to
semantic networks inferred from natural language texts speci�cally for word
sense disambiguation problems (e.g., [121, 5, 6, 43]. An early attempt to bring
PageRank to WSD is proposed in [121], where traditional PageRank is ap-
plied on a graph built over WordNet synsets (vertices) and edges are drawn
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using synset relations available in WordNet. Two approaches are also de�ned
to re�ne the basic PageRank method or the ranking it computed: the �rst
approach consists in using the Lesk algorithm to provide PageRank with a
initial ranking of nodes, while the second approach is to combine the ranking
obtained by PageRank with WordNet sense frequency information. According
to the experimental results PageRank outperformed Lesk, while combining
the two methods however did not bring any signi�cant improvement over the
individual methods performance when sense order is taken into account. In a
further study [146], a weighted variant of PageRank is also proposed, where
edges are weighted using one of classic WordNet-based word similarity mea-
sures [32].

A di�erent graph context for PageRank-based WSD is devised in [5]. The
underlying idea is to extract an undirected subgraph of WordNet which links
the synsets of words in the input text, and then again apply the basic Page-
Rank over the subgraph. This subgraph is obtained by the union of the sub-
graphs corresponding to the shortest paths that connect all pairs of concepts
of the input tag names. An early proposal of personalized PageRank for WSD
is introduced in [6], where the personalization vector is initialized with the
synsets of the words in the input text. This personalized PageRank method
utilizes the full (undirected) WordNet graph, where synsets are connected by
WordNet relations, with the addition of a directed subgraph whose vertices
are the input words and edges are links to the synset vertices of the Word-
Net graph. Inspired by the topic-sensitive PageRank approach [72], the initial
probability mass is concentrated uniformly over the word vertices, which act
as source nodes injecting mass into the corresponding synset vertices and
spread their mass over the WordNet graph. Moreover, mutual reinforcement
e�ect between semantically related synsets of the same word is alleviated by
a variant called W2W. For each input word, W2W aims to concentrate the
initial probability mass only over the synsets of the words surrounding that
input word. Clearly, W2W is less e�cient than personalized PageRank since
it needs as many runs as the number of the input words. To improve the
e�ciency in personalized PageRank, [43] propose to exploit Latent Semantic
Analysis (LSA) [44] in order to integrate latent semantic relations between
words in the initialization of the personalization vector. The input text is lex-
ically expanded by including those words in the vocabulary that have a cosine
similarity with the term frequency - inverse document frequency representa-
tion of the text in the LSA space above a certain threshold.

The random walk model proposed in [139] is employed by [112] for the pur-
pose of Web query term disambiguation. The intuition behind the approach
is that the PageRank score of a Web page may serve as an indicator of how
signi�cant the dominant senses of a query term in the page are, under the
assumption that the word sense usage by the Web information seeker follows
the behavior of the average Web information provider. Using the WordNet
graph, a weight for every sense of each term is computed according to the
PageRank scores of the pages containing an instance of that term with that
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speci�c sense. Then, a graph of the senses is constructed and used to perform
a personalized PageRank with the various senses having the initial weights
computed at the �rst step.

[147] address the problem of contextual synonym expansion, which can
be seen as a particular WSD which aims to unsupervisedly learn the correct
sense of a target word by selecting its synonyms (lexical substitutes) in a given
context. The approach relies on a combination of directional similarity and
graph centrality methods includingTextRank, in which case the weight of the
edge connecting word w1 to w2 is computed as directly proportional to the
cosine similarity between the ESA [58] vectors of the two words and to the
proportion of articles containing w1 that also contain w2.

It should be noted that the approaches in [121, 5, 6] were the objective of
a comparative evaluation in previous works [160, 159]. These showed a poor
e�ectiveness of word sense disambiguation methods conceived for plain text
when applied to tree-structured text, and hence brought for the �rst time
a PageRank-based approach in the context of sense ranking for labeled tree
data. More precisely, in [159] the focus was on the de�nition of methods for
determining semantic relatedness in tree data and on the assessment of the
impact of these methods on structural sense ranking, whereas in [160] an eval-
uation framework based on various formulations of PageRank was developed
for sense ranking in tree data.

However, in those studies, tree structural relations were individually used
to de�ne the ranking context graphs, and hence the ranking stage was not
aware of the di�erent types of structural relations, which is instead a major
point of the study presented in Chapter 3.

2.6 Trust in online social networks

In this section we discuss previous literature pertinent to trust/distrust rank-
ing. In a ranking task, trust can be regarded as feature either of a node or a
pair of nodes in the network, i.e., a measure of how a user is seen as trustwor-
thy either by any other user or by a speci�c user in the network. Therefore,
trust/distrust ranking can be broadly categorized as: (i) global trust methods,
which produce a ranking of the nodes in a network according to some notion
of trust/distrust, and (ii) local trust methods, in which the produced trust
scores are computed for any direct/indirect relationship between a trustor
and a trustee.

2.6.1 TrustRank and Anti-TrustRank

Many solutions for trust ranking have been developed in the past years by
resorting to PageRank-style methods [86, 170, 134, 66]. However, PageRank is
vulnerable to adversarial information retrieval, i.e., link spamming techniques
can enable web pages to achieve higher score than what they actually deserve.
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A well-known method that was introduced to combat web spam and �-
nally detect trustworthy pages is TrustRank [69]. The key assumption of this
method is the approximate isolation principle, i.e., high-quality pages are un-
likely to point to spam or low-quality pages. The TrustRank algorithm consists
of three steps:

1. Compute a seed set of pages labeled by an oracle function, obtained by a
ranking based on the inverse-PageRank.

2. Run the biased PageRank algorithm on the normalized graph matrix using
the �good part� of the seed set as the teleportation set, with uniform
probability of teleportation.

3. Rank the pages in decreasing order of TrustRank score.

Note that pages in the seed set should be well-connected to other pages
in order to propagate trust to many pages quickly. Therefore, they are chosen
among those that have a large out-degree. For this purpose, inverse-PageRank
is computed by reversing the in-links and out-links in the graph, i.e., by run-
ning PageRank on the transpose of the graph matrix; a high inverse pagerank
indicates that trust can �ow with a small number of hops along out-links.

Anti-TrustRank [91] follows an intuition similar to TrustRank, however it
is designed to detect untrustworthy pages. It starts with a seed set of spam
pages and propagates distrust in the reverse direction. Like TrustRank, Anti-
TrustRank consists of three steps:

1. Compute a seed set of spam pages labeled by an oracle function, obtained
by a ranking based on the PageRank.

2. Run the biased PageRank algorithm on the normalized transposed graph
matrix using the seed set as the teleport set, with uniform probability of
teleportation.

3. Rank the pages in decreasing order of Anti-TrustRank score.

2.6.2 Global trust ranking

Following the example of TrustRank, other PageRank-like global trust meth-
ods have been developed in the last years. In [177], Wu et al. propose
trust/distrust propagation and aggregation techniques to be integrated with
algorithms like TrustRank. For each node in a web graph, two scores (trust
and distrust) are maintained: the former �ows out of a page's out-neighbors,
while the latter propagates following the in-neighbors (in the opposite direc-
tion). A method for combining trust and distrust is also introduced, using
a simple linear combination of the trust and distrust values. Techniques for
improving the seed set selection have also been proposed, such as the auto-
matic seed set expansion method by Zhang et al. [184]. Here an initial seed set
selection is performed based on PageRank and Inverse PageRank, to ensure
the maximum number of new seeds that can be added during the expansion
process.
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The PageTrust algorithm by Kerchove and Van Dooren [86] is an extension
of PageRank that accounts for both positive and negative links in a web
graph. The key idea is that the users' opinions can be in�uenced by negative
links. This is represented by a distrust matrix, whose diagonal represents the
degree of distrust of each node. PageTrust requires two more parameters than
PageRank: a binary parameter to control whether the users keep their opinions
after random jumping, and another factor to control the weight of negative
links.

Ortega et al. [134] de�ne the PolarityTrust algorithm upon PolarityRank
by the same authors, which is in turn an extension of PageRank to classify
the nodes in a network into positive and negative ones, maintaining two dif-
ferent ranking scores with opposite polarities. PolarityTrust hence computes
two scores for each node, representing the positive and negative reputation,
respectively, of a user. Two sets of authoritative nodes, called source of trust
and source of distrust, are selected to bias the ranking, and the propagation
process is re�ned using two mechanisms designed to deal with malicious users
(non-negative propagation and action-reaction propagation).

Approximation algorithms have also been proposed to solve global trust
ranking problems. Graham et al. [66] propose Dirichlet PageRank to rank
the nodes of a network according to a selected node, under the assumption
that the node trusts a small subset of the network. The goal is to obtain a
ranking that is similar to the known values of trust of the selected node. The
algorithm can be adapted to penalize spam nodes, to personalize a previously
computed global ranking, or to validate a ranking function for a new node. To
this purpose, Dirichlet PageRank performs an iterative procedure in which the
PageRank vector is updated until the residual is lower than a given threshold.

Other works exploit trust information to provide personalized recommen-
dations to social network users. For instance, the global ranking method by
Varlamis et al. [168] combines recommendations from trusted (or neighbor-
ing) users with recommendations from the in�uential users of a social network.
The e�ects of link analysis metrics (e.g., degree centrality, closeness central-
ity, betweenness centrality, HITS, and PageRank) on the ranking process are
investigated.

2.6.3 Local trust ranking

Local trust ranking has traditionally been addressed by heuristics whose com-
mon approach is to compute a trust score for a target node given a source
node, under constraints on the maximum length of searching path in the trust
graph and minimum trust threshold. In this regard, one of the most recent
methods is the TISoN algorithm by Hamdi et al. [71], which searches all the
simple paths of length at most l between two nodes that are not directly con-
nected in the trust graph. Only the paths in which every edge has a trust
value above a certain threshold are retained. Once a set of admissible trust
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paths is constructed, the estimated trust value between the two nodes is in-
ferred by computing, for each path, a weighted combination of the average
trust path length, the path variance, and the path weight. The path with
maximum strength between the two nodes determines the indirect trust value
between them.

The notion trust path was �rst introduced in the Golbeck's TidalTrust
algorithm [62]. Compared with TISoN, TidalTrust only considers the shortest
trust paths from the source to the target, while TISoN takes into account
every trust path; moreover, TidalTrust computes the trust threshold as the
maximal strength over the trust paths, while in TISoN a �xed threshold is
employed. TISoN also extends RN-Trust by Taherian et al. [163]. RN-Trust
considers the trust network as a resistive network, modeling each relation
between nodes as a resistor with resistance inversely proportional to the trust
value of the relation. Another algorithm taken into account in the design
of TISoN is SW-Trust by Jiang et al. [81]. SW-Trust infers the trust value
between two nodes using a depth-limited breadth-�rst-search, multiplying the
trust values in each path and averaging the strength of every path.

Eigenvector-centrality approaches have also been de�ned for local trust
ranking. An exemplary method of this category is TrustWebRank by Walter
et al. [170], which is based on the notion of feedback centrality, similar to
alpha-centrality, and includes an extension to deal with the time dimension
and dynamically update trust scores.

2.7 Assessment criteria

In this section are brie�y described the assessment criteria we are going to
use in the following chapters in order to comparatively evaluate our proposed
methods' performance with respect to the competing methods.

Kendall tau rank correlation coe�cient

Kendall correlation [1] evaluates the similarity between two rankings, ex-
pressed as sets of ordered pairs, based on the number of inversions of pairs
which are needed to transform one ranking into the other. Formally:

τ(L′,L′′) = 1− 2∆(P(L′),P(L′′))
M(M − 1)

where L′ and L′′ are the two rankings to be compared, M = |L′| = |L′′|
and ∆(P(L′),P(L′′)) is the symmetric di�erence distance between the two
rankings, calculated as number of unshared pairs between the two lists. The
score returned by τ is in the interval [−1, 1], where a value of 1 means that
the two rankings are identical and a value of −1 means that one ranking is
the reverse of the other.
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Fagin's intersection metric

Fagin measure [52] allows for determining how well two ranking lists are in
agreement with each other. This is regarded as the problem of comparing
�partial rankings�, since elements in one list may not be present in the other
list. Moreover, according to [175], a ranking evaluation measure should con-
sider top-weightedness, i.e., the top of the list gets higher weight than the tail.
Applied to any two top-k lists L′,L′′, the Fagin score is de�ned as:

F (L′,L′′, k) = 1

k

k∑
q=1

|L′:q ∩ L
′′
:q|

q

where L:q denotes the sets of nodes from the 1st to the qth position in the
ranking. Therefore, F is the average over the sum of the weighted overlaps
based on the �rst k nodes in both rankings.

Binary Preference function (Bpref)

Bpref [29] evaluates the performance from a di�erent view, i.e., the number of
non-relevant candidates. It computes a preference relation of whether judged
relevant candidates R of a list L′ are retrieved, i.e., occur in a list L′′, ahead
of judged irrelevant candidates N , and is formulated as

Bpref(R,N)=
1

|R|
∑
r

(
1−#of n ranked higher than r

|R|

)
where r is a relevant retrieved candidate, and n is a member of the �rst |R|
irrelevant retrieved candidates.

Normalized Discounted Cumulative Gain (nDCG)

Let L∗ and L denote the ideal ranking and the ranking produced by an al-
gorithm, respectively. nDCG [76] measures the usefulness (gain) of an item
based on its relevance and position in a list. Formally, nDCG is the ratio
between the discounted cumulative gain to its ideal (reference) counterpart
taking into account the top-k-ranked items in two lists:

nDCG(k) =
DCG(k)

IDCG(k)

Discounted cumulative gain is based on the assumption that highly relevant
items appearing in lower positions in a list should be more penalized as the
graded relevance value is reduced logarithmically proportional to the position
of the result. It is de�ned as:

DCG(k) = L∗[argL(1)] +
k∑
i=2

L∗[argL(i)]
log2(i+ 1)
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where symbol argL(i) is used to denote the item number of the item ranked at
position i in the algorithm's ranking (i.e., L∗[argL(i)] is the reference ranking
value for that item), and

IDCG(k) = L∗(1) +
k∑
i=2

L∗(i)
log2(i+ 1)

Mean Average Precision (MAP)

MAP is the mean value of the average precisions computed for a set of queries.
The average precision for a single query is calculated as

AP =

∑k
n=1 P@n · rel(n)

|R|
,

where P@n is precision at step n (i.e., fraction of the top-n retrieved results
that are relevant for the given query) and |R| is the number of relevant can-
didates.
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A multi-relational approach to structural sense

ranking

3.1 Summary

In this chapter, the problem of structural sense ranking for tree data is ad-
dressed by using a multi-relational PageRank approach. By considering mul-
tiple types of structural relations, the original tree structural context is better
leveraged and hence used to improve the ranking of the senses associated
to the tree elements. Upon this intuition, PageRank-based formulations that
exploit heterogeneity of links to address the problem of structural sense rank-
ing in tree data are developed, representing a signi�cant research advance in
the application of PageRank-style methods to semantic graphs inferred from
semistructured/plain text data. Experiments on a large real-world benchmark
have con�rmed the performance improvement hypothesis of a multi-relational
approach.

3.2 Introduction

Tree-shaped data are pervasively used to model real-life objects and their
structural relationships. Since the advent of XML, semantic-rich information
with an inherent (hierarchical) logical organization has found a convenient
way to be managed and exchanged. However, the �exibility in information
modeling makes tree data diverse across di�erent information sources and
often also within the same source. As a consequence, the coupling of seman-
tics with (tree structural) syntactic information in tree data is subject to
lexical ambiguity issues. Disclosing the semantics underlying the structural
constituents of tree data is an important task, which is essential to enable a
number of applications, ranging from the mapping and integration of concep-
tually related information in tree-structured schemas, to the semantics-aware
similarity search in heterogeneous Web data, from the organization (i.e., clus-
tering, classi�cation) of semantically related documents, to the de�nition of
summaries for di�erent semantic views over data collections.
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The presence of varying degrees of structuredness that are used to explain
the logical organization of the information in tree data raises a number of
new challenges that make the sense disambiguation a di�erent problem than
classic lexical ambiguity issues in plain text. Moreover, it is quite common that
multiple �ne-grained senses may be correct (at di�erent con�dence levels) for
a given term; consequently, it might be more useful for retrieval and data
management purposes to produce a contextual ranking of the senses rather
than to decide exactly for a single sense and regard it as the only appropriate
one.

Structural sense ranking is recognized as challenging in database and infor-
mation retrieval research, whereby solutions to other semantics-aware prob-
lems can be complemented or supported�these problems include schema sim-
ilarity search and matching, keyword searching, feature extraction, document
classi�cation, document clustering. Previous studies [159, 160] have focused
on the development of a tree-structure-aware method for sense ranking in tree
data, �nally demonstrating that e�ective solutions actually cannot ignore the
structural relations existing over the tree elements.

The network of meanings underlying the structural constituents of tree
data can be conveniently represented as a labeled (weighted) graph, there-
fore graph-based ranking methods are natural candidates to solve the struc-
tural sense ranking problem. In particular, eigenvector-centrality methods, like
PageRank, have been already used to build graph-based models to support
a variety of tasks for natural language processing, including not only disam-
biguation (e.g., [121, 6]) but also text summarization, sentence extraction,
text similarity, term reweighting (e.g., [51, 120, 139, 166]). The underlying as-
sumption is that in a cohesive text related lexical concepts (word meanings)
tend to occur together and form a semantic network that can be used to build
a discourse understanding model. As discussed in [121], PageRank methods
on lexical semantic networks intuitively implement the concepts of text cohe-
sion and relevance of word meanings in a text; i.e., high-ranked meanings are
endorsed by related meanings, where preferred recommendations are made by
most in�uential meanings (which in turn are highly recommended by other
related meanings). Starting from the study in [121], PageRank methods have
indeed shown to improve e�ectiveness of knowledge-based word sense disam-
biguation methods.

Notably, PageRank methods have also been successfully used for solving
the structural sense ranking problem, and they have shown to generally out-
perform other graph-based approaches that do not rely on PageRank-style
methods�intuitively, this can be explained since the global ranking mecha-
nism by PageRank, which is based on propagation/attenuation properties of
the importance scores, is well-suited for structural sense ranking where the
semantics in portions of tree data might strongly rely on the whole logical
structure of the tree data.

A major aspect that remains unexplored is related to the opportunity of
modeling a semantic network for tree data as a heterogeneous information
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network (HIN). In a HIN, the subtlety and multiplicity of tree structural
relations that hold among the underlying concepts in a tree data would repre-
sent a key element to enable a ranking algorithm propagating the importance
scores through di�erent multi-typed relations. Our intuition is that a multi-
relational ranking method should in principle be able to better leverage the
semantics of annotations in tree data that are structurally related at di�erent
levels. For instance, translated in XML terms, the hierarchical organization
of markup tags could be exploited to build a semantic HIN wherein vertices
(i.e., concepts underlying the tags) would be linked to each other based on
an ensemble of tree-structure relations that are de�ned over the tags, i.e.,
ancestor/descendant and sibling relations, at various levels of granularity. As
a di�erent scenario, the concepts underlying the descriptions (topic terms) of
pages hierarchically organized in a Web directory could be modeled as ver-
tices in a HIN. Edges could be drawn to re�ect the Web category taxonomy
(analogously to the above scenario), but also to map the hyperlinks between
associated resources; such hyperlink relations could further be re�ned to ac-
count for di�erent types of link endorsement (e.g., based on a set of predeter-
mined types of blocks or information boxes of a web page), or to account for
cross-lingual semantics (e.g., by following links to pages discussing the same
content but written in di�erent languages).

Contributions. While existing research has �lled a lack of knowledge
on the suitability of PageRank-style methods to semantic networks for the
structural sense ranking problem [159, 160], no investigation on the presumed
bene�ts deriving from a HIN representation of the structural semantics in tree
data has been made so far. In this work we are hence interested in exploring
the structural sense ranking problem in semantic networks inferred from tree
data, when multiple types of tree structural relations are taken into account.
We believe this joins an important issue due to the ever increasing demand
for knowledge-driven applications to manage tree data through the emerging
paradigm of dealing with mixed type information in graph models. With the
purpose of pushing towards the study of multi-relational PageRank methods
in multi-typed semantic networks, we propose a novel PageRank-based frame-
work for structural sense ranking, for which di�erent approaches are developed
to deal with multiple types of tree structural relations.

We de�ne an approach that consists of a weighted PageRank model for a
tree-structure-aware semantic multidigraph. We also present two alternative
formulations of the PageRank-based structural sense ranking problem, the
�rst essentially leading to a combination of multiple independent PageRank
instances for single-type tree structural relations, and the second based on
the assumption of biasing the PageRank by means of multi-typed structural
relations. We also provide insights into properties and complexities of the
proposed methods.

A further point of novelty of this work is represented by the de�nition
of a probabilistic Monte Carlo type approximation algorithm for our multi-
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relational ranking approach. We also investigate an optimization of our main
proposed method on directed acyclic graphs.

Developing a complex HIN model following the lead of prominent examples
in the literature is out-of-scope of our work. However, it should be noted that
the application domain in which ranking in HINs is addressed in this work (cf.
Section 3.3.1) represents a point of novelty. In order to brie�y highlight main
di�erences from other works, the HIN in our framework is simple in terms of
vertex set (i.e., vertices are all of the same type), however multiple structural
relations induce multi-typed edges that can also be drawn between the same
pair of vertices; by contrast, parallel edges are not handled in most existing
HINs.

We take into account the weighting of edge types by unsupervised learning
schemes (cf. Section 3.3.1.3), which require neither any training set based on a
domain-expert-provided ranking [130] nor ad-hoc speci�ed criteria [15]. More-
over, our HIN does not need to follow a particular topology like a bipartite
graph, as in [155, 98], or star network schema, as in [158].

Our extensive experimentation on a large real-world benchmark of XML
data has assessed the signi�cance of a multi-relational approach to the struc-
tural sense ranking problem, and �nally demonstrated that better ranking
solutions are obtained when multiple types of tree structural relations are
taken into account.

The remainder of this chapter is organized as follows. Section 3.3 describes
our proposed structural sense ranking framework, and provides formal details
about the construction of ranking context graphs and the ranking methods.
Section 3.4 describes our Monte Carlo type approximation algorithm. Sec-
tion 3.5 and 3.6 present experimental methodology and results. Section 3.7
shows an application of our multi-relational algorithm to a sense ranking task
over plain text. Section 3.8 concludes the chapter and provides pointers for
future research.

3.3 Structural sense ranking framework

Let D denote a labeled tree data instance rooted in a node with label t0, and
let T (D) = {t0, t1, . . . , tn} be the set of tree element labels in D. We will refer
to T (D) as T , if the input tree data is clear from the context, and to the
elements in T (D) as tags. For each tag t ∈ T , the set of concepts or senses
of t available in the reference lexical ontology is denoted as C(t). Our general
task for structural sense ranking in tree data is summarized as follows:

De�nition 3.1 (Structural Sense Ranking). Assume the availability of a
lexical ontology as source of information about word meanings (senses). Given
a labeled tree data instance D and selected a set T of structural relations for
the tag nodes in D, the task of structural sense ranking consists in computing
a ranking of all concepts associated with each tag in D. A semantic network is
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built over the tag concepts such that it is aware of the multiple structural rela-
tions underlying the tags in D, and a suitably de�ned PageRank-style method
is applied on this semantic network to yield the ranking of the tags' concepts.

We present next our solutions to accomplish this goal, which adopt di�er-
ent approaches to handle multi-typed tree structural relations. We end this
section with a discussion on computational complexity aspects of the proposed
methods.

3.3.1 The Multi-Structure Semantic PageRank approach

In our �rst approach to solving the structural sense ranking problem, key
elements are the de�nition of a tree-structure-aware semantic multidigraph as
ranking context and a multi-relational weighted PageRank as ranking method.

3.3.1.1 Tree-structure-aware semantic multidigraph

We build the ranking context graph, named tree-structure-aware semantic
multidigraph, upon the following methodology.

1. Vertices correspond to all concepts of the tags that belong to the input
tree data instance.

2. Edges are drawn between two tags' concepts if a selected structural re-
lation holds in the tree instance for any two nodes that are respectively
labeled with the two tags. Concepts of the same tag should not be con-
nected to each other in order to avoid undesired mutual reinforcement
e�ects in the concept ranking; as an exception, since the same concept
can in principle belong to di�erent tags, self-loops might be drawn if the
concept is shared by two structurally connected tag nodes.

3. Edge weights are computed to express the strength of association between
any two connected concepts: this should rely primarily on the semantic
relatedness between the concepts but should also consider the impact of
the repetition of substructures across the input tree instance.

Formally, we de�ne the ranking context graph as a directed multigraph
(multidigraph) of the form G = 〈V, T , E , w〉 such that:

� V = {c | c ∈ C(t), t ∈ T}.
� T ⊆ T0, where T0 denotes the domain of structural relations for the tag
nodes in D. Hence, T is regarded as the selected set of structural relations
that corresponds to the set of edge-types in G.

� Ẽ =
⋃
τ∈T Ẽ(τ), such that Ẽ(τ)= {(ci, cj , τ) | ci ∈ C(t), cj ∈ C(t′), t, t′ ∈

T ∧ t′
τ−→ t}. Function t′ τ−→ t applies to a pair of tags t, t′ and returns a

boolean value depending on whether the structural relation τ ∈ T holds
in D between two nodes labeled with t′ and t, respectively.
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� w : Ẽ −→ <∗ is an edge weighting function de�ned, for each (ci, cj) ∈ Ẽ ,1
as:

w(ci, cj) = semrel(ci, cj)× sf(ci, cj) (3.1)

In (3.1), semrel is a non-negative real-valued function that corresponds to
a selected measure of word semantic relatedness. Function sf calculates
the frequency of occurrence of a direct structural relation underlying the
associated tag nodes relating to two concepts, and is de�ned as:

sf(ci, cj) = 1 + logfo(D)

(∏
t,t′

(1 + freqPC(t, t′))
)

(3.2)

where t, t′ are such that ci ∈ C(t), cj ∈ C(t′), fo(D) is the average fan-out
of D, and freqPC(t, t′) is the number of times that t′ is a child node of
t in D. Function sf acts as an augmenting factor for those concept edges
whose associated tag nodes are more frequently linked in the tree instance.

� E ⊆ Ẽ such that E = {e=(ci, cj) | e ∈ Ẽ ∧ w(e) > 0}. Note that condition
w(e) = 0 holds only if semrel(e) = 0, for any edge e.

Our de�nition of ranking context graph is general as it does not impose any
particular (set of) structural relations (for drawing the edges) and semantic
relatedness measures (for weighting the edges). Nonetheless, to provide a com-
plete speci�cation, we address the above two aspects as follows. Concerning
the selection of structural relation types, we de�ne the domain T0 by focusing
on binary functions that capture the relative position of nodes in a subtree:

� τ = childOf: t′
τ−→ t holds if t′ is child of t;

� τ = descOf: t′
τ−→ t holds if t′ is descendant of t;

� τ=child|siblchildOf: t′ τ−→ t holds if t′ is child of t or child of a t's sibling;

� τ = desc|sibldescOf: t′ τ−→ t holds if t′ is descendant of t or descendant of
a t's sibling.

Note that the property of domain independence holds to ensure the full appli-
cability of T0. Nevertheless, underlying domain peculiarities along with side
information could suggest alternative interpretations of the relations among
the constituents of tree data.

The other aspect, which concerns the de�nition of function semrel for
weighting the graph edges, is elaborated on in the next section. In Fig. 3.1 we
show an example tree-structure-aware semantic multidigraph.

3.3.1.2 Edge weighting measures

We resort to classic measures of knowledge-based semantic relatedness known
as ontology-path-based relatedness (p-rel), information-content-based relat-
edness (ic-rel), and gloss-overlap-based relatedness (go-rel), which have been

1 Edge notation is simpli�ed (i.e., pair of vertices) when there is no dependency on
a particular structural relation type, as for the edge weighting function.
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article

author title

name affiliation

Fig. 3.1. An example tree data (on the left) and possible associated tree-structure-
aware semantic multidigraph (on the right). Edges correspond to childOf, descOf,
and child|siblchildOf structural relations. To avoid cluttering, edge weights are not
shown. (The color version of this �gure is available only in the electronic edition.)

widely used in the literature, including our previous works [75, 159, 160].2

We also introduce a further measure that can be classi�ed into the text-based
category (like go-rel) and that compensates for the lack of use of Wikipedia
as knowledge base in our previous studies.

We de�ne a semantic relatedness measure that is based on the well-known
Explicit Semantic Analysis (ESA) [58] method. ESA has shown to be very
e�ective in computing semantic relatedness, and it's often regarded as current
state-of-the-art. ESA relies on the intuition that the semantics of a text can
be understood in terms of its a�nity with respect to a prede�ned set of con-
cepts that are explicitly de�ned and described by humans. For this purpose,
ESA takes advantage of the human knowledge encoded in Wikipedia,3 and
hence Wikipedia articles are equated with concepts. Each Wikipedia concept
is modeled as a tf-idf vector of words occurring in the corresponding article.
An input text is represented as a weighted vector of Wikipedia concepts, where

2 Other measures (e.g., [65, 166]) could certainly be used in alternative, however
identifying the best-performing existing measure(s) is out-of-scope of this work.

3 http://en.wikipedia.org
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concepts are ranked based on their relevance to the text via a centroid-based
text classi�cation algorithm. Semantic relatedness between two input texts is
�nally computed by comparing their corresponding concept vectors using the
cosine similarity measure.

However, unlike the other measures we employ in our study, ESA is de-
signed to apply to pairs of individual words (or entire documents) only, and
hence it cannot be directly used to disambiguate or rank the senses of an input
word/text. In order to employ ESA in our setting, we de�ne an ESA-based se-
mantic relatedness measure which, for any two input word senses c1, c2, it �rst
retrieves their corresponding WordNet glosses g1, g2 and then applies ESA to
compare the two glosses; formally: esa-rel(c1, c2) = ESA(g1, g2).

3.3.1.3 Structural relation weighting schemes

To deal with multiple structural relations, we de�ne weighting schemes (al-
ternative to uniformly weighting) which, assuming the unavailability of user-
speci�ed requirements or prior knowledge, are based on characteristics of the
input tree. One approach would rely on the assumption that the most fre-
quent instances of a structural relation are the most important ones; this
obviously implies that more complex (i.e., indirect) structural relations would
be assigned with higher weights, since the frequency of occurrence is a non-
decreasing function for increasing complexities. However, this approach might
have the shortcoming of further penalizing the score propagation through
graph edges that belong to simpler yet direct relations (e.g., childOf), which
already have a lower support in the tree data instance. The opposite approach
would hence assign higher weights to less frequently occurring relations, thus
aiming to balance the properties of rarity (low support) and locality that
a structural relation has in the tree when propagating the ranking score in
the context graph. We hereinafter refer to the two weighting approaches as
support-aware and locality-aware weighting schemes, respectively.

Given a structural relation τ ∈ T , if we denote with n(D, τ) the number
of edges in D of type τ , the support-aware weight of τ is de�ned as:

ωτ
(s) =

n(D, τ)∑
τ ′∈T n(D, τ ′)

(3.3)

whereas the locality-aware weight of τ is de�ned as:

ωτ
(l) =

∑
τ ′∈T , τ ′ 6=τ n(D, τ

′)

(|T | − 1)
∑
τ ′∈T n(D, τ ′)

(3.4)

Note that both the above de�nitions are such that
∑
τ∈T ωτ = 1, which is a

requirement in the application of the weighting scheme to the ranking models
that will be presented next.
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Algorithm 1 MSSPR

Input: tree data instance D, set of structural relations T , name of structural rela-
tion weighting scheme S, semantic relatedness measure semrel, damping factor
α.

Output: the stationary distribution π.
1: G = 〈V, T , E , w〉 ← buildGraph(D, T , semrel) /* cf. Sect. 3.3.1.1 */
2: if (|T | > 1) then
3: ωτ ← buildWeightingScheme(S,D) /* uniform or cf. Eqs. (3.3)�(3.4) */
4: else
5: ωτ ← 1
6: end if

7: it← 0
8: r(it)i ← 1/|V|, for all i ∈ V
9: repeat
10: for all i ∈ V do
11: r

(it+1)
i = α

(∑
τ∈T ωτ

∑
j∈Bτ (i)

w(j,i)
outτ (j)

r
(it)
j

)
+ 1−α
|V | /* cf. Eq. (3.5) */

12: end for

13: it← it+ 1
14: until convergence
15: π ← r(it)

3.3.1.4 Multi-structure semantic PageRank

Our proposed ranking method, named multi-structure semantic PageRank
(MSSPR), adapts a weighted PageRank formulation to deal with a multi-
relational, edge-typed graph. Essentially, the underlying random-walk model
is expressed by as many transition probability matrices as the di�erent edge
types. Given the ranking context graph G with structural relation set T and
corresponding |T | weighting coe�cients ωτ , the ranking score of any concept
ci is computed as:

ri = α

(∑
τ∈T

ωτ
∑

j∈Bτ (i)

w(j, i)

outτ (j)
rj

)
+

1− α
|V|

(3.5)

where Bτ (i) is the set of concepts that are linked to ci through τ , outτ (j) is
the sum of weights on outgoing edges of type τ for cj , and α is a damping
factor (α ∈ [0, 1], commonly set to 0.85). Equivalently, the matrix form of
MSSPR is:

r = α(
∑
τ∈T

ωτSτr) + (1− α)v (3.6)

where v = 1

|V |1 is the teleportation vector, and Sτ denotes the column-

stochastic transition probability matrix associated to the structural relation
τ , i.e., only edges of type τ are considered in Sτ . Note that (3.6) can also be
written as r = αST r+ (1− α)v, where ST is a convex combination of all the
Sτ matrices weighted by the corresponding ωτ .



46 3 A multi-relational approach to structural sense ranking

Upon the above MSSPR formulation, we introduce a variant into the def-
inition of v to bias MSSPR according to the usage frequency of the con-
cepts in V. The rationale here is that a-priori importance of the concepts
can be estimated based on their linguistic popularity as known from anno-
tated text corpora, and hence the probability of moving to a concept-vertex
ci might be de�ned as proportional to its usage frequency. Formally, the ith
element of the teleportation vector, for each ci ∈ V, is computed as: vi =
(usage_freq(ci) + 1)/(

∑
c∈V usage_freq(c) + |V|), where usage_freq(c) is

the c's frequency of usage as stored in the reference lexical ontology, and
the Laplace smoothing is introduced to handle unavailability of information
about a concept's usage count. We will refer to the biased version of MSSPR
as MSSPR-uf.

3.3.2 Alternative multi-relational methods

We devise two alternative approaches to structural sense ranking in tree data,
whose common characteristic is a relaxation of the assumption of multidigraph
de�nition of the context graph while maintaining the information on all se-
lected types of tree structural relations. In particular, we raised two generic
questions:

(Q-1) What if multiple instances of a basic PageRank model are sepa-
rately built and performed over all structural relation types?

(Q-2) What if information on all structural relation types is used only
to bias a single instance of a basic PageRank model?

3.3.2.1 Weighted combination of PageRank vectors

To answer question (Q-1), we develop the following method. Given the set T of
selected structural relation types, MSSPR is performed for each of the types in
T . Upon convergence of all such |T | instances of MSSPR, the �nal ranking is
obtained as a weighted linear combination of the PageRank stationary vectors
pτ :

p =
∑
τ∈T

ωτpτ (3.7)

where ωτ (τ ∈ T ) denote the coe�cients of the structural relation weighting
scheme. We will refer to this method as the pSSPR method; analogously, if
(3.7) corresponds to MSSPR-uf instead, we will refer to the method as pSSPR-
uf.

Interestingly, a relation between the rankings produced by MSSPR and
pSSPR can be determined observing their behavior through the random walk
convergence. In the following, we state a property on the conditioned equiva-
lence between MSSPR and pSSPR.

Proposition 3.2. For a given tree data instance D and a set T of selected
structural relation types, the pSSPR vector is equivalent to the MSSPR vector
at every iteration n ≥ 0 if and only if each of the independent |T | MSSPR
rankings is taken at the nth iteration.
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Algorithm 2 pSSPR

Input: tree data instance D, set of structural relations T , name of structural rela-
tion weighting scheme S, semantic relatedness measure semrel, damping factor
α.

Output: the stationary distribution π.
1: for all τ ∈ T do

2: πτ ← MSSPR(D, {τ}, S, semrel, α)
3: end for

4: ωτ ← buildWeightingScheme(S,D) /*either uniform or cf. Eqs. (3.3)�(3.4)*/
5: π ←

∑
τ∈T ωτπτ

Proof. The �if� part of the proof is trivially by induction on the number of
iterations. For the base case, take n = 1. Since the pure PageRank vectors,
hereinafter denoted as rMSSPR and rpSSPR, are initialized (n = 0) by the same
way in both methods, we have:

r
(1)
MSSPR = r

(1)
pSSPR ⇐

⇐ α
∑
τ∈T

ωτSτr
(0)
MSSPR + (1− α)v =

∑
τ∈T

ωτrτ
(0)
pSSPR

=
∑
τ∈T

ωτ (αSτr
(0)
pSSPR + (1− α)v)

= α
∑
τ∈T

ωτSτr
(0)
pSSPR + (1− α)v

∑
τ∈T

ωτ

= α
∑
τ∈T

ωτSτr
(0)
pSSPR + (1− α)v⇐

⇐ r
(0)
MSSPR = r

(0)
pSSPR

For the inductive step, suppose the hypothesis holds at the nth iteration,

i.e., r
(n)
MSSPR = r

(n)
pSSPR, then at the (n+1)th iteration we have the same algebraic

steps as for the base case:

r
(n+1)
MSSPR = r

(n+1)
pSSPR ⇐

⇐ α
∑
τ∈T

ωτSτr
(n)
MSSPR + (1− α)v =

∑
τ∈T

ωτrτ
(n)
pSSPR ⇐

⇐ r
(n)
MSSPR = r

(n)
pSSPR

The �only if� part of the proof is given by contradiction: assume there is
an iteration h > n for a certain τ i ∈ T such that
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r
(n)
MSSPR = r

(h)
pSSPR ⇐ (3.8)

⇐ α
∑
τ∈T

ωτSτr
(n−1)
MSSPR + (1− α)v =

∑
τ∈T ,τ 6=τi

ωτrτ
(n−1)
pSSPR + ωτ ir

(h−1)
τi,pSSPR

If we take h = n+ 1, then we have:

α
∑
τ∈T

ωτSτr
(n−1)
MSSPR + (1− α)v =

= α
∑

τ∈T ,τ 6=τi

ωτSτr
(n−1)
pSSPR + αωτ iSτ ir

(n)
pSSPR + (1− α)v

∑
τ∈T

ωτ

= α
∑

τ∈T ,τ 6=τi

ωτSτr
(n−1)
pSSPR + αωτ iSτ

2
i r

(n−1)
pSSPR + (1− α)v

= α
∑
τ∈T

ωτSτr
(n−1)
pSSPR + αωτ iSτ i(Sτ i − 1)r

(n−1)
pSSPR + ωτ i(1− α)v

⇐ r
(n)
MSSPR = r

(n)
pSSPR + ωτ i(αSτ i(Sτ i − 1)r

(n−1)
pSSPR + (1− α)v)

Since there must be that r
(n)
MSSPR = r

(n)
pSSPR, the above equality obviously does

not hold, which contradicts (3.8). This concludes the proof.

As we experimentally found (cf. Section 3.6), the above stated property
does not hold in general. In fact, aside signi�cant di�erences in time e�ciency,
the rankings of the two methods tend not to be equivalent in most cases.

3.3.2.2 Multi-structure aware personalized PageRank

To answer question (Q-2), we develop an adaptation of personalized Page-
Rank, named mS-PPR, in which the bias in the ranking model relies on the
tree structural relations of various types.

Let Gp = 〈Vp, T , Ep, wp〉 be the ranking context graph with vertex set Vp
coinciding with V of MSSPR, and edge set

Ep = {(ci, cj) | ci ∈ C(t), cj ∈ C(t′), t, t′ ∈ T ∧ t′ −→ t},

where t′ −→ t means that t′ is child of t. For each (ci, cj) ∈ Ep, a weight wp(i, j)
is computed to express the probability that any tag associated to ci implies any
tag associated to cj through a direct structural relation in the tree; formally,
wp(i, j) = avgt,t′∈T Pr(t, t′) = Pr(t ∩ t′)/Pr(t) = freqPC(t, t′)/freq(t) such
that ci ∈ C(t), cj ∈ C(t′), where freq(t) is the total number of occurrences
of tag t in D (and freqPC(t, t′) is de�ned as for MSSPR). If we denote with
outp(j) the sum of weights wp on out-going edges of cj , and with Rτ (i) the
set of concept vertices that are pointed by ci through edges of type τ , the
mS-PPR score of any ci is computed as:
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ri = α
∑
j∈B(i)

wp(j, i)

outp(j)
rj + (1− α)

(
1−

∑
τ∈T |Rτ (i)|∑

h∈V
∑
τ∈T |Rτ (h)|

)
vi (3.9)

with vi = 1/(|V|−1) if Rτ (i) 6= ∅, otherwise vi = 0. The teleportation factor in
(3.9) is de�ned to ensure that the teleportation matrix is stochastic, and that
the probability of teleportation increases with smaller τ -speci�c out-neighbor
sets.

3.3.3 Computational complexity aspects

We discuss here computational complexity aspects of the proposed multi-
relational methods, broken down into two main phases, namely construction
of the ranking context graph and execution of the ranking method.

Complexity of each of the proposed methods relies on the number and type
of selected tree structural relations. For a given tree data instance D, if we
denote with |D| the size, with Max_DepthD the maximum depth, and with
Max_BranchD the maximum branch (fan-out) of D, we can express the costs
Cτ of searching D for structural relations of type τ ∈ T as follows: O(|D|) for
τ=childOf, O(|D|×Max_DepthD) for τ=descOf, O(|D|×Max_BranchD)
for τ = child|siblchildOf, and O(|D| ×Max_DepthD ×Max_BranchD) for
τ=desc|sibldescOf.

Let us denote withMax_Poly the maximum degree of polysemy of a term
in the reference lexical ontology, which is an upper-bound for the maximum
size of set C(t), with t ∈ T (D). Also, let us denote with Csemrel the cost
of computing the semantic relatedness for any pair of terms (tags), and with
Max_Tags the maximum number of tags in T (D) that share a concept (which
in practical cases is a low constant, smaller than |T (D)|) such that computing
function sf is Csf = O(|D| ×Max_Tags2). The cost of building the context
graph G in MSSPR is:

CGMSSPR = O(
∑
τ∈T

Cτ ×Max_Poly2 × Csemrel ×Max_Tags2)

and the cost of a single iteration of MSSPR is O(
∑
τ∈T Cτ ×Max_Poly2).

