

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XXVciclo

Tesi di Dottorato

Designing Cloud services for data
processing and knowledge discovery

Fabrizio Marozzo

D.E.I.S., Novembre 2012

Settore Scientifico Disciplinare: ING-INF/05

DEIS- DIPARTIMENTO DI ELETTRONICA, INFORMATICA E SISTEMISTICA

Novembre

Settore Scientifico Disciplinare: ING-INF/05

Preface

The past two decades have been characterized by an exponential growth of
digital data in many field of human activities, from science to enterprise. For
example in biological, medical, astronomic and earth science fields, very large
data sets are produced daily from sensors, instruments and computers.

To find interesting information and extract meaning out of those big data
repositories, it is necessary and helpful to work with data analysis environ-
ments allowing the effective and efficient access, management and mining of
such repositories. Cloud systems can be effectively used to handle data mining
processes since they provide scalable processing and storage services, together
with software platforms for developing data analysis environment on top of
such services.

The goal of this thesis is studying and exploiting the Cloud paradigm to
support scalable knowledge discovery (KDD) applications in distributed sce-
narios. Three approaches have been investigated: the first one is the use of the
Map/Reduce programming model for processing large data sets on dynamic
Cloud environments; the second one is the use of the COMPSs paradigms
and its sequential code approach for the execution of parallel data processing
on hybrid Cloud infrastructures; finally, the design and implementation of a
high-level visual environment to support a wide range of knowledge discovery
applications on the Cloud.

The result of the first research activity is an extension of the architec-
ture of current MapReduce implementations to make it more suitable for
dynamic large-scale Cloud environments. The proposed system, called P2P-
MapReduce, exploits a peer-to-peer model to manage intermittent node par-
ticipation, master failures and job recovery in a decentralized but effective
way, so as to provide a robust middleware MapReduce that can be effectively
exploited in Internet-scale dynamic distributed environments.

The second research activity described in this thesis is an extension of
COMPSs, a framework that provides a programming model and a runtime
system that ease the development of distributed applications and their ex-
ecution on a wide range of computational infrastructures. The goal of the

VI Preface

extension is enhancing the interoperability layer to support the execution of
COMPSs applications into the Windows Azure Platform. The framework has
been evaluated through the porting of a data mining workflow to COMPSs
and its execution on a hybrid testbed.

Finally, we worked to design a Cloud framework for supporting the scalable
execution of distributed knowledge discovery applications. The framework,
called Data Mining Cloud Framework, has been implemented using Windows
Azure and has been evaluated through a set of KDD applications executed on a
Microsoft Cloud data center. Three classes of knowledge discovery applications
are supported: single-task applications, in which a single data mining task is
performed on a given dataset; parameter-sweeping applications, in which a
dataset is analyzed by multiple instances of the same data mining algorithm
with different parameters; workflow-based applications, in which knowledge
discovery applications are specified as graphs linking together data sources,
data mining tools, and data mining models.

Prefazione

Gli ultimi decenni sono stati caratterizzati da una crescita esponenziale dei
dati in diversi settori, dalla scienza all’impresa. Ad esempio, nei settori della
biologia, della medicina, dell’astronomia e della scienza della terra, ogni giorno
enormi archivi di dati vengono generati da parte di sensori, strumenti e com-
puter.

Al fine di estrarre conoscenza da tali archivi, è necessario e utile lavorare
con ambienti di analisi che consentano l’accesso efficace ed efficiente ai dati,
la loro gestione, e l’estrazione di conoscenza. I sistemi Cloud possono essere
efficacemente usati per gestire i processi di estrazione della conoscenza in
quanto forniscono potenza di calcolo e servizi di memorizzazione in modo
altamente scalabile, nonché piattaforme software che permettono lo sviluppo
di ambienti di analisi dei dati.

L’obiettivo di questa tesi è lo studio e l’uso del paradigma Cloud per
l’implementazione di applicazioni scalabili di knowledge discovery in databases
(KDD) in scenari distribuiti. Sono stati seguiti tre approcci diversi: il primo è
l’uso del modello di programmazione MapReduce per l’elaborazione ed analisi
di grandi quantità di dati in ambienti Cloud dinamici; il secondo è l’uso del
paradigma COMPSs e il suo approccio a codice “sequenziale” per l’esecuzione
parallela di applicazioni di analisi dati su infrastrutture Cloud ibride; infine,
la progettazione e la realizzazione di un ambiente visuale di alto livello per
l’implementazione di applicazioni di knowledge discovery su Cloud.

Il risultato della prima attività di ricerca è stato lo studio di un’estensione
dell’architettura master-worker delle attuali implementazioni del modello
MapReduce, per renderle più adeguate ad ambienti Cloud dinamici e di larga
scala in termini di affidabilità e scalabilità. Il sistema proposto, chiamato P2P-
MapReduce, fa uso di un modello peer-to-peer per definire un’architettura
adattativa in grado di permettere la partecipazione intermittente dei nodi,
i fallimenti dei master e il recupero dei job in modo decentralizzato ma ef-
ficiente, offrendo in tal modo un middleware MapReduce più affidabile che
può essere effettivamente sfruttato su ambienti dinamici e distribuiti di larga
scala.

VIII Preface

La seconda attività di ricerca descritta in questa tesi è un’estensione di
COMPSs, un framework che fornisce un modello di programmazione che sem-
plifica lo sviluppo di applicazioni distribuite e la loro esecuzione su una vasta
gamma di infrastrutture di calcolo (Cloud, griglie computazionali, cluster).
Attraverso tale estensione abbiamo aumentato l’interoperabilità di tale frame-
work cos̀ı da permettere l’esecuzione di applicazioni COMPSs anche sulla pi-
attaforma Cloud Windows Azure. Il framework è stato valutato attraverso
applicazioni di data mining basate su workflow, che sono state eseguite su un
ambiente Cloud ibrido (Windows Azure insieme ad una piattaforma Cloud
privata).

Infine, abbiamo implementato un framework Cloud per l’esecuzione scala-
bile di applicazioni di knowledge discovery. Il framework, chiamato Data Min-
ing Cloud framework, è stato realizzato utilizzando Windows Azure ed è stato
valutato attraverso una serie di applicazioni KDD eseguite sui data center della
Microsoft. Il framework supporta tre classi di applicazioni di knowledge dis-
covery: applicazioni “single-task”, in cui un task di data mining viene eseguito
su un insieme di dati; applicazioni “parameter-sweeping”, in cui un insieme di
dati viene analizzato in parallelo da diverse istanze dello stesso algoritmo di
data mining eseguite con diversi parametri; applicazioni “workflow-based”, in
cui l’applicazione di knowledge discovery viene definita come un workflow vi-
suale formato da un grafo che collega insieme basi di dati, strumenti e modelli
di data mining.

Rende, Cosenza, Italy Fabrizio Marozzo

November 2012

Contents

1 Introduction . 1
1.1 Objectives of the Research . 2

1.1.1 P2P-MapReduce . 2
1.1.2 COMPSs with Azure . 3
1.1.3 Data Mining Cloud Framework . 3

1.2 Publications . 4
1.2.1 Journals . 4
1.2.2 Book Chapters . 4
1.2.3 Papers in refereed conference proceedings 4
1.2.4 Other publications . 5

1.3 Organization of the Thesis . 5

2 Cloud computing . 7
2.1 Service models . 8
2.2 Deployment models . 11
2.3 Development environments . 12

2.3.1 Windows Azure . 12
2.3.2 Amazon Web services . 13
2.3.3 OpenNebula . 14

2.4 Programming paradigms and frameworks 15
2.4.1 MapReduce . 16
2.4.2 COMPSs . 16
2.4.3 Sector/Sphere . 17
2.4.4 All-Pairs . 17
2.4.5 Dryad . 18
2.4.6 Aneka . 18

3 P2P-MapReduce . 19
3.1 Background and Related Work . 20

3.1.1 The MapReduce Programming Model 20
3.1.2 Related Work . 22

X Contents

3.2 System Model and Architecture . 23
3.2.1 System Model . 24
3.2.2 Architecture . 26

3.3 System Mechanisms . 29
3.3.1 Node Behavior . 31
3.3.2 Job and Task Management . 36
3.3.3 User Behavior . 39

3.4 Implementation . 40
3.5 System Evaluation . 42

3.5.1 Experimental Setup and Methodology 42
3.5.2 Fault Tolerance . 45
3.5.3 Network Traffic . 46
3.5.4 Scalability . 50
3.5.5 Remarks . 51

3.6 Conclusion . 52

4 COMPSs applications on the Cloud . 53
4.1 The COMPSs framework . 54
4.2 The Azure JavaGAT Adaptor . 56
4.3 Data mining on COMPSs: a classifier-based workflow 58

4.3.1 The application workflow . 58
4.3.2 The application implementation . 59
4.3.3 Parallelization with COMPSs: the interface 60

4.4 Performance evaluation . 62
4.5 Related work . 64
4.6 Conclusions and future work . 65

5 Data Mining Cloud Framework . 67
5.1 Cloud-based Data Mining . 67

5.1.1 Functional requirements . 68
5.1.2 Non-functional requirements . 69
5.1.3 Cloud for distributed KDD . 71

5.2 Data Mining Cloud Framework . 73
5.2.1 System Model . 73
5.2.2 General architecture . 75
5.2.3 Execution mechanisms . 76
5.2.4 User Interface . 79

5.3 Implementing the Data Mining Cloud Framework 79
5.3.1 Fulfilling the functional requirements with Azure 80
5.3.2 Implementing the system components on Azure 80

5.4 Parameter-sweeping data mining applications 81
5.5 Workflow-based data mining applications 83

5.5.1 Workflow formalism . 84
5.5.2 Workflow composition . 88
5.5.3 Workflow execution . 92

Contents XI

5.6 Experimental results . 94
5.6.1 Parameter sweeping data mining applications 94
5.6.2 Workflows-based data mining applications 98

5.7 Conclusions . 102

6 Conclusions . 103

References . 107

1

Introduction

The past two decades have been characterized by an exponential growth of
digital data production in many fields of human activities, from science to
enterprise. Very large data sets are produced daily from sensors, instruments,
and computers, and are often stored in distributed data repositories. For ex-
ample, astronomers have to analyze terabytes of image data that every day
comes from telescopes and artificial satellites; physicists must study the huge
amount of data generated by particle accelerators to understand the laws of
Universe; medical doctors and biologists collect huge amount of information
about patients to search and try to understand the causes of diseases. Such
examples demonstrate how the exploration and automated analysis of massive
datasets powered by computing capabilities are fundamental to advance our
knowledge in many fields.

Unfortunately, massive datasets are hard to understand, and in particu-
lar models and patterns hidden in them cannot be comprehended neither by
humans directly, nor by traditional analysis methodologies. To cope with big
data repositories, parallel and distributed knowledge discovery and data min-
ing techniques must be used. It is also necessary and helpful to work with data
analysis environments allowing the effective and efficient access, management
and mining of such repositories. For example a scientist can use data analysis
environments to execute complex simulations, validate models, compare and
share results with colleagues located world-wide.

To face the challenge of extracting knowledge from big data repositories in
efficient way, researchers and companies have turned to parallel computing in
the Cloud. As a concept, the Cloud is an abstraction for remote, infinitely scal-
able provisioning of computation and storage resources [1]. In reality, Cloud
infrastructures are based on large sets of computing resources, located some-
where “in the Cloud”, which are allocated to applications on demand. Thus
Cloud computing can be defined as a distributed computing paradigm in which
all the resources, dynamically scalable and often virtualized, are provided as a
service through Internet. Cloud systems can be effectively used to handle data
mining processes since they provide scalable processing and storage services,

2 1 Introduction

together with software platforms for developing data analysis environment on
top of such services.

The goal of this thesis is studying and exploiting the Cloud paradigm
to support scalable knowledge discovery applications in distributed scenar-
ios. Three approaches have been investigated: the first one is the use of the
Map/Reduce programming model for processing large data sets on dynamic
Cloud environments; the second one is the use of the COMPSs paradigms
and its sequential code approach for the execution of parallel data processing
on hybrid Cloud infrastructures; finally, the design and implementation of a
high-level visual environment to support a wide range of knowledge discovery
applications on the Cloud.

The result of the first research activity is an extension of the architec-
ture of current MapReduce implementations to make it more suitable for
dynamic large-scale Cloud environments. The proposed system, called P2P-
MapReduce, exploits a peer-to-peer model to manage intermittent node par-
ticipation, master failures and job recovery in a decentralized but effective
way, so as to provide a robust middleware MapReduce that can be effectively
exploited in Internet-scale dynamic distributed environments.

The second research activity described in this thesis is an extension of
COMPSs, a framework that provides a programming model and a runtime
system that ease the development of distributed applications and their ex-
ecution on a wide range of computational infrastructures. The goal of the
extension is enhancing the interoperability layer to support the execution of
COMPSs applications into the Windows Azure Platform. The framework has
been evaluated through the porting of a data mining workflow to COMPSs
and its execution on a hybrid testbed.

Finally, we worked to design a Cloud framework for supporting the scalable
execution of distributed knowledge discovery applications. The framework has
been implemented using Windows Azure and has been evaluated through a set
of KDD applications executed on a Microsoft Cloud data center. Three classes
of knowledge discovery applications are supported: single-task applications, in
which a single data mining task is performed on a given dataset; parameter-
sweeping applications, in which a dataset is analyzed by multiple instances
of the same data mining algorithm with different parameters; workflow-based
applications, in which knowledge discovery applications are specified as graphs
linking together data sources, data mining tools, and data mining models.

1.1 Objectives of the Research

1.1.1 P2P-MapReduce

MapReduce is a programming model for parallel data processing widely used
in Cloud computing environments. Current MapReduce implementations are

1.1 Objectives of the Research 3

based on centralized master-slave architectures that do not cope well with dy-
namic Cloud infrastructures, like a Cloud of Clouds, in which nodes may join
and leave the network at high rates. We have designed an adaptive MapRe-
duce framework, called P2P-MapReduce, which exploits a peer-to-peer model
to manage node churn, master failures, and job recovery in a decentralized
but effective way, so as to provide a more reliable MapReduce middleware
that can be effectively exploited in dynamic Cloud infrastructures. This pa-
per describes the P2P-MapReduce system providing a detailed description
of its basic mechanisms, a prototype implementation, and an extensive per-
formance evaluation in different network scenarios. The performance results
confirm the good fault tolerance level provided by the P2P-MapReduce frame-
work compared to a centralized implementation of MapReduce, as well as its
limited impact in terms of network overhead.

1.1.2 COMPSs with Azure

The advent of Cloud computing has given to researchers the ability to access
resources that satisfy their growing needs, which could not be satisfied by
traditional computing resources such as PCs and locally managed clusters.
On the other side, such ability, has opened new challenges for the execution
of their computational work and the managing of massive amounts of data
into resources provided by different private and public infrastructures.

COMP Superscalar (COMPSs) is a programming framework that provides
a programming model and a runtime that ease the development of applica-
tions for distributed environments and their execution on a wide range of
computational infrastructures. COMPSs has been recently extended in order
to be interoperable with several Cloud technologies like Amazon, OpenNebula,
Emotive and other OCCI compliant offerings.

This paper presents the extensions of this interoperability layer to support
the execution of COMPSs applications into the Windows Azure Platform. The
framework has been evaluated through the porting of a data mining workflow
to COMPSs and the execution on an hybrid testbed.

1.1.3 Data Mining Cloud Framework

Data mining techniques are used in many application areas to extract useful
knowledge from large datasets. Very often, parameter sweeping is used in
data mining applications to explore the effects produced on the data analysis
result by different values of the algorithm parameters. Parameter sweeping
applications can be highly computing demanding, since the number of single
tasks to be executed increases with the number of swept parameters and
the range of their values. Cloud technologies can be effectively exploited to
provide end-users with the computing and storage resources, and the execution
mechanisms needed to efficiently run this class of applications. In this paper,
we present a Data Mining Cloud Framework that supports the execution of

4 1 Introduction

parameter sweeping data mining applications on a Cloud. The framework has
been implemented using the Windows Azure platform, and evaluated through
a set of parameter sweeping clustering and classification applications. The
experimental results demonstrate the effectiveness of the proposed framework,
as well as the scalability that can be achieved through the parallel execution
of parameter sweeping applications on a pool of virtual servers.

1.2 Publications

The following publications have been produced while accomplishing this the-
sis.

1.2.1 Journals

• F. Marozzo, D. Talia, P. Trunfio, “P2P-MapReduce: Parallel data process-
ing in dynamic Cloud environments”. Journal of Computer and System
Sciences, vol. 78, n. 5, pp. 1382–1402, Elsevier Science, September 2012.

1.2.2 Book Chapters

• F. Marozzo, D. Talia, P. Trunfio, “A Peer-to-Peer Framework for Support-
ing MapReduce Applications in Dynamic Cloud Environments”. In: Cloud
Computing: Principles, Systems and Applications, N. Antonopoulos, L.
Gillam (Editors), Springer, chapt. 7, pp. 113–125, 2010.

1.2.3 Papers in refereed conference proceedings

• F. Marozzo, D. Talia, P. Trunfio, “A Cloud Framework for Big Data An-
alytics Workflows on Azure” Workshop in High Performance Computing,
Grids and Clouds (HPC 2012), Cetraro, Italy, June 2012.

• F. Marozzo, F. Lordan, R. Rafanell, D. Lezzi, D. Talia, R. M. Badia,
“Enabling Cloud Interoperability with COMPSs”. Proc. of the 18th In-
ternational Conference on Parallel and Distributed Computing (Euro-Par
2012), Rhodes Island, Greece, pp. 16–27, Lecture Notes in Computer Sci-
ence, August 2012.

• F. Marozzo, D. Talia, P. Trunfio, “Using Clouds for Scalable Knowl-
edge Discovery Applications” 3rd International Workshop on High Per-
formance Bioinformatics and Biomedicine (Euro-Par 2012 Workshops -
HiBB), Rhodes Island, Greece, Lecture Notes in Computer Science, Au-
gust 2012.

• F. Marozzo, D. Talia, P. Trunfio, “A Cloud Framework for Parameter
Sweeping Data Mining Applications”. Proc. of the 3rd IEEE Interna-
tional Conference on Cloud Computing Technology and Science (Cloud-
Com 2011), Athens, Greece, pp. 367–374, IEEE Computer Society Press,
December 2011.