Similarly, the upper-bound in computing the |T | context graphs in pSSPR is:

CGpSSPR = O(max
τ∈T

Cτ ×Max_Poly2 × Csemrel ×Max_Tags2)

whereas the cost of a single iteration of pSSPR is the same as that of MSSPR.
As concerns mS-PPR, the number of edges in Gp is O(|D| ×Max_Poly2)

(since only childOf relation is considered), computing the edge weights is Csf ,
and hence constructing Gp is O(|D| ×Max_Poly2 ×Max_Tags2). Since the
costs of computing sets Rτ (·) in (3.9) follow the costs Cτ de�ned above, and
hence running a single iteration of mS-PPR is O(

∑
τ∈T Cτ ×Max_Poly2).
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Algorithm 3 Monte Carlo MSSPR

Input: Tree-structure-aware semantic multidigraph G = 〈V, T , E , w〉, distribution
of structural relation weighting coe�cients ωτ over T , probability α, number
m ≥ 1 of random walks to be started from each vertex in G.

Output: An estimation π̂ of the stationary distribution of MSSPR.
1: nV isited← 0 /* total count of visited vertices */
2: visits[]← {} /* array of vertex visit counts */
3: for all i = 1..m do

4: for all v ∈ V do
5: nV isited← MCRandomWalk(G, ωτ , v, visits, α) + nV isited
6: end for

7: end for

8: for all v ∈ V do
9: π̂[v]← visits[v]/nV isited
10: end for

3.4 Approximation of MSSPR based on Monte Carlo

method

In this section we focus on how the computation of the rankings produced by
MSSPR can be e�ciently estimated, which is in principle helpful when dealing
with big data, and the resulting ranking-context graphs can have very large
size.

Approximation of PageRank algorithms can be addressed in di�erent ways
due to the many interpretations allowed by PageRank through expectations. A
particularly appealing interpretation of PageRank is that it can be estimated
as the average number of random walks visiting a given vertex at a given time
provided that at each time, a walk can stop visiting with probability (1− α).
This interpretation has been shown to be conveniently modeled via absorbing
Markov chains, such that the end-point of a random walk that starts from a
random vertex and can be terminated at each step with probability 1 − α,
is found as a sample from the stationary distribution of PageRank. After
repeating the process many times, the estimate of the ranking score of a given
vertex at convergence can be determined by aggregating partial information
from the simulated walks.

In [12], the above intuition has been formalized as a series of probabilis-
tic Monte Carlo type methods, which have a principled advantage (over the
deterministic power iteration method) of an inherently parallel implementa-
tion, since the random walks simulated starting from di�erent vertices can be
considered as independent stochastic variables. Focusing on the most e�ective
method, named Monte Carlo complete path stopping at dangling nodes, a
simulated walk is supposed to be short since at each step it terminates with
probability 1−α (i.e., a random walk has average length 1/(1−α)), or when
it reaches a vertex without out-neighbors (i.e., no teleportation is performed).
After simulating m random walks from each vertex, the ranking score of a
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Algorithm 4 MCRandomWalk - Monte Carlo random walk simulation

Input: Tree-structure-aware semantic multidigraph G = 〈V, T , E , w〉, distribution
of structural relation weighting coe�cients ωτ over T , start vertex v0, array
visits of vertex visit counts, probability α.

Output: integer nV isited.
1: nV isited← 0, Q← ∅
2: Q.insert(v0)
3: repeat
4: nV isited← nV isited+ 1
5: v ← Q.remove()
6: visits[v]← visits[v] + 1
7: rnd← random(0, 1) /* generate a random number in [0..1] */
8: if (rnd ≥ 1− α) and (R(v) 6= ∅) then
9: rnd← random(0, 1)
10: cpr ← 0 /* cumulated probability */
11: R← R(v) /* current vertex's out-neighbors */
12: while (!R.isEmpty() and Q.isEmpty()) do
13: u← R.removeMin()
14: for all e = (v, u, τ) ∈ E do
15: pr(v, u)← w(e) ∗ ωτ
16: if (cpr < rnd < cpr + pr(v, u)) then
17: Q.insert(u) /* the random walk moves to u */
18: break
19: end if

20: cpr ← cpr + pr(v, u)
21: end for

22: end while

23: end if

24: until (Q.isEmpty())

given vertex is estimated as the total number of visits to that vertex divided
by the total number of visited vertices.

Algorithm 3 sketches our Monte Carlo type version of MSSPR, which ex-
tends the PageRank approximation in [12] to cope with a weighted, multi-
relational PageRank. We provide a formulation of Monte Carlo MSSPR which
exploits the property that the global connectivity matrix for a tree-structure-
aware semantic multidigraph can be seen as a convex combination of the
edge-type-speci�c transition probability matrices, each weighted by the cor-
responding ωτ (cf. Section 3.3.1.4). As shown in Algorithm 4, our key idea is
that, when a random walk started from a given vertex v continues through one
of the out-neighbors u of v, the probabilistic move is not decided uniformly,
rather it is biased by the strength of the edge between v and u, and also by
the weight of the structural relation type corresponding to that edge (lines
14-17 in Algorithm 4). Note that however, this solution does not impact on
the visiting order of the current vertex's out-neighbors; in e�ect, the choice at
each step is in principle random, or it can be made deterministic by selecting
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Table 3.1. Main notations used in this chapter and their descriptions.

notation description notation description

T structural relation set c T = {childOf}
u, l, s uniform/locality-/support-aware weighting schemes d T = {descOf}
ωτ weighting scheme coe�cients c,d T = {childOf, descOf}

MSSPR Multi-Structure-aware Semantic PageRank sc T = {child|siblchildOf}
pSSPR weighted combination of MSSPR solutions c,sc T = {childOf, child|siblchildOf}
mS-PPR multi-Structure-aware Personalized PageRank c,d,sc T = {childOf, descOf, child|siblchildOf}

-uf usage-frequency-based bias sd T = {desc|sibldescOf}
α damping factor sc,sd T = {child|siblchildOf, desc|sibldescOf}

the out-neighbor with lowest vertex-id (line 13). A more re�ned alternative
could be sorting the out-neighbors by decreasing semantic relatedness with
the current vertex (edge weight w(e)), regardless of the edge-type weight ωτ .

A natural question arises on how to choose the number m of iterations
of the algorithm. In this regard, the study in [12] gives evidence of the fact
that setting m = 1 can be deemed as �su�cient� in practice, and that after
m iterations, the relative error of the Monte Carlo method will reduce on
average only by a factor 1/

√
m. Concerning the computational complexity of

Monte Carlo MSSPR, we acknowledge the cost O(m|V|/(1−α)) of the original
Monte Carlo type algorithm for the basic PageRank [12]. However, in our
multi-relational ranking setting, the presence of multiple structural relation
types (which may lead to multiple edges between the same pair of vertices)
should not be discarded. Therefore, a factor proportional to the average (out-
)degree of vertices, although generally not of the same order of magnitude of
the vertex set size, would re�ne the above cost expression, while not changing
the asymptotic behavior of the algorithm.

3.5 Experimental evaluation

3.5.1 Data

We used a dataset of 1,289,309 XML documents, which was originally used
in [75, 159]. This dataset is part of the o�cial INEX 2009 collection,4 a corpus
of semantically annotated Wikipedia articles, which perfectly �ts our evalua-
tion needs due to its semantic and structural heterogeneity. A tag is coupled
with two attributes: wordnetid, whose value corresponds to a unique sense id
in WordNet 3.0, and con�dence, whose value (typically within 0.6 and 1) ex-
presses the con�dence the annotator originally had in assigning that wordnetid
to the tag.

The document trees in our dataset contain 159,094,497 tags (5,203 dis-
tinct), with average (resp. maximum) depth of 9.01 (resp. 74) and average
(resp. maximum) fan-out of 1.36 (resp. 4,643). The average polysemy of the
tags is 2.45, which increases to 4.01 if monosemous tags are excluded. We

4 http://www.mpi-inf.mpg.de/departments/d5/software/inex/
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Table 3.2. Statistics on the tree-structure-aware semantic multidigraphs for the
heterogeneous evaluation case.

c d sc sd

# vertices 11,477 11,477 11,477 11,477
# edges 4,249,867 5,982,983 10,925,758 12,747,330

avg in-degree 370.29 521.30 951.97 1110.68
avg path length 2.39 2.26 2.19 2.10

diameter 8 8 8 7
clustering coe�cient 0.36 0.39 0.50 0.50

# strongly CCs 129 196 105 141
# vertices in the largest CC 11,349 11,282 11,373 11,337
# edges in the largest CC 4,247,704 5,979,251 10,915,969 12,738,020

Table 3.3. Statistics on the tree-structure-aware semantic multidigraphs for the ho-
mogeneous evaluation case. Values correspond to averages (and standard deviations
in brackets).

c d sc sd

# vertices 94.62 (90.60) 96.46 (90.17) 94.20 (90.75) 97.99 (90.86)
# edges 403.07 (531.16) 403.79 (548.59) 1,225.10 (3,625.10) 1,131.28 (3,303.20)

avg in-degree 3.57 (1.60) 3.49 (1.61) 7.60 (6.62) 6.88 (5.89)
avg path length 3.64 (1.48) 2.55 (1.09) 3.29 (1.22) 2.46 (0.99)

diameter 9.25 (4.60) 6.07 (3.29) 8.68 (4.27) 6.04 (3.19)
clustering coe�cient 0.06 (0.10) 0.05 (0.09) 0.16 (0.18) 0.11 (0.13)

# strongly CCs 70.01 (59.54) 82.06 (72.51) 50.09 (41.49) 70.81 (58.93)

processed the articles to keep only the structure information, so to obtain
trees of tags, rooted in article. Note that tags in the INEX 2009 collection
were already provided as normalized to match WordNet entries. As for the
text-based relatedness approach (i.e., go-rel and esa-rel measures), the tags'
synset glosses were subject to standard text preprocessing operations, such as
removal of stopwords and word stemming.

In order to build the ranking context graphs, we treated the tree data
instances in two di�erent ways: either all the article document trees are con-
sidered separately or they are merged into a single huge tree (rooted in a
�ctitious tag node articles). We will refer to the above situations as ho-
mogeneous evaluation case and heterogeneous evaluation case, respectively.
Note that by considering such two complementary situations, we could assess
our approach on di�erent conditions concerning the domain-speci�city of the
vocabulary of tags. In this regard, we expect that a relatively conceptual ho-
mogeneity of the tags in a tree would justify the use of structural contexts that
rely on more complex relations; conversely, for a tree covering a larger variety
of topics (i.e., tag labels), building the context graph over (directly) related
tags would reduce the disambiguation �noise� which might be produced by
more complex structural contexts.
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3.5.2 Tree-structure-aware semantic multidigraphs

We analyzed the topological properties of the ranking context graphs for
MSSPR by varying the type of structural relation.5 Table 3.2 refers to the
heterogeneous evaluation case, whereas Table 3.3 refers to the homogeneous
evaluation case; in this case, all statistics were averaged over the graphs cor-
responding to the single document trees in the INEX collection. Note that,
to avoid cluttering the presentation in the result tables, we use hereinafter
abbreviated notations for the selected structural relations, as reported in the
right-hand side of Table 3.1.

Table 3.2 shows that some statistics may vary signi�cantly with the struc-
tural relation type. The average (in-)degree of nodes evidently increases with
the complexity of structural relation, but it is rather high even with c. More-
over, as expected, from c (resp. d) to sc (resp. sd) the number of strongly
connected components decreases, whereas the clustering coe�cient increases.
Note that however the clustering coe�cient is generally high regardless of the
structural relation type, which means that vertices in the graph tend to form
tightly connected, localized cliques with their immediate neighbors. There-
fore, the relatively high clustering coe�cients combined with the low average
path length (between 2.1 and 2.4) and network diameter (7-8) in our data,
is a strong indication that the small-world network hypothesis holds for the
structural semantic network setting.

The above remark is also con�rmed in the homogeneous evaluation case
(Table 3.3), although all statistics are subject to signi�cant variations due to
the large structural and semantic variety of document trees that compose the
INEX collection. Furthermore, the clustering coe�cient values are quite lower
and the average path length values are higher than in the heterogeneous case.
This was expected since in a huge document tree (i.e., heterogeneous case),
the concept vertices that are linked to one concept vertex are more likely to
be linked to each other, i.e., the clustering coe�cient is higher.

It should be noted that in both evaluation cases, and regardless of the
structural relation type, the average path length is rather low (always be-
low 4). Moreover, in the homogeneous case, it may signi�cantly vary over the
input document trees and w.r.t. the structural relation type. This raises a nat-
ural question whether and to what extent properties related to the average
path length in the network can in�uence the global ranking mechanism. In
Section 3.6.1.2, we will attempt an answer to this question showing how infor-
mation on the average path length can be exploited to estimate the damping
factor in our proposed ranking methods.

3.5.3 Evaluation methodology

The INEX 2009 collection lends itself particularly well to the generation of a
gold standard for the structural sense ranking task, thanks to the availability

5 We used the igraph package for the R environment
(http://igraph.sourceforge.net/).
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of explicit indicators on the meaning assigned by a human annotator to each
occurrence of a tag, along with the amount of trust expressed by the annotator
in disambiguating the tag. In order to generate a reference ranking for our
evaluation dataset, we followed the methodology proposed in [159]. Each tag
is associated with a vector of probabilities, which has length equal to the
number of possible senses for that tag, such that positions in the tag's vector
correspond to the tag's sense numbers. Each of the tag's senses that has
been annotated in the document instance is assigned a score in the vector
which is proportional to the con�dence value(s) of its annotation(s); each of
the possibly remaining senses without annotation in the document instance
is assigned a score in the vector which is inversely proportional to its sense
number�the rationale is that word senses are usually ordered according to an
estimation of their common usage of frequency. We refer the interested reader
to [159] for a detailed description.

To assess the e�ectiveness of the proposed methods, we used criteria
that are standard in ranking tasks: normalized discounted cumulative gain
(nDCG), Binary preference function (Bpref ), and Fagin's intersection metric
(F )(cf. Chapter 2, Section 2.7); for each of them, the higher the score the bet-
ter the ranking evaluation. Such criteria needed to be adapted to our setting,
as described next.

As regards nDCG, we �rst compute a tag-based nDCG
(k)
t taking into

account the sense ordering over the top-k senses of a single tag (i.e., comparing
the ordering of the tag-senses in the reference ranking with the one given by
the algorithm's scores). Hence we obtain the �nal nDCG as the average of

the nDCG
(k)
t computed over all tags t.

We de�ned two variants of the Fagin measure F , henceforth denoted as
F1 and F2. In F1, the actual reference ranking is obtained by simply sorting
all scores in the original reference ranking, whereas the algorithm's ranking
scores are �rst normalized by tag (to resemble the tag-speci�c probability
distributions in the original reference ranking), and then sorted. In F2, for
both the reference and algorithm's rankings, each concept's score is multiplied
by the logarithm of the number of senses of the unique tag associated to the
concept (recall that a concept is treated as a pair tag-IDsense, i.e., a synset
in WordNet).

As concerns Bpref, we used as queries the root-to-leaf tag-paths in D,
judging the top-1 ranked senses of each tag in the path as relevant candidates,
and all the other senses of these tags as not relevant. The overall Bpref score
was obtained as a weighted average over the tag-path Bpref scores weighted
by the number of occurrences of a particular path.
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3.6 Results

We discuss our experimental evaluation in terms of e�ectiveness and e�-
ciency.6 It should be noted that the methods that apply to graphs built on
singleton sets of structural relations (i.e., c, d, sc, and sd) actually play the
role of competitors (cf. Section 4.3) against our proposed multi-relational set-
ting. Note also that our de�nition of structural contexts reported in Table 3.1
is not a complete lattice over the selected types of structural relations, which
is explained by our intention not to further increase the complexity of the
evaluation framework.

3.6.1 E�ectiveness

We present performance results obtained by our proposed methods, distin-
guishing between the heterogeneous and homogeneous evaluation cases (cf.
Section 3.5.1); in the latter case, results correspond to averages over the in-
dividual trees. Note that we decided not to include monosemous tags in the
ranking evaluation in order to avoid a bias in the result presentation. Pa-
rameter k of nDCG was set equal to 3, as this value is close to the average
polysemy of the input data (cf. Section 3.5.1). Parameter k of F was set equal
to 5000, as this value allows taking into account a reasonably large portion of
the global rankings produced by the methods�about 10% of the size of the
vertex set in a ranking context graph.

3.6.1.1 Evaluation of MSSPR, pSSPR, and mS-PPR

We organize our discussion on the evaluation of e�ectiveness of the proposed
MSSPR and alternative ranking methods according to three main aspects:
composite (multi-typed) vs. singleton structural contexts, heterogeneous vs.
homogeneous evaluation case, and biased versions of the MSSPR and pSSPR
methods. We will elaborate on each of these aspects in the following para-
graphs.

Multi-typed vs. singleton structural contexts

A major result of our study was to con�rm that the performance improve-
ment hypothesis actually holds when the structural context for the ranking
algorithm consists of multiple tree relations. This was generally observed for
all algorithms and evaluation cases. In Table 3.4, the best-performing results
by MSSPR correspond to the structural contexts c,d followed by c,sc or c,d,sc,
for all criteria with the exception of Bpref (for which the best scores were
achieved for sc,sd). In the homogeneous evaluation case (Table 3.5), c,sc fol-
lowed by c,d,sc or c,d were prevalent on the other structural contexts. In-
terestingly, in the homogeneous case, the performance gains corresponding

6 Experiments were carried out on an Intel Core i7-3960X CPU @ 3.30GHz, 64GB
RAM machine.
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Table 3.4. Performance of MSSPR methods: heterogeneous evaluation case.

T ωτ

MSSPR MSSPR-uf
nDCG Bpref F1 F2 nDCG Bpref F1 F2

c � 0.935 0.266 0.402 0.204 0.938 0.283 0.443 0.243
d � 0.937 0.284 0.405 0.205 0.939 0.296 0.447 0.244

c,d
u 0.938 0.277 0.408 0.209 0.940 0.292 0.449 0.247

l 0.938 0.279 0.409 0.209 0.940 0.293 0.449 0.247

s 0.937 0.277 0.408 0.208 0.938 0.292 0.449 0.246
sc � 0.936 0.288 0.398 0.207 0.938 0.291 0.428 0.242

c,sc
u 0.937 0.277 0.400 0.209 0.939 0.292 0.431 0.244
l 0.937 0.278 0.401 0.209 0.940 0.292 0.431 0.244
s 0.936 0.277 0.400 0.209 0.939 0.292 0.431 0.243

c,d,sc
u 0.937 0.283 0.406 0.208 0.939 0.296 0.438 0.244
l 0.937 0.283 0.406 0.208 0.940 0.296 0.438 0.244
s 0.937 0.283 0.405 0.208 0.937 0.296 0.438 0.244

sd � 0.936 0.294 0.402 0.209 0.938 0.311 0.429 0.242

sc,sd
u 0.937 0.291 0.403 0.210 0.939 0.313 0.431 0.243
l 0.937 0.292 0.402 0.210 0.939 0.311 0.430 0.243
s 0.937 0.291 0.403 0.209 0.939 0.313 0.431 0.243

Results correspond to best performance over the various semantic relatedness measures. Bold
values refer to the best scores per assessment criterion.

Table 3.5. Performance of MSSPR methods: homogeneous evaluation case.

T ωτ

MSSPR MSSPR-uf
nDCG Bpref F1 F2 nDCG Bpref F1 F2

c � 0.806 0.570 0.460 0.316 0.916 0.627 0.558 0.377
d � 0.761 0.511 0.445 0.296 0.907 0.544 0.546 0.351

c,d
u 0.810 0.572 0.458 0.319 0.917 0.627 0.559 0.378
l 0.810 0.580 0.460 0.324 0.921 0.625 0.558 0.379
s 0.810 0.574 0.458 0.320 0.917 0.629 0.559 0.377

sc � 0.789 0.557 0.469 0.330 0.922 0.587 0.564 0.372

c,sc
u 0.807 0.571 0.469 0.328 0.916 0.620 0.566 0.376
l 0.806 0.585 0.471 0.334 0.922 0.624 0.567 0.380

s 0.805 0.560 0.468 0.326 0.915 0.609 0.565 0.371

c,d,sc
u 0.812 0.569 0.462 0.325 0.921 0.622 0.562 0.379
l 0.812 0.579 0.461 0.329 0.923 0.623 0.560 0.380

s 0.811 0.560 0.463 0.326 0.915 0.612 0.563 0.374
sd � 0.697 0.490 0.443 0.300 0.909 0.511 0.541 0.349

sc,sd
u 0.795 0.551 0.459 0.324 0.922 0.587 0.556 0.375
l 0.794 0.546 0.453 0.320 0.921 0.582 0.554 0.371
s 0.806 0.554 0.460 0.326 0.921 0.592 0.560 0.375

Results correspond to best performance over the various semantic relatedness measures. Bold
values refer to the best scores per assessment criterion.

to multi-typed structural contexts were more evident. Analyzing the average
performance over the various semantic relatedness measures also con�rmed
the bene�ts deriving from using composite contexts in MSSPR; Fig. 3.2(a)�
(b) show how the nDCG scores achieved by MSSPR on multi-typed contexts
were consistently higher than those obtained on single-type contexts.

The pSSPR approach (Tables 3.6�3.7) performed comparably toMSSPR on
multi-typed structural contexts in terms of Bpref and F s. However, nDCG
values were signi�cantly lower (e.g., gaps of the order of 1.0E-1); furthermore,
as shown in Fig. 3.2(a), average nDCG scores were even lower than those
obtained for single-typed structural contexts in the heterogeneous case�we
further investigated this point and found that it did not depend on using a
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Fig. 3.2. Average performance over semantic relatedness measures: MSSPR vs.
pSSPR on (a) heterogeneous evaluation case and (b) homogeneous evaluation case,
using nDCG; (c) MSSPR vs. MSSPR with document-speci�c damping factor (ho-
mogeneous evaluation case), using Bpref .

particular semantic relatedness measure. Therefore, it should be emphasized
that the multi-relational approach adopted by MSSPR might be considered
as a preferred method w.r.t. the combination of single-type structure based
ranking solutions, which is peculiar of pSSPR.

Concerning mS-PPR (Table 3.8), there is a less clear evidence of the bene-
�ts that can derive from using multi-typed structural contexts. However, this
method was generally outperformed by MSSPR and pSSPR (even by the non-
biased MSSPR in most cases) for all criteria, with gaps of the order of 3.0E-1
nDCG, 6.0E-2 Bpref , 5.0E-2 F1 and 8.0E-2 F2.

We also evaluated the ranking performance of the MSSPR methods when
only the semrel term would be considered in the edge-weighting function,
i.e., sf = 1 for all edges. We observed a general slight decrease in the average
performance, of the order of 1.0E-3 or above on each assessment criterion,
which indicates that the sf term in the edge-weighting function serves for the
purpose of weighing the impact of the repetition of substructures across the
input tree instance.

Heterogeneous vs. homogeneous evaluation case

The two evaluation cases turned out to be di�erent scenarios for our meth-
ods. In general, the higher cohesiveness of the tags in the input data enables
a ranking method equipped with a multi-typed structural context to signif-
icantly improve upon the performance corresponding to each of its subsets
of structural relations. As a result, in the homogeneous case the performance
improvement due to a multi-typed structural context was more evident, and
also scores were generally higher than in the heterogeneous case.

The weighting schemes impacted di�erently over the various criteria in the
heterogeneous case, for both MSSPR and MSSPR-uf, with s never improving
upon u and, except for some cases corresponding to sc,sd, upon l (gaps around
2.0E-3). However, in the homogeneous case, relative di�erences among the
weighting schemes were more consistent over the criteria. As we expected,
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Table 3.6. Performance of pSSPR methods: heterogeneous evaluation case.

T ωτ

pSSPR pSSPR-uf
nDCG Bpref F1 F2 nDCG Bpref F1 F2

c,d
u 0.844 0.278 0.407 0.210 0.898 0.292 0.449 0.247

l 0.844 0.278 0.407 0.210 0.898 0.292 0.449 0.247

s 0.844 0.278 0.407 0.210 0.898 0.292 0.449 0.247

c,sc
u 0.827 0.276 0.402 0.208 0.892 0.290 0.430 0.243
l 0.826 0.278 0.402 0.210 0.892 0.290 0.430 0.245
s 0.818 0.287 0.398 0.208 0.884 0.292 0.427 0.242

c,d,sc
u 0.835 0.282 0.406 0.207 0.895 0.294 0.438 0.243
l 0.834 0.282 0.407 0.208 0.894 0.293 0.438 0.245
s 0.821 0.287 0.399 0.207 0.884 0.295 0.429 0.242

sc,sd
u 0.822 0.290 0.403 0.209 0.884 0.308 0.431 0.242
l 0.822 0.290 0.403 0.209 0.884 0.307 0.432 0.242
s 0.822 0.290 0.403 0.209 0.884 0.307 0.431 0.242

Results correspond to best performance over the various semantic relatedness measures. Bold
values refer to the best scores per assessment criterion. Results corresponding to singleton sets
T are the same as in Table 3.4, hence are not reported.

Table 3.7. Performance of pSSPR methods: homogeneous evaluation case.

T ωτ

pSSPR pSSPR-uf
nDCG Bpref F1 F2 nDCG Bpref F1 F2

c,d
u 0.810 0.562 0.460 0.313 0.917 0.615 0.558 0.370
l 0.808 0.567 0.460 0.317 0.921 0.611 0.557 0.372
s 0.811 0.561 0.460 0.314 0.917 0.616 0.558 0.369

c,sc
u 0.807 0.570 0.470 0.326 0.917 0.622 0.565 0.375
l 0.804 0.582 0.471 0.332 0.922 0.623 0.566 0.380

s 0.804 0.556 0.468 0.324 0.914 0.608 0.564 0.370

c,d,sc
u 0.811 0.563 0.463 0.320 0.923 0.615 0.561 0.376
l 0.810 0.570 0.462 0.324 0.923 0.613 0.560 0.375
s 0.809 0.554 0.464 0.322 0.915 0.607 0.561 0.370

sc,sd
u 0.794 0.545 0.460 0.318 0.922 0.578 0.556 0.368
l 0.792 0.536 0.454 0.313 0.920 0.572 0.554 0.364
s 0.804 0.546 0.461 0.319 0.920 0.582 0.559 0.369

Results correspond to best performance over the various semantic relatedness measures. Bold
values refer to the best scores per assessment criterion. Results corresponding to singleton sets
T are the same as in Table 3.5, hence are not reported.

scheme l mostly led to better performance than s and u for contexts that
involve the c relation.

As concerns the impact of the semantic relatedness measures, in the het-
erogeneous case similar performances were generally achieved by go-rel and
esa-rel, with the latter leading to slightly better F2 and Bpref values. Di�er-
ent behavior was observed in terms of nDCG, where esa-rel scores were far
from the best (e.g., of the order of 1.0E-1, for MSSPR), and di�erences were
scarcely signi�cant (e.g., 2.0E-4, for MSSPR) between go-rel and p-rel. The
latter turned out to be the best-performing measure in terms of nDCG and
Bpref . All measures led to very close F1 scores, with go-rel often obtaining
better results (of the order of 1.0E-3). In the homogeneous case, compari-
son situation was much simpler, since p-rel always led to better performance
than the other measures, with gains around 2.0E-1 in terms of nDCG and
lower in the other cases (e.g., of the order of 4.0E-2). This predominance of
p-rel can be explained by its total coverage over the relations, that allows
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Table 3.8. Performance of mS-PPR.
T heterogeneous evaluation homogeneous evaluation

nDCG Bpref F1 F2 nDCG Bpref F1 F2

c 0.634 0.238 0.390 0.188 0.443 0.562 0.387 0.285
d 0.638 0.231 0.377 0.194 0.449 0.542 0.392 0.285
c,d 0.637 0.239 0.394 0.194 0.451 0.566 0.406 0.291

sc 0.635 0.232 0.391 0.190 0.447 0.560 0.402 0.279
c,sc 0.636 0.235 0.394 0.192 0.448 0.563 0.404 0.280
c,d,sc 0.637 0.237 0.392 0.193 0.450 0.564 0.405 0.281
sd 0.635 0.231 0.377 0.193 0.450 0.540 0.404 0.288
sc,sd 0.638 0.232 0.393 0.192 0.449 0.561 0.401 0.283

Bold values refer to the best scores per assessment criterion.

discriminating among di�erent synsets also with tag-sets of relatively small
size. Performances of go-rel and esa-rel were always very similar in the ho-
mogeneous case, with the latter performing slightly better.

Usage-frequency-based bias

MSSPR-uf and pSSPR-uf outperformed MSSPR and pSSPR, respectively, in
terms of all criteria and evaluation cases. Performance gaps betweenMSSPR-uf
and MSSPR in the heterogeneous (resp. homogeneous) case were up to 1.9E-
3 (resp. 1.0E-1) nDCG, 1.2E-2 (resp. 2.0E-2) Bpref , 2.6E-2 (resp. 9.3E-2)
F1, and 3.1E-2 (resp. 4.2E-2) F2. This supports our expectation that exploit-
ing information on the concepts' usage frequency is bene�cial to the ranking
performance. Moreover, in both MSSPR-uf and pSSPR-uf, the e�ect of usage-
frequency-based bias led to subtle di�erences among the performance scores
corresponding to the various semantic relatedness measures.

3.6.1.2 Impact of damping factor on the MSSPR performance

In our proposed methods, the damping factor α is chosen to be 0.85, in analogy
with the default setting of the parameter in the original PageRank algorithm.
Recall that this �nds an explanation based on the empirical observation that a
web surfer is likely to navigate following 6 hyperlinks (before discontinuing this
navigation chain and randomly jumping on another page), which corresponds
to a probability α = 1 − (1/6) ≈ 0.85. In Section 3.5.2, we have however
observed that the concept vertices in a semantic multidigraph tend to connect
to each other following shorter paths of average length which is always below 4.
This prompted us to conjecture that a di�erent setting of α, i.e., a value lower
than 0.85, might be more appropriate for the structural sense ranking context.
In order to assess our hypothesis, we focused on the homogeneous evaluation
case, for which the semantic graphs corresponding to the input document trees
exhibit high variability in their structural properties, including average path
length (cf. Table 3.3). Therefore, rather than �xing a unique value of α for
the ranking method to apply over all document graphs, we decided to set α
speci�cally for each document graph as α = 1− (1/apl), being apl the average
path length of the particular document graph.
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Table 3.9. Performance of MSSPR methods with document-speci�c damping factor
(homogeneous evaluation case).

T MSSPR MSSPR-uf
nDCG Bpref F1 F2 nDCG Bpref F1 F2

c 0.804 0.579 0.453 0.318 0.922 0.628 0.570 0.398
d 0.753 0.525 0.439 0.291 0.918 0.549 0.568 0.386
c,d 0.809 0.587 0.461 0.320 0.926 0.632 0.571 0.399

sc 0.789 0.560 0.463 0.327 0.924 0.593 0.573 0.387
c,sc 0.805 0.585 0.464 0.329 0.925 0.621 0.576 0.395
c,d,sc 0.812 0.585 0.457 0.326 0.926 0.626 0.572 0.398
sd 0.697 0.493 0.438 0.291 0.912 0.516 0.565 0.379
sc,sd 0.795 0.553 0.453 0.321 0.924 0.593 0.567 0.390

Results correspond to best performance over the various semantic relatedness measures, and
refer to the uniform weighting scheme. Bold values refer to the best scores per assessment
criterion.

Table 3.9 reports on the performance scores achieved by MSSPR methods
equipped with document-speci�c damping factor. It is noticeable that the
best-performing results again correspond to multi-typed structural contexts,
in all cases. Comparing Table 3.9 with Table 3.5, the following maximum
gains were obtained between the respective best scores on composite structural
contexts (and ωτ �xed to u): 9.0E-3 on nDCG, 1.5E-2 on Bpref , 1.0E-2 on
F1, 1.9E-2 on F2. Overall, when equipped with document-speci�c damping
factor, MSSPR behaved as good as or, for Bpref (Fig. 3.2(c)) and on some
composite structural contexts for F1 and F2, better than MSSPR with α �xed
to 0.85. MSSPR-uf consistently outperformed its counterpart with α �xed to
0.85.

3.6.1.3 Evaluation of Monte Carlo MSSPR

In Table 3.10, we summarize e�ectiveness results achieved by our probabilistic
Monte Carlo version of MSSPR. For this session of experiments, we referred
to the heterogeneous evaluation case, for which we set the structural relation
weighting scheme as uniform, and the probability α to 0.85. We varied the
number m of iterations from one to ten�given the small �uctuations on the
results produced, in the table we present only results obtained for m = 1 and
m = 10.

From the table, it can be seen that better results tend to be in favor of
complex structural relation sets, which once again justi�es our multi-relational
approach to the structural sense ranking problem, even in a probabilistic ap-
proximation setting. Monte Carlo MSSPR achieved moderately high values of
nDCG (up to around 0.75 form = 1 and 0.79 form = 10) which, compared to
the results shown in Table 3.4, corresponds to a gap of at least 0.19 (in terms
of best scores). On the other hand, Monte Carlo MSSPR performed much
closely to the deterministic MSSPR according to the other assessment crite-
ria, with gaps equal to or less than 2.0E-2 F1, 1.0E-2 F2, and 5.0E-3 Bpref .
As expected, increasing the number m of iterations was only marginally ben-
e�cial to the performance of Monte Carlo MSSPR, as it led to scores that
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Table 3.10. Performance of Monte Carlo MSSPR (heterogeneous evaluation case).

T m = 1 m = 10
nDCG Bpref F1 F2 nDCG Bpref F1 F2

c 0.733 0.235 0.385 0.191 0.781 0.236 0.395 0.194
d 0.733 0.249 0.384 0.191 0.779 0.250 0.396 0.194
c,d 0.739 0.241 0.386 0.193 0.789 0.246 0.400 0.195

sc 0.741 0.257 0.382 0.192 0.781 0.260 0.390 0.194
c,sc 0.739 0.249 0.380 0.191 0.788 0.252 0.393 0.193
c,d,sc 0.743 0.251 0.383 0.193 0.790 0.251 0.396 0.195

sd 0.741 0.258 0.383 0.192 0.782 0.262 0.394 0.192
sc,sd 0.748 0.259 0.385 0.191 0.785 0.261 0.391 0.192

Results are averaged over �fty runs. Bold values refer to the best scores per assessment criterion.

for each of the criteria corresponded to small improvements w.r.t. the single-
iteration case. Instead, it came to our surprise to �nd out that the vertex
selection scheme for the random walk simulation based on an ordering of the
out-neighbors by decreasing semantic relatedness (cf. Section 3.4), did not
signi�cantly impact on the quality of approximations, with increments that
were on average of the order of 1.0E-3 for each of the assessment criteria.

As a �nal remark, it was interesting to investigate whether the relatively
good behavior of Monte Carlo MSSPR as approximation of MSSPR also holds
under a crisp evaluation in terms of accuracy, i.e., proportion of correctly
disambiguated tags (top-1 ranked senses). We calculated accuracy over all
structural contexts and semantic relatedness measures, with uniform weight-
ing scheme, and by varying m as in the previous evaluation. On median (resp.
average), the minimum gap of Monte Carlo MSSPR from MSSPR was 0.052
(resp. 0.055). Considering the best accuracy scores, the minimum gap of Monte
CarloMSSPR was 0.074 w.r.t.MSSPR, and about 0.1 w.r.t.MSSPR-uf. There-
fore, we can fairly conclude that the accuracy evaluation still con�rms the
usefulness of Monte Carlo MSSPR as an approximation of MSSPR.

3.6.2 E�ciency

We analyzed the time performances of MSSPR and pSSPR, divided in graph
building times and ranking times for each of the methods, as shown in
Fig. 3.3(a); results were averaged over the semantic relatedness measures and
corresponded to the heterogeneous evaluation case. It can be noted that the
graph building times in MSSPR increased for increasing structural complexity
of the corresponding sets T , i.e., for increasing size of the edge set. Moreover,
graph building time was generally slightly higher when using esa-rel (e.g.,
about ten seconds more than time corresponding to go-rel), which might be
due to a slower access time to the Wikipedia database w.r.t. WordNet.7 By
contrast, variations in the ranking times were nearly negligible, with average

7 We used the full English Wikipedia dump in XML available at
http://dumps.wikimedia.org/enwiki/ (last accessed September 4, 2013).
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Fig. 3.3. Time performances: (a) MSSPR vs. pSSPR, and (b) MSSPR vs. serialized-
MSSPR, on a DAG version of the evaluation dataset.

rate of convergence ranging from 25 iterations for p-rel and ic-rel to 60 itera-
tions for go-rel. In Fig. 3.3(a), we also reported the pSSPR time performance
under a �parallel� runtime con�guration, i.e., in which the maximum runtimes
per structural context were considered. The comparison between MSSPR and
pSSPR was clearly in favor of the latter, albeit both methods' runtimes were
of the same order of magnitude.

Concerning mS-PPR, the time required for building the context graph in
mS-PPR was comparable to the MSSPR graph time with relation c (especially
when p-rel or ic-rel measures were used); this was expected since the graph for
mS-PPR considers only relation c, being independent on the choice of T . How-
ever, the ranking time of mS-PPR, which instead depends on T , was always
slower than the the ranking times of MSSPR methods on the corresponding
set T , usually about one order of magnitude.

3.6.2.1 Optimization of MSSPR on DAGs

We investigated the bene�ts obtained by properly serializing the MSSPR cal-
culation for application to a directed acyclic graph (DAG).

As previously mentioned in Section 4.3, we based this evaluation by follow-
ing the lead of the serialization of the ObjectRank method described in [15].
Recall that the partitioning of a graph into subsets L1, . . . , Lq, and hence
the serialized calculation, is possible if and only if the graph is DAG. In our
setting, it is supposed that the structural semantic graph is never DAG in
practical cases, since not only the same tag can occur multiple times in the
same tree but also cycles can be formed by concepts that are shared among
di�erent tags. Nevertheless, we tested a serialized form of MSSPR on a DAG-
aware version of the input dataset, for the homogeneous evaluation case. Such
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a dataset version was obtained by performing a depth-�rst search of each input
tree in the original dataset and pruning the tree whenever it was encountered
a node labeled with a tag sharing a concept with one or more tags found at
lower depth; in other terms, given D, all tag-nodes t ∈ D are kept such that
@ t′ ∈ D | depthD(t) < depthD(t

′) ∧ C(t) ∩ C(t′) 6= 0. Trees with depth lower
than three were �ltered out.

As a result of the DAG-aware pruning, about 12M tree nodes were re-
tained, whereas 3% of distinct tags was left out. Note that about 14% of the
trees did not require any pruning, i.e., their corresponding graphs were already
DAGs. Comparing the trees before and after the pruning, we found that the
maximum depth and maximum fan-out were reduced of about 60% and 95%.
By contrast, no signi�cant variation was observed in the average depth and
in the average polysemy of tags.

To generate a DAG semantic multidigraph from each pruned tree, the
disjoint subsets L1, . . . , Lq forming the set of concepts in the DAG were com-
puted by partitioning the tree on a per-level basis; more precisely, in or-
der to ensure the existence of parent-child and ancestor-descendant relations
among the concepts to assign to each subset Lh (h = 1..q), the key idea was
to partition the tree into groups of at least three levels. Formally, given D
with maxdepth(D) ≥ 3, we set q = maxdepth(D)/3 and compute each Lh
(h = 1..q-1) as Lh = {c|c ∈ C(t) ∧ 3h-2 ≤ depth(t) ≤ 3h}, and Lq = {c|c ∈
C(t) ∧maxdepth(D)− (2 +maxdepth(D)%3) ≤ depth(t) ≤ maxdepth(D)}.

Figure 3.3(b) shows the time performances of MSSPR and serialized-
MSSPR on the obtained DAG-based dataset. Besides the expected drastic
reduction in both graph building and ranking times for MSSPR (3-4 orders
of magnitude w.r.t. those shown in the upper group of Fig. 3.3(a)), the e�ect
of serialization made MSSPR signi�cantly improve in ranking time, ranging
from 168% (sd) to 296% (c,sc).

3.6.2.2 Evaluation of Monte Carlo MSSPR

We assessed the e�ciency of Monte Carlo MSSPR by varying the structural
relation types and the numberm of random walks. Since the Monte Carlo type
approximation has an inherent parallel nature, we estimated the running times
by cumulating over the number of random walks (i.e., number of iterations of
Monte CarloMSSPR) the largest times observed for all vertices in the semantic
graph.

We observed that the execution time increases with the complexity of
structural relation, and hence with the average degree of vertices; in detail
(milliseconds), with m=1: 0.70 for c, 1.01 for d, 1.82 for c,d, 2.29 for sc,
2.41 for sd, 3.06 for c,sc, 4.29 for c,d,sc, and 5.03 for sc,sd. This behavior is
explained since, at each step of random walk simulation, the next vertex is
chosen by evaluating a larger number of out-going links, which might also in-
volve multiple edges of di�erent types to the same out-neighbors. This result
con�rms our intuition that the computational cost for the Monte Carlo type
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PageRank might be adjusted by also including a factor proportional to the
average degree of vertices in a multi-relational ranking context (cf. Sect. 3.4).
We also observed a clearly linear increase in the running time w.r.t. m (re-
sults not shown). Moreover, compared to MSSPR and pSSPR time perfor-
mances, Monte Carlo MSSPR was from 3 to 4 orders of magnitude faster,
as we expected thanks to the potential of a Monte Carlo method parallel
implementation; moreover, the average length of a single simulated random
walk (1/(1− α)), is generally much shorter than random walks performed by
a power-iteration method (like in MSSPR), where dangling vertices do not
correspond to termination conditions and teleportation is taken into account.

3.6.3 Summary of �ndings

In this section we summarize our major �ndings, with the purpose of shedding
light on the various interrelated aspects of our evaluation study.

Our HIN-based de�nition of semantic network for sense ranking in tree
data, and associated multirelational PageRank approach, has turned out to
be suitable for improving the performance of the structural sense ranking. In
terms of ranking quality w.r.t. ground-truth, this holds for the multi-structure
semantic PageRank algorithm (MSSPR) as well as for the weighted combina-
tion of structural-type-speci�c PageRank stationary vectors (pSSPR), accord-
ing to all assessment criteria. The best-performing structural contexts are c,d,
c,sc, and c,d,sc; more precisely, the selection of c,sc is preferable to the selec-
tion of c,d when the input tree instance is single-source (i.e., homogeneous
evaluation case), and vice versa when the input tree instance is multi-source
(i.e., a relatively deeper and wider tree that encompasses many trees with
independent tag-sets). Overall, the advantage in using multi-typed structural
contexts (quantitatively expressed in terms of better scores of the assessment
criteria) appears as more evident as the conceptual cohesiveness of the tags
constituting the input tree instance is higher. Intuitively, this is explained by
a higher likelihood of signi�cant semantic relatedness among tags (which im-
plies increased e�ectiveness in ranking performance) when they are compared
through indirect relations in the homogeneous evaluation case. Furthermore,
in this case, the locality-aware weighting scheme (which accounts for low sup-
port and locality of a structural relation in the tree) can be advantageous over
the uniform weighting, which is otherwise preferable.