1.3 Organization of the Thesis 5

• F. Marozzo, D. Talia, P. Trunfio, “A Framework for Managing MapReduce
Applications in Dynamic Distributed Environments”. Proc. of the 19th
Euromicro International Conference on Parallel, Distributed and Network-
Based Computing (PDP 2011), Ayia Napa, Cyprus, pp. 149–158, IEEE
Computer Society Press, February 2011.

• F. Marozzo, D. Talia, P. Trunfio, “Adapting MapReduce for Dynamic En-
vironments Using a Peer-to-Peer Model”. Proc. of the First Workshop
on Cloud Computing and its Applications (CCA 2008), Chicago, USA,
October 2008.

1.2.4 Other publications

• F. Marozzo, D. Talia, P. Trunfio, “Large-Scale Data Analysis on Cloud
Systems”. ERCIM News, n. 89, pp. 26–27, April 2012.

• F. Marozzo, F. Lordan, R. Rafanell, D. Lezzi, D. Talia, R. M. Badia, “En-
abling cloud interoperability with COMPSs”. Cloud Futures 2012, Berkeley,
California, United States, May 2012.

• F. Marozzo, D. Talia, P. Trunfio, “Enabling Reliable MapReduce Applica-
tions in Dynamic Cloud Infrastructures”. ERCIM News, n. 83, pp. 44-45,
October 2010.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows: Section 2 introduces
Cloud computing architecture, service models (SaaS, PaaS, IaaS), systems
and applications, in Section 3 presents the P2P-MapReduce system, Section 4
describes the COMPSs for Azure platform, in Section 5 the Data Mining
Cloud Framework and some data mining applications executed on it. Finally,
conclusions and future work are discussed.

2

Cloud computing

An increasing number of everyday desktop applications are now provided in
the form of Web-based applications, or applications available on Internet and
accessed through a client like a Web browser or mobile application.

This model is included in the Software as a Service (SaaS) paradigm, in
which applications can be accessed through Internet interfaces in the form of
“on demand” services, for example through Web Services. SaaS applications,
hosted and executed on remote servers, are used to manage business and data
activities without end-users having to install, update or maintain them, or
own license for the use. Examples of Web-based applications include Web-
mails, calendars, document management, image manipulation, and customer
relationship management.

Close to the SaaS paradigm are the Platform as a Service (Paas) and In-
frastructure as a Service (IaaS) models. PaaS allows the implementation of
software applications and Web services by exploiting virtual platforms that
offer storage, backup, replication, data protection, security and distributed
computing. IaaS allows customers renting resources like CPUs, disks, or more
complex like virtualized servers or operating systems to support their opera-
tions. All that without bearing the costs of purchasing, maintenance, support-
ing and updating of IT infrastructure. These “service” models are included in
the concept of Cloud computing, a distributed computing paradigm in which
resources, dynamically scalable and often virtualized, are provided as a service
over Internet. In such model, end-users do not need to have the knowledge or
control of the technological infrastructures that support their applications.

Cloud services are based on “Clouds” of computers that act as if they
were a single entity and assign computing resources to each application in on-
demand mode. In addition, resources are provided in a highly scalable way,
by depending on the use of them that is done by users. As a result, what
you pay for is what you consume. Cloud systems that support the execution
of applications are elastic, i.e., they expand and contract according with the
needs of users and, in principle, have no precise boundaries.

8 2 Cloud computing

Cloud providers can offer their services following three deployment models:
public, private or hybrid. A public Cloud provider delivers services available
through Internet, with little or no control of end-users over the underlying
technology infrastructure. On the other hand, private Cloud providers offer
activities and functions “as a service” deployed over an intranet or hosted
in remote data centers. Finally, a hybrid Cloud is the composition of two or
more Clouds (private or public) that remain different entities but are linked
together by offering the benefits of the two deployment models. In this way
the private infrastructure can be supplemented with additional computing
and storage resources from public Clouds to meet peak demands, better serve
user requests and implement high availability strategies.

The remainder of this chapter is organized as follows. Section 2.1 describes
the Cloud computing service models (i.e., SaaS, PaaS and IaaS), while Sec-
tion 2.2 describes Cloud computing deployments models (i.e., public, private
and hybrid Cloud). Finally Sections 2.3 and 2.4 introduce Cloud development
environments and programming paradigms/frameworks that can be used to
implement applications for data processing and knowledge discovery.

2.1 Service models

As mentioned above, Cloud computing vendors provide their services accord-
ing to three main models: Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS).

Software as a Service defines a delivery model in which software and data
are provided through Internet to customers as ready-to-use services. Specifi-
cally, software and associated data are hosted by providers, and customers
access them without needing to use any additional hardware or software.
Moreover, customers normally pay a monthly/yearly fee, with no additional
purchase of infrastructure or software licenses. Examples of common SaaS
applications are Webmails (e.g., Gmail), calendars (Yahoo Calendar), doc-
ument management (Microsoft Office 365), image manipulation (Photoshop
Express), customer relationship management (Salesforce), and others.

In Platform as a Service model, Cloud vendors deliver a computing plat-
form typically including databases, application servers, development environ-
ment for building, testing and running custom applications. Developers can
just focus on deploying of applications since Cloud providers are in charge of
maintenance and optimization of the environment and underlying infrastruc-
ture. Hence, customers are helped in application development as they use a set
of “environment” services that are modular and easily integrable. Normally,
the applications are developed as ready-to-use SaaS. Google Apps Engine,
Windows Azure, Force.com are some examples of PaaS Cloud environments.

Finally, Infrastructure as a Service is an outsourcing model under which
customers rent resources like CPUs, disks, or more complex resources like vir-
tualized servers or operating systems to support their operations (e.g., Ama-

2.1 Service models 9

zon EC2, RackSpace Cloud). Users of a IaaS have normally skills on system
and network administration as they must deal with configuration, operation
and maintenance tasks. Compared to the PaaS approach, the IaaS model has
a higher system administration costs for the user; on the other hand, IaaS al-
lows a full customization of the execution environment. Developers can scale
up or down its services adding or removing virtual machines, easily instan-
tiable from a virtual machine images.

Table 2.1 describes how the three models satisfy the final user require-
ments, expressed in terms of flexibility, scalability and elasticity, portability,
security, maintenance, and costs.

10 2 Cloud computing

Requirement SaaS PaaS IaaS

Flexibility

Users can customize the
application interface and
control its behavior, but
can not decide which soft-
ware and hardware com-
ponents are used to sup-
port its execution.

Developers write, cus-
tomize, test their appli-
cation using libraries and
supporting tools compat-
ible with the platform.
Additionally, users can
choose what kind of vir-
tual storage and compute
resources are used for ex-
ecuting their application.

Developers have to build
the servers that will host
their applications, and
configure operating sys-
tem and software mod-
ules on top of such
servers.

Scalability
and elasticity

The underlying comput-
ing and storage resources
normally scale automat-
ically to match appli-
cation demand, so that
users do not have to allo-
cate resources manually.
The result depends only
on the level of elastic-
ity provided by the Cloud
system.

Like the SaaS model,
the underlying comput-
ing and storage resources
normally scale automati-
cally.

Developers can use new
storage and compute re-
sources, but their ap-
plications must be scal-
able and allow the dy-
namic addition of new re-
sources.

Portability

There can be some is-
sues to move applications
to other providers, since
some software and tools
could not work on differ-
ent systems. For example,
application data may not
be in a format that can be
easily transported to an-
other provider.

Applications can be
moved to another
provider only if the
the new provider share
with the old one the
required platform tools
and services

If a provider allows to
download a virtual ma-
chine in a standard for-
mat, it may be moved to
a different provider.

Security

Users can control only
some security settings of
their applications (e.g.,
using https instead of
http to access some Web
pages). Additional secu-
rity layers (e.g., data
replication) are hidden to
the user and managed di-
rectly by the system.

The security of code and
additional libraries used
to build application is re-
sponsibility of the devel-
oper.

Developers must take
care security issues
from the operating sys-
tem layer to the user
applications.

Maintenance
Users must not carry
maintenance tasks.

Developers are in charge
of maintaining only their
application; other soft-
ware and the hardware
are maintained by the
provider.

Developers are in charge
of all software, includ-
ing the operating system;
hardware is maintained
by the provider.

Cost

Users pay a month-
ly/yearly fee for using
the software, with no
additional fee for the
infrastructure.

Developers pay for the
compute and storage re-
sources, and for the li-
censes of libraries and
tools used by their appli-
cations.

Developers pay for all
the software and hard-
ware resources used.

Table 2.1: How SaaS, PaaS and IaaS satisfy the user requirements.

2.2 Deployment models 11

2.2 Deployment models

Cloud computing services are delivered according to three deployment mod-
els: public, private or hybrid. A public Cloud provider delivers services to the
general public through the Internet. The users of a public Cloud have little
or no control over the underlying technology infrastructure. In this model,
services can be offered for free, or provided according to a pay-per-use pol-
icy. The main public providers, such as Google, Microsoft, Amazon, own and
manage their proprietary data centers delivering services built on top of them.
A private Cloud provider offers operations and functionalities “as a service”,
which are deployed over a company intranet or hosted in a remote data center.
Often, small and medium-sized IT companies prefer this deployment model
as it offers advance security and data control solutions that are not avail-
able in the public Cloud model. Finally, a hybrid Cloud is the composition
of two or more Clouds (private or public) that remain different entities but
are linked together. Companies can extend their private Clouds using other
private Clouds from partner companies, or public Clouds. In particular, by
extending the private infrastructure with public Cloud resources, it is possible
to satisfy peaks of requests, better serve user requests, and implement high
availability strategies.