A theoretical relation between the rankings produced by MSSPR and
pSSPR has been identi�ed and proved (cf. Proposition 1), however empiri-
cal evidence has shown that in general the two approaches lead to di�erent
results. More precisely, pSSPR can achieve results comparable with MSSPR
when taking into account a precision measure based on tag-paths (Bpref)
and an agreement measure based on partial ranking lists (F s), but it behaves
worse thanMSSPR in terms of tag-speci�c sense ranking (nDCG). This means
that pSSPR, while behaving similarly to MSSPR in detecting the most impor-
tant tag senses in the input tree, it may fail in disambiguating some tags, or
ranking their senses at higher positions. Therefore, we would tend to prefer
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MSSPR to pSSPR, unless the e�ciency aspect is regarded as primary; in this
respect, pSSPR takes some advantage w.r.t. MSSPR due to its parallel nature,
although MSSPR runtimes can be of the same order of magnitude as that of
the pSSPR runtimes. Moreover, the structural sense ranking problem cannot
be addressed by the approach adopted in mS-PPR, that is, by exploiting in-
formation on the structural relation types solely to bias a single instance of
PageRank: this further con�rms the improvement hypothesis that relies on a
multi-relational random walking approach applied to a (tree-structure-aware)
semantic network.

The ranking performance of our methods is generally boosted by intro-
ducing a bias based on the synsets' usage frequency into the personalization
vector. Moreover, varying the damping factor in function of topological char-
acteristics (speci�cally, average path length) of the document-speci�c network
can also lead to further increased performance.

The e�ect of semantic relatedness measures on the ranking performance is
again clearer in the homogeneous evaluation case, where the ontology-path-
based approach generally leads to better performance due to its full applica-
bility to any pair of synsets. By contrast, the latter aspect is not guaranteed
by the gloss-overlap-based approach, despite the improvements obtained by
exploiting ESA for the calculation of the text a�nity between glosses.

Interesting observations also stand out as concerns our two proposed op-
timizations, namely Monte Carlo MSSPR and serialized-MSSPR. Monte Carlo
MSSPR drastically reduces the runtime (up to 4 orders of magnitude faster
than the deterministic algorithms), and requires a small number of iterations
to still yield relatively good ranking performance (with gaps from MSSPR of
the order of tenths, for nDCG, and cents for the other criteria). Our analysis
of serialization of the MSSPR calculation over DAGs has shed light on the
signi�cant improvement in ranking time (up to about 300%) obtained on a
DAG-aware version of the input dataset; we have also found that the DAG
property might not be extremely rare (e.g., 14% of the trees in our evaluation
dataset did not require any pruning, i.e., their corresponding graphs were al-
ready DAGs), which suggests that a DAG-based approach to multi-relational
ranking is worthy of further research as we shall discuss in the next section.

3.7 MSSPR for dependency tree based word sense

ranking

In this section, we show how our MSSPR algorithm can be used for a sense
ranking task over plain text. We devise a sense ranking framework for plain
text, which is based on a semantic heterogeneous information network built
using dependency trees. The network is used as ranking context for our multi-
relational PageRank algorithm. We perform a preliminary evaluation on a
word sense disambiguation task which shows signi�cance of our proposal.
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3.7.1 Motivations

As discussed in Section 2.5 of Chapter 2, graph-based ranking methods have
been widely applied to semantic networks inferred from plain text. Depen-
dency trees have been successfully applied to Natural Language Processing
(NLP) tasks as well. Approaches to WSD which use knowledge about gram-
matical dependencies in combination with tree matching techniques [164] and
graph-based ranking methods [127] can be found in literature.

Nevertheless, to the best of our knowledge, no investigation has been done
regarding the possibility to exploit information deriving from di�erent gram-
matical relations for the construction of a heterogeneous information network.
We proved in previous sections the e�ectiveness of MSSPR on a sense rank-
ing task over semi-structured data (e.g., XML trees). The aim of this study
is to devise a technique which allows to build a HIN starting from a plain
text input, exploiting parsing-tree-based grammatical relations, and to apply
a multi-relational sense ranking method (MSSPR) over it.

3.7.2 Parsing-tree based heterogeneous information network

In order to build a HIN starting from plain text, we resorted to the Stanford
Parser8, a well-known and reliable NLP tool, for the parsing-tree generation
phase, and to the WordNet lexical ontology as a knowledge base from which
to extract words' concepts (corresponding to WordNet synsets).

The �rst step of the HIN building process regards the identi�cation of the
vertex set V. We now formalize two alternative methods for the construction
of the set V:

� Standard Set. We build this set upon the set of all concepts (e.g., WordNet
synsets) belonging to the words in the input text. Consequently, we had to
�lter out all terms corresponding to parts of speech which do not have a
concept set (e.g., an entry in WordNet), like articles and prepositions.

� Enriched Set. It is the Standard Set, enriched with the concepts of words in
the input terms' glosses extracted from WordNet.

Once a vertex set V has been selected, a set of structural relations T
(and the corresponding set of typed edges E) have to be de�ned in order to
complete the HIN building process. We devised two di�erent techniques in
order to identify signi�cant relations among the concepts in V, which lead to
the construction of two di�erent multi-relational graphs:

� SD Graph. Each Stanford Dependency9 in the parsing tree is considered
as a di�erent structural relation τ . A edge of type τ is added among each
pair of concepts belonging to terms on which the corresponding Stanford
Dependency holds in the parsing tree.

8 http://nlp.stanford.edu/software/lex-parser.shtml
9 http://nlp.stanford.edu/software/dependencies_manual.pdf
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� NVA Graph. To reduce the size of the set T (in order to obtain signi�cantly
connected edge-type-speci�c subnetworks), the detailed information about
grammatical relations is discarded, and the dependencies are grouped by
the parts of speech of the words to which they refer to. We grouped the
dependencies in �ve macro-types:
� NN refers to a dependency between two noun terms
� VV refers to a dependency between two verb terms
� NV refers to a relation between a noun and a verb (no matter the
direction of the relation)

� NVAA refers to all relations involving adjective or adverb terms
� any refers to all dependencies. This structural relation was inserted to
have at least a structural relation which represents the whole graph
structure with an homogeneous edge-type, favoring the score propaga-
tion during the random walk process.

An edge of one of the above-mentioned types is added among all concepts of
two terms which are linked by a Stanford Dependency in the parsing tree,
based on their parts of speech.

Figure 3.4 shows an example of the parsing tree labeled with the NVA
relations (left) and a particular of the resulting NVA Graph (right), on an
input sentence extracted from the task 17 of SemEval-2010 [4].

3.7.3 Preliminary experimentation

We conducted a preliminary experimentation of our proposed framework on
a WSD task, i.e., SemEval-2010 task 17 ("All-words word sense disambigua-
tion on a speci�c domain"). We compared our work with the TreeMatch algo-
rithm [164] as competitor, and with classic baselines like �rst sense assignment
and random sense assignment. We con�gured our framework as follows: Stan-
dard Set V, NVA Graph relations, unitary edge weights and uniform structural
relation weights. This setup has been chosen to reduce the noise coming from
an enriched node set, and to avoid the sparsity in the transition matrices
which would derive from an oversized set T . Furthermore, we also tested our
MSSPR-uf variant of the algorithm, in which the teleportation vector is de-
�ned to bias MSSPR according to the usage frequency of the concepts in V.
Moreover, we indicate with the subscript bs the variants in which the base set
(non-zero values in the personalization vector) corresponds to the concepts of
the SemEval target words. Among our formulations, MSSPR-uf was the best
performing method (precision 0.426-recall 0.370), largely outperforming the
random assignment (precision 0.23-recall 0.23), but not �rst sense assignment
(precision 0.505-recall 0.505) and TreeMatch (precision 0.506-recall 0.493).
MSSPR-ufbs (precision 0.410-recall 0.355) and MSSPRbs (0.354-recall 0.307)
obtained lower but comparable performance.
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Fig. 3.4. Parsing Tree labeled with NVA relations (left) and particular of the NVA
Graph (right) for the sentence: "In the years to come the strategy is aimed at further
increasing the area of the National Ecological Network.".

3.8 Chapter review

We addressed the problem of structural sense ranking in tree data propos-
ing a multi-relational PageRank framework over a structure-aware semantic
network. We developed di�erent formulations of the problem, focusing on the
modeling of a semantic multidigraph as ranking context graph and on Page-
Rank methods that di�erently handle multi-typed structural relations in tree
data. Results have demonstrated the expected improvements in performance
w.r.t. the case of single-type structural contexts.

We also discussed an application of the structural sense ranking problem
to the unstructured text domain. We represented a plain text by means of
dependency trees, which is a common tool in computational linguistic and
natural language processing tasks. In this context, the ranking context graph
corresponds to a semantic network built on the multiple types of dependencies
(e.g., syntactic, morphological, semantic) among the constituents of sentences.

While we have taken XML document trees as a case in point for the exper-
imental evaluation, our approach to structural sense ranking can be readily
applied to any kind of domain where semantic-rich data attributes have an
inherent hierarchical organization.

As for the identi�cation of possible cases in which the DAG-based ap-
proach could be useful, we believe that our DAG-constrained serialization of
MSSPR might be suitable for a selective, or targeted, ranking task, i,e, a struc-
tural sense ranking task applied only to a (small) subset of tree nodes. In this
case, by focusing on the ranking of senses for one or few target tags only, the
semantic multidigraph to build would be smaller than in the full-tags ranking
task, and hence the likelihood of DAG-admissibility should be increased in
general. An index could be developed to conveniently store, during the con-
struction of the semantic multidigraph, those tag-synsets for which the DAG
property does not hold. A conditional test could be �nally applied to verify
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that, if the DAG part of the semantic multidigraph contains the synsets of the
target tag(s), then serialized-MSSPR can be carried out instead of the original
MSSPR.

Yet, the potential of Monte Carlo type approximation could be fur-
ther investigated in distributed computing solutions (e.g., [178]). Addressing
the structural sense ranking problem under a rank aggregation framework
(e.g., [104]) or a cross-view random walk paradigm (e.g., [172]) would also be
promising developments.



4

Package recommendation

4.1 Summary

An emerging trend in research on recommender systems is the design of meth-
ods capable of recommending packages instead of single items. The problem
is challenging due to a variety of critical aspects, including context-based and
user-provided constraints for the items constituting a package, but also the
high sparsity and limited accessibility of the primary data used to solve the
problem. Most existing works on the topic have focused on a speci�c appli-
cation domain (e.g., travel package recommendation), thus often providing
ad-hoc solutions that cannot be adapted to other domains. By contrast, in
this chapter we describe a versatile package recommendation approach that
is substantially independent of the peculiarities of a particular application
domain. A key aspect in the framework addressed in this chapter is the ex-
ploitation of prior knowledge on the content type models of the packages being
generated that express what the users expect from the recommendation task.
Packages are learned for each package model, while the recommendation stage
is accomplished by performing a PageRank-style method personalized w.r.t.
the target user's preferences, possibly including a limited budget. The devel-
oped method has been tested on a TripAdvisor dataset and compared with a
recently proposed method for learning composite recommendations.

4.2 Introduction

Recommender systems are essential part in a variety of information-providing
services that aim to satisfy their users' personalized needs. Emerging appli-
cations in e-commerce, web search, and web services integrated with social
media networks are demanding for systems that are capable of producing en-
hanced quality recommendations which take into account the heterogeneity in
the type of information to personalize and deliver to the users. As a matter of
fact, recommending groups of items is the key to successfully face a number of
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applications, ranging from business and leisure (e.g., trip planning) to educa-
tion (e.g., course combination), from �nance (e.g., stock market investing) to
health-care (e.g., diet planning). In all such applications the items of interest
are naturally associated with di�erent types; for example, hotels, restaurants,
and points-of-interest in a travel scenario. Therefore, it is highly desirable
that recommendations are provided in the form of multi-typed sets of items,
or packages.

While the known issues in recommender systems extend to the recom-
mendation of packages, providing suggestion lists of packages instead of single
items undergoes a number of new challenges. The primary information used to
drive the recommendation process still corresponds to the user-item ratings.
These are characterized by high sparsity in many domains whereby items are
associated with a cost (i.e., price, time) besides a value/score. The volume
and quality of the primary data used to learn the packages is also negatively
a�ected by such a high sparsity, but also by the intrinsic di�culty in satisfy-
ing di�erent kinds of constraints, which involve compatibility and correlations
among items as well as user-speci�ed constraints (e.g., limited budget). After
all, several problems for package recommendation have been shown NP-hard,
as discussed in [46].

Majority of existing approaches to package recommendation have focused
on a particular application domain, usually motivated by very attractive ap-
plication �elds such as tourism. In that case, the design of an e�ective recom-
mender system has to rely on how well the speci�c domain challenges have
been addressed, often resulting in the development of ad-hoc, hardly gen-
eralizable solutions (e.g., [109, 17, 39]). By contrast, there has also been a
host of work dealing with set/package recommendation for a generic class of
data (e.g., [179, 46, 10, 90]); however, while in some cases being able to ex-
press complex constraints and focusing on e�ciency or optimization aspects,
such studies propose overly sophisticated and rigid systems, and hence how
much they could be easy-to-set and really applicable is not clear. Moreover,
a common tendency in addressing the package recommendation problem is
to develop solutions that are mainly based on top-k query processing (e.g.,
[10, 90]), combinatorial optimization (e.g., [179]), and statistical models (e.g.,
[109]), but surprisingly with a limited use of collaborative �ltering and graph-
based authority ranking techniques. While collaborative �ltering should be
an essential element in any information personalization task, authority-based
ranking methods, such as PageRank, are ever-increasingly applied in a num-
ber of information networks, including those supporting recommender sys-
tems [98, 74, 108, 64].

We conceive the package recommendation problem as follows: Given a set
of items of di�erent types along with contextual information, a set of users
along with their item ratings, and given prior knowledge on a set of package
models of interest: learn how items can be grouped to form context-aware
packages that conform to the speci�ed models, and rank the learned package
instances speci�cally for any target user. Our framework, named PackRec,
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Fig. 4.1. Proposed package recommendation framework.

consists of two stages, as sketched in Fig. 4.1: (i) an o�ine stage which is
centered on the notion of package model(s) with the objective of inducing
packages for each of the speci�ed package models, and (ii) an online stage
which is in charge of recommending packages tailored to the target user's
preferences and budget.

A major novelty of our proposal concerns the de�nition of a package recom-
mendation framework that integrates well-established paradigms in informa-
tion retrieval such as expert �nding, collaborative �ltering, and graph-based
ranking methods: expert �nding is used to estimate the relevance of items
w.r.t. a package model in a collaborative fashion, user-based collaborative �l-
tering is employed in an original odds-ratio based method that models the
user's package preferences (on which the recommendation network is built),
and a biased PageRank method is �nally used to produce a ranked list of
recommendations in the form of packages. Moreover, our approach features
a certain versatility as it can deal with a wide range of application domains,
and can work under di�erent settings concerning the structure of the packages
to be recommended and even the lack of critical information like the costs of
items and/or the limited budget of users.

A preliminary experimentation on a TripAdvisor dataset has shown the
recommendation ability of our approach despite the evident criticality of the
selected domain. Furthermore, a comparative evaluation with a recently pro-
posed method for composite recommendations has emphasized the superiority
of our hypothesis of integration of di�erent information retrieval techniques
against a strategy based on an instance-optimal cost/value-item-driven knap-
sack.
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Table 4.1. Main notations used in this chapter

(in) var. description (out) var. description

u, U user, set of users p package
e, I item, set of items P set of packages
RI user-item rating matrix RP user-package rating matrix
Rue rating of item e by user u Rui rating of package pi by user u
I item type primary param. description
I set of item types α damping factor in Step 5
P package model Usim user similarity thr. in Step 4
P set of package models secondary param. description
C set of contextual constraints ωuI , ωuP weights in Step 3
S set of constants λu, λps smoothing factors in Steps 1 and 3

4.3 De�nitions and notation

We are given a set of users U = {u1, . . . , um} and a set of items I =
{e1, . . . , en}. Users' rating information is stored into a matrix RI , where each
entry Rue ∈ R∗ corresponds to the rating given by user u to item e (zero
in case of no rating). Moreover, each item might be associated with a real
value denoting a cost; similarly, each user could specify a budget, in relation
to a given context and time. Optionally, there may be temporal information
about when users have rated/reviewed the items; in this case, under the usual
assumption that more recent ratings better match the user's current prefer-
ences, the importance of a rating would be decreased inversely proportional
to its timestamp, for which purpose we will opt for a logarithmic function: for
an item e rated by user u with value v at time t, the actual Rue will be set as
Rue = v + v log(1/(1 +∆t)), where ∆t is the di�erence between the current
timestamp and t.

Each item is associated to one type I from a prede�ned set of item types
I. We will use Ie to indicate the type associated to item e, and Ue to indicate
the set of users related to e.

Constraints might be speci�ed to allow for checking whether an item
satis�es certain contextual conditions (e.g., same location for travel items).
Therefore, assuming there can be recognized type-independent yet relevant
attributes of the items (e.g., location), a set of predicate symbols C and a set
of constants S are de�ned that correspond to the sets of attribute names and
attribute values, respectively. An atom is an expression of the form c(e, s)
with boolean truth values, where c is a predicate symbol and s is a constant;
for example, location(e,′′Rome′′) evaluates to true if e (hotel, restaurant, or
any type of attraction) is located in Rome.

Upon the basic notion of item, we de�ne a package as a group of items
which might be of di�erent types. Speci�cally, a package p can be seen as a
subset of I that conforms to a prede�ned package model P. We assume the
existence of a set of package models denoted as P , where each package model
is a multiset over I, i.e., P = 〈I(P) ⊆ I, fP〉 where I(P) denotes the set of
valid item types and fP : I(P) → N+ indicates the number of repetitions for
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each item type in P. Table 4.1 summarizes main notations that will be used
throughout this chapter.

4.4 Package recommendation framework

The proposed package recommendation framework (Fig. 4.1) takes an input
set of users, items, and corresponding ratings along with knowledge on the
types of items, desired package models and contextual constraints, and per-
forms the following main steps: o�ine ranking of the items, learning of the
packages, computation of the user-package ratings, and online ranking of the
packages tailored to any target user. Each of these steps will be described in
the next sections.

4.4.1 Step 1: Collaborative, package-model-aware item ranking

The �rst step is in charge of identifying the best candidate items to form pack-
ages for each of the known models. Given a package model P, the relevance
of each item e having type Ie valid for P is computed using a probabilistic
model, which takes into account three main criteria: (i) the likelihood of e
given P, (ii) the likelihood of Ie given P, and (iii) the a-priori likelihood of e.
We now elaborate on each of these terms.

The likelihood of e given P is expressed by an expert �nding model, where
P is assumed to be conditionally independent to e given u:

Pr(e|P) =
∑
u∈Ue

Pr(e|u) Pr(u|P) (4.1)

Probability Pr(e|u)measures the relevance of item e for user u and is estimated
as

Pr(e|u) = Rue∑
e′∈I,I(e′)=Ie Rue′

(4.2)

Probability Pr(u|P) can be rewritten as Pr(P|u) Pr(u). Pr(u) expresses
the strength of a user based on her/his degree of activity of rating, which is
simply estimated as

Pr(u) =

∑
e∈I δu(e)∑

u′∈U
∑
e∈I δu′(e)

(4.3)

where δu(e) = 1 if u has rated item e, and zero otherwise. Probability Pr(P|u)
is determined using a zeroth-order Markov model:

Pr(P|u) = Pr(P|θu) =
∏
I∈P

Pr(I|θu) (4.4)

where Pr(I|θu) can be estimated as: Pr(I|θu) = (1−λu) Pr(I|u)+λu Pr(I|U),
with smoothing factor λu ∈ [0, 1] as an input parameter (set to 0.1 by default).
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The likelihood of Ie given P, i.e., Pr(Ie|P), is estimated by linear inter-
polated smoothing (a.k.a. Jelinek-Mercer):

Pr(Ie|P) ∝ Pr(Ie|θP) =
= (1− λP) Pr(Ie|P) + λP Pr(Ie|P)

(4.5)

where Pr(Ie|P),Pr(Ie|P) are maximum likelihood estimators, and λP ∈ [0, 1]
is a smoothing factor; recall that, for a generic element x, a multi-set X , and
a set of multi-sets X , the maximum likelihood estimators are determined as
fX (x)/|X | and

∑
X∈X fX (x)/

∑
X∈X |X |, respectively. The smoothing factor

λP is set based on the following hypothesis: the degree of smoothing should be
higher for package models that are less frequent and more complex; formally,

it is de�ned as λP = |P|
|P|+mc(P,P) , where mc(P,P) expresses the relative

frequency of containment of model P in P , i.e., the fraction of package models
of which P is subset.

Finally, prior Pr(e) is expressed analogously to (4.3):

Pr(e) =

∑
u∈U δu(e)∑

e′∈I
∑
u∈U δu(e

′)
(4.6)

Overall, the �rst step is accomplished by iteratively performing the follow-
ing set of equations (∀e∈I s.t. Ie∈I(P),∀P∈P) which determines a ranking
of all items for the selected package model:

rankP(e) = [Pr(e|P) + Pr(Ie|P)] Pr(e) (4.7)

Intuitively, given P, the importance of e according to (4.7) relies on the rele-
vance of the item as a candidate to constitute P (Pr(e|P)) as well as on the
relevance of the item's type w.r.t. P (Pr(Ie|P)). Yet, Pr(e) accounts for the
popularity of e independently of the generation of packages, and hence acts
to penalize items that are less rated by the users.

4.4.2 Step 2: Context-driven package learning

The item rankings computed at the previous step are used to construct a set
of package instances for all package models in P . Besides the type compat-
ibility to ensure for the items w.r.t. any given package model P, contextual
constraints at the instance level might also be satis�ed. Therefore, prede-
�ned contextual predicates could be here applied to extract a subset of P-
compatible items, for each of the |P| item types that conform to P. Given a
DNF formula A over a subset C ⊆ C of predicates and a subset S ⊆ S of
constants, a set of items IAI is derived for each item type I ∈ I(P) such that
IAI contains the items of type I that also satis�es A.

We automatically select the top-ranked items for the various types valid
for a given package model by pipelining Pareto-frontier computations over the
IAI . For each I

A
I , alternatives among the items are evaluated according to their
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normalized cost/normalized score ratio, where the item scores are computed
by (4.7); i.e., upon an ordering of the items by increasing cost/value ratios,
the next item with smallest rank is added to the Pareto-frontier if it is not
dominated by any item already in the Pareto-frontier. To check whether a
candidate item is dominated by any alternative in the Pareto-frontier, it will
su�ce to �nd the most expensive alternative which is still cheaper than the
candidate item, since it does not dominate the candidate item, neither can any
other alternative in the Pareto-frontier. It should be however noted that for
some types of items, either the cost information is not applicable or the value
(score) dimension should weight more than the cost of items; consequently, a
cost/value based strategy for the selection of top items might not necessarily
lead to the best choice in terms of item coverage. For this purpose, we also
used a cost-free selection strategy such that an item will be included in the
top-ranked list for type I if its score has a percentage decrease from the top-1
item which is not greater than the average of the percentage decreases of all
items from the top-1 item.

The set of packages for each model P is �nally computed as the result
of the Cartesian product of the |P| sets of selected type-speci�c items for P.
Each package p is provided in the form of a set of items.

4.4.3 Step 3: Package rating

Once a set P of packages for all package models has been learned, user ratings
for the packages need to be computed. Such ratings can certainly be inferred
from the ratings of the items that belong to a package: however, the usual
sparsity of the user-item matrix is expected to be further exacerbated when
selecting the small bunch of items that constitutes any given package. In order
to alleviate this issue, we introduce a smoothing scheme that re�nes the actual
Rue, with e ∈ p: (1 − λps)Rue + λpsRe, where Re denotes the average rating
of e over all users, with λps set to 0.1 by default.

Besides users' ratings of the items constituting a package, other informa-
tion might be taken into account when computing the rating of a user for a
package. A user may want to di�erentiate among the types of items consti-
tuting a package: given user u and package p, this can be expressed by a set
of weights ωuI ∈ [0, 1], with I ∈ I each of which might act as a damping (or
even as nullifying) factor for a particular item type; by default, such weights
are set to 1 meaning that all constituent items are fully considered when rat-
ing the package. Moreover, a user may specify prior preferences over package
models, based on her/his individual exogenous source of information: this is
expressed by a coe�cient ωuP ∈ [0, 1] (set to 1 by default), for each P ∈ P .

The above types of information are combined to de�ne a package rating
function p-score : U × P → R∗, which is computed for any given user u and
package p as:
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p-score(u, p)=ωuP

∑
e∈p ωuIe [(1− λps)Rue + λpsRe]∑

e∈p ωuIe
(4.8)

A user-package rating matrix, denoted as RP , is derived by storing the com-
puted p-score(u, p) values, for all u ∈ U and p ∈ P . Hereinafter we will use
notation Rui to denote the rating given by user u to package pi.

4.4.4 Step 4: Target user's package recommendation network

A package recommendation network will be designed for any given target user,
and used to produce a ranking (probability distribution) over the set of pack-
ages obtained from the o�ine stage, thus providing recommendations to the
target user. The network is modeled as a directed graph in which vertices
are the learned packages and edges are drawn according to a function that
models the user's preference on pairs of packages. The role of this preference
function is to de�ne the transition probabilities in the package ranking model
discussed later. The sign of the preference function will determine the ori-
entation of the edge, while a pair of reciprocal edges will be drawn in case
of no preference expressed for any two packages. The strength of the con-
nection between two packages is set to be proportional to the value of the
preference function. Formally, the package recommendation network for the
target user u is de�ned as Gu = 〈V, E , wu〉, with set of vertices V = P , set of
edges E = {(pi, pj)|pi, pj ∈ P ∧ πu(pj , pi) ≥ 0}, and edge weighting function
wu : E → R+ such that wu(i, j) = eπu(pj ,pi).

Package preference function

Given a user u, our objective is to model a function of the form πu : P ×P →
R, with πu(pi, pj) > 0 when package pi is considered as more preferable to
package pj for user u, and vice versa, whereas πu(pi, pj) = 0 means that there
is no preference between the two packages. We require that πu(pi, pi) = 0,
for all pi ∈ P and πu(pi, pj) = −πu(pj , pi), for all pi, pj ∈ P . Moreover, to
adequately determine the strength of preference, we are interested in modeling
the target user's package preferences in a collaborative setting.

Let us denote with Uij the set of users that have rated pi or pj , or both.
We de�ne in terms of odds ratio the strength of association of two random
variables: the one expressing the condition �users in Uij are similar to u� and
the other one expressing the event �pi is rated higher than pj�. Hence, an odds
ratio greater than (resp. lower than) 1 indicates that the event of rating pi
higher than pj is more likely to occur in the group of users similar (resp. not
similar) to u, while an odds ratio equal to 1 indicates that whether or not
users are similar to u is irrelevant to prefer pi over pj .

To determine user similarity, we can resort to various similarity measures
used in collaborative �ltering [108]. The extent to which two users are con-
sidered as similar to each other can be controlled by a minimum-similarity
threshold, henceforth denoted as Usim, which can be experimentally varied.
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The collaborative-based preference odds ratio computed for each pair pi, pj
is then combined with the variation in u's ratings of pi, pj to model the pref-
erence function.

πu(pi, pj) = (Rui −Ruj)(ORu,ij)1−2χu,i,j,OR (4.9)

where χu,i,j,OR is the indicator function for the event �(Rui −Ruj) < 0�, and

ORu,ij =
N>
u

N<
u

· notN
<
u

notN>
u

(4.10)

with N>
u (resp. notN>

u ) indicating the add-one smoothed number of users
similar (resp. not similar) to u that have rated pi strictly higher than pj , N

<
u

(resp. notN<
u ) indicating the add-one smoothed number of users similar (resp.

not similar) to u that have rated pi strictly lower than pj .
It can be noted that the two terms in (4.9) play a di�erent role in modeling

the preference function: while the �versus� of preference is determined by
(Rui − Ruj), the odds ratio acts as a strengthening (resp. damping) factor if
there is a concordance (resp. discordance) in sign between the di�erence of
u's ratings and the logarithm of the odds ratio. Note also that, as required,
πu(pi, pj) = −πu(pj , pi) since it holds that ORu,ij = OR−1u,ji and χu,i,j,OR =
1−χu,j,i,OR, which ensure that the overall odds ratio term is identical in both
πu(pi, pj) and πu(pj , pi).

4.4.5 Step 5: Package ranking

We develop a PageRank-style method for ranking the set of packages specif-
ically for each target user. PageRank-style methods have been already suc-
cessfully applied to item recommendation problems [98, 74, 108, 64]. A major
motivation is that the underlying Markov chain model is e�ective to face the
usual lack of rating or preference information that characterize many users.
In other terms, if preferences between packages pi, pj have been expressed by
some users, and preferences between packages pi, pk have been expressed by
other users, the preferences regarding pj , pk are not known and hence can be
inferred through an iterated random walk. In our package recommendation
setting, an intuitive interpretation of the classic PageRank idea is that the
importance of a package (i.e., the likelihood of being preferred to other pack-
ages) both relies on and in�uences the importance of neighboring packages in
the network Gu. This is captured by the following equation that computes the
ranking score ri for a given package pi:

ri =
∑

j∈In(i)

wu(j, i)∑
h∈Out(j) wu(j, h)

rj (4.11)

where, for any vertex i, In(i) and Out(i) denote the in-neighbor and out-
neighbor sets, respectively. The above equation can be written in the equiva-
lent matrix notation as r = STr, where S is the package connectivity stochastic
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matrix de�ned as S = Dout
−1W+ aeT/|V|, such that W is the weighted ad-

jacency matrix of Gu, Dout = diag(We) is the diagonal matrix storing the
(weighted) out-degrees with e denoting a |V|-dimensional column vector of
ones, and a is the dangling-vertex vector such that ai = 1 if vertex i has
zero out-degree (i.e., package pi is not rated), and 0 otherwise. To ensure
the convergence of the Markov chain with S to a stationary distribution, the
usual primitivity adjustment is introduced as a convex combination of S with
another stochastic matrix de�ned as B = vvT/|B|. Vector v and set B are
equal by default to e and V, respectively, but v can be replaced with any
vector whose non-negative components sum up to 1 and that can be used to
personalize the PageRank to boost a speci�c subset of vertices (base-set B).
B is also known as teleportation matrix, since the random walker can decide
not to follow the link structure by selecting a vertex with relevance 1/|B|. A
parameter α between 0 and 1 (commonly set to 0.85) controls the proportion
of the random walk based on the link structure as opposed to teleporting:
r = αSTr+ (1− α)v/|B|.

We de�ne a cost-sensitive personalization of our PageRank-based method,
according to the following two criteria: (i) B corresponds to the subset of
packages in P having the same model as the packages that have been rated
by u, and (ii) each of the selected packages in B must have a cost (computed
over its constituting items) not greater than a speci�ed budget bu.

4.5 Experimental evaluation

4.5.1 Data and evaluation methodology

To assess our approach we chose to focus on the travel planning domain,
given the increasing interest it has produced as a major application for pack-
age recommendation tasks. We used the popular TripAdvisor.com data as
case in point for our evaluation. During April 2013, we crawled information
about hotels, restaurants, and all available types of attractions along with the
associated users' ratings, starting from the Top-Destinations section of the
website1. This resulted in 48, 131 hotels, 19, 802 B&Bs, 159, 716 restaurants,
and 21, 661 attractions classi�ed in 133 categories, with a total of 249, 310
items, and 12, 622, 091 ratings made by 4, 004, 926 users over 230, 814 items.
However, the very high sparsity of the rating matrix (above 99%) prompted
us to restrict our selection to a subset of locations in the attempt of reaching
a good tradeo� between salience of the venue in TripAdvisor (in terms of user
popularity), diversity in terms of the attractions a venue usually o�ers (i.e.,
diversity in the set of item types), and suitability of the locations to perform
queries related to di�erent travel topics (i.e., nature, business, historical sites,
etc.). As a result, we selected 15 locations which are shown in Table 4.4.

1 http://www.tripadvisor.com/TravelersChoice-Destinations
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To assess the proposed and competing methods, we assigned a reference
ranking score to each package p, which takes into account the TripAdvisor-
supplied rankings and costs of the constituting items as well as a user-provided
budget (b):

rank(p, b) = avgI∈P

(∑
e:Ie=I rank(e)∑
i=1..m(Ie) i

)
1

(cost(p)− b) + 1

where rank(e) is the rank of item e w.r.t. the item-type speci�c ranking pro-
vided by TripAdvisor, cost(p) is the total cost of package p calculated over
its items' costs, b equals the budget speci�ed by the target user (i.e., b = bu),
and |p| denotes the number of item-types (with duplicates) for the package
model of p. Note that the formula penalizes out-of-budget packages.

We used four assessment criteria that are standard in ranking tasks,
namely mean average precision (MAP), Kendall rank correlation coe�cient,
normalized discounted cumulative gain (nDCG), and Fagin's intersection met-
ric (cf. Chapter 2, Section 2.7). For each of them, higher scores correspond to
better ranking evaluation.

In our setting of the MAP measure, the personalized ranking produced for
a given user is considered as a query, and the number of relevant and retrieved
candidates is obtained by taking into account the top-k-ranked packages.

4.5.2 Experimental settings

PackRec parameters were setup using the default values as declared in their
de�nitions; moreover, cosine similarity and Usim set to 0.6 were used for the
user neighborhood computations (cf. Sect. 4.4.4). We however undertook a
preliminary investigation on how the PackRec performance was in�uenced by
λps (cf. Sect. 4.4.3) and by Usim: in summary, we observed that a value for
λps close to zero (e.g., the default 0.1) was enough to alleviate the sparsity
issue but also to avoid a loss of discrimination between the individual users'
ratings in scoring the packages; similar neighborhood sizes were observed when
setting Usim to 0.6ö0.8, and even down to 0.5 in a few locations, while lower
(resp. higher) values would lead to a nearly total (resp. null) coverage of the
users.

We devised two evaluation stages, the �rst focused on the assessment of
our PackRec performance under di�erent settings, and the second devoted
to a comparative evaluation with the instance-optimal algorithm in [179],
hereinafter referred to as CompositeRec, as anticipated at the end of Sect. 4.6.

In the �rst stage, the selected locations were grouped into four categories
according to their attractions. As shown in Table 4.4, we de�ned a set of four
package models based on the attraction types available in the corresponding
locations and with the attempt of con�guring four types of trip, namely cul-
tural, family, business, and fun trip. We speci�ed the input budgets for each
location trying to simulate di�erent price ranges, according to the following
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strategy: we calculated the total cost of each package learned contextually
to a given location, then we analyzed the package costs in increasing order,
�xing a budget threshold when the next cost was a certain percentage (set to
20%) higher than the lower cost in the current range. Note that the setting
corresponding to the highest budget (i.e., budget set equal to the maximum
package cost for the location) will correspond to no budget-driven personal-
ization of the ranking.

In the second stage, since CompositeRec requires a number of recom-
mender systems in input, we exploited a state-of-the-art method, called Item-
Rank [64], to generate personalized item rankings for the �ve most active
users for each location. Since the package models of the packages returned by
CompositeRec cannot be known in advance, we carried out CompositeRec to
recommend the top-10 packages for each of the selected users per location,
by setting the budget per location as equal to the corresponding highest bud-
get used by our PackRec in the �rst stage. Then, the models of the packages
produced by CompositeRec were used to drive the package learning step of
PackRec. For the comparative evaluation of the recommendations, we needed
to generate a di�erent reference ranking for each user, containing both the
packages returned by CompositeRec and by PackRec, constrained to the same
budget per location.

4.5.3 Results

Table 4.2 reports on performance results obtained by PackRec over the vari-
ous locations; parameter k in Fagin, nDCG and MAP was set to cover 10% of
the package set. For each location and assessment criterion, results correspond
to averages over the di�erent budgets selected for the location. Moreover, for
each location, we selected two di�erent sets of users, corresponding to the
upper-quartile and the lower-quartile, respectively, based on the users' activ-
ity in terms of total ratings on items belonging to the location. Note that
no distinction was made between positive (high) and negative (low) ratings
of the users, which clearly a�ected the overall quality of the average perfor-
mance results: these were indeed generally low due to a partial agreement
with the TripAdvisor-driven reference ranking generated for each location (cf.
Sect. 4.5.1), which by de�nition tends to rank higher positively rated items,
and hence packages.

Looking at the results per location in each group, lower scores corre-
sponded to average Fagin and MAP, which however behaved quite closely.
Generally higher scores were achieved in terms of Kendall, which would indi-
cate a higher overall alignment w.r.t. the reference ranking than in the cases
where the head of lists was taken into account, and in terms of nDCG, which
means that the shared packages between the top-k list of PackRec and the
top-k list of the reference ranking obtained similar ranks and relevance scores.
By comparing the corresponding group average performances in the two cases
of user activity, improved results could also be obtained in the lower-quartile
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Table 4.2. Average performances of PackRec.

Location Fagin Kendall nDCG MAP

avg max avg max avg max

upper-quartile users

Amsterdam .228 .393 .432 .557 .503 .625 .193
BuenosAires .024 .218 .165 .641 .173 .945 .038
Istanbul .175 .503 .417 .574 .440 .783 .143

group avg .129 .342 .315 .597 .348 .796 .116

Barcelona .112 .246 .271 .435 .317 .473 .123
Chicago .153 .602 .223 .689 .416 .871 .152
Honolulu .125 .398 .296 .422 .385 .707 .113
SanFrancisco .115 .609 .172 .617 .464 .822 .123
Sydney .184 .646 .156 .419 .479 .836 .160
WashingtonDC .128 .402 .210 .447 .437 .779 .112

group avg .135 .462 .225 .485 .411 .727 .129

Edinburgh .170 .552 .349 .608 .422 .924 .205
Rome .165 .497 .426 .646 .308 .628 .120
Venice .096 .302 .262 .399 .304 .509 .071

group avg .142 .441 .350 .550 .334 .655 .123

NiagaraFalls .117 .231 .182 .327 .361 .518 .099
PlayadelCarmen .185 .455 .192 .549 .428 .768 .182
SharmElSheikh .103 .366 .219 .440 .379 .748 .102

group avg .139 .363 .198 .451 .393 .692 .132

lower-quartile users

Amsterdam .191 .252 .443 .525 .474 .609 .161
BuenosAires .099 .389 .324 .555 .221 .595 .069
Istanbul .148 .336 .466 .604 .383 .571 .122

group avg .142 .329 .397 .555 .346 .595 .114

Barcelona .102 .120 .272 .411 .267 .318 .123
Chicago .079 .261 .155 .531 .356 .656 .108
Honolulu .147 .351 .377 .532 .448 .796 .162
SanFrancisco .146 .649 .253 .487 .545 .784 .130
Sydney .053 .098 .305 .522 .341 .496 .058
WashingtonDC .154 .373 .274 .533 .444 .741 .125

group avg .114 .293 .281 .498 .393 .613 .118

Edinburgh .180 .520 .439 .664 .501 .869 .204
Rome .220 .522 .495 .651 .400 .646 .192
Venice .065 .233 .241 .391 .256 .543 .051

group avg .155 .419 .393 .562 .373 .662 .149

NiagaraFalls .156 .787 .481 .592 .766 .925 .161
PlayadelCarmen .123 .239 .321 .594 .348 .512 .102
SharmElSheikh .166 .454 .341 .574 .489 .778 .180

group avg .148 .463 .372 .587 .511 .715 .148
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Table 4.3. Best performances (Fagin and MAP scores) of PackRec and Compos-
iteRec over di�erent locations.

Location PackRec CompositeRec Location PackRec CompositeRec

Fagin MAP Fagin MAP Fagin MAP Fagin MAP

Amsterdam .530 .659 .089 .090 PlayadelCarmen .219 .254 .022 .028
Barcelona .589 .841 .184 .307 Rome .487 .735 .099 .089
BuenosAires .528 .828 .112 .111 SanFrancisco .486 .314 .193 .184
Chicago .496 .839 .135 .124 SharmElSheikh .466 .793 .092 .085
Edinburgh .514 .586 .086 .069 Sydney .493 .913 .119 .106
Honolulu .520 .682 .072 .061 Venice .607 .931 .229 .524
Istanbul .589 .887 .101 .112 WashingtonDC .296 .494 .057 .032
NiagaraFalls .623 .954 .071 .072 avg .496 .714 .111 .133

case (i.e., for groups 3 and 4), where the sparsity in the user's ratings is
generally higher.

PackRec also appeared to be moderately robust w.r.t. the various queries
(i.e., package models) and location group settings, since the di�erences among
the group averages were relatively low in terms of average Fagin and MAP. By
analyzing the personalization of the recommendations obtained for di�erent
budgets (results not shown), we observed that in several cases smaller budgets
corresponded to better top-rankings (i.e., higher Fagin scores, nDCG and
MAP), which might be explained by the fact that smaller budgets led to �lter
out a larger number of packages, facilitating the ranking task.

Comparison with CompositeRec

Table 4.3 shows the results obtained by PackRec and CompositeRec. Com-
parison was limited to the Fagin and MAP criteria for two main reasons:
both the PackRec and the CompositeRec outputs are incomplete rankings
w.r.t. the merged reference ranking described above (which prevents the use
of Kendall), and the CompositeRec output ranking is produced without scores
(which prevents the use of nDCG). Parameter k for Fagin was set to 10, since
we let CompositeRec to recommend the top-10 packages for each of the se-
lected users per location.

As we expected, CompositeRec produced packages signi�cantly di�erent
from those involved in our �rst stage of evaluation: over the various locations,
the number of distinct models varied from 5 to 10, and the size (i.e., number
of item types) from 2 to 35 (average of 13.9). Moreover, packages with mul-
tiple items of the same type were also taken into account�while the average
multiplicity was always close to 1, in each location there was however at least
one item type with more than 10 occurrences in a package model.

Results in Table 4.3 show that PackRec achieved signi�cant correlation
with the combined reference ranking in all locations. It came to our surprise
that, despite PackRec was trained under a setting driven by CompositeRec
recommendations, PackRec clearly outperformed CompositeRec in all cases
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and for both criteria, with average gains of 0.385 Fagin and 0.581MAP. Quali-
tatively, worse performance by CompositeRec was indeed explained by the fact
that most of the 10 packages returned by CompositeRec per location have poor
match with the top-10 packages in the reference ranking. This would give evi-
dence that PackRec can e�ectively deal with packages of varying structure and
that its combination of expert �nding, collaborative �ltering and graph-based
ranking allows for better performance than a cost/value knapsack strategy.

4.6 Related work

In the last few years recommendation of sets/packages of items has been stud-
ied from various perspectives and with di�erent levels of expressiveness. [28]
proposes a general decision support system for the de�nition of composite
alternative recommendations. While di�erent user-speci�ed requirements are
taken into account, the recommendation process is highly interactive, as it
utilizes the target user's feedback to feed a preference learner module, and
hence it might continue iteratively until the user is satis�ed with one of the
alternatives. [10] approaches the problem from a top-k query processing per-
spective, by introducing the class of entity package �nder query. Such queries
are used to identify the top-k tuples of entities, according to the relevance
of each entity w.r.t. a given set of keywords. Like our approach, associations
among the entities (i.e., item types) are known in advance; however, entity
package �nder queries cannot directly handle user-speci�ed constraints such as
budget to control the identi�cation of most relevant packages and, in general,
they do not consider a collaborative-based support to provide a personalized
recommendation to a target user. In [90], complex yet customized recommen-
dations are de�ned declaratively as a high-level work�ow over relational data,
in which traditional and enhanced relational algebra operators are used to
specify user-requirements and to generate virtual nested relations. The ap-
proach in [90] is designed to maximize �exibility in recommendation, however
at the cost of higher complexity of the recommendation engine and di�culty
to control contextual and cost requirements.