�����
����	�
�

������

����	
��

����
��

�
�����
���
�����

��
�
��
���
�����

����
	��
��
����
��

��
�� ��������

����

����

���� ��������	
��
���� �����������	
����
����������	�����

���������	�������	�
�
���	����������� ��������	
����������� �����������

����
��	���������	��������	��������	�������

Fig. 2.1: Cloud computing architecture and different delivery models.

Figure 2.1 depicts the general architecture of a public Cloud and its main
components, as outlined in [2]. Users access Cloud computing services using
client devices, such as desktop computers, laptops, tablets and smartphones.
Through these devices, users access and interact with Cloud-based services us-
ing a Web browser or desktop/mobile app. The business software and user’s
data are executed and stored on servers hosted in Cloud data centers, that pro-
vide storage and computing resources. Resources include thousands of servers

12 2 Cloud computing

and storage devices connected each other through an intra-Cloud network.
The transfer of data between data center and users takes place on wide-area
network.

A lot of technologies and standards are used by the different components of
the architecture. For example, users can interact with Cloud services through
SOAP [3] or REST [4] Web service standards. Ajax [5] and HTML5 [6] tech-
nologies allow Web interfaces to Cloud services to have look and interactivity
equivalent to those of desktop applications. Open Cloud Computing Interface
(OCCI) [7] specifies how Cloud providers can deliver their compute, data, and
network resources through a standardized interface. Another example is Open
Virtualization Format (OVF) [8] for packaging and distributing virtual devices
or software (e.g. virtual operating system) to be run on virtual machines.

2.3 Development environments

This section introduces three representative examples of Cloud development
environments: Windows Azure as an example of public PaaS, Amazon Web
Services as the most popular public IaaS, and OpenNebula as an example of
private IaaS. These environment can be used to implement applications and
frameworks for data processing and knowledge discovery.

2.3.1 Windows Azure

Azure [9] is an environment and a set of Cloud services that can be used
to develop Cloud-oriented applications, or to enhance existing applications
with Cloud-based capabilities. The platform provides on-demand compute and
storage resources exploiting the computational and storage power of the Mi-
crosoft data centers. Azure is designed for supporting high availability and dy-
namic scaling services that match user needs with a pay-per-use pricing model.
The Azure platform can be used to perform the storage of large datasets, ex-
ecute large volumes of batch computations, and develop SaaS applications
targeted towards end-users.

Windows Azure includes three basic components/services as shown in Fig-
ure 2.2:

• Compute is the computational environment to execute Cloud applications.
Each application is structured into roles: Web role, for Web-based appli-
cations; Worker role, for batch applications; VM role, for virtual-machine
images.

• Storage provides scalable storage to manage: binary and text data (Blobs),
non-relational tables (Tables), queues for asynchronous communication
between components (Queues), and NTFS volume (Drives).

• Fabric controller whose aim is to build a network of interconnected nodes
from the physical machines of a single data center. The Compute and
Storage services are built on top of this component.

2.3 Development environments 13

The Windows Azure platform provides standard interfaces that allow de-
velopers to interact with its services. Moreover, developers can use IDEs like
Microsoft Visual Studio and Eclipse to easily design and publish Azure appli-
cations.

��������������

�������

��������	
��

��������

�����	�

��	
����
��������

��
��

��	�

������ ����
��������

������

��	���

�������

��	�
�

���	�

Fig. 2.2: Windows Azure platform.

2.3.2 Amazon Web services

Amazon offers compute and storage resources of its IT infrastructure to de-
velopers in the form of Web services. The Amazon Web Services (AWS) [10]
is a large set of Cloud services that can be composed by users to build their
SaaS applications or integrate traditional software with Cloud capabilities (see
Figure 2.3). It is simple to interact with these service since Amazon provides
SDKs for the main programming languages and platforms (e.g. Java, .Net,
PHP, Android).

AWS includes the following main services:

• Compute: Elastic Compute Cloud (EC2) allows creating and running
virtual servers; Amazon Elastic MapReduce for building and executing
MapReduce applications (see 2.4.1).

• Storage: Simple Storage Service (S3), which allows storing and retrieving
data via the Internet.

• Database: Relational Database Service (RDS) for relational tables; Dy-
namoDB for non-relational tables; SimpleDB for managing small datasets;
ElasticCache for caching data.

14 2 Cloud computing

• Networking: Route 53, a DNS Web service; Virtual Private Cloud for im-
plementing a virtual network.

• Deployment and Management: CloudFormation for creating a collection
of ready-to-use virtual machines with pre-installed software (e.g., Web
applications);
CloudWatch for monitoring AWS resources; Elastic Beanstalk to deploy
and execute custom applications written in Java, PHP and other lan-
guages; Identity and Access Management to securely control access to AWS
services and resources.

• Content delivery: Amazon CloudFront makes easy to distribute content
via a global network of edge locations.

• App services: Simple Email Service providing a basic email-sending ser-
vice; Simple Notification Service to notify users; Simple Queue Service
that implement a message queue; Simple Workflow Service to implement
workflow-based applications.

Even if Amazon is best known to be the first IaaS provider (based on its
EC2 and S3 services), it now also a PaaS provider, with services like Elastic
Beans.

��������	
��	�
��	�

���������	���

�������

� ���
� �����	�

� ����
��

� �
���������

�����

� ���
� �
�����

���������

������

� ��

�
��������

� �	��� ��
� ������
���������

�
	��

�
�����
���
����

�����
�
��

� �
	�� 	�����	�
� �
	��!����
� "������������

#������
����$�����

��� �
���	
�

� ����
��!	�%&
	'
�������

� ����
��(�����
�������

���
����
���
����

� #��)	��
�
	�� �	��

Fig. 2.3: Amazon Web services.

2.3.3 OpenNebula

OpenNebula [11] is an open-source framework mainly used to build private
and hybrid Clouds.

2.4 Programming paradigms and frameworks 15

The main component of the OpenNebula architecture is the Core (see
Figure 2.4), which creates and controls virtual machines (i.e., VM) by in-
terconnecting them with a virtual network environment. Moreover, the Core
interacts with specific storage, network and virtualization operations through
pluggable components called Drivers. In this way, OpenNebula is independent
from the underlying infrastructure and offers a uniform management environ-
ment. The Core also supports the deployment of Services, which are a set
of linked components (e.g., Web server, database) executed on several VMs.
Another component is the Scheduler, which is responsible for allocating the
VMs on the physical servers. To this end, the Scheduler interacts with the
Core component through appropriate deployment commands.

OpenNebula can implement a hybrid Cloud using specific Cloud Drivers
that allow to interact with external Clouds. In this way, the local infrastruc-
ture can be supplemented with computing and storage resources from pub-
lic Clouds. Currently, OpenNebula includes drivers for using resources from
Amazon EC2 and Eucalyptus [12], another open source Cloud framework.

���������	

��������	
���

��

�

��
� �����
��

�
���
�

�����
� ���
�����
�
��������� �������
��

���
������	
��

Fig. 2.4: OpenNebula architecture.

2.4 Programming paradigms and frameworks

This section introduces the most known programming paradigms and frame-
works used to implement Cloud-based applications for processing and analysis
data. Such applications can be categorized into five groups, as outlined in [13]:

• Map applications: A “map” operation is performed to each entry of an
input dataset. This is often called “embarrassingly parallel” computation.

16 2 Cloud computing

Some examples are parameter sweeping, BLAST [14] and other protein
applications, multi-gene analyses.

• MapReduce applications: A MapReduce application is defined in terms of
a map function that processes a (key,value) pair to generate a list of inter-
mediate (key, value) pairs, and a reduce function that merges all interme-
diate values associated with the same intermediate key. Common examples
are algorithms for distributed searching and sorting on large textual data
sources.

• Iterative MapReduce applications: Some parallel algorithms are structured
as executions of MapReduce applications inside an iterative loop. Exam-
ples are the expectation maximization clustering algorithm, linear algebra
algorithms, or Page Rank.

• Task-based applications: Applications are defined as a set of tasks executed
by a set of workers.

• MPI applications: Message Passing Interface standard is used to execute
parallel applications, e.g. for solving differential equations or for simulating
particle dynamics.

In the following some examples of programming paradigms and frameworks
are discussed.

2.4.1 MapReduce

MapReduce [15] is a programming model inspired by the map and reduce
primitives present in Lisp and other functional languages. A user defines a
MapReduce application in terms of a map function that processes a (key,
value) pair to generate a list of intermediate (key, value) pairs, and a reduce
function that merges all intermediate values associated with the same inter-
mediate key. Most MapReduce implementations, like Hadoop [16], are based
on a master-slave architecture. A job is submitted by a user node to a mas-
ter node that selects idle workers and assigns a map or reduce task to each
one. When all the tasks have been completed, the master node returns the re-
sult to the user node. The MapReduce paradigm is appropriate to implement
data mining tasks in parallel. An example is Disco [17], a framework built
on top of Hadoop for data pre-processing and co-clustering. Other relevant
examples are the use of MapReduce for K-Means clustering [18], and to run
a semi-supervised classification on large scale graphs [19].