Unlike our work, the approaches in [39, 17] exploit geo-temporal and multi-
media data to provide recommendations about popular touristic places. Both
studies however do not take item/package rating into consideration, thus they
are limited to provide composite recommendations for a set of user-speci�ed
temporal constraints. The latter di�erences w.r.t. our work are also present
in [165], which studies the general problem of set-based queries with aggrega-
tion constraints.

In [109], travel packages are generated through the TAST (tourist-area-
season topic) model, based on latent topic distributions of tourist-season pairs.
Such topic distributions are used to �nd seasonal nearest neighbors for each
tourist, and collaborative �ltering based ranking is employed to personal-
ize suggestions. An extension of the TAST model, named TRAST (tourist-
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Table 4.4. Package models and statistics about the learned packages.
Group Location # Ratings per # Learned Percentage of packages covered Package Models

Location Packages by each budget range

1
Amsterdam 58,746 126 3.97%, 28.57%, 54.76%, 84.92% P1: Hotel, Restaurant, Museums, HistoricSites, ArchitecturalBuildings
Buenos Aires 56,926 64 15.63%, 18.75%, 51.56%, 56.25%, 81.25% P2: Hotel, Restaurant, Landmarks/PointsofInterest, Parks, Entertainment
Istanbul 59,538 64 15.63%, 60.94% P3: B&B, Restaurant, Performances, Entertainment

P4: Hotel, Restaurant, HistoricSites, Civic/ConventionCenters

2

Barcelona 73,389 68 4.41%, 7.35%, 19.12%, 54.41%, 82.35% P5: Hotel, Restaurant, Museums, HistoricSites, ReligiousSites
Chicago 60,852 64 75.00%, 87.50% P6: Hotel, Restaurant, HistoricSites, Gardens
Honolulu 38,049 80 11.25%, 18.75%, 45.00%, 62.50% P7: B&B, Restaurant, Museums, Theaters
San Francisco 69,041 64 62.50%, 87.50%, 93.75% P8: Hotel, Restaurant, HistoricSites
Sydney 39,276 68 5.88%, 14.71%, 75.00%, 98.53%
WashingtonDC 46,403 64 14.06%, 25.00%, 76.56%, 95.31%

3
Edinburgh 52,382 112 21.43%, 57.14%, 77.68% P9: Hotel, Restaurant, Museums, ArchitecturalBuildings, ReligiousSites
Rome 28,428 104 15.38%, 23.08%, 30.77%, 65.38%, 82.69%, 88.46% P10: Hotel, Restaurant, Parks, Entertainment
Venice 51,873 64 17.19%, 37.50%, 50.00%, 70.31%, 79.69% P11: B&B, Restaurant, Performances, Entertainment

P12: Hotel, Restaurant, ArchitecturalBuildings, ReligiousSites

4
Niagara Falls 17,843 96 3.13%, 11.46%, 40.63%, 90.63% P13: Hotel, Restaurant, Theaters
Playa del Carmen 28,629 88 5.68%, 12.50%, 15.91%, 18.18%, 72.73%, 86.36% P14: Hotel, Restaurant, Entertainment, SportsCamps/Clinics
Sharm El Sheikh 21,431 64 6.25%, 21.88%, 40.63%, 59.38%, 75.00% P15: B&B, Restaurant, Entertainment, SportsCamps/Clinics

P16: Hotel, Restaurant, Theaters, Parks

relation-area-season topic) is also de�ned to model the tourist relationships in
a travel group. The approach in [109] can provide recommendations only for
users who have traveled at least once in the existing travel records, i.e., users
who have rated at least one package, while our approach can even handle tar-
get user's partial ratings about the items constituting the candidate packages
to recommend. While in our model a package might contain di�erent item
types, each one with arbitrary multiplicity, in [109] a package is substantially
an array of landscapes. Also, the TAST/TRAST models are in principle ap-
plicable to other scenarios but only provided that certain assumptions hold
at the basis of the topic model.

The composite recommendation system proposed in [179] is centered on a
domain-independent approach that extends the knapsack problem. It assumes
the availability of multiple recommender systems to score the items for a
speci�c user and of an external information source that provides the items'
costs. Given a cost budget and an integer k, the method computes top-k
variable-length packages to recommend. Two approximation algorithms are
developed, an instance-optimal, pseudo-polynomial algorithm and a greedy
algorithm. Unlike our work, packages are learned regardless of the speci�c
type and compatibility constraints of the constituting items; moreover, the
knapsack-like approach adopted in [179] is by nature not particularly tailored
to the various target user's preferences, which are in fact simply summarized
in the speci�cation of the budget constraint and whose understanding cannot
easily be re�ned in a collaborative fashion.

Nevertheless, we involved the approach by [179] in a comparative evalua-
tion with our PackRec, not only because the two works are both domain-
independent and do not rely on a text processing via language modeling
(like [109] does), but also because this evaluation allowed us to stress our
PackRec under a di�erent setting in which the schema of the learned pack-
ages can be highly varying and is not user-provided.
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4.7 Chapter review

We presented an application-independent framework for the recommendation
of packages of items. While being fully unsupervised, the framework relies on
a-priori (user-provided) knowledge on the structure and types of the pack-
ages to be learned and recommended in a personalized fashion. Testing on
datasets of other domains is certainly needed to fully support our claim of
application-domain independence and versatility. Moreover, besides deepen-
ing the evaluation of the PackRec sensitivity to the various parameters, we
have identi�ed a number of points to be studied, including the de�nition of
a regularization framework to address a possible item correlation issue in the
package learning step, and alternative graph models for the package ranking
step.
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Ranking lurkers in social networks

5.1 Summary

The massive presence of silent members in online communities, the so-called
lurkers, has long attracted the attention of researchers in social science, cog-
nitive psychology, and computer-human interaction. However, the study of
lurking phenomena represents an unexplored opportunity of research in data
mining, information retrieval and related �elds. In this chapter, a formal spec-
i�cation of lurking is provided and the new problem of lurker ranking is ad-
dressed through the discussion of the �rst centrality methods speci�cally con-
ceived for ranking lurkers in social networks. An extensive analysis on static
and dynamic contexts has shown the signi�cance of the lurker ranking ap-
proach, and its uniqueness in e�ectively identifying and ranking lurkers in an
online social network. Experiments were carried out using real-world social
networks like Twitter, Flickr, FriendFeed, GooglePlus and Instagram as cases
in point, in order to evaluate the lurker ranking methods' performance against
data-driven rankings as well as existing centrality methods, including the clas-
sic PageRank and alpha-centrality. Analyses concerning the application of the
lurker rank algorithms in social trust contexts and in other domains(e.g., re-
search collaboration networks), which point out the �exibility of the discussed
approach are provided as well.

5.2 Introduction

The majority of members of online communities play a passive or silent role
as individuals that do not readily contribute to the shared online space. Such
individuals are called lurkers, since they belong to a community but remain
quite unnoticed while watching, reading or, in general, bene�ting from others'
information or services without signi�cantly giving back to the community.

Lurking characterization in online communities has been a controver-
sial issue from a social science and computer-human interaction perspec-
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tive [50]. Since the early works on social motivations and implications of
lurking [131, 135], one common perception of lurking is that based on the
infrequency of active participation to the community life, but other de�ni-
tions have been given under the hypotheses of free-riding [89], legitimate pe-
ripheral participation [97, 70], individual information strategy of microlearn-
ing [82], and knowledge sharing barriers (e.g., interpersonal or technological
barriers) [11]. Lurkers might also be perceived as a menace for the cyberspace
as they maliciously feed on others' intellects. For instance, in P2P �le shar-
ing systems [47], lurking may correspond to a leeching behavior whenever a
user wastes valuable bandwidth by downloading much more than what s/he
uploads. In the realm of online social networks (OSNs), negative views of the
lurkers have been however supplanted with a neutral or even marginally pos-
itive view. A neutral perception of lurkers is related to the fact that their
silent presence is seen as harmless and re�ects a subjective reticence (rather
than malicious motivations) to contribute to the community wisdom; half of
times, a lurker simply feels that gathering information by browsing is enough
without the need of being further involved in the community [135]. However,
lurking can be expected or even encouraged because it allows users (especially
newcomers) to learn or improve their understanding of the etiquette of an on-
line community before they can decide to provide a valuable contribution over
time.

Lurking is responsible for a participation inequality phenomenon that is
shared by all large-scale online communities. This phenomenon is explained
by the so-called �1:9:90� rule, which states that while 90% of users do not
actively contribute, 9% of users may contribute (i.e., comment, like or edit)
from time to time, and only 1% of users create the vast majority of social con-
tent [131, 135]. Consequently, such inequities lead to a biased understanding
of the community, whereby a major risk is that we will never hear from the
silent majority of lurkers. Therefore, a challenge is to attract, or de-lurk, the
crowd of lurkers, whereby online advertising strategies should be tailored to
the lurkers' behavioral pro�le. Moreover, since lurkers have knowledge about
the online community (as a result of the substantial time they dedicate to-
wards learning from the community), delurking can mainly be seen as a mix of
strategies aimed at encouraging lurkers to return their acquired social capital,
through a more active participation to the community life.

Understanding user behaviors has long been studied in online social net-
works. A key element that is shared by all studies is the use of a social graph
model as the basic tool to represent relationships among users [173]. Rela-
tionships, or ties [67], can vary over a spectrum that include friendships and
followships [92, 7, 125, 93, 36, 176], visible interactions [40, 102, 169, 176,
118], and latent interactions (based on, e.g., browsing pro�les or clickstream
data) [142, 18, 80].

Surprisingly, despite the fact that lurking has been recognized and sur-
veyed in social sciences, at the time of writing of our initial study [162], we
were not aware of any previous study on lurking in social networks from a
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graph data management or mining perspective. Particularly, no computational
method has been so far conceived to determine, and eventually, rank lurkers
in an OSN graph. Note that, beyond the frequent yet trivial case of users that
exhibit a peripheral unstructured membership, hidden forms of lurking are
massively present in OSNs, which make it challenging to mine lurkers. While
lurking is hard to track from a personal dispositional viewpoint, it appears
that ranking lurkers is still possible by handling the situational variables that
are related to the network of relationships between members. Moreover, a
well-founded principle of eigenvector centrality, which is adopted in this work,
will enable the determination of each node's lurking score in function of the
lurking scores of the nodes that it is connected to.

One may notice that ranking in�uential people is clearly valuable as we
naturally tend to follow leaders and learn from them, and conversely wonder
�why ranking lurkers?�. We argue that scoring community members as lurkers,
rather than limiting to solely recognize (potential or actual) lurkers, should be
seen as essential to determine the contingencies in the network under which
di�erent lurking behaviors occur, and ultimately to aid devising both generic
and ad-hoc de-lurking plans and strategies. In e�ect, ordering members by
decreasing lurking score would enable to manage priority in de-lurking appli-
cations, to identify the sub-communities particularly a�ected by lurkers, and
to de�ne personalized triggers of active participation. For example, lurkers of
a given sub-community developed around an entity of interest (e.g., a person,
or theme) would welcome messages that highlight the key topics (a service
that is already delivered to its users by Twitter, for example), social events
that describe how to approach a discussion in a forum or to start o� your own
project in a collaboration network, or introduce the role of forum moderators
or team leaders. Moreover, in order to alleviate information overload, which
is recognized as a major negative factor for participation, various mechanisms
of �ltering (e.g., recommending threads of discussion, providing visual maps
of the categories of activities) or promotion of lightweight contribution tasks
(e.g., [53]) could be applied with the ultimate goal of revealing the lurker's
value (i.e., ideas, opinions, expertise) to the community.

Contributions. In this chapter we address the new problem of mining
lurkers in OSNs. We scrutinize the concept of lurking in OSNs to determine
the essential criteria that can be taken as the basis for mining lurkers. We
lay out a topology-driven lurking de�nition upon a network representation
modeling the directed relationships from information-producer to information-
consumer. Our lurking de�nition is based on three principles that respectively
express in/out-degree related properties of a given node, its in-neighborhood,
and its out-neighborhood. We also de�ne a lurking coe�cient to characterize
the topology of a network in terms of lurking degree.

The proposed lurking de�nition lends itself naturally to score the users in
an OSN according to their lurking behavior, thus enabling the development
of ranking mechanisms. We hence focus on the problem of lurker ranking,
and de�ne three formulations of it that rely on the di�erent aspects of our
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topology-driven lurking concept. By resorting to classic link-analysis ranking
algorithms, PageRank and alpha-centrality, we provide a complete speci�ca-
tion of lurker ranking methods. We also propose a randomization-like model
that simulates a mechanism of �self-delurking� of a network, and a lurking-
oriented percolation analysis to unveil possible relations between lurkers and
users that act as bridges over subnetworks.

We also extend our topology-driven de�nitions by devising time-aware
lurker ranking methods which integrate di�erent temporal aspects concerning
both the production and consumption of information. More speci�cally, we
measure temporal properties for individual users that account for the time-
liness and the temporal evolution of the information produced (i.e., posts),
and analogously we measure for every interaction between users, the timeliness
and the temporal evolution of the information consumed by one user w.r.t. the
other (i.e., comments, like/favorite-marks). Both types of temporal measures
are the key ingredients in the proposed time-aware lurker ranking methods.
Two di�erent approaches to the ranking are followed that correspond to either
a transient ranking, which is restricted to a particular snapshot graph of the
network, or a cumulative ranking, which encompasses a sequence of snapshots
based on a time-evolving graph model.

We conducted experiments on Twitter, Flickr, FriendFeed, GooglePlus and
Instagram networks, analyzing both static and dynamic network contexts. For
what concerns the static context, quantitative and qualitative results have
shown the e�ectiveness of our lurker ranking approach, highlighting supe-
rior performance against PageRank, alpha-centrality and the Fair-Bets model,
which conversely might fail to correctly identify and rank presumed lurkers.
The experimentation on dynamic contexts provided insights into the under-
standing of lurkers from di�erent perspectives along the time dimension in the
SN environment, by addressing four research questions concerning the tempo-
ral dimension in the analysis of lurking behaviors in a SN; these questions span
di�erent topics concerning the relation between lurkers and inactive users, the
relation between lurkers and active users, the responsiveness behavior of lurk-
ers, and the evolution of lurking trends across time. Furthermore, evaluation
of the ranking performance of time-aware lurker ranking methods on Flickr,
FriendFeed, and Instagram network datasets have yielded interesting results,
as our methods improved upon existing methods to which we compared them.

We also provide an investigation on the possibility to apply the proposed
lurker ranking model to domains di�erent than the classic OSNs. By applying
the lurker rank methods in a social trust context we aim at understanding and
quantifying relations between lurkers and trustworthy/untrustworthy users in
ranking problems. We conduct this study by focusing purely on user behav-
iors that can be inferred from the network structure, using no content or
contextual information. Results obtained on Advogato, Epinions, Flickr and
FriendFeed networks indicate that lurkers should not be a-priori �agged as
untrustworthy users, and that trustworthy users can indeed be found among
lurkers. Concerning the domain of Research Collaboration Neworks (RCNs),
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Fig. 5.1. An example OSN graph for our lurking-oriented ranking analysis.

we use our model to represent a vicarious-learner-oriented co-authorship net-
work, introducing the concept of vicarious learner into research on analysis
and mining in RCNs and providing a formal de�nition of vicarious learner.
We conducted experiments using DBLP as case in point, as both a static and
a dynamic network. Moreover, we also resorted to ArnetMiner for purposes
of ground-truth evaluation of the competing methods. Quantitative as well as
qualitative results have indicated the signi�cance of the proposal.

The remainder of this chapter is organized as follows. Section 5.3 intro-
duces our de�nitions of topology-driven lurking and lurking coe�cient of a
network. Our topology-driven lurker ranking methods are described in Sec-
tion 5.4, while their time-aware extentions are described in Section 5.5. Sec-
tion 5.6 presents methodology and results of the experimentation on static
contexts, while in Section 5.7 the experimentation on dynamic contexts is
discussed. Section 5.8 discusses the application of our lurker ranking model
to other domains, e.g., trust networks and research collaboration networks.
Section 5.9 discusses related work. Section 5.10 concludes the chapter.

5.3 In-degree, out-degree and lurking

User interactions in an OSN are typically modeled as in�uence relationships,
whose varying strengths are used to determine and rank the in�uential users.
In e�ect, ranking methods, such as PageRank, follow the conventional model
of in�uence graph, which implies that the more incoming links a node has the
more important or authoritative it is; for example, translated to Twitter terms,
the more followers a user has, the more interesting his/her published tweets
might be. Actually, as is well-known in spam detection, a node's in-degree can
easily be a�ected by malicious manipulation, and hence the number of incom-
ing links is not to be trusted as unique estimator of the node's importance
score. Rather, as discussed in [59] in the Twitter scenario, the follower-to-
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Fig. 5.2. Average in/out-degree as function of the in-degree k, on double-logarithmic
scale. Sink and source nodes are discarded.

followee ratio should in principle be considered: if the number of followers
exceeds those of followees then the user is likely to be an opinion-maker, oth-
erwise her/his tweets are not that interesting.

We however observe that classic authority-based ranking methods (i.e.,
PageRank and related methods) cannot be directly applied to lurking anal-
ysis because they assume that links across users carry the meaning of node
in�uence propagation, which is related to the amount of information (number
of walks) a node produces. By contrast, lurking behaviors build on the amount
of information a node consumes; again, in Twitter terms, if user v follows user
u, then v is bene�ting from u's information (i.e., v is receiving u's tweets).

A question might arise whether there is any evident correlation between
the in/out-degree ratio and the in-degree distribution in an OSN graph. To
roughly answer the question, we empirically investigated this aspect on the
networks we used for our experimental evaluation (cf. Section 5.6.1); Fig-
ure 5.2 displays the average in/out-degree for each in-degree k, on some se-
lected datasets. While the charts show substantially di�erent trends, they all
provide evidence on the poor correlation between in/out-degree ratio and the
in-degree distribution. For the FriendFeed and GooglePlus cases, it can be
observed a slightly upward trend for low in-degree values, while for Twitter-
UDI , the initial uptrend rapidly decreases for low-mid in-degrees. All cases
however present high dispersion of in/out-degrees for mid-high in-degrees.

5.3.1 Topology-driven lurking

Upon the in/out-degree ratio intuition, we now provide a basic de�nition of
lurking which aims to lay out the essential hypotheses of a lurking status
based solely on the topology information available in an OSN.

De�nition 5.1 (Topology-driven lurking). Let G = 〈V, E〉 denote the di-
rected graph representing an OSN, with set of nodes (members) V and set of
edges E, whereby the semantics of any edge (u, v) is that v is consuming in-
formation produced by u. A node v with in�nite in/out-degree ratio (i.e., a
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sink node) is trivially regarded as a lurker. A node v with in/out-degree ratio
not below 1 shows a lurking status, whose strength is determined based on:

Principle I: Overconsumption. The excess of information-consumption over
information-production. The strength of v's lurking status is proportional
to its in/out-degree ratio.

Principle II: Authoritativeness of the information received. The valu-
able amount of information received from its in-neighbors. The strength
of v's lurking status is proportional to the in�uential (non-lurking) status
of the v's in-neighbors.

Principle III: Non-authoritativeness of the information produced.

The non-valuable amount of information sent to its out-neighbors. The
strength of v's lurking status is proportional to the lurking status of the
v's out-neighbors.

To support this intuition, let us consider the example of network in Figure 5.1.
Nodes 3, 7, 8, 10, 11 have the highest in/out-degree ratio (i.e., 2), and as such
they are candidate lurkers in the network. However, node 8 should be scored
higher than others, since it bene�ts from information coming from two con-
nected components, which are likely to contain in�uential nodes in the network
(i.e., 5, 6). By contrast, nodes 10, 11 should be scored as lurkers lower than
node 8, since they are mainly fed by 8 itself; similarly, nodes 3, 7 should be
scored higher than 10, 11 but lower than 8, since they receive information
that propagates from a smaller subgraph. Note that the example allows us
to shed light on a crucial aspect related to the role that node 8 has in the
network. In e�ect, one may say that 8 is a �bridge� as it allows readers 9, 10,
and 11 to peek into two otherwise separated communities. However, in our
network model oriented to information consumption, the notion of bridge is
also revised: the communication received from 9, 10, and 11 is likely to be less
signi�cant (in terms of amount and/or quality) than the bandwidth of infor-
mation �ow originated from the two largest components and received from
8. In Section 5.6.6, we shall investigate the relationship between lurkers and
bridges, which will con�rm that it's correct to regard node 8 as top-lurker.

5.3.2 Lurking Coe�cient of a network

The participation inequality �1:9:90� rule loosely tells us that the majority of
users shows a potential lurking behavior, in any generic online community.
But, can we have a more precise indication of the presence of lurkers given
a particular network? To answer this question we introduce here a measure,
named Lurking Coe�cient, as a basic lurking-related property of the topology
of a network.

Given the directed graph G = 〈V, E〉 representing an OSN, for any node
i ∈ V let Bi = {j|(j, i) ∈ E} and Ri = {j|(i, j) ∈ E} denote the set of in-
neighbors (i.e., backward nodes) and out-neighbors (i.e., reference nodes) of i,
respectively. The sizes of sets Bi and Ri are the in-degree and the out-degree
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of i, denoted as in(i) and out(i), respectively. The local Lurking Coe�cient of
a node is �rst introduced to measure how likely any given node i is a lurker
within its neighborhood. We de�ne this quantity as:

lci =
1

|Vi|

∑
j∈Bi

1

{
in(j)

out(j)
<

in(i)

out(i)

}
+

∑
j∈Ri

1

{
in(j)

out(j)
≥ in(i)

out(i)

} (5.1)

where Vi is the set of neighbors of i, and 1{A} is the indicator function,
which is equal to 1 when the event A is true, 0 otherwise. Note that the two
additive terms in Eq. (5.1) are in accordance with Principle II and Principle
III, respectively, of Def. 1. The Lurking Coe�cient of a graph G is then given
by the weighted average of the local Lurking Coe�cients over the nodes in G:

LCG =
1

|V|
∑
i∈V

pi · lci (5.2)

where pi is the weight of lci. This weight, unitary by default, can be set in
accordance with Principle I, hence it is de�ned as the in/out-degree ratio of i
normalized over all nodes in its neighborhood. We will refer to the variant of
LC with non-unitary weights as weighted Lurking Coe�cient (wLC).

5.4 Lurker Ranking

In this section we formulate our solutions to the problem of lurker ranking.
To this aim, we will capitalize on the three principles stated in our topology-
driven lurking de�nition. Note that, as a general premise valid for all lurker
ranking methods that we shall present, we introduce a Laplace smoothing
factor in the calculation of both in-degree and out-degree of node, i.e., in(i)
(resp. out(i)) is meant hereinafter as the actual in-degree (resp. out-degree)
of node i plus one. This allows us to deal with sink nodes and avoid in�nite
in/out-degree ratios.

According to Principle I in De�nition 5.1, a basic way of scoring a node as
a lurker is by means of its in/out-degree ratio. However, this way has clearly
the disadvantage of assigning many nodes the same or very close ranks and,
as we previously discussed, it ignores that the status of both the in-neighbors
(Principle II) and out-neighbors (Principle III) contributes to the status of any
given node. In the following we elaborate on each of those aspects separately.

In-neighbors-driven lurking. According to Principle II in De�nition 5.1,
an in-neighbors-driven lurking measure can be de�ned as:
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ri =
∑
j∈Bi

out(j)

in(j)
rj

Hence, the score of node i increases with the number of its in-neighbors and
with their likelihood of being non-lurkers, which is expressed by a relatively
high out/in-degree. The above formula can be enhanced by including a factor
that is inversely proportional to the i's out-degree. Formally, we de�ne the
in-neighbors-driven lurking score of node i as:

ri =
1

out(i)

∑
j∈Bi

out(j)

in(j)
rj (5.3)

Note that Eq. (5.3) accounts for both the contribution of a node's in-neighbors
and its own in/out-degree property.

Out-neighbors-driven lurking. The exclusive contribution of out-neighbors
for the calculation of a node's lurking score, according to Principle III of Def-
inition 5.1, can be formalized as:

ri =
∑
j∈Ri

in(j)

out(j)
rj

However, this method would let the score of a node increase with the tendency
of its out-neighbors of being lurkers, while ignoring the status of the node itself;
as a consequence, not only reciprocal lurkers will be scored high but also every
node from which lurkers receive information. A correction factor should hence
be introduced as proportional to the in-degree of the target node. Formally,
we de�ne the out-neighbors-driven lurking score of node i as:

ri =
in(i)∑

j∈Ri in(j)

∑
j∈Ri

in(j)

out(j)
rj (5.4)

Note that in Eq. (5.4), the in-degree of node i is divided by the sum of in-
degrees of its out-neighbors in order to score i higher if it receives more than
what its out-neighbors receive.

In-Out-neighbors-driven lurking. The two previous de�nitions of lurking
can in principle be combined to obtain an integrated representation of all three
principles in De�nition 5.1. To this aim, we de�ne the in-out-neighbors-driven
lurking score of node i as:

ri =

 1

out(i)

∑
j∈Bi

out(j)

in(j)
rj


1 +

 in(i)∑
j∈Ri in(j)

∑
j∈Ri

in(j)

out(j)
rj

 (5.5)
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Note that in Eq. (5.5) we have emphasized the aspect related to the strength
of non-lurking behavior of in-neighbors, which is expected to have a better �t
of the hypothetical likelihood function for a given node.

5.4.1 LurkerRank methods

We now de�ne our lurker ranking methods, dubbed LurkerRank (for short LR),
upon the previously de�ned lurking models. In order to provide a complete
speci�cation of our models, we resorted to the classic eigenvector-centrality
schemes o�ered by PageRank [27] and alpha-centrality [23]. Note that while
being widely applied to a variety of application domains with the purpose
of scoring the in�uence or prestige in information networks, PageRank and
alpha-centrality rely on di�erent assumptions which make it worth the explo-
ration of lurker ranking through both approaches.

Let us �rst recall the PageRank mathematics. The PageRank vector is
the unique solution of the iterative equation r = αSr + (1 − α)v. S de-
notes the column-stochastic transition probability matrix, which is de�ned
as (Dout

−1A)T + eaT/|V|, where A is the adjacency matrix of the net-
work graph G = 〈V, E〉, with Aij = 1 if (vi, vj) ∈ E , and Aij = 0 other-
wise; Dout = diag(Ae) is the out-degree diagonal matrix; e denotes a |V|-
dimensional column vector of ones; and a is de�ned such that ai = 1 if node i
has zero out-degree, and 0 otherwise. Vector v is typically de�ned as (1/|V|)e,
but can be modeled to bias the PageRank to boost a speci�c subset of nodes
in the graph. Term α is a real-valued coe�cient (α ∈ [0, 1], commonly set to
0.85), which acts as a damping factor so that the random surfer is expected
to discontinue the chain with probability 1−α, and hence to randomly select
a page each with relevance 1/|V| (teleportation).

We formulate three of our methods according to a PageRank-like scheme,
i.e., at a high level, according to a combination of a random walk term with
a random teleportation term. Our �rst LurkerRank method is named in-
neighbors-driven LurkerRank (hereinafter denoted as LRin) since it is built
upon Eq. (5.3):

ri = α

 1

out(i)

∑
j∈Bi

w(j, i)
out(j)

in(j)
rj

 +
1− α
|V|

(5.6)

Note that with Eq. (5.6), we introduce edge weights to deal with weighted
graphs as well, for the sake of generality; although, as in our experimental
setting, they are set as unitary by default. Analogously, the out-neighbors-
driven LurkerRank (hereinafter denoted as LRout) is de�ned as:
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ri = α

 in(i)∑
j∈Ri in(j)

∑
j∈Ri

w(i, j)
in(j)

out(j)
rj

+

1− α
|V|

(5.7)

Finally, the in-out-neighbors-driven LurkerRank (hereinafter denoted as LRin-
out) is de�ned as:

ri = α

 1

out(i)

∑
j∈Bi

w(j, i)
out(j)

in(j)
rj

(1+
 in(i)∑

j∈Ri in(j)

∑
j∈Ri

w(i, j)
in(j)

out(j)
rj

+
1− α
|V|

(5.8)

Alpha-centrality [23] expresses the centrality of a node as the number
of paths linking it to other nodes, exponentially attenuated by their length.
Moreover, it takes into account the possibility that each node's status may
also depend on information that comes from outside the network or that
may regard solely the member. Alpha-centrality is de�ned as r = αATr+ v,
where v is the vector of exogenous source of information (v = e as default),
and α here re�ects the relative importance of endogenous versus exogenous
factors in the determination of centrality. High values of α (e.g., 0.85) make
the close neighborhood contribute less to the centrality of a given node. The
rank obtained using alpha-centrality can be considered as the steady state
distribution of an information spread process on a network, with probability
α to transmit a message or in�uence along a link.

We will denote our alpha-centrality based LurkerRank methods with pre�x
ac- to distinguish them from the PageRank-based counterparts. The alpha-
centrality-based in-neighbors-driven LurkerRank (ac-LRin) is de�ned as:

ri = α

 1

out(i)

∑
j∈Bi

w(j, i)
out(j)

in(j)
rj

 + 1 (5.9)

Analogously, other two methods, denoted as ac-LRout and ac-LRin-out, are de-
�ned according to the out-neighbors-driven and in-out-neighbors-driven lurk-
ing models, respectively.

Figure 5.3 compares the rankings obtained by our LRin and basic Page-
Rank on the example network of Figure 5.1 (α set to the default 0.85). Using
LRin, node 8 was ranked highest (0.146), followed by 3 and 7 (0.112), and
then 11 (0.094), 10 (0.088): this sheds light on the ability of LRin to match
our de�nition of lurking (cf. discussion about Fig. 5.1 in Section 5.3). By con-
trast, PageRank ranked �rst nodes 10 and 11 (both around 0.256), and then
3 and 7 with a signi�cant gap in score from the �rst two (0.116), followed by
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Fig. 5.3. Lurker ranking in the example OSN graph of Fig. 5.1: LRin (on top) versus
PageRank (on bottom). Nodes are sized proportionally to their ranking scores.

8 (0.052), 1 (0.048); moreover, node 5 was ranked eighth, despite it is a major
feeder of the lurker 8, while it was correctly ranked lowest by LRin. Similarly,
alpha-centrality (results not shown) did not fare well as it ranked �rst nodes
11 (0.317) and 10 (0.308), before ranking node 8 (0.095), and nodes 3 and 7
in ninth and tenth position both with a score of 0.004.

5.4.2 Limit α → 0 of the LR functions

We investigate the behavior of LR functions to understand whether LR rank
can be reduced to either the in/out-degree or the out/in-degree rank as α ap-
proaches 0. We take the LRin functional form as case in point, while analogous
conclusions can be drawn for the other LR functions.

In the extreme case α = 0, the LRin score of each vertex is equal to 1/|V|.
If α ≈ 0, then (1 − α) → 1, therefore we write 1 − α = 1 − ε, with ε � 1,
and ri ≈ 1/|V|. Substituting these into Eq. (5.6), with unitary edge weights
for the sake of simplicity, we have:
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(a) Flickr (b) FriendFeed (c) Twitter-Kwak

Fig. 5.4. LRin rank versus in/out-degree rank. Damping factor α is set to 0.01. Sink
and source vertices are discarded.

ri = ε

 1

out(i)

∑
j∈Bi

out(j)

in(j)
rj

 +
1− ε
|V|

≈ 1

|V|

1 + ε

 1

out(i)

∑
j∈Bi

out(j)

in(j)
− 1

 (5.10)

A crucial part in Eq. (5.10) is the estimation of the sum. This term would be
estimated as proportional to the in/out-degree of vertex i and to the average
out/in-degree 〈 outin 〉:

ri ≈
1

|V|

[
1 + ε

(
in(i)

out(i)

〈
out

in

〉
− 1

)]
(5.11)

The above approximation is however admissible only if a relatively small dis-
persion can be assumed to hold for the out/in-degree distribution. Unfor-
tunately, in all our evaluation network datasets (cf. Sect. 5.6.1), this does
not seem the case since the out/in-degree distribution is always found to be
less narrow than the corresponding in/out-degree distribution, as reported
in Table 5.1. This would indicate that in principle LRin rank distribution is
likely not to follow exactly the same trend as that of in/out-degree as α ≈ 0.
In e�ect, although a moderate to strong positive correlation may still occur
� 0.568 on FriendFeed (Fig. 5.4(b)), 0.674 on Twitter-UDI , 0.679 on Flickr

(Fig. 5.4(a)), 0.686 on Twitter-Kwak (Fig. 5.4(c)), and 0.745 on GooglePlus

� Fig. 5.4 shows that top-ranked vertices by LRin often do not correspond to
top-ranked in/out.

5.5 Time-aware LurkerRank methods

In this section we describe our extensions to the LurkerRank algorithm, in
order to account for the temporal dimension when determining the lurking
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Table 5.1. Mean and standard deviation values of in/out-degree and out/in-degree.

in/out ∗ in/out ∗∗ out/in ∗ out/in ∗∗

mean sd mean sd mean sd mean sd

Flickr 1.096 3.377 2.731 10.557 1.263 4.583 5.554 20.085
FriendFeed 1.664 5.693 10.359 15.353 8.682 71.771 63.269 219.387
GooglePlus 3.947 11.200 24.350 27.665 3.739 46.235 27.984 144.051
Twitter-Kwak 2.647 3.863 11.662 9.442 1.263 46.078 6.910 145.665
Twitter-UDI 1.541 1.530 5.517 3.582 1.202 15.758 4.946 50.321

∗ Sink nodes and source nodes are discarded. ∗∗ Like ∗, but only 90th percentile is
considered.

scores of users in the network. We follow two approaches based on di�erent
models of temporal graph:

� Transient ranking, i.e., a measure of a node's lurking score based on a
time-static (snapshot) graph model;

� Cumulative ranking, i.e., a measure of a node's lurking score that encom-
passes a given time interval (sequence of snapshots), based on a time-evolving
graph model.

The building blocks of our methods rely on the speci�cation of the tempo-
ral aspects of interest, namely freshness and activity trend, both at user and
user relation levels. Freshness takes into account the timestamps of the latest
information produced (i.e., post) by a user, or the timestamps of the latest
information consumed by a user (i.e., comment, like) in response to another
user's post. Activity trend models how the activity of posting of a user, or the
activity of responding by user to another one, varies over time. We will now
elaborate on these concepts.

5.5.1 Freshness and activity trend functions

Users in the network are assumed to make actions and interact with each other
over a time span T ⊆ T. The temporal domain T is conveniently assumed to
be N. Therefore, the time-varying graph of a SN is seen as a discrete time
system, i.e., the time is discretized at a �xed granularity (e.g., day, week,
month).

Freshness. Let T ⊆ T be a temporal subset of interest, being in interval
notation of the form T = [ts, te], with ts ≤ te. For any time t, we de�ne the
freshness function ϕT (t) as:

ϕT (t) =

{
1/ log2(2 + (te − t)), if t ∈ T .
0, otherwise.

(5.12)

Function ϕT (t) ranges within [0, 1]. Note that we opt for a function with
logarithmic decay to ensure, as (te − t) gets larger, a slower decrease w.r.t.
other decreasing functions with values in (0, 1]�for instance, the graph of
ϕT (t) lies always above the graph of 2/(1+ exp(te− t)), or of 1/(1+ (te− t)).
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Given a user u, let Tu be the set of time units at which u performed actions
in the network. The freshness of u at a given temporal subset of interest T is
de�ned as:

fT (u) = max{ϕT (t), t ∈ Tu s.t. ts ≤ t ≤ te} (5.13)

Note that fT (u) is always de�ned, non-negative, and increases as more recent
is the latest activity of u w.r.t. T .

Activity trend. The second aspect we would like to model is the activity
trend of a user. Let Su = [(x1, t1), . . . , (xn, tn)] be the time series representing
the activity of user u over Tu. For every pair (x, t) ∈ Su, x denotes the number
of u's actions at time t.

In [27], the Derivative time series Segment Approximation (DSA) model
is proposed to represent time series into a concise form which is designed to
capture the signi�cant variations in the time series pro�le. For any given time
series S of length n, DSA produces a new series τ of h values, with h � n.
The main steps performed by DSA are summarized as follows:

� Step 1 - Derivative estimation: S is transformed into S′, where each value
x ∈ S is replaced by its �rst derivative estimate.

� Step 2 - Segmentation: the derivative time series S′ is partitioned into
h variable-length segments. Each of the segments aggregates subsequent
data values having very close derivatives, i.e., it represents a subsequence
of values with a speci�c trend.

� Step 3 - Segment approximation: each of the segments in S′ is mapped
to an angular value α, which collapses information on the average slope
within the segment.

The DSA series τ is of the form τ = [(α1, t1), . . . , (αh, th), such that αj =
arctan(µ(sj)) and tj = tj−1+ lj , with j = [1..h], where sj is the j-th segment,
lj its length, and µ(sj) the mean of its points.

We apply DSA to each time series Su in order to model the temporal
evolution of u's activity. As a post-processing step, the values αj of the DSA
sequence τu are normalized within [0,1] as α̂j = αj/π+1/2, i.e., an increasing
(resp. decreasing) trend of activity will correspond to an augmenting ((0.5, 1]),
resp. penalty ([0, 0.5)), factor. Then, we de�ne the activity trend of user u (over
Tu) as the time sequence:

a(u) = [(α̂1, t1), . . . , (α̂h, th)] (5.14)

Given a of interest T , the activity trend of u w.r.t. T corresponds to the
subsequence aT (u) of a(u) that best �ts T .

Freshness and activity trend of interaction. The notions of fresh-
ness and activity trend for individual users are here extended to model the
interaction of any two users u, v at a given time t, which corresponds to the
directed edge (u, v) in the graph snapshot containing t. The rationale here is
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that the more recent is an interaction (or the more increasing is its activity
trend), the better should be weighted the edge. Recall that (u, v) means that
v is consuming (i.e., commenting/�like�-ing) information at time t produced
by u.

Let us denote with Pu = {p1, . . . , pk} the set of information-production
actions (posts) of u, and with Tu(Pu) = {tp1 , . . . , tpk} the associated timings.
Moreover, let Cu→v be a set of triplets (tpi , tcj , xcj ), such that tpi ∈ Tu(Pu),
and tcj , xcj denote the time and the frequency, respectively, at which v con-
sumed (i.e., responded to) the u's post pi.

According to the above formalism, we de�ne the freshness of interaction
u→ v w.r.t. T as the maximum freshness over the sequence of pairs (post-time,
response-time) in T :

fT (u, v) = max{ϕ[tp,tc](tp),

with tc, tp s.t.∃(tp, tc,_) ∈ Cu→v ∧ ts ≤ tp, tc ≤ te} (5.15)

Analogously, we model the activity trend of interaction, based on DSA
model previously used to de�ne the activity trend of user. To this end, given
the interaction u→ v, we consider the time series Su,v representing pairs (x, t),
where x denotes the number of actions at time t performed by v in response
to a speci�c post by u. Then, we compute the activity trend of interaction
u → v, denoted with aT (u, v), as the result of the application of DSA to the
time series Su,v.

5.5.2 The Time-static LurkerRank algorithm

Our �rst formulation of time-aware LurkerRank is based on a time-static
graph model, which contains one single snapshot of the network. Our key idea
is to capitalize on the previously proposed functions of freshness and activity
trend to de�ne a time-aware weighting scheme that determines the strength
of the interaction between any two users linked at a given time.

Given a temporal interval of interest T , we de�ne the weighting function
w(·, ·) in Eq. (5.8) as a convex combination of the functions of freshness and
activity trend previously de�ned, plus one. Formally, for each u, v ∈ V :

wT (u, v) = 1 + (ω1 fT (u) + ω2 aT (u)+

+ ω3 fT (u, v) + ω4 aT (u, v)) (5.16)

where ωi ≥ 0, and
∑
i ωi = 1, with i ∈ [1..4]. We will hereinafter denote as

Ts-LR the time-static LurkerRank algorithm which is equipped with the above
weighting function.

5.5.3 The Time-evolving LurkerRank algorithm

The time-static LurkerRank can work only on a subset of relational data that
are restricted to a particular subinterval of the network timespan. Therefore,
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information on the sequence of events concerning users' (re)actions is lost
as relations are aggregated into a single snapshot. To overcome this issue,
we de�ne here an alternative weighting scheme for our LR algorithm that is
able to model, for each target user v, the potential accumulated over a time-
window of the contribution that each in-neighbor u had to the computation
of the lurking score of v.

Cumulative freshness and activity functions

We begin with the de�nition of a cumulative scoring function which forms
the basis for each of the subsequent functions that will apply to the previ-
ously de�ned freshness and activity trend of node/interaction. Intuitively, this
cumulative scoring function (g≤) should be de�ned at any time t ∈ T to ag-
gregate all values of a function g (de�ned in T ) computed at times t′ less than
or equal to t, following an exponential-decay model:

g≤(t) ∝ g(t) +
∑
t′<t

(1− 2t−t
′
)g(t′) (5.17)

Let the timespan T of the network graph be partitioned in consecutive
sub-intervals T1, T2, . . . , Ti, . . . = [t0, t1], (t1, t2], . . . , (ti−1, ti] . . .. The generic
cumulative scoring function g≤(·) has a straightforward translation in terms
of user-freshness: if ti corresponds to the end-time of the span of interest whose
latest sub-interval is Ti, we de�ne the cumulative user-freshness function ap-
plied to any user u to integrate (with exponential decay) all user-freshness
values individually obtained at each sub-interval preceding ti:

cfTi(u) = fTi(u) +
∑
tk<ti

(1− 2ti−tk)fTk(u) (5.18)

Our cumulative user-activity trend function, we denote with caTi(·), has sim-
ilar form:

caTi(u) = µ(aTi(u)) +
∑
tk<ti

(1− 2ti−tk)µ(aTk(u)) (5.19)

where µ(aT (u)) denotes the average of the values contained in the activ-
ity trend series aT (u). The de�nition of cumulative freshness of interaction,
cfTi(u, v), and cumulative activity trend of interaction, caTi(u, v), at each Ti,
follow intuitions analogous to Eq. (5.18) and Eq. (5.19), respectively.

The time-evolving LurkerRank algorithm, hereinafter denoted as Te-LR,
will be equipped with a weighting function analytically similar to that de�ned
in Eq. (5.16). Formally, for each u, v ∈ V and sub-interval T :

cwT (u, v) = 1 + (ω1 ĉfT (u) + ω2 ĉaT (u)+

+ ω3 ĉfT (u, v) + ω4 ĉaT (u, v)) (5.20)

where ωi ≥ 0,
∑
i ωi = 1, with i ∈ [1..4], and thêsymbol means that each of

the four functions is normalized in [0,1].
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Table 5.2. Main structural characteristics of the evaluation network datasets.
data # nodes # links avg avg clustering assortativity # sources LC

in-degreepath lengthcoe�cient # sinks wLC

Flickr 2,302,925 33,140,018 14.39 4.36* 0.107 0.015
360,416 0.573
57,424 0.248

FriendFeed 493,019 19,153,367 38.85 3.82 0.029 -0.128
41,953 0.955
292,003 0.354

GooglePlus 107,612 13,673,251 127.06 3.32 0.154 -0.074
35,341 0.869
22 0.096

Twitter-Kwak 16,009,364132,290,000 8.26 5.91* 1.26E-4 -0.095
1,067,936 0.914
10,298,788 0.435

Twitter-UDI 24,984,590284,884,500 11.40 5.45* 4.96E-3 -0.297
3,380,805 0.790
8,065,287 0.470

∗ Value estimated as (log(|V|))/ log(2|E|/|V|).

5.6 Experimentation on static contexts

We present in this section our experimentation over static graphs. We �rst de-
scribe the data we used and the assessment criteria selected for the analyses.
Then we begin presentation of our results with an analysis of reciprocity and
attachment behaviors of lurkers. Section 5.6.4 is devoted to present quantita-
tive results on the ranking performance obtained by the proposed and com-
peting methods. In Section 5.6.5, we introduce a randomization-like model to
study how to support �self-delurking� of a network, whereas in Section 5.6.6
we present a lurking-oriented percolation analysis. Finally, in Section 5.6.7,
we provide a qualitative insight into the methods' ranking behavior.

Notations: Here we brie�y recall main notations that will be used
throughout this section. LR and ac-LR pre�xed abbreviations refer to our
proposed LurkerRank methods (cf. Section 5.4.1). The following notations
are abbreviations for the competing methods (cf. Section 5.6.2): IO stands
for in/out-degree ratio ranking; PR, PR, and FB stand for PageRank, alpha-
centrality, and Fair-Bets model, respectively. Moreover, DD symbols refer to
data-driven rankings.

5.6.1 Data

We used �ve OSN datasets for our static evaluation, namely Twitter (with
two di�erent dumps), Flickr, FriendFeed, and GooglePlus:

� From the Twitter dump studied in [93], which we will refer to as Twitter-
Kwak, we extracted the follower-followee topology starting from a con-
nected component of one hundred thousands of users and their complete
neighborhoods. A partial copy of the tweet data used in [93] was exploited
to de�ne a Twitter-based data-driven ranking and also to perform a qual-
itative evaluation on Twitter-Kwak, as we shall describe in Section 5.6.2.

� The Twitter-UDI dataset [105] was originally collected in May 2011, hence
it's more recent and also larger than Twitter-Kwak. Tweet data however
could not be exploited for our analysis since they are available only for a
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very small subset of users in Twitter-UDI (less than 0.6%) and they are
also upper-bounded (limit of 500 tweets per user) [105].

� We used the entire Flickr data studied in [124], originally collected in
2006-2007. Information on the number of views and number of favorite
markings every photo had, was exploited for our de�nition of Flickr-based
data-driven ranking.

� We used the latest version of the FriendFeed dataset studied in [35]. Due
to the recognized presence of spambots in this OSN dataset, we �ltered
out users with an excessive number of posts (above 20 posts per day) as
suggested in [35].

� GooglePlus dataset was originally studied in [116], and consists of circles
from GooglePlus. The dataset was collected from users who had manually
shared their circles using the share circle feature, and the topology was
built by combining the edges from each node's ego network.

Beyond the complexity of their technical and sociological aspects, the �ve
networks have been selected since they naturally provide asymmetric relation-
ships � recall that in our setting, a link from user i to user j means that j is a
follower or subscriber of i � and also because they o�er a variety of topolog-
ical properties, as shown in Table 5.2. The table also reports each network's
Lurking Coe�cient (LC), in the upper row, and weighted LC (wLC), in the
bottomer row (cf. Section 5.3.2). Notably, a high LC (ranging from about 0.8
to 0.95) was found for all networks except for Flickr: this may prompt us to
suppose that lurkers would not characterize Flickr as much as other OSNs; in
e�ect, di�erently from the other selected networks, users would subscribe and
join the Flickr community when they are willing to upload and share their
photos, thus showing a normal attitude to participate. Moreover, the lower
value of weighted LC that characterizes GooglePlus could be explained due
to a clustering coe�cient, along with variation of in/out degree (Table 5.1),
exhibited by this network, which are both relatively higher than in the other
ones. Yet, note that the values of assortativity reported in Table 5.2 are always
negative or close to zero, which would indicate no tendency of vertices with
similar degree to connect to each other; interestingly, Twitter-UDI which has
the most negative degree of assortativity, has also the largest value of weighted
LC.

5.6.2 Assessment methodology

Competing methods and notations

We compared our proposed methods against PageRank (henceforth PR),
alpha-centrality (henceforth AC), and Fair-Bets model [31] (henceforth FB).
The latter method was included in the comparative evaluation as it also ex-
ploits the notion of in/out-degree ratio to rank users, which is seen as a fair-
bets model of social capital accumulation and expenditure; originally con-
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ceived to rank players in round-robin tournaments, the Fair-Bets model as-
sumes that users are paying each other to accept invitations on an online
community, then the fair bets score of a user is the amount she/he can a�ord
to pay on average. Fair-Bets computes the score of any node i as

ri =
1

out(i)

∑
j∈Bi

rj

Finally, we included in the evaluation the in/out-degree distribution of the
nodes in a network dataset, as a baseline method (henceforth IO).

Data-driven evaluation

Given the novelty of the problem at hand, we had to cope with an issue
relating to the lack of ground-truth data for lurker ranking. In the attempt
of simulating a ground-truth evaluation, we generated a data-driven ranking
(henceforth DD) for a network dataset and used it to assess the proposed and
competing methods.

On Twitter-Kwak, we calculated the score of a node as directly propor-
tional to its in/out-degree (Laplace add-one smoothed, cf. Section 5.4) and
inversely exponentially with a Twitter-speci�c measure of in�uence:

r∗i =
in(i)

out(i)
exp(−EI(i))

EI(·) denotes the empirical measure of in�uence [14] which is used to estimate
the in�uence of a user based on the amount of information s/he posted (i.e.,
tweets) and that her/his followers have retweeted. For a user i,

EI(i) =
1

out(i)

∑
j∈Ri

nRetweets(j)

where nRetweets(j) is the number of retweets by follower j. Note that, as found
in [93], a ranking based on retweets di�ers from that based on the number of
followers, and this prompted us to combine the two aspects in our data-driven
ranking.

We de�ned an analytically similar function for the FriendFeed data-driven
ranking, in which the empirical measure of in�uence has been rede�ned as:

EI(i) =

 1

out(i)

∑
j∈Ri

nCom(j, i)

 log10 (nPosts(i) + 10)

where nCom(j, i) is the number of comments from user j to posts by user i, and
nPosts(i) is the total number of posts by user i. Note that this combination
of indicators of user's activity with user's in�uence was needed since only a
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Table 5.3. Reciprocity and lurking. rle is the number of reciprocal lurking edges
(i.e., reciprocal edges in the lurking-induced network graph) divided by the total
number of edges in the original graph.

top-25% of the LRin-out solution top-10% of the LRin-out solution top-5% of the LRin-out solution
# recip. edges # edges # reciprocal % rle # edges # reciprocal % rle # edges # reciprocal % rle
(full graph) (induced graph) lurking edges (induced graph) lurking edges (induced graph) lurking edges

Flickr 20,603,483 23,352,367 16,440,872 49.61 12,349,595 8,704,922 26.27 5,030,759 3,192,712 9.63
FriendFeed 3,014,306 340,935 33,654 0.18 1,096 46 <0.01 2 0 0.00
GooglePlus 2,870,336 1,413,468 667,422 4.88 49,481 23,562 0.17 5,310 2,624 0.02
Twitter-Kwak 52,137,192 7,293 2,806 <0.01 216 52 <0.01 64 10 <0.01
Twitter-UDI 191,858,256 18,839,845 10,078,339 3.54 3,094,341 1,198,615 0.42 872,332 271,751 0.10

limited portion (below 10%) of users in FriendFeed had information on the
number of received comments.

For Flickr we produced two data-driven rankings, dubbed DD-F and DD-
V. While still related to the in/out degree as for the previously de�ned DD,
we used the number of favorites (DD-F), or alternatively the number of views
(DD-V), received by a user's photos to set the exponent (with negative sign)
in the data-driven ranking function.

Unfortunately, for both Twitter-UDI and GooglePlus we were unable at
the time of this writing to gather adequate information to produce a data-
driven ranking, also due to the restrictive usage limits of both networks APIs.
Note that the information used to generate DD for Twitter-Kwak was sub-
stantially incomplete and obsolete to be used for Twitter-UDI .

Assessment criteria

In order to comparatively evaluate our proposed methods' performance
with respect to the competing methods, we resorted to well-known assessment
criteria, namely Kendall tau rank correlation coe�cient [1], Fagin's intersec-
tion metric [52] and Bpref [29] (cf. Chapter 2, Section 2.7).

For what concerns Bpref setting, we �rst determined the set of judged
irrelevant candidates N as the set of nodes with data-driven ranking score
below or equal to 1, and used it for comparisons with DD, when available;
whereas, for comparisons among competing methods, N was de�ned as either
the bottom of the corresponding method's ranking having the same size as N
in the data-driven ranking, or (when DD is not available) as the bottom-25%
of the method's ranking. The set of judged relevant candidates R was selected
as the set of nodes having top-l% score from the complement of N .

Both F and Bpref are within [0, 1], whereby values closer to 1 correspond
to better scores. For the experiments discussed in the following, we setup
the size k of the top-ranked lists for Fagin evaluation to k = 102, 103, 104,
and the l% of relevant candidates for Bpref evaluation to l = 10, 25, 50 (i.e.,
relevant candidates in the 90th percentile, the third quartile and the median).
Moreover, unless otherwise speci�ed, F scores will correspond to ranking lists
without sink nodes, in order to avoid biasing (presumably overstating) our
evaluation with trivial lurkers.
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5.6.3 Lurker reciprocity and attachment

We aimed at understanding two di�erent aspects of the lurking behaviors:
(1) how lurkers relate to each other, in terms of link reciprocity, and (2) how
lurker distribution grows with respect to active users, which can be explained
in terms of attachment mechanisms.

Reciprocity

We examined the impact of the presence of lurkers on measures of reciprocity
in the various network graphs, under three di�erent settings that correspond
to the top-25%, top-10% and top-5%, respectively, of a LR ranking solution.
Speci�cally, we considered four measures of reciprocity, namely (i) the num-
ber of reciprocal lurking edges (i.e., reciprocal edges in the lurking-induced
network graph), (ii) the percentage of reciprocal lurking edges to the total
number of edges in the original graph (denoted as rle), (iii) the fraction of
reciprocal edges in the original network graph that connect lurkers to each
other, and (iv) the fraction of edges that connect lurkers to each other within
a lurking-induced subgraph.

Table 5.3 reports results obtained by the LRin-out method. A �rst remark
is that rle was very small or negligible regardless of the portion of LR ranking
solution considered. An exception was represented by Flickr, whose rle varied
from about 50% to 10%; this could be explained as an e�ect of the crawling
mechanism used to build the Flickr network dataset, since unlike the other
datasets, it was obtained starting from a single seed user and then performing
a breadth-�rst search on the social network graph. Considering the fraction
of reciprocal edges in the original network graph that connect lurkers to each
other (results not shown), again with the exception of Flickr we observed a
very small value even for the case of top-25% lurkers (around 23% for Google-
Plus, 5% for Twitter-UDI , and below 1% for FriendFeed and Twitter-Kwak),
while approaching zero when the top-ranked solution is narrowed to 10% or
smaller.

Note that, while LRin behaved very similarly to LRin-out, results obtained
by LRout showed that rle values were signi�cantly higher than those observed
in Table 5.3, with averages over the datasets equal to 35% (top-25%), 27%
(top-10%), and 20% (top-5%). Even higher were the values of the fraction of
reciprocal edges in the original network graph connecting lurkers, with peaks
above 90% in the top-25% case, and averages of 85% (top-25%), 63% (top-
10%), and 45% (top-5%). These �ndings were actually not surprising since
LRout is designed to emphasize the lurking attitude of any node from which
a target node receives information.

Figure 5.5, as complementary to Table 5.3, shows the fraction of edges that
connect lurkers to each other within a lurking-induced subgraph. In the �gure,
we also included for comparison the case of �potential lurkers�, regarding them
as those nodes having in/out-degree ratio above 1. An evident remark is that
the reciprocity between lurkers generally followed a decreasing trend varying
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Fig. 5.5. Fraction of reciprocal edges in the lurking-induced subnetworks.
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Fig. 5.6. Distribution of active users as a function of the lurkers-followers (a)-
(c) and distribution of lurkers as a function of the active users-followees (b)-(d).
(GooglePlus, two plots from the left, and Twitter-UDI , two plots from the right).
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from the �potential lurkers� to the top-5% setting; this trend was quite slow
or roughly stagnant on three out of �ve datasets (i.e., Flickr, GooglePlus,
and FriendFeed) but much sharper in the two largest networks (i.e., the two
Twitter datasets). Interestingly, when considering LRout instead of LRin-out
or LRin, the fraction of reciprocal edges in the lurking-induced subgraph was
in general not longer observed as a decreasing function by decreasing sizes of
lurker sets; the trend was rather increasing for the Twitter datasets (upper
values of 0.78 for Twitter-UDI and 0.60 for Twitter-Kwak) and for FriendFeed
(upper value of 0.32).

Attachment

We focus now on the relation between lurkers and the �active� users they are
linked to. Speci�cally, we analyzed the distribution of lurkers as function of
the degree of attached active users, and dually for the distribution of active
users. For this analysis, we selected the same fraction (25%) from the top and
from the bottom of the LRin-out ranking solution in order to choose the set
of lurkers and the set of active users, respectively, under examination.

Our goal was to understand whether the probability of observing active
users with a certain degree of attached lurkers, and vice versa, can be predicted
by a power law. Therefore, for each dataset, we learned the best �t of a power
law distribution to the observed data, where the statistical signi�cance of
this �tting was assessed based on a Kolmogorov-Smirnov test. The resulting
plots obtained on our datasets showed a power law behavior for both the
distribution of lurkers (following k active users) and the distribution of active
users (followed by k lurkers); Figure 5.6 shows the plots for GooglePlus and
Twitter-UDI . The exponent of the �tted power law distributions varied from
1.67 (GooglePlus and Twitter-Kwak) to 2 (FriendFeed, Twitter-UDI), for the
distribution of active users, and from 1.36 (Flickr, Twitter-Kwak) to 1.86
(GooglePlus), for the distribution of lurkers. Signi�cant �tting was actually
found in general for both distributions in each dataset, which would indicate
that they may follow a preferential attachment mechanism: active users, who
already are followed by a large number of lurkers, are likely to attract even
more lurkers; analogously, lurkers, who already follow a large number of active
users, are more likely to do so. Moreover, as smaller values of the Kolmogorov-
Smirnov statistic denote better �t, we observed a slight tendency of better
explaining the growing of the number of lurkers (rather than of active users)
by preferential attachment on GooglePlus and Twitter-UDI , while an opposite
situation was found on Flickr.

5.6.4 Ranking evaluation

Correlation analysis with data-driven rankings

Table 5.4 shows the Kendall tau rank correlation obtained by our LurkerRank
methods and by the competing methods with respect to the data-driven rank-
ing (DD) for all eligible datasets.
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Table 5.4. Comparative performance of LurkerRank methods and competitors with
respect to data-driven rankings: Kendall tau rank correlation values (with 95% con-
�dence intervals in parentheses).

dataset IO PR AC FB

FriendFeed .169 (± .003) .128 (± .004) .230 (± .005) .373 (± .004)
Flickr vs DD-V .046 (± .008) .043 (± .005) .043 (± .008) .047 (± .002)
Flickr vs DD-F .052 (± .007) .049 (± .005) .049 (± .008) .053 (± .002)
Twitter-Kwak .171 (± .006) .004 (± .011) .215 (± .010) .235 (± .012)

dataset LRin LRout LRin-out ac-LRin ac-LRout ac-LRin-out

FriendFeed .661 (± .003) -.169 (± .005) .497 (± .003) .664 (± .003) -.189 (± .005) .470 (± .003)
Flickr vs DD-V .247 (± .007) -.007 (± .013) .239 (± .014) .234 (± .014) .011 (± .014) .251 (± .013)
Flickr vs DD-F .231 (± .006) .003 (± .012) .260 (± .013) .255 (± .013) .011 (± .014) .273 (± .012)
Twitter-Kwak .671 (± .007) -.082 (± .004) .559 (± .008) .659 (± .008) -.073 (± .004) .560 (± .008)

Bold values refer to the highest correlation per dataset. All values except those in italic are
statistically signi�cant (under the null hypothesis of independence of two rankings).

The in-neighbors-driven and in-out-neighbors-driven LurkerRank meth-
ods generally obtained the highest correlation with DD (e.g., 0.67 by LRin on
Twitter-Kwak, 0.66 by ac-LRin on FriendFeed). Results con�rmed that LRin
and LRin-out (and their ac- counterparts) signi�cantly improved upon all com-
peting methods, with maximum gains of 0.59 against IO, 0.66 against PR, 0.45
against AC and 0.43 against FB.

Note that LRout and ac-LRout obtained the lowest scores on all datasets:
interestingly, this behavior con�rms our intuition that determining the strength
of lurking of a given node should not depend solely on the strength of the lurk-
ing behavior shown by the out-neighbors of that node (i.e., Principle III of
De�nition 5.1).

Concerning correlation of each of the competing methods with DD, we
observed on FriendFeed and Twitter-Kwak some correlation for FB (up to
0.37) and AC (up to 0.23), while IO and PR showed poor correlation. However,
on Flickr, all competing methods tended to be uncorrelated with the two DD,
with an average correlation of 0.05 over all competitors. More interestingly, it
is worth noting that IO generally showed poor correlation with DD, which not
only would justify the use of in/out-degree ranking as a baseline competing
method, but also gives evidence that in/out-degree cannot be considered as a
basic approximation of LurkerRank.

Comparative evaluation with LurkerRank methods

Tables 5.5�5.9 compare our LurkerRank methods against PageRank, alpha-
centrality, Fair-Bets (all at convergence) as well as against DD (where possible)
and IO. Note that results are organized on 3-row groups, where each row in a
group corresponds to a speci�c variation of the Fagin's or Bpref's parameters.

On Twitter-Kwak (Table 5.5), LRin and LRin-out along with their ac- coun-
terparts showed a relatively much higher F intersection with DD (0.516 on
average) and IO (0.473) than with FB (0.08), and a nearly empty F with
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Table 5.5. Comparative performances on Twitter-Kwak.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB

LRin .527 .404 0.0 0.0 .112 .997 .992 .121 .790 .441
.289 .209 0.0 0.0 .127 .995 .989 .473 .914 .704
.581 .617 .001 .001 .068 .985 .962 .521 .866 .606

LRout .030 .032 .181 .010 .034 .045 0.0 .754 .311 .313
.008 .008 .351 .024 .015 .055 .001 .757 .650 .600
.003 .002 .437 .048 .005 .109 .074 .641 .678 .648

LRin-out .475 .364 0.0 0.0 .064 .968 .981 .039 .826 .204
.314 .277 0.0 0.0 .063 .979 .977 .387 .929 .524
.666 .688 .001 .001 .032 .961 .925 .453 .878 .489

ac-LRin .583 .459 0.0 0.0 .174 .993 .990 .072 .808 .339
.573 .570 0.0 0.0 .122 .992 .988 .443 .921 .653
.767 .810 .001 .001 .048 .982 .967 .501 .872 .575

ac-LRout .038 .032 .244 .006 .036 .049 0.0 .796 .339 .307
.009 .008 .319 .017 .011 .059 0.0 .775 .659 .598
.003 .002 .362 .042 .004 .120 .081 .654 .687 .643

ac-LRin- .473 .363 0.0 0.0 .062 .957 .981 .039 .828 .203
out .278 .234 0.0 0.0 .062 .975 .976 .386 .930 .464

.663 .685 .001 .001 .031 .957 .933 .453 .880 .454

Bold values refer to the highest scores per LurkerRank method and assessment criterion.
Underlined bold values refer to the highest scores per assessment criterion.

respect to PR and AC. By contrast, LRout and ac-LRout exhibited a larger
F with PR, although below 0.316 on average, while scoring even lower with
respect to the other methods. Bpref evaluation led to mostly similar remarks
on the relative comparison between proposed and other methods: LRin, LRin-
out and their ac- counterparts highly matched DD and IO (around 0.97 on
average), but also a moderately high Bpref with respect to AC (0.87) and
mid-low Bpref with respect to FB (0.47). Again, as already observed for
both the Kendall evaluation and the Fagin evaluation, LRout and ac-LRout
showed no signi�cant matches in practice with DD (while scoring pretty high
with respect to PR).

Results on Twitter-UDI (Table 5.6) corroborated the advantage of LRin
and ac-LRin with respect to the other LR methods. LRin-out and ac-LRin-out
achieved lower F than LRin and ac-LRin, respectively, with respect to IO and
FB, especially for higher k. Compared to the Twitter-Kwak case, Bpref values
were relatively higher (respectively, lower) with respect to PR (respectively,
AC), except for LRout and ac-LRout which had higher Bpref with respect to
AC than in Twitter-Kwak.

On Flickr (Table 5.7), once again the best performance against the data-
driven ranking (DD-F and DD-V) was obtained by LRin and LRin-out along
with their ac- counterparts, and also roughly similar F values were obtained
with respect to IO and FB. Note that both data-driven ranking (the favorites-
based one, DD-F, and the views-based one, DD-V) corresponded to nearly
identical results, with a slightly better agreement of the LR algorithms with
respect to DD-F. In terms of Bpref , LRin, LRin-out and their ac- counterparts
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Table 5.6. Comparative performances on Twitter-UDI .

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50
IO PR AC FB IO PR AC FB

LRin .337 0.0 0.0 .184 .809 .254 .230 .477
.245 0.0 0.0 .136 .917 .645 .633 .546
.455 0.0 0.0 .292 .927 .709 .715 .568

LRout 0.0 0.0 0.0 0.0 0.0 .867 .767 .164
0.0 .004 0.0 .002 0.0 .876 .766 .339
.001 .021 .006 .001 .275 .810 .732 .531

LRin-out .305 0.0 0.0 .160 .762 .130 .123 .299
.178 0.0 0.0 .078 .897 .546 .550 .405
.172 0.0 0.0 .076 .902 .646 .656 .443

ac-LRin .343 0.0 0.0 .186 .825 .216 .202 .454
.267 0.0 0.0 .152 .924 .617 .617 .524
.446 0.0 0.0 .324 .932 .690 .704 .550

ac-LRout 0.0 0.0 0.0 0.0 0.0 .861 .765 .159
0.0 .004 0.0 .002 0.0 .873 .765 .338
.001 .021 .006 .001 .272 .807 .730 .530

ac-LRin-out .306 0.0 0.0 .161 .877 .113 .153 .140
.176 0.0 0.0 .076 .947 .482 .607 .293
.153 0.0 0.0 .060 .949 .598 .692 .399

Bold values refer to the highest scores per LurkerRank method and assessment criterion.
Underlined bold values refer to the highest scores per assessment criterion.

Table 5.7. Comparative performances on Flickr.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD-F DD-V IO PR AC FB DD-F DD-V IO PR AC FB

LRin .576 .574 .639 0.0 0.0 .552 .361 .327 .921 .465 .769 .502
.451 .433 .511 .003 .007 .463 .532 .496 .953 .522 .783 .488
.297 .286 .383 .018 .008 .313 .650 .630 .931 .499 .987 .570

LRout .102 .101 .123 .045 0.0 .037 .071 .060 .206 .620 .862 .138
.124 .121 .107 .064 0.0 .008 .252 .218 .509 .503 .868 .229
.015 .014 .126 .237 .007 .033 .460 .446 .645 .411 .878 .392

LRin-out .561 .559 .626 0.0 0.0 .536 .353 .321 .878 .441 .761 .520
.462 .444 .520 .004 .007 .462 .305 .292 .883 .474 .766 .509
.311 .301 .398 .021 .008 .310 .430 .417 .667 .478 .748 .594

ac-LRin .609 .607 .676 0.0 0.0 .587 .349 .316 .878 .458 .784 .498
.535 .513 .604 .004 .007 .538 .523 .487 .940 .484 .792 .482
.348 .336 .447 .018 .009 .352 .644 .625 .921 .481 .795 .573

ac-LRout .102 .009 .123 .051 0.0 .037 .071 .060 .209 .622 .660 .138
.105 .101 .107 .072 0.0 .008 .256 .220 .514 .510 .670 .232
.115 .114 .127 .229 .007 .034 .477 .464 .645 .413 .675 .392

ac-LRin- .443 .440 .510 0.0 0.0 .432 .375 .345 .958 .604 .640 .520
out .305 .293 .337 .002 .004 .291 .569 .533 .970 .675 .677 .466

.232 .224 .293 .013 .006 .215 .676 .655 .954 .569 .706 .494

Bold values refer to the highest scores per LurkerRank method and assessment criterion.
Underlined bold values refer to the highest scores per assessment criterion.

highly matched IO. Bpref values were also moderately high with respect to
AC and mid-low with respect to PR and FB.

Looking at FriendFeed results (Table 5.8), LRin and LRin-out along with
their ac- counterparts were again the best-performing methods against DD
(0.42 F and 0.97 Bpref), and also showed mid F (0.34) and high Bpref (0.89)
with respect to FB. Yet, LRout and ac-LRout were moderately in agreement
with PR and AC in terms of F , whereas all LR generally achieved mid Bpref
with both PR and AC.
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Table 5.8. Comparative performances on FriendFeed.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB

LRin .542 .690 .024 .010 .453 1.0 .980 .331 .606 .985
.488 .586 .108 .118 .384 .998 .976 .570 .802 .977
.576 .628 .126 .153 .493 .986 .953 .678 .843 .898

LRout .015 .009 .479 .620 .011 .008 0.0 .691 .672 .031
.138 .163 .550 .725 .167 .030 .038 .764 .746 .066
.154 .156 .498 .704 .184 .062 .110 .739 .737 .258

LRin-out .207 .297 .032 .042 .170 .972 .910 .252 .604 .879
.278 .320 .061 .064 .166 .955 .910 .553 .794 .870
.424 .455 .076 .099 .338 .914 .874 .642 .815 .813

ac-LRin .575 .735 .025 .014 .467 1.0 .980 .300 .605 .980
.520 .627 .118 .131 .403 .999 .977 .548 .803 .969
.603 .660 .130 .161 .503 .988 .954 .661 .845 .882

ac-LRout .015 .009 .479 .620 .011 .008 0.0 .691 .672 .031
.138 .163 .550 .725 .167 .030 0.0 .749 .726 .066
.154 .156 .498 .704 .184 .040 .080 .723 .718 .257

ac-LRin- .169 .243 0.0 0.0 .126 .958 .891 .237 .594 .852
out .240 .273 .001 .001 .122 .942 .892 .546 .785 .836

.400 .426 .041 .064 .310 .898 .853 .634 .803 .782

Bold values refer to the highest scores per LurkerRank method and assessment criterion.
Underlined bold values refer to the highest scores per assessment criterion.

Table 5.9. Comparative performances on GooglePlus.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50
IO PR AC FB IO PR AC FB

LRin .742 0.0 0.0 .363 1.0 .434 .582 .976
.850 .001 0.0 .480 .993 .584 .695 .962
.881 .063 .144 .592 .987 .684 .722 .937

LRout .011 .079 0.0 .015 .972 .796 .796 .686
.015 .107 .012 .015 .971 .793 .790 .815
.223 .322 .144 .213 .964 .782 .774 .807

LRin-out .629 0.0 0.0 .318 1.0 .462 .587 .907
.721 0.0 0.0 .419 .991 .572 .688 .910
.799 .045 .130 .547 .989 .677 .731 .886

ac-LRin .747 0.0 0.0 .361 1.0 .456 .578 .976
.851 .001 0.0 .477 .992 .546 .702 .963
.882 .063 .143 .591 .988 .699 .724 .937

ac-LRout .011 .077 0.0 .015 .972 .796 .796 .687
.015 .107 .012 .015 .971 .793 .790 .815
.223 .322 .145 .212 .965 .782 .774 .807

ac-LRin-out .647 0.0 0.0 .328 1.0 .489 .586 .896
.729 0.0 0.0 .422 .994 .612 .675 .899
.795 .042 .125 .543 .983 .702 .727 .875

Bold values refer to the highest scores per LurkerRank method and assessment criterion.
Underlined bold values refer to the highest scores per assessment criterion.

GooglePlus evaluation results (Table 5.9) led us to draw conclusions sim-
ilar to the other network datasets in terms of F values: in- and in-out-based
algorithms outperformed the out-based ones when comparing with IO and FB,
while nearly empty intersection was found with respect to PR and AC. LRin,
LRin-out and their ac- counterparts achieved very high Bpref with respect to
IO, and also showed good agreement with FB.
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Table 5.10. Twitter-Kwak t-test on the per-iteration performances.

Fagin evaluation Bpref evaluation
PR AC FB PR AC FB

LRin 4.4E-65 4.4E-65 8.4E-11 5.2E-110 1.1E-25 2.1E-65
LRout 2.8E-41 2.7E-41 1.8E-04 3.2E-50 5.5E-79 9.2E-71
LRin-out 4.3E-277 4.4E-277 2.9E-12 1.5E-89 6.7E-21 7.6E-65
ac-LRin 5.6E-228 5.6E-228 4.8E-14 1.2E-91 2.1E-25 2.7E-65
ac-LRout 6.5E-34 6.2E-34 1.8E-04 4.1E-54 1.8E-71 2.3E-73
ac-LRin-out 3.8E-213 3.3E-265 3.4E-12 5.8E-85 2.1E-21 1.0E-64

Table 5.11. FriendFeed t-test on the per-iteration performances.

Fagin evaluation Bpref evaluation
PR AC FB PR AC FB

LRin 1.3E-116 1.3E-103 2.6E-10 4.5E-195 5.9E-197 6.1E-10
LRout 8.5E-12 1.6E-101 1.5E-38 6.8E-252 1.3E-264 2.5E-271
LRin-out 6.0E-193 2.4E-166 2.1E-24 1.3E-298 2.1E-212 2.2E-116
ac-LRin 1.0E-195 1.0E-172 4.4E-13 5.0E-298 3.9E-189 7.8E-10
ac-LRout 2.6E-12 5.1E-88 1.3E-38 4.1E-99 5.9E-299 1.4E-282
ac-LRin-out 8.1E-63 1.3E-96 2.1E-25 8.3E-82 5.1E-226 1.5E-75

Statistical signi�cance testing

We also determined the statistical signi�cance of the better performance of
LurkerRank methods with respect to the competing ones, through two stages
of statistical testing analysis; in both cases, we �xed the Fagin parameter as
k = 104 (which ensured a larger overlap between the ranking lists to be com-
pared) and the Bpref parameter as l = 25 (for which |R| was always smaller
than |N |). Results refer here to Twitter-Kwak and FriendFeed, nevertheless
similar conclusions were actually reached for the other evaluation networks.

Tables 5.10�5.11 show the p-values resulting from an unpaired two-tail t-
test, in which the performance scores obtained for each iteration by a ranking
method with respect to DD were regarded as the statistical samples, under the
null hypothesis of no di�erence in performance with respect to DD between
a LurkerRank method and a competing method. Note that in all cases, the
number of iterations (samples) was adequate to perform a t-test (generally
above 50). Looking at the two tables and both F and Bpref evaluation, the
p-values turned out to be extremely low in most cases, thus giving a strong
evidence that the null hypothesis was always rejected, at 1% signi�cance level.
This �nding was useful to con�rm that a certain di�erence (actually, the
improvement) in performance between the LR methods and the competing
ones, also on FriendFeed for which relatively high Bpref scores were observed
in the previous analysis.

In the second stage of statistical testing, we analogously performed a paired
two-tail t-test in which the samples corresponded to the F scores respectively
obtained by two ranking methods with respect to DD over the same randomly
generated subgraph. For each of the network datasets, we extracted 100 sub-
graphs, each time starting from a randomly picked seed node and roughly
covering a �xed number of nodes (around 1/100 of the original network size).
This test was hence intended to stress the ranking methods performing over
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Table 5.12. Comparative performances on FriendFeed damping factor depending
on the average path length.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB

LRin .450 .686 .012 .003 .445 .955 .978 .318 .601 .985
.422 .582 .079 .078 .341 .914 .975 .567 .800 .974
.529 .627 .111 .134 .472 .678 .952 .673 .839 .897

LRout .015 .072 .510 .620 .015 .011 0.0 .689 .672 .027
.138 .070 .571 .725 .184 .033 .041 .762 .747 .059
.154 .208 .508 .704 .189 .155 .121 .738 .737 .199

LRin-out .205 .294 .020 .031 .191 .759 .909 .250 .604 .871
.274 .317 .053 .055 .182 .744 .910 .553 .792 .860
.421 .448 .074 .096 .352 .602 .872 .642 .813 .804

ac-LRin .485 .727 .016 .004 .479 .961 .978 .291 .600 .981
.450 .623 .088 .090 .367 .916 .975 .545 .800 .967
.553 .656 .115 .141 .488 .679 .951 .656 .841 .883

ac-LRout .015 .072 .510 .620 .015 .011 0.0 .689 .672 .027
.138 .070 .571 .725 .184 .033 .008 .747 .726 .059
.154 .208 .508 .704 .189 .142 .102 .721 .718 .199

ac-LRin- .169 .239 0.0 0.0 .140 .745 .889 .237 .594 .850
out .240 .271 .001 .001 .136 .722 .891 .547 .785 .833

.400 .421 .042 .064 .325 .592 .854 .636 .803 .780

Bold values refer to the highest scores per LurkerRank method and assessment criterion.
Underlined bold values refer to the highest scores per assessment criterion.

a pool of subnetworks having di�erent characteristics from each other, and
from the whole original network as well; for instance, on Twitter-Kwak, the
subnetworks had average path length mean of 2.52 (0.86 stdev), and in/out-
degree ratio mean of 0.07 (0.13 stdev) � this might be explained because
of the adopted approach of breadth-�rst traversal of the network, which led
to connect the majority of nodes with a few source nodes having very high
out-degree. On Twitter-Kwak, we observed a close behavior between the Lurk-
erRank methods (except LRout and ac-LRout) and AC (around 0.19 F on av-
erage), and between PR and FB, which however achieved a lower average F
(0.029) � note that k was still set to 104, hence very high for such network
sizes (i.e., around 200,000 nodes). In any case, i.e., for each pair of Lurker-
Rank method vs. competing method, the null hypothesis of equal means was
rejected even at 1% signi�cance level, since the p-values were ranging from
1.4E-3 to 2.8E-19. Analogous �nal remarks were drawn for FriendFeed.

Relation between damping factor and average path length

In our proposed methods, the damping factor α is chosen to be 0.85, in analogy
with the default setting of the parameter in the original PageRank algorithm.
Recall this �nds an explanation based on the empirical observation that a web
surfer is likely to navigate following 6 hyperlinks (before discontinuing this
navigation chain and randomly jumping on another page), which corresponds
to a probability α = 1−(1/6) ≈ 0.85. On the other hand, research on degrees-
of-separation in directed network graphs has shown that for many OSNs the
average path length is typically below 6 (e.g., [13, 125]). Here we leverage on
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Table 5.13. Comparative performances on GooglePlus with damping factor de-
pending on the average path length.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50
IO PR AC FB IO PR AC FB

LRin .729 0.0 0.0 .551 1.0 .438 .584 .985
.829 .001 0.0 .631 .989 .585 .700 .963
.864 .061 .140 .690 .983 .689 .725 .927

LRout .011 .085 0.0 .022 .972 .994 .996 .671
.015 .148 .012 .018 .971 .993 .990 .795
.223 .356 .144 .232 .964 .981 .974 .783

LRin-out .629 0.0 0.0 .474 .997 .467 .590 .940
.720 0.0 0.0 .546 .989 .576 .689 .915
.798 .047 .129 .642 .980 .679 .734 .876

ac-LRin .732 0.0 0.0 .551 1.0 .459 .579 .986
.830 .001 0.0 .629 .990 .550 .702 .963
.864 .061 .139 .689 .986 .711 .726 .927

ac-LRout .011 .083 0.0 .022 .972 .994 .996 .671
.015 .148 .012 .018 .971 .993 .990 .796
.223 .356 .145 .232 .965 .981 .974 .783

ac-LRin-out .647 0.0 0.0 .488 .998 .492 .590 .935
.729 0.0 0.0 .550 .991 .623 .678 .907
.795 .044 .125 .638 .984 .709 .728 .866

Bold values refer to the highest scores per LurkerRank method and assessment criterion.
Underlined bold values refer to the highest scores per assessment criterion.

this result, con�rmed in our network datasets as well, to understand how the
ranking performance may change as the damping factor is varied in function
of a network-speci�c structural characteristic like the average path length.
Precisely, we set α as α = 1 − (1/apl), being apl the average path length of
the particular network. For this evaluation stage, we focused on FriendFeed

and GooglePlus, which exhibit the lowest average path lengths, i.e., 3.82 and
3.32, respectively (cf. Table 5.2).

Comparing the results in Table 5.13 that correspond to α = 0.7 with the
results obtained with default α (Table 5.9) on GooglePlus, F values were
slightly lower (resp. unvaried) for the in- and in-out-based algorithms, (resp.
for the out-based algorithms) with respect to IO, generally higher with respect
to FB, and equal or higher with respect to PR and AC. Again comparing with
the results in Table 5.9, Bpref slightly increased with respect to PR and AC
and decreased with respect to IO. As for FriendFeed, comparing Table 5.8 with
Table 5.12, we found that F values were generally lower when using α = 0.74
for in- and in-out-based algorithms, and higher for out-based ones. A decrease
in the performance of in- and in-out-based algorithms was observed for Bpref
as well, especially with respect to DD.

Overall, it appears that the average path length cannot be regarded as a
good estimator of damping factor in our methods, in the sense of a necessarily
better alternative to the default 0.85. However, we would tend to take this sort
of conclusion with a grain of salt, due to the heterogeneity of such networks
and the lack of more example networks with average path length signi�cantly
below 6.
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Fig. 5.7. Runtime performance of LurkerRank methods.

E�ciency results

Figure 5.7 shows the runtime performance of LurkerRank algorithms. The
times do not include the graph building step.1 Firstly, it was interesting to
observe on all datasets that the LurkerRank methods consistently reached a
ranking stability very quickly, in the range 35ö75 iterations, with the excep-
tion of ac-LRin-out which always reached convergence with fewer iterations.
The latter fact is however explained by a generally poor diversi�cation of the
ranking scores achieved by ac-LRin-out, which particularly a�ects the top of
the ranking results: in fact, in most datasets, the scores at the maximum as
well as the third quartile are of the same order of magnitude as the mean
or even as the �rst quartile scores. LRin and LRout mostly required pretty
similar running times, while LRin-out was slower than the other algorithms
on 3 out of 5 networks � about twice the running time of LRin and LRout,
which is clearly explained since LRin-out needs to iterate both on the in- and
out-neighborhood of each node. As concerns the alpha-centrality based formu-
lations, ac-LRin always required a higher number of iterations to reach ranking
stability than LRin, while ac-LRout performed similarly and sometimes faster
than LRout, considering that in most cases both algorithms needed the same
number of iterations until ranking stability. As a side remark, it should be
noted that our power-iteration-method implementation of the LR algorithms
caused quite di�erent performance for networks with a number of edges of
the same order of magnitude, but a greater di�erence in the number of nodes
(e.g., FriendFeed and Flickr).

5.6.5 Delurking-oriented randomization

As we discussed in the Introduction, the ultimate objective of lurker analysis
is in principle to attract the lurkers to the community life, that is, to change

1 Experiments were carried out on an Intel Core i7-3960X CPU @ 3.30GHz, 64GB
RAM machine.
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Algorithm 5 Delurking-oriented randomization

Input: The topology graph G = 〈V, E〉 of an OSN. The ranking L corresponding to
a LR solution for G. Cut-o� percentage thresholds t1, t2 of ranking order in L.
Probability p. Maximum fraction d of new edges to add to G.

Output: A randomized graph G′.
1: E ′ ← ∅
2: Sort L by decreasing lurking score
3: Let Ltop (resp. Lbottom) be the top-t1 (resp. bottom-t2) of the sorted L
4: Eal ← {e = (a, l) ∈ E | a ∈ Lbottom, l ∈ Ltop}
5: repeat
6: Pick randomly with probability p an edge (a1, l1) ∈ Eal \ E ′
7: Pick randomly with probability p an edge (a2, l2) ∈ Eal\E ′, with a2 6= a1, l2 6=

l1
8: E ′ ← E ′ ∪ {(l1, a2), (l2, a1)} /* add the new edges */
9: until (|E ′| ≥ d|Eal|)
10: G′ ← 〈V, E ′ ∪ E〉

their status to that of active players in the network. Although devising real
delurking plans (which might rely on marketing aspects) goes beyond our
study, we are still interested in conceiving a general topology-based model
that can support �self-delurking� of a network.

For this purpose, we introduce a novel randomization-like model, named
delurking-oriented randomization. Randomized models are commonly used to
monitor how varying a certain topological feature may impact on the dynamics
of the network. The most widely applied randomized model uses the concept of
rewiring, so that the edges of the original (undirected) network are randomly
rewired pairwise. The key idea behind our delurking-oriented randomization
model is to simulate a mechanism of disclosure of the presence of lurkers, by
letting more-likely-active users virtually hear from less-likely-active users.

Algorithm 5 shows our delurking-oriented randomization method, which
substantially works by inserting new connections into the network each of
which randomly links a vertex selected from the top of a predetermined LR
ranking solution to a vertex selected from the bottom of that ranking. The
algorithm hence requires cut-o� thresholds to control the selection of the head
and tail of the LR distribution, and a percentage threshold to control the
degree of delurking-oriented randomization (i.e., the fraction of potentially
new edges to add to the graph). At each step of insertion of a new pair of
edges, it is to be ensured that both the new formed edges do not already exist
in the graph � this restriction prevents the appearance of multiple edges
connecting the same pair of vertices. It should be noted that Algorithm 5
does not provide a proper randomization model in its usual de�nition, since
both the size of the network and the degree of vertices will change.

We applied Algorithm 5 to our networks, with the following setting: p =
0.5, t1 = t2 = 25%, and d ranging from 0.2 to 1.0 (with increment by 0.2).
Note that this setup of the algorithm was chosen to allow us to focus mainly
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on the degree of delurking-oriented randomization (d); as for the partition of
the lurker ranking list, we decided to leave the middle 50% out and hence
select one quartile both for the top (t1) and the bottom (t2) of the ranking
list.

For this stage of evaluation, we mainly focused on two features of the net-
work: the LR distribution and the in/out-degree distribution (either with and
without the inclusion of sink and source vertices), and analyzed the pairwise
correlations between a LR (resp. in/out-degree) ranking on a particular net-
work and the LR (resp. in/out-degree) rankings obtained on the corresponding
delurking-randomized networks.