2.4.2 COMPSs

COMPSs [20] is a programming framework, composed of a programming
model and an execution runtime which supports it, whose main objective
is to ease the development of applications for distributed environments.

On the one hand, the programming model aims to keep the programmers
unaware of the execution environment and parallelization details. They are

2.4 Programming paradigms and frameworks 17

only required to create a sequential application and specify which methods
of the application code will be executed remotely. This selection is done by
providing an annotated interface where these methods are declared with some
metadata about them and their parameters. On the other hand, the runtime
is in charge of optimizing the performance of the application by exploiting its
inherent concurrency. The runtime intercepts any call to a selected method
creating a representative task and finding the data dependencies with all the
previous ones that must be considered along the application run. The task
is added to a task dependency graph as a new node and such dependencies
are represented by edges of the graph. Tasks with no dependencies enter the
scheduling step and are assigned to available resources. This decision is made
according to a scheduling algorithm that takes into account data locality,
task constraints and the workload of each node. According to this decision
the input data for the scheduled task are transferred to the selected host and
the task is remotely submitted. Once a task finishes, the task dependency
graph is updated, possibly resulting in new dependency-free tasks that can be
scheduled.

2.4.3 Sector/Sphere

Sector/Sphere [21] is a framework designed to run data analysis applications
on large distributed datasets. It consists of two complementary components:
a storage component (Sector) and a compute component (Sphere). Sector
provides a long term archival storage to access and index large distributed
datasets. It is designed to support different types of network protocols, and to
safely archive data through replication mechanisms. Sphere enables the par-
allel execution of user-defined functions on data stored in Sector. It splits the
input files into data segments that are processed in parallel by servers called
Sphere processing elements. A data segment can be a single entry record, a
collection of data records or a file. An evaluation of Sector/Sphere for execut-
ing data analysis applications on a wide area is reported in [22].

2.4.4 All-Pairs

All-Pairs [23] is a programming model and a framework to implement data
intensive scientific applications on a cluster or a Cloud. The framework can be
used for applications that have to compare the elements of two datasets on the
basis of a user-defined comparison function. The user defines the problem to
be solved through a specification, called abstraction; the framework includes
an engine that chooses how to implement the specification using the available
resources. The engine partitions and transfer data to a set of disks in the
cluster, and then dispatches batch jobs to execute locally on each data split.

18 2 Cloud computing

2.4.5 Dryad

Dryad [24] is a Microsoft framework to run data-parallel applications on a
cluster or a data center. A Dryad application combines computational vertices
with communication channels to form a dataflow graph. The application runs
by executing the vertices of the graph on a set of available computers and com-
municating as appropriate through files, TCP pipes, and shared-memory. The
users define sequential programs for each vertex, and the framework schedules
and executes them in parallel on multiple CPU cores or computers. Dryad has
been used in combination with LINQ (a language for adding data querying ca-
pabilities to .NET languages) to implement a set of data analysis applications,
including a data clustering application based on the K-Means algorithm [25].

2.4.6 Aneka

Aneka [26] platform provides a framework for the development of applica-
tion supporting not only the MapReduce programming model but also a Task
Programming and Thread Programming ones. The applications can be de-
ployed on private or public Clouds such as Windows Azure, Amazon EC2,
and GoGrid Cloud Service. The user has to use a specific .NET SDK for the
porting of the code also to enact legacy code.

3

P2P-MapReduce

MapReduce is a system and method for efficient large-scale data processing
presented by Google in 2004 [15] to cope with the challenge of processing very
large input data generated by Internet-based applications. Since its introduc-
tion, MapReduce has proven to be applicable to a wide range of domains,
including machine learning and data mining, log file analysis, financial anal-
ysis, scientific simulation, image retrieval and processing, blog crawling, ma-
chine translation, language modelling, and bioinformatics. Today, MapReduce
is widely recognized as one of the most important programming models for
Cloud computing environments, being it supported by leading Cloud providers
such as Amazon, with its Elastic MapReduce service [27], and Google itself,
which recently released a Mapper API for its App Engine [28].

The MapReduce abstraction is inspired by the map and reduce primitives
present in Lisp and other functional languages [29]. A user defines a MapRe-
duce application in terms of a map function that processes a (key, value) pair
to generate a list of intermediate (key, value) pairs, and a reduce function
that merges all intermediate values associated with the same intermediate
key. Current MapReduce implementations, like Google’s MapReduce [30] and
Hadoop [16], are based on a master-slave architecture. A job is submitted by
a user node to a master node that selects idle workers and assigns a map or
reduce task to each one. When all the tasks have been completed, the master
node returns the result to the user node. The failure of one worker is managed
by re-executing its task on another worker, while master failures are not ex-
plicitly managed as designers consider failures unlikely in reliable computing
environments, such as a data center or a dedicated Cloud.

On the contrary, node churn and failures - including master failures - are
likely in large dynamic Cloud environments, like a Cloud of Clouds, which can
be formed by a large number of computing nodes that join and leave the net-
work at very high rates. Therefore, providing effective mechanisms to manage
such problems is fundamental to enable reliable MapReduce applications in
dynamic Cloud infrastructures, where current MapReduce middleware could
be unreliable. We have designed an adaptive MapReduce framework, called

20 3 P2P-MapReduce

P2P-MapReduce, which exploits a peer-to-peer model to manage node churn,
master failures, and job recovery in a decentralized but effective way, so as
to provide a more reliable MapReduce middleware that can be effectively
exploited in dynamic Cloud infrastructures.

This chapter describes the P2P-MapReduce system providing a detailed
description of its basic mechanisms, a prototype implementation, and an ex-
tensive performance evaluation in different network scenarios. The experimen-
tal results show that, differently from centralized master-server implementa-
tions, the P2P-MapReduce framework does not suffer from job failures even
in presence of very high churn rates, thus enabling the execution of reliable
MapReduce applications in very dynamic Cloud infrastructures. In an early
version of this work [31] we presented a preliminary architecture of the P2P-
MapReduce framework, while in a more recent paper [32] we introduced its
main software modules and a preliminary evaluation. This chapter signifi-
cantly extends our previous work by providing a detailed description of the
mechanisms at the base of the P2P-MapReduce system, as well as an extensive
evaluation of its performance in different scenarios.

The remainder of this chapter is organized as follows. Section 3.1 provides
a background on the MapReduce programming model and discusses related
work. Section 3.2 introduces the system model and presents the general ar-
chitecture of the P2P-MapReduce framework. System 3.3 describes the sys-
tem mechanisms, while Section 3.4 discusses its implementation. Section 3.5
evaluates the performance of P2P-MapReduce compared to a centralized im-
plementation of MapReduce. Finally, Section 3.6 concludes the chapter.

3.1 Background and Related Work

This section provides a background on the MapReduce programming model
and discusses related work.

3.1.1 The MapReduce Programming Model

As mentioned before, MapReduce applications are based on a master-slave
model. This section briefly describes the various operations that are performed
by a generic application to transform input data into output data according
to that model.

Users define a map and a reduce function [29]. The map function processes
a (key, value) pair and returns a list of intermediate (key, value) pairs:

map (k1,v1) → list(k2,v2).

The reduce function merges all intermediate values having the same inter-
mediate key:

reduce (k2, list(v2)) → list(v3).

3.1 Background and Related Work 21

As an example, let’s consider the creation of an inverted index for a large
set of Web documents [15]. In its basic form, an inverted index contains a
set of words (index terms), and for each word it specifies the IDs of all the
documents which contain that word. Using a MapReduce approach, the map
function parses each document and emits a sequence of (word, documentID)
pairs. The reduce function takes all pairs for a given word, sorts the corre-
sponding document IDs, and emits a (word, list(documentID)) pair. The set
of all output pairs generated by the reduce function forms the inverted index
for the input documents.

In general, the whole transformation process performed in a MapReduce
application can be described through the following steps (see Figure 3.1):

Data
splits

MASTER

Reducer

Input
data

Output

data

Mapper

Job

descriptor

Distributed File System

Mapper

Mapper

Intermediate
results

Reducer

Final
results

Fig. 3.1: Execution phases of a generic MapReduce application.

1. A master process receives a job descriptor which specifies the MapReduce
job to be executed. The job descriptor contains, among other information,
the location of the input data, which may be accessed using a distributed
file system or an HTTP/FTP server.

2. According to the job descriptor, the master starts a number of mapper
and reducer processes on different machines. At the same time, it starts a
process that reads the input data from its location, partitions that data
into a set of splits, and distributes those splits to the various mappers.

3. After receiving its data partition, each mapper process executes the map
function (provided as part of the job descriptor) to generate a list of
intermediate key/value pairs. Those pairs are then grouped on the basis
of their keys.

4. All pairs with the same keys are assigned to the same reducer process.
Hence, each reducer process executes the reduce function (defined by the

22 3 P2P-MapReduce

job descriptor) which merges all the values associated to the same key to
generate a possibly smaller set of values.