Considering the case where all vertices were included in the evaluation,
we observed no clear trend both in the pairwise correlations between the LR
ranking solutions at the di�erent degrees of delurking-oriented randomization,
which were either moderate (Flickr) or high, and in the correlations between
an original LR and each of the LR solutions in the randomized networks,
which were either absent (Flickr and FriendFeed) or moderate/high. How-
ever, when sink and source vertices were discarded from the analysis, trends
become more evident: in one case (corresponding to the Twitter networks),
the pairwise correlations between the LR ranking solutions at the di�erent
degrees of delurking-oriented randomization were moderate, while absent or
moderate with respect to the original LR ranking; however, in the other case
(corresponding to GooglePlus, Flickr, and FriendFeed), the LR ranking solu-
tions at the di�erent degrees of delurking-oriented randomization turned out
to be not or scarcely correlated to each other as well as totally uncorrelated
to the original LR ranking.

Interestingly, the above remarks indicate that upon a delurking-oriented
randomization process, the top-ranked lurkers can signi�cantly change, not
only with respect to the original con�guration of the network but also with
respect to a con�guration corresponding to a di�erent degree of delurking-
oriented randomization (shown in Fig. 5.8 for the LRin evaluation). Clearly,
as expected, when considered as a global feature of the network, the delurking-
oriented randomization impact can be lower for larger networks (e.g., Twitter),
which have much lower (resp. higher) clustering coe�cient (resp. average path
length) than the other network datasets.

By contrast, the delurking-oriented randomization seems to negligibly af-
fect the in/out-degree distribution: correlations turned out to be moderate to
high (when sinks and sources were considered) both between the in/out rank-
ing in the original network and each of the in/out rankings of the randomized
networks, and between the randomized in/out rankings pairwise. This re-
sult would indicate that an apparently �invasive� alteration of the topology
(through the insertion of new links) actually will not signi�cantly change the
topological features based on in- and out-degree distributions.
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Fig. 5.8. Delurking-oriented randomization analysis: pairwise correlation between
LRin solutions, as obtained on original network and randomized networks, for in-
creasing degree of delurking-oriented randomization, on Flickr (top) and FriendFeed
(bottom).

5.6.6 Percolation analysis

Percolation analysis corresponds to studying the e�ect of network disruption
via edge removal strategies, generally with the purpose of assessing topo-
logical integrity properties of the network or its vulnerability to (random)
failures/attacks. An edge removal strategy is typically based on local struc-
tural properties of edges, such as topological overlap. Topological overlap is
a measure originally introduced in [132] for undirected networks, which eval-
uates the number of neighbors shared by two given vertices i and j. Edges
between connected components are expected to have a low number of common
neighbors, and hence low topological overlap.

Removing edges by increasing order of topological overlap has shown to
e�ectively detect the edges that act as bridges between di�erent communi-
ties [61, 137]. Upon this we build our intuition that if we would discover a
certain correlation between the result of our lurker detection and the result
of percolation based on topological overlap, then we could claim that lurkers
are likely to behave as bridges between communities.

Our network model however implies that edges are directed from information-
producer to information-consumer, therefore the notion of bridge as highly
active user must be revised as less active user. Therefore, we needed �rst
to adapt the basic topological overlap to our setting of directed networks,
whereby the neighbor sets of any two selected vertices are partly considered
according to the orientation of the edge drawn between the two vertices. Given
edge (i, j), we de�ne the directed topological overlap as:
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Fig. 5.9. Percolation analysis: fraction of lurkers matched as function of the vertices
removed based on directed topological overlap.
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O(i, j) =
|Ri ∩Bj |

(|Ri| − 1) + (|Bj | − 1)− |Ri ∩Bj |
(5.21)

We developed a stage of evaluation in which two sets of vertices are com-
pared with each other: the one resulting from an edge removal strategy based
on increasing order of our directed variant of topological overlap, and the
other one corresponding to the highest-ranked lurkers detected by one of our
LR algorithms.

Figure 5.9 plots the fraction of top-25% of lurkers that matched the sets
of vertices respectively included in the 99th, 95th and 90th percentile of the
edges with lowest directed topological overlap. LRin, LRout, and LRin-out were
used to rank lurkers. The methods appear to behave very closely to each other
for all data, with some relative di�erences on the two Twitter networks. At
90th percentile of the edges with lowest directed topological overlap, almost
all top-lurkers were matched on FriendFeed, GooglePlus, and only by LRin
and LRinout, on the two Twitter networks as well. Moreover, on FriendFeed

and GooglePlus, most top-lurkers were matched already at 95th percentile.
Clearly, this relatively easy tendency of covering the set of top-lurkers

needs to be interpreted in relation to the ratio of the number of vertices
removed (by increasing directed topological overlap) with respect to the total
number of vertices in the network. While on FriendFeed and GooglePlus the
number of vertices removed corresponded to more than 90% of the total vertex
set (which hence explains the high rate of coverage over the top-lurkers),
on both the two Twitter networks, the above percentage was instead less
than 27%. The latter, being observed on the two largest evaluation networks,
should be taken as an important �nding, which would con�rm the relationship
between the lurkers and the bridges between communities.

We also analyzed the resilience of the various networks when vertices are
removed by decreasing lurking order. To better evaluate the impact of sinks on
the network disruption, we distinguished two cases: either sinks were prelimi-
narily �ltered out or they were included when selecting the fraction of lurkers
to remove from the network. As shown in Figure 5.10 for LRin, the removal
strategy with the most disruptive e�ects was that based on decreasing LR
rank (with pre-�ltering of sink vertices, denoted as LR_noS in the �gure),
which led to mostly dismantle the maximal strongly connected component
(i.e., 80 to 90% of its size) already for 25% of vertex removal in all networks
except GooglePlus (for which 50% of vertex removal was needed). By con-
trast, the removal strategy based on increasing topological overlap produced
disruptive e�ects smoother with respect to the two LR-based strategies, on all
networks. Interestingly, by including sink vertices in the selection of lurkers to
remove, the network resilience was the same as in the case of sink-pre-�ltering
on GooglePlus and Flickr, whereas on the two Twitter and FriendFeed the
resilience was higher than for the other strategies, since a level of dismantling
below 70-60% was reached only by a removal fraction of 50% or higher. Note
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Fig. 5.10. Percolation analysis: fraction of the maximal strongly CC as function of
removed vertices.

that Twitter and FriendFeed are the networks with a strong presence of sink
vertices, and with a sink/source ratio greater than 10.

5.6.7 Qualitative evaluation

We investigated the meaningfulness of the rankings produced by LurkerRank
methods as well as produced by the competing methods. For this analysis, we
retrieved the OSN pages of top-ranked users and examined the available in-
formation about their pro�le and neighborhoods. Our goal was to understand
whether a user actually looks like a lurker, or conversely s/he takes another
role in the network.

Tables 5.14�5.15 show the top-20 ranked users obtained on Twitter-Kwak

and FriendFeed by PageRank, alpha-centrality, Fair-Bets, and LRin. Table 5.14
also reports the number of times a user was retweeted (#rt), whereas Ta-
ble 5.15 reports the total number of posts by a user (#posts). Moreover, we
left sink nodes out of consideration in order to avoid biasing our evaluation
with trivial lurkers.

By comparing the top-ranked lists, it is evident that LRin behaved dif-
ferently from the other algorithms, since it shared just two users with FB
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(dark-grey shaded) and no users at all with PR and AC. Interestingly, the
LRin top-ranked list contains only users who have never been retweeted; by
retrieving the tweet post dates from Twitter, those users were all found as
quite longer-time users, as in fact they joined Twitter much earlier (e.g., #8,
#10 and #12 joined in 2007) than most users in the AC and PR top-ranked
lists. Conversely, in the latter two lists most users have been signi�cantly
retweeted although they joined later (e.g., 2009).

PR and AC showed a certain association, with ten users in common (light-
grey shaded). Most users in both AC and PR lists however were retweeted
hundreds times, and hence they should not be considered as lurkers. Our
hypothesis of non-lurking for those users was fully con�rmed as we observed
that those users' retweets were actually spread over a relatively short period
of time (e.g., second half of 2009). Moreover, AC and PR ranked the same
user on top, who is also the one having the highest number of retweets in
the lists; indeed, that user is a very in�uential person, and in fact s/he has a
followee/follower ratio much below 1: this would indicate that both AC and PR
were not able to correctly handle this case (i.e., scoring it low enough), because
their performance would be more a�ected by highly in�uential incoming links
(i.e., followees) � which is a clear indication of tendency to absorb valuable
knowledge � rather than by the number and type of followers. We also found
other cases with characteristics similar to #1, e.g., #12 in the PR list, #10
and #14 in the AC list, and the common users �ZAP.� (#3 in both lists) and
�SCO.� (#17 in PR, #12 in AC).

As concerns FB, it was surprising to �nd that 15 out of 20 top-ranked
users refer to spammers (#4, a fashion/cosmetic marketing spammer, #9, in
advertising, and #15, a porn spammer), or in general to suspended accounts
(#2-3, #5, #8, #10-11, #13-14, #17-20). Only #6, #12 and #16 appear
to be lurkers, which might be con�rmed by their high in/out-degree ratio
coupled with a zero retweet-count. By contrast, #1 is an art director and
designer, and #7 refers to an account actively used for academic advising
purposes; probably, the high number of followees (e.g., about 1800 for #7)
has misled the method. Therefore, like PR and AC, FB might also fail to
correctly recognize real lurkers.

In FriendFeed (Table 5.15), a large intersection was found among the top-
20 users not only between PR and AC (like in Twitter-Kwak) but also between
FB and LRin. Looking at the users' pro�les and at the contents of their posts,
we can state that most of the users shared by the top20 lists of FB and LRin are
recognized either as content spammers (i.e., users that have produced spam-
ming contents, regardless of the popularity and number of their posts), or as
professionals who aim to improve their visibility while staying as observers
in the community (e.g., #9 in LRin/#7 in FB is a marketing expert, #7 in
LRin/#5 in FB is a graphic designer). Some distinct pro�les are also found to
be clones, as they are associated to the same spamming contents (e.g., #1 and
#4 in LRin, which correspond to #1 and #17 in FB, both probably related to
a Russian commercial site). A reason for this massive presence of spammers



128 5 Ranking lurkers in social networks

Table 5.14. Top-20 Twitter-Kwak users by lurking score.

rank PR AC FB LRin
user #rt user #rt user #rt user #rt

1 B.O. 17811 B.O. 17811 D.W.S. 0 R.F. 0
2 W.F. 1676 ZAI. 10902 n.a. 0 R.J. 0
3 ZAP. 8707 ZAP. 8707 APA. 0 R.M.K. 0
4 TH. 7169 AS. 1172 T.S.C. 1 B.B.P. 0
5 L.E. 683 M.M. 7 n.a. 0 TR. 0
6 J.B. 1248 W.F. 1676 CON. 0 MU. 0
7 M.S. 476 M.K. 48 K.T. 0 B.R. 0
8 AS. 1172 P.B. 328 n.a. 0 AZ. 0
9 OH. 1009 W.A. 2814 S.M. 0 O.L. 0
10 H.T. 43 C.B. 11943 n.a. 0 N.T. 0
11 E.T. 2435 EL. 902 n.a. 0 FR. 0
12 SCH. 3277 SCO. 6970 M.P. 0 D.W.S. 0
13 RE. 1467 WI. 811 n.a. 0 AW. 0
14 H.S. 1346 O.W. 1803 n.a. 0 O.B. 0
15 M.M. 7 T.B.B. 102 M.E. 0 N.C. 0
16 ZAI. 10902 T.S. 74 B.B.P. 0 D.P. 0
17 SCO. 6970 S.S. 789 n.a. 0 AU. 0
18 M.K. 48 M.W. 363 n.a. 0 EM. 0
19 WI. 811 H.R. 750 n.a. 0 DI. 0
20 W.A. 2814 A.K. 1572 n.a. 0 M.A. 0

For privacy reasons, users' names were replaced with their initials or abbreviations.

probably can be found in the nature of the FriendFeed social network: being a
real-time cross-network feed aggregator makes it a desirable and user-friendly
means for spammers to reach high visibility, producing a number of user pro-
�les for spamming attempts having very similar characteristics to lurker ones
(e.g., high in/out degree ratio, low interaction with other members). Looking
at PR and AC top-20 users we found that, as in the Twitter-Kwak case, most
of them are not recognizable as lurkers, but rather as active and authorita-
tive users (e.g.,#7 in PR/#3 in AC is a �nance blogger, #1 in both PR and
AC is an industrial designer, #5 in PR/#2 in AC represents a philanthropic
foundation). We also found a user shared by PR and FB top-20s: although
the account does not exist anymore, its name would hint that the user was
probably a spammer for a hosting solutions company.

Concerning GooglePlus (results not shown), the top-ranked list by LRin is
mainly comprised of users that show poor public activity, and that added a lot
of people to their circles although scarcely reciprocated. FB showed a behavior
nearly similar to LRin, however its top-20 list contains less real lurkers than
those detected by LRin. PR and AC ranked high users that are likely to be
pretty in�uential, such as a classical guitarist with more than 60 thousand
followers (ranked #1 by PR), a landscape photographer with more than 42
thousand followers (ranked #1 by AC), and even a social media director with
nearly 400 thousand followers (ranked #6 by PR). In contrast to the other
network datasets, there were no shared users among PR and AC top-20s, while
FB shared 2 users with PR and 7 with LRin.
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Table 5.15. Top-20 FriendFeed users by lurking score.

rank PR AC FB LRin
user #posts user #posts user #posts user #posts

1 N.D.P. 350 N.D.P. 350 M.C.D. 11 M.C.D. 11
2 FRE. 3 C.T. 5 BOG. 367 BOG. 367
3 BR. 71 J.D.A. 282 L.H. 1 B.I. 61
4 A.C. 142 MBL. 37 DIM. 1 N.D. 13
5 C.T. 5 BR. 71 B.I. 61 G.A. 11
6 MBL. 37 U.R. 52 G.A. 11 L.H. 1
7 J.D.A. 282 TAV. 65 A.C. 2 R.W. 7
8 U.R. 52 D.H. 89 W.H.O. 10 ZAH. 3
9 S.M. 106 P.B. 13 ASR. 0 A.C. 2
10 W.H.O. 10 C.E. 447 H.P.B. 3 E.J.S. 24
11 RID. 886 RID. 886 MUA. 5 M.P. 2
12 D.G. 35 W.B. 5 E.J.S. 24 Y.P. 1
13 L.A.C. 4 R.T. 68 SVL. 1 S.E. 72
14 JSI. 49 K.K. 134 R.W. 7 J.N. 110
15 K.K. 134 D.S. 105 S.F.T. 4 H.P.B. 3
16 S.O. 12 L.A.C. 4 D.G. 5 P.C. 3
17 W.M. 108 JSI. 49 N.D. 13 MRT. 3
18 STR. 2 B.C. 14 I.P.G. 10 I.K.G. 2
19 C.F. 3 D.V. 85 ARG. 2 N.L. 1
20 R.T. 68 M.M.H. 34 E.E.M. 5 F.F. 764

For privacy reasons, users' names were replaced with their initials or abbreviations.

5.6.8 Some lessons learned

Our study so far allows us to draw some interesting conclusions, which are
brie�y summarized as follows.

Quantitative and qualitative results have demonstrated the ability of our
approach in unveiling lurking cases that are intuitive yet non-trivial. The best-
performing ranking methods are those based on in-neighbors-driven and in-
out-neighbors-driven lurking, i.e., the models emphasizing the �rst two princi-
ples underlying our lurking de�nition. These methods have shown high corre-
lation with the data-driven ranking, and outperform competing methods, i.e.,
PageRank, alpha-centrality, Fair-Bets model, and the baseline in/out-degree
ranking. Moreover, results tend to be relatively consistent over the PageRank-
based and the alpha-centrality-based formulations of the lurker ranking meth-
ods. (We expect however that a di�erent setting in the damping factor along
with the introduction of a term modeling personalization or exogenous infor-
mation in the respective formulas would bring to a more evident di�erenti-
ation of the two ranking approaches.) From a runtime e�ciency viewpoint,
LRin tends to perform faster than ac-LRin, while ac-LRin-out achieves the high-
est rate of convergence although at the cost of much less diversi�ed ranking
scores. Furthermore, our qualitative analysis of the OSN pages of the top-
ranked users has provided clear evidence that: (i) our approach successfully
detects lurkers in an OSN, and conversely (ii) the competing methods fail
in doing this � PageRank and alpha-centrality still detect in�uential users,
whereas Fair-Bets tends rather to identify spammers.

From a pure network-analysis perspective, lurkers are not very prone to
reciprocate each other, whereas preferential attachment is likely to occur be-
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tween lurkers and the active users they are linked to. Under a percolation
analysis framework, lurkers tend to be matched by users that are involved
in links with low (directed) topological overlap: this would hint at a relation
existing between lurkers and users playing the role of bridges between commu-
nities, under the assumption of lurking-oriented topological graph of an OSN.
Finally, our proposed delurking-oriented randomization strategy reveals that
self-delurking can be useful to change the top-ranked lurkers in the network,
while scarcely a�ecting the in/out degree distribution.

5.7 Experimentation on dynamic contexts

In this section, we will deal with temporal information to enhance the under-
standing and ranking of lurkers in an OSN, providing an in-depth analysis of
lurking in dynamic contexts structured in two ideal phases: (i) we will frame
and try to answer four research questions that build our analysis of lurkers
along the time dimension in a SN environment and (ii) we will provide the ef-
fectiveness results obtained by our time-aware LurkerRank methods, for both
the transient and cumulative cases. Network analysis and ranking evaluation
performed on Flickr, FriendFeed and Instagram networks allowed us to draw
interesting remarks on both the understanding of lurking dynamics and on
transient and cumulative scenarios of time-aware ranking.

5.7.1 Motivations and research questions

Online social environments are highly dynamic systems, as individuals join,
participate, attract, cooperate, and disappear across time. This clearly a�ects
the shape of the network both in terms of its social (followship) and interaction
graphs (e.g., [77, 92, 101, 30, 99, 176]). Research on temporal network analy-
sis and mining strives to understand the driving forces behind the evolution
of OSNs and what dynamical patterns are produced by an interplay of var-
ious user-related dimensions in OSNs. Dealing with the temporal dimension
to mine lurkers appears to be even more challenging. It's also an emergent
necessity, as users in an OSN naturally evolve playing di�erent roles, thus
showing a stronger or weaker tendency toward lurking at di�erent times.

In this section we provide insights into the understanding of lurkers from
di�erent perspectives along the time dimension in an OSN environment. Using
Flickr, FriendFeed and Instagram as evaluation networks, we address four
research questions which are summarized as follows.

Q1: Do lurkers match to zero-contributors? De�nitions of lurking are of-
ten related to nonposting behavior. We aim at gaining insights into the corre-
spondence between passive users and lurkers over time. Passive users are here
intended as zero-contributors, i.e., users who have never posted, or provided
a comment or favorite-mark.
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Q2: How frequently do lurkers respond to the others' actions? Lurkers
can show a limited amount of activity in response to others' contributions to
the community life. We are interested in measuring the distribution of time
latency that occurs to observe repeated actions by a user in response to her/his
followees (i.e., comments, or favorite-marks).

Q3: Do lurkers create preferential relations with active users? In the third
research question, our goal is to unveil the dynamics of the binding between
lurkers and active users, and how this relates to the popularity of the active
users.

Q4: How does lurking behavior evolve? We explore how lurking trends
evolve over time, how they can be grouped together, and whether character-
istic patterns may arise to indicate di�erent pro�les of lurkers.

5.7.2 Data

We used Flickr, FriendFeed and Instagram network datasets to conduct our
analysis. Flickr and FriendFeed refer to the same datasets used for the static
analysis (see Section 5.6.1), while Instagram (about 55K nodes, 1M links) is
our latest dump recently crawled in 2014,2 also studied in [55].

The selected datasets contain signi�cant information on the temporal ac-
tivities of users. Flickr contains timestamps of 34.7M favorite markings as-
signed to the uploaded photos, and also contains (inferred) timings on the user
subscriptions. In Instagram, every link between v (follower) and u (followee)
is annotated with the number and timestamp of the v's comments to media
posted by u (about 2M comments and 1.7M likes). Analogous to Instagram

is the situation in FriendFeed but for information concerning likes (≈230K)
and comments (>687K) to posts.

5.7.3 Lurkers vs. inactive users

To answer our �rst question (Q1), we initially analyzed how much the set of
zero-contributors overlaps with the set of users having an in/out-degree ratio
higher than one, here dubbed �potential lurkers�. When considering the static
picture of a network dataset, one remark is that the set overlap between
zero-contributors and potential lurkers may vary from 12% (favorite-based
interaction network in Flickr) to 72% and 95% (comment-based interaction
networks in FriendFeed and Instagram, respectively). Moreover, since the rel-
ative di�erence in size of the two sets can vary from one dataset to another,
we also computed the overlap ratio w.r.t. the set of potential lurkers, which
was found to be 57% on Flickr, 62% on Instagram, and 96% on FriendFeed.
There are hence clues that the overlap (or overlap ratio) would be relatively
smaller when favorite/like interactions are taken into account, that is, poten-
tial lurkers are more likely to behave similarly to passive users when activity
is regarded in terms of commenting.

2 Available at http://uweb.dimes.unical.it/tagarelli/data/.
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Fig. 5.11. Overlap ratio of zero-contributors against potential lurkers and top-
ranked lurkers: distributions over weekly snapshots of the Flickr network. The inset
shows the weekly distributions of zero-contributors and potential lurkers.

We further investigated how the relation between inactive and lurking
users evolve over time. In this analysis, we also included the set of top-ranked
users obtained by our LR algorithm. Figure 5.11 shows the temporal trends
of overlap ratios w.r.t. potential lurkers, top-5% and top-25% ranked lurkers,
on Flickr. Interestingly, the overlap ratios remain rather una�ected over time,
despite the jump in frequency at the 14-th week (displayed in the inset). The
distribution of top-5% ranked lurkers is always above the other two series (up
to 0.15), which in turn roughly match. Note that in the inset, the distribu-
tions of potential lurkers and zero-contributors actually follow close trends,
although they are scaled di�erently (on one order of magnitude).

5.7.4 Responsiveness

Concerning question Q2, we examined the distribution of time di�erences (in
days) between any two consecutive responsive actions made by a user w.r.t. a
post created by her/his followees. Figure 5.12 shows the empirical cumulative
distribution functions over the �rst 90 days, for comments on Instagram and
for favorites on Flickr; main chart areas refer to the top-ranked lurkers (in
fractions of 5% and 25%), while the insets refer to all users. For both networks,
the lurkers' responsiveness frequency is of the order of several days, or weeks.
In fact, to observe 80% of responses, about 18 days would pass in Flickr,
but nearly one month in Instagram for the top-25% lurkers (and even longer,
i.e., more than 40 days, for the top-5% lurkers). In any case, the lurkers'
responsiveness frequency appears to be twice slower than that exhibited by
the users in general: looking at the insets in the two charts, it is clear that
users tend to repeat comments/favorites to others' posts more rapidly, i.e.,
less than 20 (resp. 10) days on Instagram (resp. Flickr).
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Fig. 5.12. Responsiveness frequency: cumulative distributions of lurker's reaction
latency (in days), based on favorites (Flickr, on the left) and on comments (Insta-
gram, on the right). Comparison w.r.t. generic user's reaction latency is shown in
the insets.

5.7.5 Preferential attachment

We focus now on the relations between lurkers and the �active� users they are
linked to. For this purpose, we selected the set of lurkers and the set of active
users respectively from the top and the bottom of the LR ranking solution.

We �rst investigated whether the probability of observing active users
with a certain degree of attached lurkers, and vice versa, can be predicted by
a power-law. Figure 5.13 shows the distribution of lurkers as function of the
degree of attached active users, and dually for the distribution of active users,
obtained on the Flickr and FriendFeed followship graphs, using the top-25%
and bottom-25% of the LR ranking solution. We computed the best �t of
a power-law distribution to the observed data, and assessed the statistical
signi�cance of the �tting by a Kolmogorov-Smirnov test. From the �gure it
can be noted that the plots follow a power-law behavior. The exponents of the
�tted power-law distributions are 1.725 (xmin = 1) and 1.363 (xmin = 1) for
Flickr (Fig. 5.13(a) and (b), resp.), 2.015 (xmin = 315) and 1.679 (xmin = 99)
for FriendFeed (Fig. 5.13(c) and (d), resp.). In all cases, the power-law �tting is
statistically signi�cant, with Kolmogorov-Smirnov test statistic (resp. p-value)
of 0.0236 (resp. 0.8006) for Fig. 5.13(a), 0.0396 (resp. 0.7662) for Fig. 5.13(b),
0.0516 (resp. 0.9946) for Fig. 5.13(c), and 0.0546 (resp. 0.9161) for Fig. 5.13(d).

Our main goal to answer question Q3 is to try explaining the relation
between lurkers and active users in terms of preferential attachment, that is,
we hypothesize that lurking connections are attached preferentially to active
users that already have a large number of connected lurkers. This is also
consistent with previous research in which preferential attachment has been
studied as a growth model also for directed networks, such as Wikipedia [33]
and Flickr [124]; however, in our context, such a type of analysis becomes more
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(a) (b)

(c) (d)

Fig. 5.13. Distribution of active users as a function of the lurkers-followers (a)-(c)
and distribution of lurkers as a function of the active users-followees (b)-(d). (Flickr,
two plots from the left, and FriendFeed, two plots from the right).

complicated since nodes (and their neighborhood) must be selected according
to their lurking or activity properties.

Following the lead of [124], we studied two separate cases of �attachment�:
intuitively, these correspond to new connections received by active users for
any k lurkers, and to new connections produced by lurkers for any k active
users. Figure 5.14 shows results obtained on Flickr, averaged per user and per
week, for each k. It can be noted that the number of lurkers shows a good
linear correlation with the average number of new links received by active
users (left-hand side of Fig. 5.14): the least-squared-error linear �t has a slope
of 0.00836, which means that on average active users receive per week one
new connection from lurkers for every 120 connections (lurkers) that they
already have. By contrast, no preferential attachment behavior occurs for the
opposite situation (right-hand side of Fig. 5.14), that is, lurkers that have a
higher number of active users as followees are not more likely to create new
connections to other active users.
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Fig. 5.14. Preferential attachment: lurkers vs. active users. New connections are
detected for each weekly-aggregated network (on Flickr).

5.7.6 Temporal trends and clustering

To answer our fourth question (Q4), we aim at revealing structures hidden
in the lurking trends that vary over time. We pursue this goal as a task of
clustering of time series representing the users' lurking pro�les. The basis for
this clustering analysis lies in repeatedly applying our LR method to successive
snapshots of a network dataset. Since the graph snapshots can vary in size,
LR scores were �rst normalized to be comparable across di�erent times. We
then generated a time series of the normalized LR scores for every user in the
dataset. The resulting set of time series was the input for our clustering task.

We adopted a soft clustering approach to group the time series of LR
scores. This implies that a time series is allowed to obtain fuzzy memberships
to all clusters. Our choice is motivated by the suspect that the natural clusters
to be detected in this kind of time-course data could not be well-separated,
rather they could be frequently overlap. A suitable method to detect clusters
in this kind of data is based on fuzzy c-means clustering. We used a particu-
larly e�cient implementation, provided by the Mfuzz R-package tool,3 based
on minimization of the weighted square error function. Note that since the
clustering is performed in Euclidean space, the time series were standardized
to have a mean value of zero and a standard deviation of one. This prepro-
cessing step ensures that series with similar variations are close in Euclidean
space. Yet, the time series under study are expected not to have local time
shifting, and they mostly are of the same length, which does not raise the
need of a dynamic time warping approach to the similarity detection in our
context. As concerns the setting of the fuzzi�er and the number of clusters
required by the clustering algorithm, we follow the methodology suggested
in [143].

3 http://itb.biologie.hu-berlin.de/∼futschik/software/R/Mfuzz/.
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Figures 5.15 and 5.16 show some of the clustering results we obtained on
the evaluation datasets. For this analysis, we initially selected the top-25%
lurkers of the network snapshot at time zero, then we kept only those users
appearing in at least 50% of the subsequent snapshots. Results correspond
to di�erent scenarios, both in terms of time-granularity (which impacts on
the time series length) and type of relation (i.e., comment, favorite-mark,
like+comment) underlying the graphs from which the time series were gener-
ated. Note that the membership values of time series are color-encoded in the
plots, which facilitates the identi�cation of temporal patterns in the clusters.

It can be noted from the �gure that some cases are characterized by quite
evident trends. For instance, on Flickr, cluster#2 groups lurkers whose be-
havior (lurking scores) evolves in the form of a series with an initial plateau
followed by an increasing ramp and then a decreasing ramp, �nally by a new
stagnation trend. Similar is the situation depicted by cluster#3 on Flickr.
On FriendFeed, clusters#1-#3-#4 present a more or less marked period of
roughly constant lurking behavior between the 24th and 36th weeks, along
with various peaks in the heads or tails of the series, which would hint at par-
ticularly critical (passive) periods of lurking. In general, more time-consuming
actions (i.e., comments on Instagram, like+comments on FriendFeed) tend
to correspond to trends that present sharper upward/downward shifts, and
to clusters with more noisy data. Finally, note that except for cluster#1 on
Flickr, lurking series do not tend to group into decreasing trends, which would
suggest that lurkers are not likely to spontaneously �de-lurk� themselves, i.e.,
to turn their behavior into a more active participation to the community life.

5.7.7 Evaluation of Time-aware LurkerRank algorithms

Data-driven evaluation

According to Section 5.6.2, we generated a data-driven ranking (henceforth
DD) for every network graph and used it to assess the proposed and com-
peting methods. However, in our context, a network graph corresponds to
the interaction graph (rather than the topology graph) induced at a given
time con�guration. On Flickr, we calculated the score of a node as di-
rectly proportional to its in/out-degree (Laplace add-one smoothed, cf. Sec-
tion 4.3) and inversely exponentially with a dataset-speci�c measure of in-

�uence: r∗v = in(v)
out(v) exp(−EI(v)). EI(·) denotes the empirical measure of

in�uence (inspired by the one proposed in [14] for Twitter) which is used to
estimate the in�uence of a user based on the number of favorite-markings
her/his posts received. For a user u, EI(u) = 1

out(u)

∑
v∈R(u) nFavorites(v),

where nFavorites(v) is the number of favorites made by v. We de�ned analyt-
ically similar functions for FriendFeed and Instagram, in which the exponent
in the empirical measure of in�uence has been rede�ned in terms of number
of comments. Note again a di�erent DD was generated per dataset and per
time-window, in both transient and cumulative cases.
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Fig. 5.15. Clustering of the time series representing LR scores in time-evolving
graph networks: (a) FriendFeed on daily snapshots built on like+comment relations,
(b) Flickr on weekly snapshots built on favorite relations. Warmer colors correspond
to series with higher cluster-membership.
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Fig. 5.16. Clustering of the time series representing LR scores in the time-evolving
graph network of Instagram monthly snapshots built on comment relations. Warmer
colors correspond to series with higher cluster-membership.

Competing methods

We compared our proposed methods Ts-LR and Te-LR against the (time-
unaware) LurkerRank (LR) [162]. We also compared Ts-LR and Te-LR against
T-Rank∗, a modi�ed version of the T-Rank algorithm [19] in which, to avoid
bias w.r.t. our algorithms, the personalization vector is kept as uniform over all
nodes. We used the setting of the parameters in T-Rank as suggested in [19].

Results

Table 5.16 reports on results for both the time-static case (upper subtable)
and the time-evolving case (bottomer subtable). For any given dataset and
setting of the weighting function, the reported value is the average of the
di�erences between the Kendall-tau correlation achieved by our method vs.
the reference DD,4 and the Kendall-tau correlation achieved by a competitor
vs. DD; each di�erence computation corresponded to a week. Note the �rst
four rows in each subtable correspond to singleton time-static (resp. time-

evolving) weighting, i.e., fT (·) (resp. ĉfT (·)), aT (·) (resp. ĉaT (·)), and their
user-to-user function counterparts.

4 Correlation values were in the range 0.45-0.63 on Flickr, and 0.78-0.95 on the
other datasets. Recall that Kendall-tau correlation ranges within [-1,1].



5.7 Experimentation on dynamic contexts 139

Table 5.16.Average di�erence (per week) of Kendall-tau correlation with DD: com-
parison between the proposed Ts-LR and Te-LR against LR and a modi�ed version
of T-Rank [19]:

setting of the Flickr FriendFeed Instagram
weighting function Ts-LR Ts-LR vs. Ts-LR Ts-LR vs. Ts-LR Te-LR vs.
Eq. (5.16) vs. LR T-Rank∗ vs. LR T-Rank∗ vs. LR T-Rank∗

ω1 = 1 .107 .209 .221 .204 .201 .214
ω2 = 1 .221 .231 .224 .316 .212 .296
ω3 = 1 .046 .122 .244 .340 .274 .384
ω4 = 1 .012 .104 .021 .179 .031 .108
ω1=ω2=0.5 .223 .232 .221 .255 .208 .302
ω1=ω3=0.5 .102 .146 .242 .307 .276 .385

ω2=ω4=0.5 .079 .142 .088 .201 .108 .166
ωi=0.25 (i=1..4) .094 .186 .103 .226 .128 .249

setting of the Flickr FriendFeed Instagram
weighting function Ts-LR Ts-LR vs. Ts-LR Ts-LR vs. Ts-LR Te-LR vs.
Eq. (5.20) vs. LR T-Rank∗ vs. LR T-Rank∗ vs. LR T-Rank∗

ω1 = 1 .240 .454 .322 .432 .326 .452
ω2 = 1 .261 .521 .227 .389 .222 .409
ω3 = 1 .180 .403 .318 .428 .336 .454
ω4 = 1 .091 .211 .128 .203 .103 .218
ω1=ω2=0.5 .276 .412 .215 .371 .204 .393
ω1=ω3=0.5 .207 .488 .317 .454 .341 .471

ω2=ω4=0.5 .198 .376 .084 .201 .114 .203
ωi=0.25 (i=1..4) .206 .423 .168 .362 .195 .371

Bold values correspond to the best scores per method comparison, per dataset.

A �rst important remark concerns the comparison of the proposed Ts-
LR and Te-LR against LR: the former consistently outperformed the (time-
unaware) LurkerRank (with average gains up to 0.21 on Flickr, 0.22 on Friend-
Feed, and 0.23 on Instagram), con�rming our initial hypothesis of increased
performance when temporal aspects are integrated into the ranking algorithm.

Focusing on the combinations of the freshness and activity functions that
determine the best-performing form of the LR weighting function, we observed
stronger improvement (upon LR and the competitor T-Rank∗) due to the user
activity trend function (on Flickr), and both freshness functions, used as sin-
gleton or combined. Accounting for variations in activity trend appears to
be more bene�cial on a favorite-based network like Flickr, whereas informa-
tion concerning freshness would have a better potential on comment-based
networks.

The Te-LR method generally achieved higher performance gains (w.r.t.
the reference DD) than the transient ranking method (Ts-LR) against both
LR and T-Rank∗. Both Te-LR and Ts-LR consistently outperformed T-Rank∗,
regardless of the particular setting of the weighting function. In detail, on
average: 0.17 on Flickr, 0.25 on FriendFeed and 0.26 on Instagram in the
time-static case, 0.41 on Flickr, 0.36 on FriendFeed and 0.37 on Instagram

in the time-evolving case. Moreover, higher gains were obtained by using the
relation-freshness (i.e., ω3 > 0) and the node-activity trend functions (i.e.,
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ω2 > 0); note in particular that T-Rank makes use of a simple notion of
activity amount rather than activity trend [19].

Finally note that the gains obtained by Ts-LR and Te-LR on Flickr were
generally lower than those achieved on FriendFeed or Instagram. This could
indicate that the �comment� type of interaction would act as a better discrim-
inant than �favorite/like� to capture the lurker dynamics via a time-varying
graph model.

5.8 Applications to other domains

We believe that the problem of identifying and ranking lurkers �nds applica-
tion in a variety of information networks other than the online social network
scenario described in previous sections. Here we discuss two di�erent instances
of the lurker ranking problem concerning the scenarios of social trust and re-
search collaboration networks. A common principle that characterizes lurkers
in any information network is that for those nodes there is often an unbalance
between the information consumed with respect to the information produced.

5.8.1 Lurking and social trust

Measuring trust behaviors has long been an important topic in psychology
and social science [2, 117]. Trust is a complex relationship: deciding the trust-
worthiness of a user relies on a host of factors, such as personal relation-
ship and past experiences of that user with her/his friends, and opinions
about actions that the user has made in the past. In social network anal-
ysis from a computer science perspective, most existing studies have mainly
focused on behavioral aspects discriminating between users who play �good�
roles (e.g., reliable or in�uential users) and users who play �bad� roles (e.g.,
spammers) [34, 60, 8, 71, 81]. In any case, regardless of the speci�c task
being addressed (e.g., trust prediction [68, 107, 103, 182], trust/distrust rank-
ing [170, 129, 168, 134, 66]), research on trust computing has normally de-
pended on the variety of active behaviors shown by the users in an online
community. These behaviors are generally expressed at di�erent levels and
intentions of information production, that is, trustworthy/in�uential users
typically produce good or useful contents, whereas untrustworthy/spamming
users produce malicious or undesired contents and links.

An unexplored path in trust computing concerns lurking users. To a certain
extent, this is quite surprising since, as we already stated in previous sections,
lurkers represent the large majority of members in any online community.
Lurking is often explained by a subjective reticence (rather than malicious
motivations) to contribute to the community wisdom, and active users tend
to avoid wasting their time with people who are very likely to not reply or
show slow responsiveness, or who have few/bad feedbacks. This is a common
scenario not only in question-answering systems (where timeliness is crucial)



5.8 Applications to other domains 141

but also in any social media network with microblogging services. Therefore,
lurkers could in principle be perceived as untrustworthy users.

However, because of the lack of user-generated content and of the limited
activity in the community life that characterize lurkers, determining trust or
distrust relationships that involve lurkers appears to be a challenging task. In
e�ect, to the best of our knowledge, no study so far has investigated possible
relations between trustworthy/untrustworthy users and lurkers.

The subsequent study aims at pushing forward research on lurking analy-
sis and mining by investigating how and to what extent lurkers are related to
trustworthy and untrustworthy users. A new perspective in social trust analy-
sis is introduced, which is built on the awareness that most people are lurkers
in social networks. Moreover, we propose to use, in social networks without
any explicit trust indicators, an entropy-based user function that infers the
likelihood of a user to be trustworthy.

5.8.1.1 Comparative Evaluation

Methods

In this study we comparatively evaluate lurker ranking methods (cf. Sec-
tion 5.4) against classic approaches to trust/distrust ranking, namely TrustRank
and Anti-TrustRank (cf. Chapter 2, Section 2.6.1). For TrustRank we devised
an alternative to step 1) of the algorithms which uses a ranking based on the
add-one smoothed in-degree/out-degree ratio of the nodes instead of inverse-
PageRank to perform the preliminary ordering of the nodes for the seed set
selection. Similarly, we devised an alternative step 1) of Anti-TrustRank in
which the out-degree/in-degree is used instead of PageRank. To distinguish
between the two alternatives we will indicate with TrustRank_InvPR (resp.
Anti-TrustRank_PR) the original algorithm, and with TrustRank_IO (resp.
Anti-TrustRank_OI) the alternative one.

Discussion

The target of this evaluation, TrustRank and Anti-TrustRank, belong to the
global trust ranking category (cf. Chapter 2, Section 2.6), and as such their
ranking results are compared with those produced by LurkerRank methods.
We would like to point out that our selection of such competitors is explained
by the following motivations:

� Both methods involve a biased PageRank algorithm in their computa-
tion core, where the bias depends either on trust information or distrust
information.

� TrustRank is a de-facto standard in global trust ranking, and Anti-
TrustRank normally represents the counterpart of TrustRank for distrust
ranking.
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Table 5.17. Main structural characteristics of the evaluation network datasets.
data # nodes # links avg avg cluster. assortativ.

in-degreepath length coef.

Advogato 7,422 56,508 7.61 3.79 0.093 -0.069
Epinions 131,828 841,372 6.38 4.53 0.081 -0.064
Flickr 2,302,925 33,140,018 14.39 4.36 0.107 0.015
FriendFeed 94,779 3,269,303 34.49 3.30 0.019 -0.144

� Besides the damping factor required for the PageRank computation, the
only parametric aspect of both methods is related to the seed set selection,
whose outcome is much more easily understandable than other parameters
(such as maximum length of path in the trust graph or minimum trust
threshold).

� They allowed us to focus the evaluation on trust and distrust analysis
separately; by contrast, methods such as PageTrust and PolarityTrust
jointly computes trust and distrust scores but with increased storage and
indexing costs.

� They are scalable, since their computation is linear in the size of the trust
graph; this in general represents an advantage with respect to local trust
ranking, which by de�nition requires a cost at least quadratic in the size
of the trust graph.

Data

Our experimental evaluation was performed on four datasets, two of which
are who-trusts-whom networks and the other two are followship networks.

We used the trust networks of Advogato.org and Epinions.com, which are
de-facto benchmarks for trust analysis tasks. We built our Advogato net-
work dataset by aggregating the daily-snapshot graph �les available at the
www.trustlet.org site, which cover the period Jan 1, 2008 - Apr 2, 2014. Edges
in the Advogato network graph are labeled according to three di�erent lev-
els of certi�cations (trust links), namely master, journeyer, apprentice; a user
without any trust certi�cate is called an observer. For each link from user u
to user v, in the �nal aggregated graph we kept the last certi�cation given by
u to v. Epinions is the trust/distrust network studied in [115]. This network
consists of about 132K users who issued above 841K statements (links).

We also used the followship graphs of two social media networks, Flickr
and FriendFeed. We used the entire Flickr data studied in [124], originally
collected in 2006-2007. For evaluation purposes, we also retrieved information
originally stored in the dataset about the number of favorite markings every
user's photos had. Our FriendFeed dataset refers to [35]. In order to fairly
exploit information on the �likes� every user received in the network, we used
the maximal strongly connected component of the subgraph containing all
users that received a �like� and their neighborhoods.

Graph models. The di�erent characteristics of TrustRank and Lurker-
Rank algorithms require the use of two di�erent graph models, which have
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Table 5.18. Di�erent edge orientation in TrustRank and LurkerRank graph models.

description u→ v u← v

u's certi�cate to v TrustRank LurkerRank
u likes v's post TrustRank LurkerRank

opposite edge orientation, as summarized in Table 5.18. Note that the Anti-
TrustRank algorithm runs on the same graph as TrustRank, since it starts upon
the transposition of the adjacency matrix.

Setup of trust /distrust ranking methods

In TrustRank the notion of human-checking for a page to be spam is formalized
by a binary function called oracle. However, a human-based oracle may not
always be available, and hence relying on it could limit the applicability and
scalability of TrustRank and similar algorithms (like Anti-TrustRank). To deal
with this issue, in this work we follow di�erent approaches to the de�nition
of oracle function and of �goodness/badness� of a user, depending on whether
the data provide trust indicators that are explicit or implicit. We elaborate
on the two cases next.

Explicit trust indicators Advogato and Epinions provide annotations on the
trustworthiness/untrustworthiness of links between users, as previously dis-
cussed. We exploit such annotations to de�ne the following oracle functions:

� majority voting (henceforth denoted asMV ) over the set of trust/distrust
statements that each user receives.

� advogato-trust-metric (henceforth denoted as AT ), which exploits infor-
mation on the user certi�cations available from the Advogato site.5 This
of course applies to Advogato only.

� controversial scoring (henceforth denoted as CS), which applies to Epin-
ions only. Similarly to [114], CS is calculated for each user u as

CS(u) =
trust(u)− distrust(u)
trust(u) + distrust(u)

where trust(u) (resp. distrust(u)) is the number of +1s (resp. −1s) re-
ceived by u from her/his neighbors. A user with CS equal to 1 (resp. -1)
is trusted (resp. distrusted) by all her/his neighbors.

To decide if a user is to be regarded as �good� or �bad�, we again distin-
guish between Advogato and Epinions. For each of the oracle functions in
Advogato, we de�ned two variants of goodness: (i) users that are certi�ed as
master are considered good (henceforth denoted as M), or (ii) users that are
certi�ed as master or as journeyer are considered good (henceforthM |J). Du-
ally, we de�ned two variants of badness: (i) users that are certi�ed as observer

5 www.advogato.org/trust-metric.html.
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are considered bad (henceforth denoted as O), or (ii) users that are certi�ed
as observer or as apprentice are considered bad (henceforth O|A). For Epin-
ions, we de�ned goodness/badness for the CS function based on numerical
thresholds at 0.5, 0.75; here, we aimed to resemble a mapping to ordinal scale
of the Advogato certi�cation levels. Notions of goodness/badness are straight-
forward for the MV function (henceforth MV+ to denote majority of trust
certi�cates, whereas MV− stands for the opposite).

Implicit trust indicators Unlike trust network data, online social networks
(OSNs) do not contain explicit trust assessments among users. Nevertheless,
behavioral trust information can be inferred from some forms of user interac-
tion that would provide an intuitive way of indicating trust in another user.
Adali et al. [3] have in fact demonstrated that retweet data are a valid mecha-
nism to infer trust in OSNs like Twitter. Accordingly, we leverage information
on the number of favorite markings received by a user's photographs in Flickr,
and on the number of likes received by a user's posts in FriendFeed, as em-
pirical indicators of trust.

In order to de�ne an oracle function based on the above indicators of trust,
we postulate that the higher the number of users that indicate trust in a user u
(by means of implicit trust statements), the more likely is the trustworthiness
of user u. We formalize this intuition as an entropy-based oracle function H,
in such a way that for any user u

H(u) = − 1

logN(u)

∑
v∈N(u)

pv log pv (5.22)

with pv = ET (v, u)/(
∑
z∈N(u)ET (z, u)), where N(u) is the set of neighbors

of node u, and ET (v, u) is the empirical trust function measuring the number
of implicit trust statements (i.e., likes or favorites) assigned by node v to node
u. Analogously to the trust networks case, we de�ned goodness/badness for
the H function based on numerical thresholds equal to the median (Q2) and
third quartile (Q3) of the distribution of H values over all users.

Assessment criteria

We assessed the ranking methods in terms of Kendall tau rank correlation
coe�cient and Bpref measure (cf. Chapter 2, Section 2.7). For what concerns
the setting of Bpref, we considered as relevant the good -certi�cated (resp.
bad -certi�cated) nodes, as computed by the TrustRank (resp. Anti-TrustRank)
oracle function, and as irrelevant all the remaining nodes.

Results

We organize the presentation of our results as follows. We begin with an eval-
uation of each of the ranking methods to assess their ability of ranking trust-
worthy and untrustworthy users. Then we provide a comparative evaluation
of the ranking methods in terms of correlation of their ranking results.
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Table 5.19. Trustworthiness evaluation of LurkerRank and TrustRank performance
(Bpref) on trust networks.

dataset Advogato Epinions
relevant set∗ M M |J CS ≥ 0.5 CS ≥ 0.75 MV+

LRin .135 .598 .290 .240 .336
LRin-out .142 .604 .299 .247 .345
LRout .486 .673 .789 .731 .825
acLRin .124 .596 .304 .253 .351
acLRin-out .173 .609 .288 .235 .336
acLRout .486 .673 .837 .780 .872

TrustRank_InvPR .659 .718 .791 .737 .826
TrustRank_IO .733 .767 .809 .765 .838

∗ The relevant set corresponds to the set of good-certi�cated nodes, as computed by the oracle
function of each method.

Table 5.20. Untrustworthiness evaluation of LurkerRank and Anti-TrustRank per-
formance (Bpref) on trust networks.

dataset Advogato Epinions
relevant set∗ O O|A CS < 0.5CS < 0.75MV−
LRin .228 .243 .640 .650 .637

LRin-out .300 .294 .631 .645 .627
LRout .050 .086 .188 .220 .167
acLRin .279 .282 .627 .640 .622
acLRin-out .364 .347 .641 .654 .636
acLRout .050 .086 .144 .175 .123
Anti-TrustRank_PR .287 .303 .422 .453 .401
Anti-TrustRank_OI .375 .369 .470 .496 .456

∗ The relevant set corresponds to the set of bad-certi�cated nodes, as computed by the oracle
function of each method.

We recall main notations that will be used throughout this section. MV
stands for majority voting criterion (further, MV+ and MV− are used to
denote majority of trusts and distrusts, in Epinions.M ,M |J , O, O|A refer to
the four goodness/badness notions used for Advogato (i.e., master, journeyer,
etc.) and AT stands for Advogato trust metric. CS refers to the controver-
sial scoring function used for Epinions. H refers to the entropy-based oracle
function used for the online social networks (henceforth, OSNs).

In the result tables reported in the following (Tables 5.19�5.26), we will
show in bold the best-performing values per method, and in underlined bold
the absolute best-performing values for the speci�c dataset.

Note that we tested TrustRank and AntiTrustRank with di�erent sizes of the
seed set, varying from 5% to 25% of the total number of nodes. We observed
no signi�cant variations in the ranking, therefore for the sake of brevity of
presentation we will present results obtained with seed set size equal to 10%.

Trust and distrust evaluation

Table 5.19 and Table 5.20 report Bpref results for the evaluation of trustwor-
thiness and untrustworthiness, respectively. We focus here on Advogato and
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Epinions, since the explicit trust indicators such networks provide �t more
closely to a ground-truth-like evaluation.

Looking at Table 5.19, TrustRank methods had better Bpref than Lurk-
erRank methods in detecting trustworthy users, under both settings of or-
acle's goodness (i.e., M and M |J), on Advogato. However, on Epinions,
TrustRank was able to achieve higher Bpref scores for the detection of trust-
worthy users only against the in-neighbors-driven and in-out-neighbors-driven
variants of LurkerRank; by contrast, LRout performance was very close to
that of TrustRank_InvPR, and even acLRout was the absolute best-performing
method.

Concerning the evaluation of untrustworthy users (Table 5.20), on Ad-

vogato, Anti-TrustRank behaved better than LurkerRank, although the best-
performing LurkerRank method (i.e, acLRin-out) was quite close to the best-
performing Anti-TrustRank variant. Even more surprisingly, on Epinions,
the in-neighbors-driven and in-out-neighbors-driven variants of LurkerRank
achieved higher Bpref than Anti-TrustRank methods.

Ranking correlation analysis

LurkerRank vs. TrustRank. Tables 5.21�5.23 report the Kendall rank correla-
tion obtained by comparing TrustRank and LurkerRank on the various datasets.
Both in trust networks and OSNs, LRout and acLRout showed higher correla-
tion with TrustRank than the other LurkerRank methods.

On the trust networks, the highest correlation corresponded to similar
scores (i.e., 0.74 for Advogato and 0.72 for Epinions, both comparing LRout
with TrustRank_InvPR). The various LurkerRankmethods performed quite dif-
ferently from each other: the gap of both LRin/acLRin and LRin-out/acLRin-
out w.r.t. LRout/acLRout was smaller on Advogato (0.4 on average), while
on Epinions the di�erence in correlation among the same methods was about
0.8. More speci�cally, while on Advogato LRin/acLRin and LRin-out/acLRin-
out showed some correlation with TrustRank (in the range of 0.14-0.38), on
Epinions the correlation was always negative (in the order of −0.2 w.r.t.
TrustRank_IO and −0.09 w.r.t. TrustRank_InvPR).

As concerns evaluation on OSNs, LRout and acLRout again obtained higher
correlation scores w.r.t. the other LurkerRank methods, but lower than the
scores observed for trust networks (up to 0.62 on Flickr and 0.34 on Friend-

Feed). LRin/acLRin and LRin-out/acLRin-out showed some signi�cant correla-
tion with TrustRank (0.38-0.44) on Flickr, but no correlation on FriendFeed.

LurkerRank vs. Anti-TrustRank. Ranking correlation results obtained by
comparing LurkerRank with Anti-TrustRank are reported in Tables 5.24�5.26.

A �rst remark is that the highest correlation scores were lower than those
obtained when comparing LurkerRank with TrustRank in both trust networks.
Moreover, again in contrast to the previous analysis vs. TrustRank, on Ad-

vogato the relative di�erences in performance among the LurkerRank methods
were much less larger. On both trust networks, LRin/acLRin and LRin-out/ac-
LRin-out generally showed higher correlation with Anti-TrustRank than LRout
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Table 5.21. Kendall correlation between LurkerRank and TrustRank methods on
Advogato.

oracle, LRin LRin-out LRout ac- ac- ac-
goodness LRin LRin-out LRout

TrustRank_InvPR AT,M .367 .276 .741 .305 .205 .710

TrustRank_InvPR AT,M |J .382 .293 .738 .323 .220 .707
TrustRank_IO AT,M .356 .262 .723 .290 .193 .691
TrustRank_IO AT,M |J .316 .217 .692 .244 .149 .661
TrustRank_InvPR MV,M .310 .238 .642 .264 .182 .613
TrustRank_InvPR MV,M |J .284 .228 .577 .254 .184 .551
TrustRank_IO MV,M .352 .257 .713 .284 .189 .682
TrustRank_IO MV,M |J .314 .212 .683 .238 .145 .652

Table 5.22. Kendall correlation between LurkerRank and TrustRank methods on
Epinions.

oracle, LRin LRin-out LRout ac- ac- ac-
goodness LRin LRin-out LRout

TrustRank_InvPRCS ≥ 0.5 -.091 -.044 .717 -.039 -.049 .683

TrustRank_IO CS ≥ 0.5 -.211 -.201 .676 -.197 -.206 .651
TrustRank_InvPRCS ≥ 0.75 -.093 -.047 .716 -.041 -.052 .682
TrustRank_IO CS ≥ 0.75 -.210 -.204 .675 -.200 -.208 .650
TrustRank_InvPRMV+ -.089 -.043 .717 -.037 -.047 .683

TrustRank_IO MV+ -.212 -.201 .676 -.197 -.204 .651

Table 5.23. Kendall correlation between LurkerRank and TrustRank methods on
Flickr (upper subtable) and FriendFeed (bottomer subtable).

oracle, LRin LRin-out LRout ac- ac- ac-
goodness LRin LRin-out LRout

TrustRank_InvPR H ≥ Q2 .282 .440 .553 .443 .410 .552
TrustRank_IO H ≥ Q2 .292 .434 .615 .440 .385 .610
TrustRank_InvPR H ≥ Q3 .293 .441 .562 .445 .402 .561
TrustRank_IO H ≥ Q3 .298 .439 .618 .446 .386 .614

TrustRank_InvPR H ≥ Q2 -.035 -.045 .334 -.035 -.018 .334
TrustRank_IO H ≥ Q2 -.031 -.041 .335 -.031 -.017 .335
TrustRank_InvPR H ≥ Q3 .024 .004 .340 .024 .010 .340

TrustRank_IO H ≥ Q3 .021 .002 .339 .021 .008 .339

and acLRout. By contrast, the correlation between LRin and Anti-TrustRank
was very weak in both OSNs, where the highest scores were obtained by
LRout/acLRout and acLRin-out (up to 0.48).

Remarks on seed-set selection and oracle functions. The meth-
ods used to select the seed set impacted di�erently on the four datasets. On
Epinions TrustRank_IO showed higher correlation with LRin/acLRin and LRin-
out/acLRin-out than TrustRank_InvPR, while the latter showed higher correla-
tion with LRout and acLRout than the former. The seed set selection methods
did not lead to large variation in performance on Advogato when comparing
TrustRank with LurkerRank, while Anti-TrustRank_PR always showed higher
correlation with LurkerRank than Anti-TrustRank_OI. An opposite situation
was observed on OSNs, where Anti-TrustRank_OI showed higher correlation
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Table 5.24. Kendall correlation between LurkerRank and Anti-TrustRank methods
on Advogato.

oracle, LRin LRin-out LRout ac- ac- ac-
badness LRin LRin-out LRout

Anti-TrustRank_PR AT,O .477 .428 .369 .472 .354 .349
Anti-TrustRank_PR AT,O|A .454 .419 .349 .460 .351 .332
Anti-TrustRank_OI AT,O .300 .307 .234 .332 .270 .227
Anti-TrustRank_OI AT,O|A .313 .316 .244 .343 .276 .235
Anti-TrustRank_PR MV,O .550 .485 .439 .540 .394 .413

Anti-TrustRank_PR MV,O|A .465 .409 .347 .452 .337 .328
Anti-TrustRank_OI MV,O .469 .423 .430 .467 .346 .406
Anti-TrustRank_OI MV,O|A .345 .337 .285 .366 .288 .273

Table 5.25. Kendall correlation between LurkerRank and Anti-TrustRank methods
on Epinions.

oracle, LRin LRin-out LRout ac- ac- ac-
badness LRin LRin-out LRout

Anti-TrustRank_PR CS < 0.5 .310 .336 .183 .344 .301 .157
Anti-TrustRank_OI CS < 0.5 .411 .435 .125 .444 .376 .086
Anti-TrustRank_PR CS < 0.75 .314 .342 .178 .350 .303 .152
Anti-TrustRank_OI CS < 0.75 .418 .443 .122 .452 .383 .082
Anti-TrustRank_PR MV− .303 .328 .194 .335 .293 .166

Anti-TrustRank_OI MV− .407 .431 .126 .439 .372 .087

Table 5.26. Kendall correlation between LurkerRank and Anti-TrustRank methods
on Flickr (upper subtable) and FriendFeed (bottomer subtable).

oracle, LRin LRin-out LRout ac- ac- ac-
badness LRin LRin-out LRout

Anti-TrustRank_PR H < Q2 .127 .368 .236 .356 .422 .244
Anti-TrustRank_OI H < Q2 .182 .442 .296 .433 .468 .299
Anti-TrustRank_PR H < Q3 .120 .371 .238 .359 .431 .247
Anti-TrustRank_OI H < Q3 .205 .459 .306 .450 .477 .308

Anti-TrustRank_PR H < Q2 .185 .138 .399 .185 .060 .399
Anti-TrustRank_OI H < Q2 .296 .242 .356 .296 .136 .356
Anti-TrustRank_PR H < Q3 .186 .139 .402 .186 .062 .402

Anti-TrustRank_OI H < Q3 .296 .242 .356 .296 .136 .356

with LurkerRank than Anti-TrustRank_PR, while no clear trend can be identi-
�ed when comparing Trust- Rank_IO and TrustRank_InvPr with LurkerRank.

As concerns the oracle functions, onAdvogato LurkerRank generally showed
higher correlation with TrustRank (resp. Anti-TrustRank) when using AT (resp.
MV ). By contrast, on Epinions, no signi�cantly di�erent e�ect was observed
when using CS or MV .

Summary of �ndings and discussion

�To trust or not to trust lurkers?� is the question we raised in this study. In
the attempt to give a �rst answer to it, we summarize main �ndings of our
study.
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The LurkerRank methods based on the out-neighbors-driven model (i) be-
haved as good as or even better than TrustRank methods in terms of Bpref,
and (ii) they showed high Kendall correlation with TrustRank methods. These
�ndings should be interpreted at the light of a major conclusion we had in our
experimentation in Section 5.6 that LRout and acLRout are less e�ective in
scoring lurkers than the other LurkerRank methods. This implies that LRout
and acLRout are able to produce high ranking scores also for (relatively active)
users that are likely to be trustworthy. In short:

Trustworthy users can be found among lurkers.

Concerning untrustworthiness, the in-neighbors-driven and in-out-neighbors-
driven variants of LurkerRank (iii) achieved higher Bpref than Anti-TrustRank
methods, and (iv) they showed moderate Kendall correlation with Anti-
TrustRank methods in trust networks, but also poor correlation in social media
networks. Note that point (iii) refers only to trust networks, wherein we as-
sumed that those rates of information-production to information-consumption
that are peculiar of lurking behaviors may be hidden in explicit trust/distrust
links. In e�ect, when considering social media networks, no LurkerRank meth-
ods showed signi�cant correlation with a method like Anti-TrustRank speci�-
cally designed to detect untrustworthy/spam users. Therefore, we would tend
to state that:

Lurkers are not necessarily untrustworthy users.

5.8.1.2 TrustRank-biased LurkerRank

We provide here a preliminary insight on how to integrate the ability of de-
tecting trustworthy users (featured by TrustRank) into our LurkerRank in
order to improve the trustworthiness of the lurkers to be detected. The result
is a new set of methods, we call TrustRank-biased LurkerRank methods, in
which the uniform personalization vector of a LurkerRank method is replaced
by the ranking vector produced by TrustRank over the same network.

Table 5.27 summarizes Kendall correlation values obtained on Flickr by
a pairwise comparison between our LurkerRank methods, their TrustRank-
biased versions (denoted as trust-LR), and the original TrustRank. Several
observations stand out. First, looking at the �rst-column group of results,
all LurkerRank methods showed positive correlation with TrustRank. This
is interesting as it would indicate that the trustworthiness of users is likely
to be considered when ranking lurkers; note that the LurkerRank behavior
against untrustworthy users or spammers was already observed in our quali-
tative evaluation (cf. Section 5.6.7). By personalizing a LurkerRank method
with TrustRank, the correlation with TrustRank itself generally increased (up
to 0.72), as we expected. More interestingly, trust-LR methods still showed a
strong correlation with their respective original LurkerRank methods. This
suggests that introducing a trust-oriented bias in LurkerRank methods would
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Table 5.27. Comparative performance (Kendall tau rank correlation) of TrustRank-
biased LurkerRank methods against original TrustRank and LurkerRank methods,
on Flickr.

LR trust-LR trust-LR
vs. TrustRank vs. TrustRank vs. LR

LRin .393 .436 .639
LRout .562 .556 .980

LRin-out .441 .640 .688
ac-LRin .445 .434 .728
ac-LRout .561 .559 .945
ac-LRin-out .402 .724 .498

Bold values refer to the highest scores per method.

not signi�cantly decrease their lurker ranking e�ectiveness while also account-
ing for the user trustworthiness.

5.8.2 Lurking in collaboration networks

Research collaboration networks (RCNs) are being formed as prototypes of
social networks on top of digital libraries. As for other major types of so-
cial networks, data management and mining research in RCNs has focused
mainly on expert �nding, community discovery, and relation (link) prediction
(e.g., [45, 63, 151, 167, 171, 145]). All these tasks have to be aware of the in-
teractions underlying research collaboration, and in this respect, the discovery
of hidden expert-apprentice or advisor-advisee relationships among researchers
is particularly important. Mining such relationships can be useful for several
reasons such as understanding how a research community is formed in a par-
ticular institutional context, how research themes evolve over time, predicting
whether a researcher will likely in�uence a research community, and aiding an
expert �nding application to foster several experts on speci�c topics.

In this context, the current trend is to push the search for expert-
apprentice relationships towards an expert-oriented investigation of co-author-
ships. By contrast, it seems that a study of roles as �non-expert� has been ne-
glected in RCN mining research, despite the fact that a signi�cant part of
members in a RCN is more likely to be apprentice: after all, an apprentice-
ship or training status not only clearly holds for the initial stage of a researcher
lifetime, but also naturally holds for any researcher w.r.t. any topic that at a
particular time does not represent her/his main research interests.

A particularly challenging type of relationship to discover from the appren-
tice perspective concerns vicarious learning. In social learning theory, vicarious
learning refers to the notion that people can learn through being given access
to the learning experiences of others, and in general it is seen as a function
of observing, modeling and replicating the learning behavior of others [16].
However, while vicarious learning can be seen as legitimate in any training
stage, a question becomes whether in a publication context it can still be
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identi�ed and measured in collaborations in which one might marginally con-
tribute to the research activity (possibly materialized in a publication). The
question is clearly tricky, since in reality it could be di�cult even for human
beings to judge who is vicariously learning by the track records related to a
research community. Nevertheless, investigating the case of vicarious learners
can o�er us a chance to gain an insight into a research community that goes
beyond the simple co-authorships. In particular, scoring RCN members based
on their degree of vicarious learning should be seen as essential to determine
the contingencies in the network under which di�erent apprentice' behaviors
occur; ultimately, it should aid devising both generic and ad-hoc strategies
of eliciting more proactive participation in research activities, commitment
to work in teams more collaboratively and trying to take in�uential actions,
and building up strong collaborative subnetworks. Moreover, by analyzing the
RCN over time, the changes in each apprentice's pro�le can be detected and
several actions can be taken, for instance, to promote emerging researchers
(e.g., with calls for tenure track positions).

In this study we address the novel problem of identifying and ranking vi-
carious learners in RCNs. We would like to point out that our usage of the term
�vicarious learner� is intended to actually entail the meaning related to the
more generic �advisee� and �apprentice�; however, as it will be clari�ed later,
the term vicarious learner is chosen as preferred since it better �ts the notion
of knowledge gained in research collaboration. We introduce a topology-driven
vicarious learning de�nition and present an adaptation of our Lurker Rank
method for ranking vicarious learners. Results obtained on DBLP networks
support the signi�cance and uniqueness of the proposed approach.

5.8.2.1 The proposed model

Modeling vicarious-learning-oriented RCNs. A common assumption in
RCNs is that two researchers are regarded as connected to each other if they
have co-authored a paper. Co-authorships in a RCN are naturally treated as
symmetric relations, however a directed graph model would be more conve-
nient when the target of investigation is on scoring in�uential researchers,
or as in our setting, vicarious learners. Authors' interactions in a RCN are
typically modeled as in�uence-oriented relationships, and in fact traditional
ranking approaches, including PageRank based methods for RCN analysis
(e.g., [181, 48, 111, 110]), assume an in�uence graph model which implies
that the more (or more relevant) incoming links a node has the more im-
portant it is; for instance, the more advisees a researcher supports the more
authoritative or expert s/he might be. Clearly, as researchers might in�uence
each other, both the incoming and outgoing links of a node should be taken
into account. Moreover, vicarious learner behaviors build on the amount of
information or bene�t a node receives, therefore we believe that a convenient
graph model is such that edges are drawn from experts to apprentices (except
for cases of presumed equal relationships).
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Our vicarious-learner-oriented RCN graph model assumes the availability
only of basic information stored in a co-authorship network, at a given tempo-
ral window. Within this view, a reasonable solution is to look at each author's
amount of publications to discriminate among the varying degrees of exper-
tise/apprenticeship. Let us denote with Gt = 〈Vt, Et, wt〉 a weighted directed
graph representing a RCN at a discrete time interval t, with set of nodes (au-
thors) Vt, set of edges Et, and edge weighting function wt. The semantics of
any edge (i, j) is that j is likely most to bene�t from the collaboration with i
at time t, and the edge weight, wt(i, j), expresses the strength of the bene�t
received by j from i.

Drawing edges

A link (i, j) ∈ Et is drawn from author i to author j if they are co-authors in
some publication at time interval t, with author i having a total number of
publications (as calculated at time t or earlier) greater than that of author j;
in case of a tie, reciprocal edges are inserted between i and j.

Clearly, author's academic achievements, citations and productivity in-
dexes, such as h-index, might also be taken into account to uncover hidden
expert-apprentice relationships; however, we do not follow that line since the
above information is either not always available or easily derivable from a
RCN (for some author or for any given time) or it may be too coarse. To cor-
roborate our choice of simply using the amount of publication to estimate the
expert/apprentice relationships, we indeed evaluated the impact of exploiting
a criterion based on h-index. For this purpose, we used the co-authorship net-
work derived from the whole DBLP dataset (cf. Table 5.28) as case in point,
and we also retrieved the authors' h-indexes from an external source, Arnet-
Miner.6 At �rst, we changed our de�ned edge drawing model by replacing an
author's total number of publications with her/his h-index, but this actually
led to a signi�cant increase in the number of reciprocal edges (from 10% to
65% of the total number of edges). Then, we set an edge (i, j) according to the
comparison between the authors' h-indexes, and in case of a tie according to
their number of publications: as a result, we surprisingly observed an overlap
of 94% between this edge set and that based solely on number of publications;
analogously, by inverting the two conditions for edge drawing (i.e., by amount
of publication �rst, then by h-index), the overlap was about 99%.

Weighting edges

The number of co-authored publications between any two nodes can be re-
garded as an essential criterion for expressing the strength of collaboration;
moreover, this simple criterion has the advantage of being readily available
at any time interval. However, it should also be noted that an advisor has
normally to divide her/his attention over all incoming stimuli that come

6 http://arnetminer.org/ranks/author
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from her/his advisees; consequently, the bene�t each advisee might gain from
her/his advisor could decrease as the number of advisees the advisor must
support increases. Therefore, we weight the strength of (i, j) not only as di-
rectly proportional to the evidence of collaboration in terms of publications
but also as inversely proportional to the number of publications co-authored
by the advisor i with advisees other than j. Formally, at a time interval t:

wt(i, j) = coPubs(i, j, t)

(
1−

∑
k∈advisees(i,t)\{j} coPubs(i, k, t)∑
k∈advisees(i,t) coPubs(i, k, t)

)
where coPubs(i, j, t) is the number of publications co-authored by i and j at
time t, and advisees(i, t) denotes the set of i's advisees (i.e., i's out-neighbors)
at time t.

Ranking vicarious learners. In order to capture the intuition that
researchers in�uence each other in a RCN, both the incoming and outgoing
links of a node will be taken into account in our notion of vicarious learning
and, consequently, in our proposed ranking method. Within this view, the
simplest non-trivial form of a measure of vicarious learner ranking would be
given by the ratio of the in-degree to the out-degree of a node. However,
this has clearly the disadvantage of giving many nodes the same or very close
ranking scores and it totally ignores that both in-neighbors and out-neighbors
might contribute to the status of a given node. Learning from our study on
silent actors in online social networks 5.4, our key idea is hence to determine
a node's status of vicarious learner according to the following criteria:

� to be inversely proportional to the node's out-degree, and
� to be proportional to the number of its in-neighbors and to their likelihood
of being non-vicarious-learners (i.e., advisors or expert researchers), which
is expressed by a relatively high out/in-degree.

The above set of criteria states that determining a vicarious learning status
for a node not only relies on its in/out-degree ratio but also on the extent
to which its in-neighbors are rather in�uential nodes (i.e., advisors or expert
researchers) as well as its out-neighbors may in turn show a vicarious learning
behavior.

To provide a complete speci�cation of the above intuition, we resort to the
renowned PageRank [27], which has been widely applied to various types of
RCNs [181, 48, 111, 110].

For any node i ∈ Vt in the RCN graph Gt = 〈Vt, Et, wt〉, let Bt(i) and Rt(i)
the set of i's in-neighbors and the set of i's out-neighbors at time interval t,
respectively, and hence the sizes of Bt(i) and Rt(i) are respectively the in-
degree and the out-degree of i. Upon the PageRank formula, our vicarious
learner ranking method, named VLRank, is de�ned by the set of equations:

ri = α

 1

|Rt(i)|
∑

j∈Bt(i)

wt(j, i)
|Rt(j)|
|Bt(j)|

rj

+
1− α
|Vt|

, ∀i ∈ Vt
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Table 5.28. Main characteristics of the DBLP datasets: comparison between the
global network (updated at March 2013) and the last three terms of three years.

time interval # nodes # links avg avg # source nodes avg in/out- clustering
in-degree path length # sink nodes degree ∗ coe�cient

-2013 1,191,619 4,712,489 3.95 7.50 54,647; 533,101 1.75 0.18
2004-2006 341,282 957,922 2.81 7.61 32,511; 139,016 1.33 0.44
2007-2009 469,345 1,412,556 3.01 7.16 40,021; 188,166 1.41 0.32
2010-2013 582,206 1,926,184 3.31 6.82 45,916; 227,990 1.50 0.28

∗ Sink nodes and source nodes are excluded.

Note that to deal with sink nodes and avoid in�nite in/out-degree ratios, we
add-one smoothed both the in-degree and out-degree of a node. Moreover,
like for the basic PageRank, we implemented a power-iteration method for an
e�cient computation of the ranking scores.

5.8.2.2 Experimental Evaluation

Data

We used the DBLP XML data repository (dump updated at March 19, 20137),
from which we retrieved all types of publications and selected authors as well
as editors�hereinafter we will simply refer to both as authors. We extracted
information about the number of joint publications for each pair of co-authors,
and the total number of publications for every author, on a yearly basis. We
devised two stages of evaluation: in the �rst one we used all the DBLP data
in order to test the methods on a RCN as large as possible, while in the
second stage we selected three subsets corresponding to the last three terms
of approximately three years in order to assess the behavior of the meth-
ods in capturing the temporal evolution of the identi�ed vicarious learners.
Table 5.28 summarizes characteristics of the various datasets. It should be
noted that the number of authors intuitively increases during the years, up
to about 70% of increment from 2004-06 to 2010-13; moreover, the simul-
taneous increase in the average in-degree and decrease in the average path
length con�rms the growth in cooperation among researchers (both at intra-
and inter-institutional level) that has occurred in recent years. Conversely,
the decrease of the clustering coe�cient would indicate that co-authors of one
author are less likely to publish together, however this should be ascribed to
an increasing number of peripheral nodes (i.e., newcomers, which obviously
may have very few co-authorships) that both 2010-13 and 2007-09 have w.r.t.
the corresponding earlier three-year term.

Competitors and ground-truth evaluation

We compared the proposed VLRank method w.r.t. the following competitors:
the in/out-degree (henceforth InOut) distribution of the nodes in the network

7 http://dblp.uni-trier.de/xml/
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Table 5.29. Comparative performance results: Kendall rank coe�cient.
-2013 2004-06 2007-09 2010-13

VLRank vs. InOut .153 .249 .259 .256
VLRank vs. DDRank .284 .283 .295 .298
PageRank vs. InOut -.097 .182 .177 .177
PageRank vs. DDRank .133 .246 .246 .255
VLRank vs. AMRank .115 � � .148
PageRank vs. AMRank .043 � � .083
VLRank vs. PageRank .422 .424 .410 .407

dataset, as a baseline, and a weighted version of PageRank, as a related rank-
ing method. However, given the novelty of the problem addressed, we had
to face the total lack of a gold-standard for vicarious learning. For this pur-
pose, we followed two alternative approaches to the ground-truth evaluation
of the ranking methods. In the �rst approach, for each of the selected DBLP
datasets, we generated a data-driven ranking (henceforth DDRank) of a node
by exploiting the di�erent semantics of the strength of the relationships with
in-neighbors, which likely model a vicarious learning modality, and the rela-
tionships with out-neighbors, which should instead express a higher likelihood
of scholar advising modality. Formally, for each node i ∈ Vt:

r∗i =
1 +

∑
j∈Bt(i) wt(j, i)

1 +
∑
j∈Rt(i) wt(i, j)

exp(−nPubs(i, t))

where weights on incoming (resp. outgoing) edges count the number of co-
authored publications with an in-neighbor (resp. out-neighbor), and nPubs(i, t)
is the number of single-authored publications by author i (at time t). In the
second approach, we again exploited the academic statistics provided by Ar-
netMiner, and in particular the expert's activity score which is used to rank
the researchers based on the cumulated weighted impact factor of one's papers
published in the last years.8 We hence de�ned an ArnetMiner based ranking
(henceforth AMRank) as follows:

r∗i =
1 +

∑
j∈H+(i)AS(j)

1 +
∑
j∈H−(i)AS(j)

where H+(i) (resp. H−(i)) denotes the set of i's co-authors who have h-
index greater than (resp. lower than or equal to) the h-index of i, and AS(j)
denotes the ArnetMiner activity score for author j. Note that AMRank was
not calculated for the subsets 2004-06 and 2007-09 since the activity scores
are only available for the latest update of ArnetMiner.

Assessment criteria

In order to evaluate the performance of the ranking methods, we resorted to
two well-known assessment criteria: Kendall Rank correlation coe�cient and
Bpref (cf. Chapter 2, Section 2.7).

8 http://arnetminer.org/AcademicStatistics
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Table 5.30. Comparative performance results: Bpref.
-2013 2004-06 2007-09 2010-13

p = 10 p = 25 p = 50 p = 10 p = 25 p = 50 p = 10 p = 25 p = 50 p = 10 p = 25 p = 50

VLRank vs. InOut .336 .584 .664 .362 .561 .702 .409 .583 .713 .415 .580 .714
VLRank vs. DDRank .687 .784 .744 .605 .701 .706 .644 .726 .717 .667 .730 .720
PageRank vs. InOut .099 .328 .467 .204 .449 .666 .211 .460 .670 .219 .469 .676
PageRank vs. DDRank .481 .626 .592 .528 .639 .648 .544 .658 .654 .580 .671 .668
VLRank vs. AMRank .191 .448 .645 � � � � � � .264 .508 .663
PageRank vs. AMRank .131 .338 .573 � � � � � � .166 .385 .603
VLRank vs. PageRank .804 .853 .857 .620 .726 .815 .656 .754 .834 .650 .735 .817

For what concerns the setting of Bpref, we distinguished two cases: when
comparing w.r.t. the data-driven ranking, N was de�ned as the set of nodes
with data-driven ranking score below or equal to 1 (which should be regarded
as an intuitive indicator of non-vicarious-learning), otherwise, i.e., compari-
son w.r.t. competing methods, as the bottom of the corresponding method's
ranking having the same size as in the case of data-driven ranking. R was
selected as the set of nodes having top-p% score from the complement of N .

Results

Tables 5.29�5.30 provide performance results corresponding to the various
DBLP networks. VLRank always obtained positive Kendall scores (Table 5.29)
w.r.t. InOut, DDRank and AMRank, which tended to increase from 2004-06
to 2010-13, and were in general higher than in the largest dataset (-2013).
More importantly, VLRank always achieved higher correlation with InOut,
DDRank and AMRank than PageRank, with gains up to 21.7% for InOut,
11.8% for DDRank, and 6.5% for AMRank. Similar conclusions were drawn
from Table 5.30, with VLRank always outperforming PageRank also in terms
of Bpref, where the p% of relevant candidates for Bpref evaluation was set
as p = 10, 25, 50. Bpref scores generally increased with p when comparing
VLRank and PageRank with InOut and AMRank, which indicates that in
both cases the similarity between the rankings was lower (resp. higher) when
comparing the head (resp. tail) of the lists. Interestingly, in contrast to the
above results that would put in evidence the di�erent behaviors of VLRank
and PageRank (in favor of the former), the relative similarity between the cor-
responding rankings by VLRank and PageRank, for both Kendall and Bpref
evaluations (last rows of the respective tables), prompted us to investigate
this more in detail.

We therefore aimed to con�rm the presumed higher reliability of the rank-
ings produced by VLRank in capturing vicarious learners. For this analysis,
we compared the top-100 ranked lists produced by VLRank and PageRank
on the whole DBLP network (-2013). VLRank detected di�erent situations
in terms of total amount of publications produced in career, total number of
co-authors, and average number of co-authors per publication. For instance,
a few authors have produced little research in their short career and always
within a research team, whose consistency of composition can vary from case
to case. Other authors have shown a relatively long career and published
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Fig. 5.17. Understanding the temporal evolution of vicarious learners.

several journal and conference papers together with many co-authors; for ex-
ample, the 9th ranked author published 25 conference papers in the period
1999-2004 with an average of more than 10 co-authors per paper and a total of
17 co-authors. Overall, we can state that our VLRank detected and assigned
highest scores to authors whose status can be tagged as vicarious learner with
a certain objectivity. Conversely, PageRank did not behave as good as VL-
Rank. The top-1 rank corresponded to an author with only one publication
co-authored with other seven persons. Throughout the PageRank top-ranked
list, we found authors with a potential status as vicarious learner, however
we also found a few other top-ranked authors exhibiting characteristics that
do not look typical of a vicarious learner. For instance, the 2nd ranked au-
thor published more than 50 journal and conference papers, jointly with other
colleagues but with di�erent research teams in the career period (2004-12);
an analogous situation was found for the 3rd ranked author who is involved
in a team. In both cases, we easily found by looking at the authors' CVs in
their homepages, that the authors should be instead considered as team lead-
ers or at least active contributors. The case corresponding to the 6th ranked
author is even more clearly close to a research team leader: 60 publications
among journal and conference papers in nine years, usually co-authored with
few other colleagues in very di�erent groups.

We further investigated the behaviors of VLRank and PageRank by com-
paring, for each of the methods, the distribution of the top-ranked authors
in the 2004-06 snapshot w.r.t. the subsequent terms of three-years. This was
useful to gain an insight into the temporal evolution of the authors recog-
nized as vicarious learners at a certain time interval (2004-06) by VLRank
and PageRank, respectively. Looking at Figure 5.17(a), a large number of
top-100 authors by VLRank in 2004-06 were also present in the subsequent
periods (60% in 2007-09, 44% in 2010-13), but with much lower ranks (in the
range of 102-105): in e�ect, we then observed that such authors were e�ec-
tively vicarious learners that later took on more expert roles; conversely, the
authors present at 2004-06 but ranked higher later were e�ectively recognized
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as new cases of vicarious learners due to a drastic decrease in their individual
productivity. PageRank (Figure 5.17(b)) seemed to be less able to e�ectively
capture the temporal evolution of vicarious learners, since many of the top-
100 authors in 2004-06 were still ranked high in 2007-09 (most of these cases
were concentrated at the very top of the ranking). Upon investigation of such
situations, we found in particular �ve authors within the top-20 in 2004-06
that were still ranked within the top-100 authors in 2007-2009, even though no
case of vicarious learning could be clearly recognized among them, but rather
a proli�c collaboration among peers belonging to the same research team.

5.9 Related work

5.9.1 Lurking and social network analysis

The topic of lurking has been long studied in social science and recently has
gained renewed interest in the computer-human interaction community. [148]
investigates relations between lurking and cultural capital, i.e., a member's
level of community-oriented knowledge. Cultural capital is found positively
correlated with both the degree of active participation and, except for longer-
time lurkers, with de-lurking. [41] leverages the signi�cance of conceptualizing
the lurking roles in relation to their boundary spanning and knowledge bro-
kering activities across multiple community engagement spaces. The study
proposed in [38] raises the opportunity of rethinking of the nature of lurk-
ing from a group learning perspective, whereby the engagement of intentional
lurkers is considered within the collective knowledge construction activity. The
interactive/interpassive connotation of social media users' behavior is stud-
ied in [83], under a qualitative and grounded-theory-based approach. In the
context of multiple online communities in an enterprise community service,
lurking is found as only partially driven by the member's engagement but
signi�cantly a�ected by the member's disposition toward a topic, work task
or social group [126]. Exploring epistemological motivations behind lurking
dynamics is the main focus of the study in [141], which indeed reviews major
relevant literature on epistemic curiosity in the context of online communi-
ties and provides a set of propositions on the propensity to lurk and de-lurk.
However, as with [41], the paper only o�ers insights that might be useful to
guide an empirical evaluation of lurkers' emotional traits. The study in [70]
examines peripheral participation in Wikipedia, and designs a system to elicit
lightweight editing contributions from Wikipedia readers.

To the best of our knowledge, there has been no study other than ours that
provides a formal computational methodology for lurker ranking. The study
in [54], which aims to develop classi�cation methods for the various OSN ac-
tors, actually treats the lurking problem marginally, and in fact lurking cases
are left out of experimental evaluation. Similarly, [94] analyzes various fac-
tors that in�uence lifetime of OSN users, also distinguishing between active
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and passive lifetime; however, analyzing passive lifetime is made possible only
when the user's last login date is known, which is a rarely available informa-
tion.

We �nally mention some research studies that have focused on latent re-
lationships or side-e�ect bene�ts in an OSN. For instance, [9] de�nes a Stack-
elberg game to maximize the bene�t each user gains extending help to other
users, hence to determine the advantages of being altruistic. Some interesting
remarks relate the altruism of users to their level of capabilities, and indicate
that the bene�t derived from being altruistic is larger than that reaped by
sel�sh users or free riders. [113] also builds upon game theory to study the
property of users' departure dynamics, i.e., the tendency of individuals to leave
the community. [180] studies the problem of identifying the o�-line real-life
social community of a given user, by analyzing the topological structure in an
on-line social network like Twitter. To the purpose, user interactions are mod-
eled in the form followee-to-follower (like in our setting), and a PageRank-like
algorithm is applied over a probability transition matrix that embeds three key
principles underlying the notion of o�-line community, namely mutual reach-
ability, friendship retainability, and community a�nity. It should be noted
that mutual reachability is not a peculiar characteristic of lurkers, i.e., it can
hold for active users as well. Moreover, as for the community a�nity principle,
lurkers are usually not grouped into communities such that each community
members are (indirectly) connected to each other; rather, as we have discussed
in this chapter, lurkers may lay on the boundary of a component and bridge
over other components.

Relations with existing de�nitions of lurking

Our de�nition of lurking is substantially consistent with the various existing
perspectives on lurking, previously mentioned in the Introduction. It can in
general recognize and measure behaviors that rely on phenomena of lack of
information production (i.e., inactivity or occasional activity) as well as on
phenomena of information hoarding or overconsumption, like free-riding and
leeching.

It is worth emphasizing that taking into account the authoritativeness of
the information received as well as the non-authoritativeness of the informa-
tion produced by lurkers is essential to the correct scoring of lurkers. There-
fore, our de�nition of lurking can also explain more complex perspectives, such
as legitimate peripheral participation. In this case, a lurker is regarded as a
novice, for which it's legitimate to learn from experts as a form of cognitive
apprenticeship. Indeed, by applying our LurkerRank methods, in [161] we have
addressed an exemplary form of legitimate peripheral participation, known as
vicariously learning, in the context of research collaboration networks.

Finally, note that other interpretations of lurking, such as microlearning
and knowledge sharing barriers, actually aim to understand the various rea-
sons for lurking, and to what extent they might be perceived as fruitful, rather



160 5 Ranking lurkers in social networks

than neutral or harmful, for the knowledge sharing in the online community.
Therefore, they mostly involve sociological and psychological aspects whose
study is beyond the objective of our work.

5.9.2 Research collaboration networks

As mentioned in Section 5.8.2, major attention in co-authorship network anal-
ysis has been paid to the discovery of author impact (e.g., [63, 181, 48]), and
more recently focusing on expert search (e.g., [45, 167]) and link prediction
(e.g., [151]). Focusing on contexts closer to our study, [171] proposes a time-
constrained probabilistic factor graph model to discover advisor-advisee rela-
tionships. Like in our case, the study exploits only information available on
the network, with neither text annotations nor supervised information such
as labeled relations (i.e., who is advisor of whom); however, the goal in [171]
is to rank advisors for every author. [106] builds a linear regression model on
PageRank scores to predict an improvement in productivity of the researchers.
The method exploits mutual in�uence between each pair of co-authors, which
signi�cantly impacts on the ranking graph size, while it makes a straightfor-
ward adaptation of PageRank that only utilizes out-going links to score an
author-node. Moreover, each author is initially assigned a weight that esti-
mates the quality of her/his publication set based on an external, prede�ned
rating scheme of the publication venues, which is clearly controversial by na-
ture. In any case, the peculiarities of the respective models in both [171]
and [106] make it improbable an adaptation to the problem of vicariously
learner ranking.