5. The results generated by each reducer process are then collected and de-
livered to a location specified by the job descriptor, so as to form the final
output data.

Distributed file systems are the most popular solution for accessing in-
put/output data in MapReduce systems, particularly for standard computing
environments like a data center or a cluster of computers. On the other hand,
distributed file systems may be ineffective in large-scale dynamic Cloud en-
vironments characterized by high levels of churn. Therefore, we assume that
data are moved across nodes using a file transfer protocol like FTP or HTTP
as done, for example, by the MISCO MapReduce Framework [33].

3.1.2 Related Work

Besides the original MapReduce implementation by Google [30], several other
MapReduce implementations have been realized within other systems, includ-
ing Hadoop, GridGain [34], Skynet [35], MapSharp [36], Twister [37], and
Disco [38]. Another system sharing most of the design principles of MapReduce
is Sector/Sphere [21], which has been designed to support distributed data
storage and processing over large Cloud systems. Sector is a high-performance
distributed file system; Sphere is a parallel data processing engine used to pro-
cess Sector data files.

Some other works focused on providing more efficient implementations of
MapReduce components, such as the scheduler [39] and the I/O system [40],
while others focused on adapting the MapReduce model to specific computing
environments, like shared-memory systems [41], volunteer computing environ-
ments [42], desktop Grids [43], and mobile environments [33].

Zaharia et al. [39] studied how to improve the Hadoop’s scheduler in het-
erogeneous environments, by designing a new scheduling algorithm, called
LATE, which significantly improves response times in heterogeneous settings.
The LATE algorithm uses estimated finish times to efficiently schedule specu-
lative copies of tasks (also called “backup” tasks in MapReduce terminology)
to finish the computation faster. The main policy adopted by LATE is to spec-
ulatively execute the task that is thought to finish farthest into the future.

The Hadoop Online Prototype (HOP) [40] modifies the Hadoop MapRe-
duce framework to supports online aggregation, allowing users to see early
returns from a job as it is being computed. HOP also supports continuous
queries, which enable MapReduce programs to be written for applications
such as event monitoring and stream processing. HOP extends the applica-
bility of the MapReduce model to pipelining behaviors, which is useful for
batch processing. In fact, by pipelining both within and across jobs, HOP can
reduce the time to job completion.

Phoenix [41] is an implementation of MapReduce for shared-memory sys-
tems that includes a programming API and a runtime system. Phoenix uses

3.2 System Model and Architecture 23

threads to spawn parallel map or reduce tasks. It also uses shared-memory
buffers to facilitate communication without excessive data copying. The run-
time schedules tasks dynamically across the available processors in order to
achieve load balance and maximize task throughput. Overall, Phoenix proves
that MapReduce is a useful programming and concurrency management ap-
proach also for multi-core and multi-processor systems.

MOON [42] is a system designed to support MapReduce jobs on oppor-
tunistic environments. MOON, extends Hadoop with adaptive task and data
scheduling algorithms to offer reliable MapReduce services on a hybrid re-
source architecture, where volunteer computing systems are supplemented by
a small set of dedicated nodes. The adaptive task and data scheduling al-
gorithms in MOON distinguish between different types of MapReduce data
and different types of node outages in order to place tasks and data on both
volatile and dedicated nodes.

Another system that shares some of the key ideas behind MOON is that
proposed by Tang et al. [43]. The system is specifically designed to support
MapReduce applications in Desktop Grids, and exploits the BitDew middle-
ware [44] which is a programmable environment for automatic and transparent
data management on Desktop Grids. BitDew relies on a specific set of meta-
data to drive key data management operations, namely life cycle, distribution,
placement, replication and fault-tolerance with a high level of abstraction.

Finally, Misco [33] is a framework for supporting MapReduce applications
on mobile systems. Although Misco follows the general design of MapReduce,
it does vary in two main aspects: task assignment and data transfer. The first
aspect is managed through the use of a polling strategy. Each slave polls the
master each time it becomes available. If there are no tasks to execute, the
slave will idle for a period of time before requesting a task again. For data
transfer, instead of a distributed file system that is not practical in a mobile
scenario, Misco uses HTTP to communicate requests, task information and
transfer data.

Even though P2P-MapReduce shares some basic ideas with some of the
systems discussed above (in particular, [42, 43, 33]), it also differs from all
of them for its use of a peer-to-peer approach both for job and system man-
agement. Indeed, the peer-to-peer mechanisms described in Section 3.3 allows
nodes to dynamically join and leave the network, change state over time, man-
age nodes and job failures in a way that is completely transparent both to
users and applications.

3.2 System Model and Architecture

As mentioned before, the goal of P2P-MapReduce is to enable a reliable ex-
ecution of MapReduce applications in Cloud environments characterized by
high levels of churn. To achieve this goal, P2P-MapReduce adopts a peer-to-
peer model in which a wide set of autonomous nodes (peers) can act either

24 3 P2P-MapReduce

as a master or a slave. At each time, a limited set of nodes is assigned the
master role, while the others are assigned the slave role. The role assigned to
a given node can change dynamically over time, so as to ensure the presence
of the desired master/slave ratio for reliability and load balancing purposes.

To prevent loss of work in the case of a master failure, each master can act
as a backup for other masters. The master responsible for a job J , referred
to as the primary master for J , dynamically updates the job state (e.g., the
assignments of tasks to nodes, the status of each task, etc.) on its backup
nodes, which are referred to as the backup masters for J . To prevent excessive
overhead, the update does not contain whole job information, but only that
part of information that has updated. If a primary master fails (or, equiva-
lently, it abruptly leaves the network), its place is taken by one of its backup
masters in a way that is transparent both to the user who submitted the job,
and to the job itself.

The overall system behavior, as well as its features (resilience to failures,
load balancing), are the result of the behavior of each single node in the
system. The node behavior will be described in detail in Section 3.3 as a state
diagram that defines the different states that a node can assume, and all the
events that determine the transitions from state to state. The remainder of
this section describes the system model and the general architecture of the
P2P-MapReduce framework.

3.2.1 System Model

The model introduced here provides abstractions for describing the character-
istics of jobs, tasks, users, and nodes. For the reader’s convenience, Figure 3.2
illustrates the system model entities and their interrelationships using the
UML Class Diagram formalism.

3.2 System Model and Architecture 25

Job

jobId : JobIdType
code : String

input [*] : URL
output [*] : URL
M : int
R :int

Task

taskId : TaskIdType
jobId : JobIdType
type : TaskType

code : String
input : URL
output : URL

userId : UserIdType

userJobList : UserJobType

User

job : Job
userId : UserIdType

jobStatus : JobStatusType
jobTaskList : JobTaskType
backupMasterList [*] : NodeIdType

PrimaryJobType

JobTaskType

task : Task

slaveId : NodeIdType
taskStatus : TaskStatusType

BackupJobType

job : Job
userId : NodeIdType
jobStatus : JobStatusType

jobTaskList : JobTaskType
backupMasterList [*] : NodeIdType
primaryId : NodeIdType

SlaveTaskType

task : Task
primaryId : NodeIdType
taskStatus : TaskStatusType

nodeId : NodeIdType

role : RoleType
primaryJobList : PrimaryJobType
backupJobList : BackupJobType
slaveTaskList : SlaveTaskType

Node

job : Job
primaryId : NodeIdType
jobStatus : JobStatusType

UserJobType

*

*

*

*

1

1

1

*

*

1

1

Fig. 3.2: System model described through the UML Class Diagram formalism.

Jobs and tasks

A job is modelled as a tuple of the form:

job = ⟨jobId, code, input, output, M, R⟩

where jobId is a job identifier, code includes the map and reduce functions,
input (resp., output) is the location of the input (output) data of the job, M
is the number of map tasks, and R is the number of reduce tasks.

A task is modelled as a tuple:

task = ⟨taskId, jobId, type, code, input, output⟩

where taskId is a task identifier, jobId is the identifier of the job the task
belongs to, type can be either MAP or REDUCE, code includes the map or reduce
function (depending on the task type), and input (output) is the location of
the input (output) data of the task.

Users and nodes

A user is modelled as a pair of the form:

user = ⟨userId, userJobList⟩

which contains the user identifier (userId) and the list of jobs submitted by the
user (userJobList). The userJobList contains tuples of a userJobType defined
as:

userJobType = ⟨job, primaryId, jobStatus⟩

26 3 P2P-MapReduce

where job is a job descriptor, primaryId is the identifier of the node that is
managing the job as the primary master, and jobStatus represents the current
status of the job.

A node is modelled as a tuple:

node = ⟨nodeId, role, primaryJobList, backupJobList, slaveTaskList⟩

which contains the node identifier (nodeId), its role (MASTER or SLAVE), the
list of jobs managed by this node as the primary master (primaryJobList),
the list of jobs managed by this node as a backup master (backupJobList),
and the list of tasks managed by this node as a slave (slaveTaskList). Note
that primaryJobList and backupJobList are empty if the node is currently a
slave, while slaveTaskList is empty if the node is acting as a master.