5.10 Chapter review

We addressed the previously unexplored problem of ranking lurkers in an
OSN. We introduced a topology-driven lurking de�nition that rely on three
basic principles to model lurking in a network, namely overconsumption, au-
thoritativeness of the information received, and non-authoritativeness of the
information produced. We proposed various lurker ranking models, for which
we provided a complete speci�cation in terms of the well-known PageRank
and alpha-centrality. We then expanded this de�nitions to include the time
dimension. We �rst focused on the development of measures related to fresh-
ness and activity trend, both for individual users and for interactions between
users. Such measures were used as key elements in a time-aware weighting
scheme on which our proposed time-static and time-evolving lurker ranking
methods rely. We conducted a rigorous analysis focusing on a number of tem-
poral aspects related to lurking behavior. These include a comparison between
lurkers and passive/inactive users, a study on preferential attachment between
lurkers and active users, an analysis of the lurkers' responsiveness to others'
actions, and a cluster analysis of the lurking trends over time. We have been
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positively impressed by results achieved on a number of real-world networks
by some of our lurker ranking methods, especially in terms of signi�cance and
higher meaningfulness with respect to other competing methods. We investi-
gated the possibility to apply the proposed lurker ranking model to domains
di�erent than the classic OSNs, taking into account scenarios of social trust
and research collaboration networks.

We believe there are still several open issues in the understanding of dy-
namics of lurkers in SNs, which at least include further enhancing the time-
aware lurker ranking methods. Understanding latent interactions among users
would o�er a great potential [80] for mining lurkers as well. Another challenge
would be exploring the relations between lurkers and other actors in a SN,
including newcomers and spammers.

Given the inherent complexity of lurking, we believe there are still several
open issues in the understanding of dynamics of lurkers in SNs. Some of the
most challenging issues for research in this context are discussed next.

Context-biased lurking

Starting as visitors and newcomers, members of a community naturally evolve
over time playing di�erent roles (cf. Section 5.7), thus showing a stronger
or weaker tendency toward lurking on di�erent times. Moreover, the user's
engagement level in the community clearly depends also on the number and
type of contexts in which the user is involved. A topic-modeling-based network
analysis could advance research on how participating in di�erent contexts
in�uences the lurking level of a user.

Boundary-spanning and cross-network lurking

Some of the members that lay on the boundary of a component may bridge
over other components. In Section 5.6.6, we have found out that indeed rela-
tions may exist between lurkers and users that act as bridges over di�erent
components of an OSN graph. To a larger extent, and given the increased
interest towards cross-network services (see the latest examples of YouTube
and GooglePlus), members who lurk inside an OSN may not lurk, or even
take on the role of experts, in other OSNs. An analysis of the lurker ranking
problem across di�erent OSNs would represent a great potential to get a more
complete picture of their users.
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Conclusion and Future Research

Concluding remarks. This thesis has focused on novel ranking problems
in information networks. We dealt with information networks that belong to
di�erent application domains, speci�cally: semantic networks, package recom-
mendation networks, online social networks, research collaboration networks
and social trust networks. For each domain, we de�ned novel approaches and
methods in order to face ranking and analysis problems of di�erent nature.
A common denominator to all the proposed approaches is the focus on the
development of random walk, eigenvector-based methods, which in part re-
sembles the renowned Google's PageRank algorithm or related algorithms
(e.g., alpha-centrality).

We de�ned a multi-relational PageRank model (MSSPR) for structural
sense ranking, also focusing on the modeling of a heterogeneous information
network consisting of a semantic multidigraph as ranking context graph (cf.
Chapter 3). We dealt with package recommendation networks (cf. Chapter 4),
for which we developed an application-independent framework for the rec-
ommendation of packages of items, which is fully unsupervised and uses a
PageRank-like algorithm to produce a personalized ranking of the packages
in the network. Concerning the domain of online social networks, we de�ned
a new family of methods, namely LurkerRank (cf. Chapter 5), which showed
its uniqueness in e�ectively identifying and ranking lurkers in an online social
network. Moreover, an adaptation of the LurkerRank methods was studied in
the context of research collaboration networks, in order to address the vicari-
ous learning problem, mining the advisor-advisee relations from an apprentice
point of view. A comparative evaluation was conducted between LurkerRank
and global trust algorithms such as TrustRank and Anti-TrustRank, making
also a �rst step towards the integration of the two techniques, with the pur-
pose of modeling the understanding of lurkers from a perspective of social
trust computing.

Our choice to focus on the de�nition of eigenvector-centrality based al-
gorithms turned out to be successful, since the theoretical robustness and
�exibility of this class of algorithms allowed us to de�ne innovative ranking
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methods in each domain, which improved upon baselines and competitors,
producing highly quality ranking solutions when dealing with di�erent tasks.
We also carried out in-depth studies on the nature of the di�erent information
networks we had to cope with, presenting structural and qualitative analysis
which helped us to better understand the nature of interactions among infor-
mative nodes in di�erent contexts.

Future research. Concerning future research, there are plenty of open
questions and challenges regarding the study of ranking problems in informa-
tion networks. Some opportunities and necessities derive from the advent of
big data: due to the increasing technological capabilities in terms of informa-
tion transferring and storage, the great majority of (also personal) information
regarding people all over the world is digitalized, giving birth to information
networks of huge size and highly interconnected databases. Dealing with infor-
mation networks of size in the order of (at least) billions of nodes with classic
link-analysis algorithms can lead to e�ciency and computational complexity
issues. Developing e�ective approximated versions of the proposed ranking al-
gorithms is hence challenging, since the aim is to de�ne algorithms which can
produce meaningfully approximated rankings of the nodes in this big-sized
networks (or at least of a subset of interest) in reasonable time and with the
use of a reasonable amount of resources.

Another interesting research topic is to bring the expressive power of het-
erogeneous information network models, which we successfully exploited in
the �eld of semantic networks in Chapter 3, to other domains such as online
social networks and recommendation networks. A complex nework model that
has not been widely studied may be built around nodes that are not only users
or endogeneous, within-network pieces of information (e.g., tags, microblogs,
travel packages), but also exogeneous, side information available from the
(o�-line) users' real life (e.g., job, habits, visited places, real-life interactions)
or from the membership of users to other online networks. This would enable
to unveil how the understanding of manifold relations underlying the entities
of interest in such complex networks can support and improve mining tasks
in social networks and other information network domains.

Statistical topic modeling is an essential analysis tool that can obviously
be helpful in many ways in our research lines as well: for instance, topic models
might be integrated in the proposed frameworks in order to discover hidden
communities among users in a social network, or latent relations among labels
in a tree-data or to better understand di�erent trends in the descriptions of
travel destinations. Besides content analysis, the study of evolving networks
is a necessary frontier to be reached, due to the high dynamism of many
kinds of information networks. In literature, the time dimension is often taken
into account using discrete models, e.g., snapshots of the networks related to
a certain time range. This approach can certainly be improved, devising a
network model which can e�ectively represent the evolving nature of real
dynamic complex systems.
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Finally, particular attention should be given to the role of trust/distrust
algorithms in the study of information networks. Due to the large amount
of content and users that characterizes the Web (and information networks
in general), being able to recognize to what extent a certain source/user is
trustworthy is a crucial problem. Particular e�ort should be made in the
de�nition of a model that is able to integrate global and local trust ranking
methods, which would allow for overcoming the expressiveness limits of the
two approaches in representing real complex interactions among the nodes in
a network (e.g., interactions among nodes which are considered trustworthy
in a global context, but have low local trust scores when considering direct
relations among them).





References

1. Abdi, H.: The Kendall Rank Correlation Coe�cient. In: Encyclopedia of Mea-
surement and Statistics (2007)

2. Adali, S.: Modeling Trust Context in Networks. Springer Briefs in Computer
Science. Springer (2013)

3. Adali, S., Escriva, R., Goldberg, M.K., Hayvanovych, M., Magdon-Ismail, M.,
Szymanski, B.K., Wallace, W.A., Williams, G.T.: Measuring behavioral trust
in social networks. In: Proc. IEEE Int. Conf. on Intelligence and Security
Informatics, pp. 150�152 (2010)

4. Agirre, E., de Lacalle, O.L., Fellbaum, C., Hsieh, S., Tesconi, M., Monachini,
M., Vossen, P., Segers, R.: SemEval-2010 Task 17: All-words Word Sense Dis-
ambiguation on a Speci�c Domain. In: Proc. of the 5th Int. Workshop on
Semantic Evaluation, SemEval '10, pp. 75�80 (2010)

5. Agirre, E., Soroa, A.: Using the Multilingual Central Repository for Graph-
Based Word Sense Disambiguation. In: Proc. Int. Conf. on Language Resources
and Evaluation (LREC), pp. 1388�1392 (2008)

6. Agirre, E., Soroa, A.: Personalizing PageRank for Word Sense Disambigua-
tion. In: Proc. 12th Conf. of the European Chapter of the Association for
Computational Linguistics (EACL), pp. 33�41 (2009)

7. Ahn, Y.Y., Han, S., Kwak, H., Moon, S.B., Jeong, H.: Analysis of topological
characteristics of huge online social networking services. In: Proc. ACM Conf.
on World Wide Web (WWW), pp. 835�844 (2007)

8. Al-Ou�, S., Kim, H., El-Saddik, A.: A group trust metric for identifying people
of trust in online social networks. Expert Systems with Applications 39(18),
13,173�13,181 (2012)

9. Anand, S., Chandramouli, R., Subbalakshmi, K.P., Venkataraman, M.: Altru-
ism in social networks: good guys do �nish �rst. Social Netw. Analys. Mining
3(2), 167�177 (2013)

10. Angel, A., Chaudhuri, S., Das, G., Koudas, N.: Ranking objects based on re-
lationships and �xed associations. In: Proc. Int. Conf. on Extending Database
Technology (EDBT), pp. 910�921 (2009)

11. Ardichvili, A.: Learning and knowledge sharing in virtual communities of prac-
tice: motivators, barriers, and enablers. Advances in Developing Human Re-
sources 10, 541�554 (2008)



168 References

12. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte Carlo Meth-
ods in PageRank Computation: When One Iteration is Su�cient. SIAM Jour-
nal on Numerical Analysis 45(2), 890�904 (2007)

13. Bakhshandeh, R., Samadi, M., Azimifar, Z., Schae�er, J.: Degrees of Separation
in Social Networks. In: Proc. Symp. on Combinatorial Search (SOCS), pp. 18�
23 (2011)

14. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone's an in�uencer:
quantifying in�uence on Twitter. In: Proc. ACM Conf. on Web Search and Web
Data Mining (WSDM), pp. 65�74 (2011)

15. Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based
Keyword Search in Databases. In: Proc. Int. Conf. on Very Large Data Bases
(VLDB), pp. 564�575 (2004)

16. Bandura, A.: Social foundations of thought and action: A social cognitive the-
ory. Englewood Cli�s, NJ: Prentice Hall (1986)

17. Baraglia, R., Frattari, C., Muntean, C.I., Nardini, F.M., Silvestri, F.: A
Trajectory-Based Recommender System for Tourism. In: Proc. Int. Conf on
Active Media Technology (AMT), pp. 196�205 (2012)

18. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.A.F.: Characterizing user
behavior in online social networks. In: Proc. ACM SIGCOMM Conf. on Inter-
net Measurement (IMC), pp. 49�62 (2009)

19. Berberich, K., Vazirgiannis, M., Weikum, G.: Time-Aware Authority Ranking.
Internet Mathematics 2(3), 301�332 (2005)

20. Bharat, K., Henzinger, M.R.: Improved algorithms for topic distillation in hy-
perlinked environments. In: Proc. of the ACM Conf. on Research and Devel-
opment in Information Retrieval (SIGIR), pp. 104�111 (1998)

21. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex
networks: Structure and dynamics . Physics Reports 424(4â��5), 175 � 308
(2006)

22. Bonacich, P.: Factoring and weighing approaches to status scores and clique
identi�cation. Journal of Mathematical Sociology 2, 113�120 (1972)

23. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric
relations. Social Networks 23, 191�201 (2001)

24. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Finding authorities
and hubs from link structures on the World Wide Web. In: Proc. of the ACM
Conf. on World Wide Web (WWW), pp. 415�429 (2001)

25. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathe-
matical Sociology 25(2), 163�177 (2001)

26. Brandes, U.: On variants of shortest-path betweenness centrality and their
generic computation. Social Networks 30(2), 136�145 (2008)

27. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search en-
gine. Computer Networks and ISDN Systems 30(1-7), 107�117 (1998)

28. Brodsky, A., Henshaw, S.M., Whittle, J.: CARD: a decision-guidance frame-
work and application for recommending composite alternatives. In: Proc. ACM
Conf. on Recommender Systems (RecSys), pp. 171�178 (2008)

29. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information.
In: Proc. ACM Conf. on Research and Development in Information Retrieval
(SIGIR), pp. 25�32 (2004)

30. Budak, C., Agrawal, D., El Abbadi, A.: Structural trend analysis for online
social networks. Proceedings of the VLDB Endowment 4(10), 646�656 (2011)



References 169

31. Budalakoti, S., Bekkerman, R.: Bimodal invitation-navigation fair bets model
for authority identi�cation in a social network. In: Proc. ACM Conf. on World
Wide Web (WWW), pp. 709�718 (2012)

32. Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Se-
mantic Relatedness. Comput. Ling. 32(1), 13�47 (2006)

33. Capocci, A., Servedio, V.D.P., Colaiori, F., Buriol, L.S., Donato, D., Leonardi,
S., Caldarelli, G.: Preferential attachment in the growth of social networks:
The internet encyclopedia Wikipedia. Phys. Rev. E 74 (2006)

34. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In:
Proc. ACM Conf. on World Wide Web (WWW), pp. 675�684 (2011)

35. Celli, F., Lascio, F.M.L.D., Magnani, M., Pacelli, B., Rossi, L.: Social Network
Data and Practices: The Case of Friendfeed. In: Proc. Int. Conf. on Social
Computing, Behavioral Modeling, and Prediction (SBP), pp. 346�353 (2010)

36. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring User In-
�uence in Twitter: The Million Follower Fallacy. In: Proc. AAAI Conf. on
Weblogs and Social Media (ICWSM) (2010)

37. Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., Klein-
berg, J.M.: Automatic resource compilation by analyzing hyperlink structure
and associated text. In: Proc. of the ACM Conf. on World Wide Web (WWW),
pp. 65�74 (1998)

38. Chen, F.C., Chang, H.M.: Do lurking learners contribute less?: a knowledge
co-construction perspective. In: Proc. Conf. on Communities and Technologies
(C&T), pp. 169�178 (2011)

39. Choudhury, M.D., Feldman, M., Amer-Yahia, S., Golbandi, N., Lempel, R.,
Yu, C.: Automatic construction of travel itineraries using social breadcrumbs.
In: Proc. ACM Conf. on Hypertext and Hypermedia (HT), pp. 35�44 (2010)

40. Chun, H., Kwak, H., Eom, Y.H., Ahn, Y.Y., Moon, S.B., Jeong, H.: Comparison
of online social relations in volume vs interaction: a case study of Cyworld.
In: Proc. ACM SIGCOMM Conf. on Internet Measurement (IMC), pp. 57�70
(2008)

41. Crane�eld, J., Yoong, P., Hu�, S.L.: Beyond Lurking: The Invisible Follower-
Feeder In An Online Community Ecosystem. In: Proc. Paci�c Asia Conf. on
Information Systems (PACIS), p. 50 (2011)

42. Davis, D.A., Lichtenwalter, R., Chawla, N.V.: Multi-relational link prediction
in heterogeneous information networks. In: Proc. Int. Conf. on Advances in
Social Networks Analysis and Mining (ASONAM), pp. 281�288 (2011)

43. De Cao, D., Basili, R., Luciani, M., Mesiano, F., Rossi, R.: Robust and E�cient
PageRank for Word Sense Disambiguation. In: Proc. Workshop on Graph-
based Methods for Natural Language Processing (2010)

44. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman,
R.A.: Indexing by Latent Semantic Analysis. JASIS 41(6), 391�407 (1990)

45. Deng, H., Han, J., Lyu, M.R., King, I.: Modeling and exploiting heterogeneous
bibliographic networks for expertise ranking. In: Proc. Int. Joint Conf. on
Digital Libraries (JCDL), pp. 71�80 (2012)

46. Deng, T., Fan, W., Geerts, F.: On the complexity of package recommenda-
tion problems. In: Proc. ACM Symposium on Principles of Database Systems
(PODS), pp. 261�272 (2012)

47. Dhungel, P., Wu, D., Schonhorst, B., Ross, K.W.: A measurement study of at-
tacks on BitTorrent leechers. In: Proc. Conf. on Peer-to-peer systems (IPTPS),
p. 7 (2008)



170 References

48. Ding, Y., Yan, E., Frazho, A.R., Caverlee, J.: Pagerank for ranking authors in
co-citation networks. Journal of the American Society for Information Science
and Technology 60(11), 2229�2243 (2009)

49. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, New York, NY, USA
(2010)

50. Edelmann, N.: Reviewing the de�nitions of �lurkers� and some implications
for online research. Cyberpsychology, Behavior, and Social Networking 16(9),
645�649 (2013)

51. Erkan, G., Radev, D.R.: LexRank: Graph-based Lexical Centrality as Salience
in Text Summarization. J. Artif. Intell. Res. (JAIR) 22, 457�479 (2004)

52. Fagin, R., Kumar, R., Sivakumar, D.: Comparing Top k Lists. SIAM Journal
on Discrete Mathematics 17(1), 134�160 (2003)

53. Farzan, R., DiMicco, J.M., Brownholtz, B.: Mobilizing Lurkers with a Targeted
Task. In: Proc. AAAI Conf. on Weblogs and Social Media (ICWSM), pp. 235�
238 (2010)

54. Fazeen, M., Dantu, R., Guturu, P.: Identi�cation of leaders, lurkers, associates
and spammers in a social network: context-dependent and context-independent
approaches. Social Netw. Analys. Mining 1(3), 241�254 (2011)

55. Ferrara, E., Interdonato, R., Tagarelli, A.: Online Popularity and Topical In-
terests through the lens of Instagram. In: Submitted to ACM Hypertext and
Social Media Conf. (2014)

56. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociom-
etry 40, 35�41 (1977)

57. Freeman, L.C.: Centrality in social networks conceptual clari�cation. Social
Networks 1(3), 215�239 (1979)

58. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness Using
Wikipedia-based Explicit Semantic Analysis. In: Proc. Int. Joint Conf. on
Arti�cial Intelligence (IJCAI), pp. 1606�1611 (2007)

59. Gayo-Avello, D.: Nepotistic relationships in Twitter and their impact on rank
prestige algorithms. Inf. Process. Manage. 49(6), 1250�1280 (2013)

60. Ghosh, S., Viswanath, B., Kooti, F., Sharma, N.K., Korlam, G., Benevenuto,
F., Ganguly, N., Gummadi, P.K.: Understanding and combating link farming
in the Twitter social network. In: Proc. ACM Conf. on World Wide Web
(WWW), pp. 61�70 (2012)

61. Girvan, M., Newman, M.E.J.: Community structure in social and biological
networks. Proc. Natl. Acad. Sci. (PNAS) 99(12), 7821�7826 (2002)

62. Golbeck, J.: Computing and Applying Trust in Web-based Social Networks.
Ph.D. thesis, College Park, MD, USA (2005)

63. Gollapalli, S.D., Mitra, P., Giles, C.L.: Ranking authors in digital libraries. In:
Proc. Int. Joint Conf. on Digital Libraries (JCDL), pp. 251�254 (2011)

64. Gori, M., Pucci, A.: ItemRank: A Random-Walk Based Scoring Algorithm for
Recommender Engines. In: Proc. Int. Joint Conf. on Arti�cial Intelligence
(IJCAI), pp. 2766�2771 (2007)

65. Gracia, J., Mena, E.: Web-Based Measure of Semantic Relatedness. In: Proc.
Int. Conf. on Web Information Systems Engineering (WISE), pp. 136�150
(2008)

66. Graham, F.C., Tsiatas, A., Xu, W.: Dirichlet PageRank and Ranking Algo-
rithms Based on Trust and Distrust. Internet Mathematics 9(1), 113�134
(2013)



References 171

67. Granovetter, M.: The Strength of Weak Ties. American Journal of Sociology
78(6), 1360�1380 (1973)

68. Guha, R.V., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and
distrust. In: Proc. ACM Conf. on World Wide Web (WWW), pp. 403�412
(2004)

69. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.O.: Combating Web Spam with
TrustRank. In: Proc. Int. Conf. on Very Large Data Bases (VLDB), pp. 576�
587 (2004)

70. Halfaker, A., Keyes, O., Taraborelli, D.: Making peripheral participation legit-
imate: reader engagement experiments in Wikipedia. In: Proc. ACM Conf. on
Computer Supported Cooperative Work (CSCW), pp. 849�860 (2013)

71. Hamdi, S., Bouzeghoub, A., Gançarski, A.L., Yahia, S.B.: Trust Inference Com-
putation for Online Social Networks. In: Proc. Int. Conf. on Trust, Security and
Privacy in Computing and Communications (TrustCom), pp. 210�217 (2013)

72. Haveliwala, T.H.: Topic-Sensitive PageRank: A Context-Sensitive Ranking Al-
gorithm for Web Search. IEEE Trans. Knowl. Data Eng. 15(4), 784�796 (2003)

73. Helou, S.E., Salzmann, C., Gillet, D.: The 3A Personalized, Contextual and
Relation-based Recommender System. J. UCS 16(16), 2179�2195 (2010)

74. Helou, S.E., Salzmann, C., Sire, S., Gillet, D.: The 3A contextual ranking
system: simultaneously recommending actors, assets, and group activities. In:
Proc. ACM Conf. on Recommender Systems (RecSys), pp. 373�376 (2009)

75. Interdonato, R., Tagarelli, A.: Multi-relational PageRank for Tree Structure
Sense Ranking. In: Proc. Int. Conf. on Web Information Systems Engineering
(WISE) - Part I, pp. 306�319 (2013)

76. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Information Systems 20(4), 422�446 (2002)

77. Jeong, H., Néda, Z., Barabási, A.L.: Measuring preferential attachment in
evolving networks. EPL (Europhysics Letters) 61(4), 567 (2003)

78. Ji, M., Han, J., Danilevsky, M.: Ranking-based classi�cation of heterogeneous
information networks. In: Proc. ACM Int. Conf. on Knowledge Discovery and
Data Mining (KDD), pp. 1298�1306 (2011)

79. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph Regularized Trans-
ductive Classi�cation on Heterogeneous Information Networks. In: Proc. Eu-
ropean Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD), pp. 570�586 (2010)

80. Jiang, J., Wilson, C., Wang, X., Sha, W., Huang, P., Dai, Y., Zhao, B.Y.:
Understanding latent interactions in online social networks. ACM Trans. on
the Web 7(4), 18:1�18:39 (2013)

81. Jiang, W., Wang, G., Wu, J.: Generating trusted graphs for trust evaluation
in online social networks. Future Generation Comp. Syst. 31, 48�58 (2014)

82. Kahnwald, N., KÃ¶hler, T.: Microlearning in virtual communities of prac-
tice? an explorative analysis of changing information behaviour. In: Proc.
Microlearning Conf., pp. 157�172 (2006)

83. Kappler, K.E., de Querol, R.R.: Is there anybody out there? � social media as
a new social fetish. In: Proc. ACM Web Science Conf. (WebSci) (2011)

84. Kashyap, A., Amini, R., Hristidis, V.: SonetRank: leveraging social networks
to personalize search. In: Proc. ACM Conf. on Information and Knowledge
Management (CIKM), pp. 2045�2049 (2012)

85. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39�43 (1953)



172 References

86. de Kerchove, C., Dooren, P.V.: The PageTrust Algorithm: How to rank web
pages when negative links are allowed? In: Proc. SIAM Int. Conf. on Data
Mining (SDM), pp. 346�352 (2008)

87. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: Proc.
of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 668�677
(1998)

88. Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. J. ACM
46(5), 604�632 (1999)

89. Kollock, P., Smith, M.: Managing the virtual commons: Cooperation and con-
�ict in computer communities. Computer-Mediated Communication: Linguis-
tic, Social, and Cross-Cultural Perspectives pp. 109�128 (1996)

90. Koutrika, G., Bercovitz, B., Garcia-Molina, H.: FlexRecs: expressing and com-
bining �exible recommendations. In: Proc. ACM Int. Conf. on Management of
Data (SIGMOD), pp. 745�758 (2009)

91. Krishnan, V., Raj, R.: Web Spam Detection with Anti-Trust Rank. In: Proc.
Int. Workshop on Adversarial Information Retrieval on the Web (AIRWeb),
pp. 37�40 (2006)

92. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social
networks. In: Proc. ACM Int. Conf. on Knowledge Discovery and Data Mining
(KDD), pp. 611�617 (2006)

93. Kwak, H., Lee, C., Park, H., Moon, S.B.: What is Twitter, a social network
or a news media? In: Proc. ACM Conf. on World Wide Web (WWW), pp.
591�600 (2010)

94. Lang, J., Wu, S.F.: Social network user lifetime. Social Network Analysis and
Mining April (2012)

95. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Mathematics
1(3), 335�400 (2005)

96. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Machine Learning 81(1), 53�67 (2010)

97. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press (1991)

98. Lee, S., Song, S., Kahng, M., Lee, D., Lee, S.: Random walk based entity
ranking on graph for multidimensional recommendation. In: Proc. ACM Conf.
on Recommender Systems (RecSys), pp. 93�100 (2011)

99. Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes
of collective attention in Twitter. In: Proc. 21th International Conference on
World Wide Web, pp. 251�260 (2012)

100. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis
(SALSA) and the TKC e�ect. Computer Networks 33(1-6), 387�401 (2000)

101. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics
of the news cycle. In: Proc. ACM Int. Conf. on Knowledge Discovery and Data
Mining (KDD), pp. 497�506. ACM (2009)

102. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging
network. In: Proc. ACM Conf. on World Wide Web (WWW), pp. 915�924
(2008)

103. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Predicting positive and neg-
ative links in online social networks. In: Proc. ACM Conf. on World Wide Web
(WWW), pp. 641�650 (2010)

104. Li, L., Xu, G., Zhang, Y., Kitsuregawa, M.: Random walk based rank aggre-
gation to improving web search. Knowl.-Based Syst. 24(7), 943�951 (2011)



References 173

105. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.C.: Towards social user pro-
�ling: uni�ed and discriminative in�uence model for inferring home locations.
In: Proc. ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD),
pp. 1023�1031 (2012)

106. Li, X., Foo, C.S., Tew, K.L., Ng, S.K.: Searching for Rising Stars in Bibli-
ography Networks. In: Proc. Int. Conf. on Database Systems for Advanced
Applications (DASFAA), pp. 288�292 (2009)

107. Liu, H., Lim, E., Lauw, H.W., Le, M., Sun, A., Srivastava, J., Kim, Y.A.:
Predicting trusts among users of online communities: an epinions case study.
In: Proc. ACM Conference on Electronic Commerce (EC), pp. 310�319 (2008)

108. Liu, N.N., Yang, Q.: EigenRank: a ranking-oriented approach to collaborative
�ltering. In: Proc. ACM Conf. on Research and Development in Information
Retrieval (SIGIR), pp. 83�90 (2008)

109. Liu, Q., Chen, E., Xiong, H., Ge, Y., Li, Z., Wu, X.: A Cocktail Approach for
Travel Package Recommendation. IEEE Trans. Knowl. Data Eng. (PrePrints,
doi.ieeecomputersociety.org/10.1109/TKDE.2012.233) (2012)

110. Liu, X., Bollen, J., Nelson, M.L., de Sompel, H.V.: Co-authorship networks in
the digital library research community. Information Processing and Manage-
ment 41, 1462�1480 (2005)

111. Ma, N., Guan, J., Zhao, Y.: Bringing PageRank to the citation analysis. In-
formation Processing and Management 44(2), 800�810 (2008)

112. Makris, C., Plegas, Y., Stamou, S.: Web Query Disambiguation Using Page-
Rank. J. American Society for Information Science and Technology (JAIST)
63(8), 1581�1592 (2012)

113. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement
dynamics in social graphs. In: Proc. ACM Conf. on Information and Knowledge
Management (CIKM), pp. 469�478 (2013)

114. Massa, P., Avesani, P.: Controversial Users Demand Local Trust Metrics: An
Experimental Study on Epinions.com Community. In: Proc. AAAI Conf. on
Arti�cial Intelligence (AAAI), pp. 121�126 (2005)

115. Massa, P., Avesani, P.: Trust-aware bootstrapping of recommender systems.
In: Proc. ECAI Workshop on Recommender Systems, pp. 29�33 (2006)

116. McAuley, J.J., Leskovec, J.: Learning to Discover Social Circles in Ego Net-
works. In: Neural Information Processing Systems (NIPS), pp. 548�556 (2012)

117. McKnight, D.H., Chervany, N.L.: Trust and Distrust De�nitions: One Bite at
a Time. In: Trust in Cyber-societies, LNAI 2246, pp. 27�54 (2001)

118. Meo, P.D., Ferrara, E., Abel, F., Aroyo, L., Houben, G.J.: Analyzing user
behavior across social sharing environments. ACM Transactions on Intelligent
Systems and Technology 5(1) (2013)

119. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (2000)
120. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Text. In: Proc. Euro-

pean Conf. on Empirical Methods in Natural Language Processing (EMNLP),
pp. 404�411 (2004)

121. Mihalcea, R., Tarau, P., Figa, E.: PageRank on Semantic Networks, with Ap-
plication to Word Sense Disambiguation. In: Proc. 20th Int. Conf. on Compu-
tational Linguistics (COLING) (2004)

122. Minkov, E., Cohen, W.W.: Learning to rank typed graph walks: local and
global approaches. In: Proc. of the 9th WebKDD and 1st SNA-KDD 2007
Workshop on Web mining and social network analysis, pp. 1�8 (2007)



174 References

123. Minkov, E., Cohen, W.W.: Learning Graph Walk Based Similarity Measures
for Parsed Text. In: Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), pp. 907�916 (2008)

124. Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.:
Growth of the Flickr Social Network. In: Proc. ACM SIGCOMM Workshop
on Social Networks (WOSN) (2008)

125. Mislove, A., Marcon, M., Gummadi, P.K., Druschel, P., Bhattacharjee, B.:
Measurement and analysis of online social networks. In: Proc. ACM SIG-
COMM Conf. on Internet Measurement (IMC), pp. 29�42 (2007)

126. Muller, M.: Lurking as personal trait or situational disposition: lurking and
contributing in enterprise social media. In: Proc. ACM Conf. on Computer
Supported Cooperative Work (CSCW), pp. 253�256 (2012)

127. Nastase, V.: Unsupervised All-words Word Sense Disambiguation with Gram-
matical Dependencies. In: IJCNLP, pp. 757�762 (2008)

128. Newman, M.E.J.: Mixing patterns in networks. Physical Review E 67(2),
026,126 (2003)

129. Nguyen, V., Lim, E.P., Jiang, J., Sun, A.: To Trust or Not to Trust? Predicting
Online Trusts Using Trust Antecedent Framework. In: Proc. IEEE Int. Conf.
on Data Mining (ICDM), pp. 896�901 (2009)

130. Nie, Z., Zhang, Y., Wen, J.R., Ma, W.Y.: Object-level ranking: bringing order
to Web objects. In: Proc. ACM Conf. on World Wide Web (WWW), pp.
567�574 (2005)

131. Nonnecke, B., Preece, J.J.: Lurker demographics: counting the silent. In: Proc.
ACM Conf. on Human Factors in Computing Systems (CHI), pp. 73�80 (2000)

132. Onnela, J.P., Saramaki, J., Hyvonen, J., Szabó, G., de Menezes, M.A., Kaski,
K., Barabási, A.L., Kertész, J.: Analysis of a large-scale weighted network of
one-to-one human communication. New J. Phys. 9(179) (2007)

133. O'Reilly, T.: What is Web 2.0: Design Patterns and Business Models for the
Next Generation of Software. Communications and Strategy 65(1) (2007)

134. Ortega, F.J., Troyano, J.A., Cruz, F.L., Vallejo, C.G., Enríquez, F.: Propa-
gation of trust and distrust for the detection of trolls in a social network.
Computer Networks 56(12), 2884�2895 (2012)

135. Preece, J.J., Nonnecke, B., Andrews, D.: The top �ve reasons for lurking:
improving community experiences for everyone. Computers in Human Behavior
20(2), 201�223 (2004)

136. Pretto, L.: A theoretical analysis of PageRank. In: Proc. of the Int. Symposium
on String Processing and Information Retrieval, pp. 131�144 (2002)

137. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: De�ning and
identifying communities in networks. Proc. Natl. Acad. Sci. (PNAS) 101(9),
2658�2663 (2004)

138. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge Uni-
versity Press (2011)

139. Ramage, D., Ra�erty, A.N., Manning, C.D.: Random Walks for Text Semantic
Similarity. In: Proc. ACL Workshop on Graph-based Methods for Natural
Language Processing, pp. 23�31 (2009)

140. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581�603
(1966)

141. Schneider, A., von Krogh, G., Jager, P.: �What's coming next?� Epistemic
curiosity and lurking behavior in online communities. Computers in Human
Behavior 29, 293�303 (2013)



References 175

142. Schneider, F., Feldmann, A., Krishnamurthy, B., Willinger, W.: Understand-
ing online social network usage from a network perspective. In: Proc. ACM
SIGCOMM Conf. on Internet Measurement (IMC), pp. 35�48 (2009)

143. Schwämmle, V., Jensen, O.N.: A simple and fast method to determine the
parameters for fuzzy c-means cluster analysis. Bioinformatics 26(22), 2841�
2848 (2010)

144. Seeley, J.R.: The net of reciprocal in�uence: a problem in treating sociometric
data. Canadian Journal of Psychology 3, 234�240 (1949)

145. Sharma, M., Urs, S.R.: Network of Scholarship: Uncovering the Structure of
Digital Library Author Community. In: Proc. Int. Conf. on Asian Digital
Libraries (ICADL), pp. 363�366 (2008)

146. Sinha, R., Mihalcea, R.: Unsupervised Graph-based Word Sense Disambigua-
tion Using Measures of Word Semantic Similarity. In: Proc. IEEE Int. Conf.
on Semantic Computing (ICSC), pp. 363�369 (2007)

147. Sinha, R., Mihalcea, R.: Using Centrality Algorithms on Directed Graphs for
Synonym Expansion. In: Proc. Int. Florida Arti�cial Intelligence Research
Society Conf. (FLAIRS), pp. 311�316 (2011)

148. Soroka, V., Rafaeli, S.: Invisible participants: how cultural capital relates to
lurking behavior. In: Proc. ACM Conf. on World Wide Web (WWW), pp.
163�172 (2006)

149. Stephenson, K., Zelen, M.: Rethinking centrality: Methods and applications.
Social Networks 11, 1�37 (1989)

150. Sun, Y., Aggarwal, C.C., Han, J.: Relation Strength-Aware Clustering of Het-
erogeneous Information Networks with Incomplete Attributes. Proc. of the
VLDB Endowment (PVLDB) 5(5), 394�405 (2012)

151. Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author Re-
lationship Prediction in Heterogeneous Bibliographic Networks. In: Proc.
IEEE/ACM Conf. on Advances in Social Networks Analysis and Mining
(ASONAM), pp. 121�128 (2011)

152. Sun, Y., Han, J.: Mining Heterogeneous Information Networks: Principles and
Methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery.
Morgan & Claypool Publishers (2012)

153. Sun, Y., Han, J., Aggarwal, C.C., Chawla, N.V.: When will it happen?: re-
lationship prediction in heterogeneous information networks. In: Proc. ACM
Conf. on Web Search and Web Data Mining (WSDM), pp. 663�672 (2012)

154. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: Meta Path-Based Top-K
Similarity Search in Heterogeneous Information Networks. Proceedings of the
VLDB Endowment (PVLDB) 4(11), 992�1003 (2011)

155. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: integrating
clustering with ranking for heterogeneous information network analysis. In:
Proc. Int. Conf. on Extending Database Technology (EDBT), pp. 565�576
(2009)

156. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P.S., Yu, X.: Integrating meta-
path selection with user-guided object clustering in heterogeneous information
networks. In: Proc. ACM Int. Conf. on Knowledge Discovery and Data Mining
(KDD), pp. 1348�1356 (2012)

157. Sun, Y., Tang, J., Han, J., Gupta, M., Zhao, B.: Community Evolution Detec-
tion in Dynamic Heterogeneous Information Networks. In: Proc. of the Eighth
Workshop on Mining and Learning with Graphs, MLG '10, pp. 137�146 (2010)



176 References

158. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous infor-
mation networks with star network schema. In: Proc. ACM Int. Conf. on
Knowledge Discovery and Data Mining (KDD), pp. 797�806 (2009)

159. Tagarelli, A.: Exploring Dictionary-based Semantic Relatedness in Labeled
Tree Data. Information Sciences 220, 244�268 (2013)

160. Tagarelli, A., Gullo, F.: Evaluating PageRank methods for structural sense
ranking in labeled tree data. In: Proc. 2nd Int. Conf. on Web Intelligence,
Mining and Semantics (WIMS) (36, 2012)

161. Tagarelli, A., Interdonato, R.: Ranking Vicarious Learners in Research Collab-
oration Networks. In: S. Urs, J.C. Na, G. Buchanan (eds.) Digital Libraries:
Social Media and Community Networks, LNCS, vol. 8279, pp. 93�102. Springer
International Publishing (2013)

162. Tagarelli, A., Interdonato, R.: �Who's out there?�: identifying and ranking lurk-
ers in social networks. In: Proc. IEEE/ACM Conf. Advances in Social Networks
Analysis and Mining (ASONAM), pp. 215�222 (2013)

163. Taherian, M., Amini, M., Jalili, R.: Trust Inference in Web-Based Social Net-
works Using Resistive Networks. In: Proc. Int. Conf. on Internet and Web
Applications and Services (ICIW), pp. 233�238 (2008)

164. Tran, A., Bowes, C., Brown, D., Chen, P., Choly, M., Ding, W.: TreeMatch:
A Fully Unsupervised WSD System Using Dependency Knowledge on a Spe-
ci�c Domain. In: Proceedings of the 5th International Workshop on Semantic
Evaluation, SemEval '10, pp. 396�401 (2010)

165. Tran, Q.T., Chan, C.Y., Wang, G.: Evaluation of set-based queries with ag-
gregation constraints. In: Proc. ACM Conf. on Information and Knowledge
Management (CIKM), pp. 1495�1504 (2011)

166. Tsatsaronis, G., Varlamis, I., Nørvrag, K.: SemanticRank: Ranking Keywords
and Sentences Using Semantic Graphs. In: Proc. Int. Conf. on Computational
Linguistics (COLING), pp. 1074�1082 (2010)

167. Tsatsaronis, G., Varlamis, I., Torge, S., Reimann, M., Nørvrag, K., Schroeder,
M., Zschunke, M.: How to Become a Group Leader? or Modeling Author Types
Based on Graph Mining. In: Proc. Int. Conf. on Theory and Practice of Digital
Libraries (TPDL), pp. 15�26 (2011)

168. Varlamis, I., Eirinaki, M., Louta, M.D.: A Study on Social Network Metrics and
Their Application in Trust Networks. In: Proc. IEEE/ACM Conf. on Advances
in Social Networks Analysis and Mining (ASONAM), pp. 168�175 (2010)

169. Viswanath, B., Mislove, A., Cha, M., Gummadi, P.K.: On the evolution of
user interaction in Facebook. In: Proc. ACM SIGCOMM Workshop on Social
Networks (WOSN), pp. 37�42 (2009)

170. Walter, F.E., Battiston, S., Schweitzer, F.: Personalised and dynamic trust in
social networks. In: Proc. ACM Conf. on Recommender Systems (RecSys), pp.
197�204 (2009)

171. Wang, C., Han, J., Jia, Y., Tang, J., Zhang, D., Yu, Y., Guo, J.: Mining advisor-
advisee relationships from research publication networks. In: Proc. ACM Int.
Conf. on Knowledge Discovery and Data Mining (KDD), pp. 203�212 (2010)

172. Wang, Y., Lin, X., Zhang, Q.: Towards metric fusion on multi-view data: a
cross-view based graph random walk approach. In: Proc. ACM Conf. on In-
formation and Knowledge Management (CIKM), pp. 805�810 (2013)

173. Wasserman, S., Faust, K.: Social Networks Analysis: Methods and Applica-
tions. Cambridge University Press (1994)



References 177

174. Watts, D., Strogatz, S.: Collective dynamics of 'small-world' networks. Nature
393(6684), 440�442 (1998)

175. Webber, W., Mo�at, A., Zobel, J.: A similarity measure for inde�nite rankings.
ACM Trans. Information Systems 28(4), 20 (2010)

176. Wilson, C., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: Beyond Social Graphs:
User Interactions in Online Social Networks and their Implications. ACM
Trans. on the Web 6(4), 17 (2012)

177. Wu, B., Goel, V., Davison, B.D.: Propagating Trust and Distrust to Demote
Web Spam. In: Proceedings of the WWW06 Workshop on Models of Trust for
the Web (MTW06) (2006)

178. Wu, J., Aberer, K.: Using a layered markov model for distributed web ranking
computation. In: Proc. Int. Conf. on Distributed Computing Systems, pp.
533�542 (2005)

179. Xie, M., Lakshmanan, L.V.S., Wood, P.T.: Composite recommendations: from
items to packages. Frontiers of Computer Science 6(3), 264�277 (2012)

180. Xie, W., Li, C., Zhu, F., Lim, E.P., Gong, X.: When a friend in Twitter is a
friend in life. In: Proc. ACM Web Science Conf. (WebSci), pp. 344�347 (2012)

181. Yan, E., Ding, Y.: Discovering author impact: A PageRank perspective. Inf.
Process. Manage. 47(1), 125�134 (2011)

182. Ye, J., Cheng, H., Zhu, Z., Chen, M.: Predicting positive and negative links
in signed social networks by transfer learning. In: Proc. ACM Conf. on World
Wide Web (WWW), pp. 1477�1488 (2013)

183. Zhang, M., Feng, S., Tang, J., Ojokoh, B.A., Liu, G.: Co-Ranking Multiple
Entities in a Heterogeneous Network: Integrating Temporal Factor and Users'
Bookmarks. In: Proc. Int. Conf. on Asian Digital Libraries (ICADL), pp. 202�
211 (2011)

184. Zhang, X., Liang, W., Zhu, S., Han, B.: Automatic seed set expansion for trust
propagation based anti-spam algorithms. Inf. Sci. 232, 167�187 (2013)