The primaryJobList contains tuples of a primaryJobType defined as:

primaryJobType = ⟨job, userId, jobStatus, jobTaskList, backupMasterList⟩

where job is a job descriptor, userId is the identifier of the user that has
submitted the job, jobStatus is the current status of the job, jobTaskList is a
list containing dynamic information about the tasks that compose the job, and
backupMasterList is a list containing the identifiers (backupId) of the backup
masters assigned to the job. The jobTaskList contains tuples of a jobTaskType,
which is defined as follows:

jobTaskType = ⟨task, slaveId, taskStatus⟩

where task is a task descriptor, slaveId is the identifier of the slave responsible
for the task, and taskStatus represents the current status of the task.

The backupJobList contains tuples of a backupJobType defined as:

backupJobType = ⟨job, userId, jobStatus, jobTaskList, backupMasterList,
primaryId⟩

that differs from primaryJobType for the presence of an additional field, pri-
maryId, which represents the identifier of the primary master associated to
the job.

Finally, the slaveTaskList contains tuples of a slaveTaskType, which is
defined as:

slaveTaskType = ⟨task, primaryId, taskStatus⟩

where task is a task descriptor, primaryId is the identifier of the primary
master associated to the task, and taskStatus contains its status.

3.2.2 Architecture

The P2P-MapReduce architecture includes three types of nodes, as shown in
Figure 3.3: user, master and slave. Master nodes and slave nodes form two
logical peer-to-peer networks referred to as M-net and S-net, respectively. As
mentioned earlier in this section, computing nodes are dynamically assigned

3.2 System Model and Architecture 27

the master or the slave role, thus M-net and S-Net change their composition
over time. The mechanisms used for maintaining the infrastructure will be
described in Section 3.3.

User nodes submit their MapReduce jobs to the system through one of
the available masters. The choice of the master to which submit the job may
be done on the basis of the current workload of the available masters, i.e., the
user may choose the master that is managing the lowest number of jobs.

Master nodes are at the core of the system. They perform three types of
operations: management, recovery and coordination. Management operations
are those performed by masters that are acting as the primary master for one
or more jobs. Recovery operations are executed by masters that are acting as
backup master for one or more jobs. Coordination operations are performed
by the master that is acting as the network coordinator. The coordinator has
the power of changing slaves into masters, and viceversa, so as to keep the
desired master/slave ratio.

Each slave executes the tasks that are assigned to it by one or more pri-
mary masters. Task assignment may follow various policies, based on current
workload, highest reliability, and so on. In our implementation tasks are as-
signed to the slaves with the lowest workload, i.e., with the lowest number of
assigned tasks.

Jobs and tasks are managed by processes called Job Managers and Task
Managers, respectively. Each primary master runs one Job Manager thread
per managed job, while each slave runs one Task Manager thread per managed
task. Moreover, masters use a Backup Job Manager for each job they are
responsible for as backup masters.

28 3 P2P-MapReduce

Master

nodes

Slave

nodes

Job1

Node1

Job Manager

Job2

Job Manager

Job1

Node2

Job Manager

Job3

Task Manager

Node5 Node6

Job Manager Task ManagerTask Manager

Node7

Task ManagerTask Manager Task Manager Task ManagerTask Manager

Task Manager

Node8 Node9 Node10 Node11

User1 User2

Node4

Task ManagerTask Manager

Job1.Task1

Task Manager

User

nodes
Job1 Job2 Job3

Coordinator

Management

Recovery

Coordination

Backup

Job Manager

Job1

Node3

Backup

Job Manager

Job1

Backup

Job Manager

Job3

Job1.Task2

Job1.Task4 Job2.Task4

Job3.Task1 Job1.Task3Job2.Task1 Job2.Task2

Job3.Task2 Job1.Task5Job2.Task3

Backup

Job Manager

Job2

Task ManagerTask Manager

Job3.Task4Job3.Task3

Fig. 3.3: General architecture of P2P-MapReduce.

Figure 3.3 shows an example scenario in which three jobs have been sub-
mitted: one job by User1 (Job1) and two jobs by User2 (Job2 and Job3).
Focusing on Job1, Node1 is the primary master, and two backup masters are
used (Node2 and Node3). Job1 is composed by five tasks: two of them are
assigned to Node4, and one each to Node7, Node9 and Node11.

If the primary master Node1 fails before the completion of Job1, the fol-
lowing recovery procedure takes place:

• Backup masters Node2 and Node3 detect the failure of Node1 and start a
distributed procedure to elect the new primary master among them.

• Assuming that Node3 is elected as the new primary master, Node2 contin-
ues to play the backup function and, to keep the desired number of backup
masters active (two, in this example), another backup node is chosen by
Node3. Then, Node3 binds to the connections that were previously asso-
ciated to Node1, and proceeds to manage the job using its local replica of
the job state.

As soon as the job is completed, the (new) primary master notifies the
result to the user node that submitted the managed job.

The system mechanisms sketched above are described in detail in Section
3.3, while Section 3.4 will provide a description of the system implementation.

3.3 System Mechanisms 29

3.3 System Mechanisms

The behavior of a generic node is modelled as a state diagram that defines the
different states that a node can assume, and all the events that determine the
transitions from a state to another state. Figure 3.4 shows such state diagram
modelled using the UML State Diagram formalism.

NODE

SLAVE

<<MacroState>>

IDLE

CHECK_MASTER

MASTER

PRIMARY

NOT_BACKUP

BACKUP

ELECTING_COORDINATOR

WAITING_COORDINATOR

COORDINATOR

�MANAGEMENT�

[RECOVERY]

[COORDINATION]

taskAssigned

taskCompleted

<<timeout>>

[exists a
Master Node]

becomeMaster

becomeSlave

[not exists a
Master Node]

NOT_COORDINATOR

NOT_PRIMARY JobN

. . .

Job2

Job1

JobM

. . .

Job2

Job1

ACTIVE

TaskN

. . .

Task2

Task1

Fig. 3.4: Behavior of a generic node described by an UML State Diagram.

The state diagram includes two macro-states, SLAVE and MASTER, which
describe the two roles that can be assumed by each node. The SLAVE macro-
state has three states, IDLE, CHECK MASTER and ACTIVE, which represent re-
spectively: a slave waiting for task assignment; a slave checking the existence
of at least one master in the network; a slave executing one or more tasks. The
MASTER macro-state is modelled with three parallel macro-states, which rep-
resent the different roles a master can perform concurrently: possibly acting
as the primary master for one or more jobs (MANAGEMENT); possibly acting as
a backup master for one or more jobs (RECOVERY); coordinating the network
for maintenance purposes (COORDINATION).

The MANAGEMENTmacro-state contains two states: NOT PRIMARY, which rep-
resents a master node currently not acting as the primary master for any
job, and PRIMARY, which, in contrast, represents a master node currently
managing at least one job as the primary master. Similarly, the RECOVERY

macro-state includes two states: NOT BACKUP (the node is not managing any
job as backup master) and BACKUP (at least one job is currently being
backed up on this node). Finally, the COORDINATION macro-state includes

30 3 P2P-MapReduce

four states: NOT COORDINATOR (the node is not acting as the coordinator),
COORDINATOR (the node is acting as the coordinator), WAITING COORDINATOR

and ELECTING COORDINATOR for nodes currently participating to the election
of the new coordinator, as specified later.

The combination of the concurrent states [NOT PRIMARY, NOT BACKUP,
NOT COORDINATOR] represents the abstract state MASTER.IDLE. The transition
from master to slave role is allowed only to masters in the MASTER.IDLE state.
Similarly, the transition from slave to master role is allowed to slaves that are
not in ACTIVE state.

The events that determine state transitions are shown in Table 3.1. For
each event message the table shows: the event parameters; whether it is an
inner event; the sender’s state; the receiver’s state.

In the following we describe in detail the algorithmic behavior of each
node, using Table 3.1 as a reference for the events that are exchanged among
system entities. We proceed as follows. Section 3.3.1 describes data structures
and high-level behaviors of slave and master nodes. Section 3.3.2 focuses on job
and tasks management, by describing the algorithms that steer the behavior
of Job Managers, Tasks Managers, and Backup Job Managers. Finally, Section
3.3.3 describes the behavior of user nodes.

Event Parameters Inner
event

Sender’s state Receiver’s state

becomeMaster no COORDINATION SLAVE

becomeSlave no COORDINATION MANAGEMENT

jobAssigned Job, UserIdType no USER MANAGEMENT

jobReassigned BackupJobType yes BACKUP JOB MANAGER MANAGEMENT

jobCompleted JobIdType,
JobStatusType

yes JOB MANAGER MANAGEMENT
no MANAGEMENT USER

backupJobAssigned
PrimaryJobType,
NodeIdType

no JOB MANAGER RECOVERY

jobUpdate

JobIdType,
List<NodeIdType>,
List<JobTaskType>

no JOB MANAGER RECOVERY

backupJobCompleted JobIdType
yes BACKUP JOB MANAGER RECOVERY
no MANAGEMENT RECOVERY

taskAssigned
List<Task>,
NodeIdType

no JOB MANAGER SLAVE

taskCompleted TaskIdType,
TaskStatusType

yes TASK MANAGER SLAVE
no SLAVE MANAGEMENT

primaryUpdate
JobIdType,
NodeIdType

no MANAGEMENT USER
no MANAGEMENT RECOVERY
yes RECOVERY BACKUP JOB MANAGER
no MANAGEMENT SLAVE
yes SLAVE TASK MANAGER

Table 3.1: Description of the event messages that can be exchanged by P2P-
MapReduce nodes

3.3 System Mechanisms 31

3.3.1 Node Behavior

Figure 3.5 describes the behavior of a generic node, by specifying the algo-
rithmic details behind the finite state machine depicted in Figure 3.4. Each
node includes five fields, already introduced in Section 3.2.1: nodeId, role,
primaryJobList, backupJobList and slaveTaskList.

As soon as a node joins the network, it transits to the SLAVE macro-state
(line 8). Then, it sets its role accordingly (line 12) and passes to the IDLE

state (line 13). When a slave is in IDLE state, three events can happen:

• An internal timeout elapses, causing a transition to the CHECK MASTER

state (line 17).
• A taskAssigned message is received from the Job Manager of a primary

master (line 19). The message includes a list with the tasks to be executed
(assignedTaskList), and the identifier of the primary master (primaryId).
For each assigned task, a new slaveTask is created, it is added to the
slaveTaskList, and associated with a TaskManager (lines 20-24). Then,
the slave passes to the ACTIVE state (line 25).

• A becomeMaster message is received from the coordinator, causing a tran-
sition to the MASTER state (lines 27-28).

When a slave is in the CHECK MASTER state, it queries the discovery service
to check the existence of at least one master in the network. In case no masters
are found, the slave promotes itself to the master role; otherwise, it returns to
the IDLE state (lines 33-36). This state allows the first node joining (and the
last node remaining into) the network to assume the master role. A node in
CHECK MASTER state can also receive taskAssigned and becomeMaster events,
which are managed as discussed earlier.

32 3 P2P-MapReduce

Fig. 3.5: Pseudo-code describing the behavior of a generic node.

Slaves in ACTIVE state can receive three events:

• taskAssigned, which adds other tasks to those already being executed (line
46).

• primaryUpdate, which informs the slave that the primary master for a
given job has changed (line 49). This message, sent by the new primary
master, includes the identifier of the job whose primary master has changed
(updatedJobId), and the identifier of the new primary master (updatedPri-
maryId). Each task in the slaveTaskList whose job identifier equals up-
datedJobId is updated accordingly, and the associated Task Manager is
notified by propagating the event to it (lines 50-55).

• taskCompleted, an inner event sent by the Task Manager of the same node,
on completion of a given task (line 57). The event includes the identifier of
the completed task (completedTaskId) and its status (completedTaskSta-
tus). The slave identifies the corresponding tasks in the slaveTaskList,
stops the corresponding Task Manager, and propagates the event to the
primary master (lines 58-60). If there are no more tasks being executed,
the slave transits to the IDLE state.

A node that is promoted to the MASTER macro-state sets its role accord-
ingly (line 68), and concurrently transits to three parallel states (line 69),

3.3 System Mechanisms 33

as depicted in Figure 3.4 and mentioned earlier in this section: MANAGEMENT,
COORDINATION and RECOVERY. If a master receives a becomeSlave event from
the coordinator (line 71), and the internal states of the MANAGEMENT, COORDINATION
and RECOVERY concurrent macro-states are respectively equal to NOT PRIMARY,
NOT BACKUP and NOT COORDINATOR, it transits to the SLAVE state (lines 72-
73).

Fig. 3.6: Pseudo-code describing the behavior of a master node performing
Management activities.

The MANAGEMENT macro-state is described in Figure 3.6. Initially, the mas-
ter transits to the NOT PRIMARY state, where two events can be received:

• jobAssigned, through which a user submits a job to the master (line 6). The
message includes the job to be managed and the identifier of the submitting
user (userId). In response to this event, a new primaryJob is created, it
is added to the primaryJobList, and associated with a JobManager (lines
7-9). Then, the master transits to the PRIMARY state (line 10).

• jobReassigned, an inner event sent by the Backup Job Manager of the same
node to notify this master that it has been elected as the new primary for
a backupJob received as parameter (line 12). The following operations
are performed: a new primaryJob, created from backupJob, is added to
the primaryJobList (lines 13-14); all the other backup masters associated
with this job are notified about the primary master change, by sending a
primaryUpdated message to them (lines 15-16); a primaryUpdate message
is also sent to all the slaves that are managing tasks part of this job (lines
17-18), as well as to the user that submitted the job (line 19); finally, a
new Job Manager is started for the primaryJob and the state is changed
to PRIMARY.

34 3 P2P-MapReduce

When a master is in the PRIMARY state, besides the jobAssigned and jobRe-
assigned events, which are identical to those present in the NOT PRIMARY state,
it can receive a jobCompleted inner event from a Job Manager, on completion
of a given job (line 31). The event includes the identifier of the completed
job (completedJobId) and its status (completedJobStatus). The master iden-
tifies the job in the primaryJobList, stops the corresponding Job Manager,
and sends a backupJobCompleted event to all the backup masters associated
with this job (lines 32-35). Then, the event is propagated to the user that
submitted the job (line 36) and, if there are no more jobs being managed, the
master transits to the NOT PRIMARY state.

Fig. 3.7: Pseudo-code describing the behavior of a master node performing
Recovery activities.

Figure 3.7 describes the RECOVERY macro-state. Masters in the NOT BACKUP

state can receive a backupJobAssigned event from the Job Manager of another
node that is acting as the primary master for a given job (line 6). In this
case, the node adds a backupJob to the backupJobList, starts a Backup Job
Manager, and transits to the BACKUP state (line 7-10).

In the BACKUP state four events can be received:

• backupJobAssigned, which is identical to that received in the NOT BACKUP

state, except for the absence of the state transition (lines 14-15).
• primaryUpdate, which informs this backup master that the primary master

for a given job has changed (line 17). The backupJob in the backupJobList
is updated accordingly and the same event is propagated to the corre-
sponding Backup Job Manager (lines 18-20).

• jobUpdate, which is a message sent by the primary master each time
a change happens to the information associated with a given job (line
22). The message includes three fields: the identifier of the job whose
information has changed (updatedJobId); the (possibly updated) list of
backup masters associated with updatedJobId (updatedBackupMasterList);

3.3 System Mechanisms 35

the tasks associated with updatedJobId that have been updated (updated-
JobTaskList). Note that the updatedJobTaskList does not contain whole
tasks information, but only the information that has to be updated. In
response to this event, the backupMasterList and all the relevant tasks in
jobTaskList are updated (lines 23-27).

• backupJobCompleted, an event that notifies the completion of a given back-
upJob (line 29). In most cases this messages is sent by the primary master
on job completion. In the other cases, it is an inner event sent by the
Backup Job Manager of the same node, because the node has been elected
as the new primary master. In both cases, the Backup Job Manager asso-
ciated with the job is stopped and, if the backupJobList does not contain
other jobs to execute, the node transits to the NOT BACKUP state (lines
30-33).

Fig. 3.8: Pseudo-code describing the behavior of a master node performing
Coordination activities.

Finally, the pseudo-code associated with the COORDINATION macro-state is
described in Figure 3.8. Initially, a master transits to the NOT COORDINATOR

state; if a coordinator failure is detected by the network module, the master
transits to the ELECTING COORDINATOR state. Here, a distributed election al-
gorithm starts. In particular, assuming to use the Bully algorithm [45], the
following procedure takes place:

• A node in the ELECTING COORDINATOR state sends an election message to
all masters with higher identifier; if it does not receive a response from
a master with a higher identifier within a time limit, it wins the election
and passes to the COORDINATOR macro-state; otherwise, it transits to the
WAITING COORDINATOR state.

• A node in the WAITING COORDINATOR waits until it receives a message from
the new coordinator, then it transits to the NOT COORDINATOR state. If it

36 3 P2P-MapReduce

does not receive a message from the new coordinator before the expiration
of a timeout, the node returns to the ELECTING COORDINATOR state.

When a master enters the COORDINATOR macro-state, notifies all the other
masters that it became the new coordinator, and transits to the ACTIVE state
(lines 19-20). Whenever the coordinator is ACTIVE, it performs its periodical
network maintenance operations: if there is a lack of masters (i.e., the number
of desired masters is greater than the current number of masters), the coor-
dinator identifies a set of slaves that can be promoted to the master role, and
sends a becomeMaster message to each of them (lines 25-29); if there is an
excess of masters, the coordinator transforms a set of idle masters to slaves,
by sending a becomeSlave message to each of them (lines 30-34).

3.3.2 Job and Task Management

As described in Section 3.2.2, MapReduce jobs and tasks are managed by
processes called Job Managers and Task Managers, respectively. In particu-
lar, Job Managers are primary masters’ processes, while Task Managers are
slaves’ processes. Moreover, masters run Backup Job Managers to manage
those jobs they are responsible for as backup masters. In the following we de-
scribe the algorithmic behavior of Job Managers, Task Managers and Backup
Job Managers.

Figure 3.9 describes the behavior of a Job Manager. The Job Manager
includes only two states: ASSIGNMENT and MONITORING. As soon as it is started,
the Job Managers transits to the ASSIGNMENT state (line 4).

3.3 System Mechanisms 37

Fig. 3.9: Pseudo-code describing the behavior of a Job Manager.

Briefly, the operations performed by a Job Manager in the ASSIGNMENT

state are the following: i) it calculates the number of backup nodes (B) and
slave nodes (S) needed to manage the job (lines 8-9); if B > 0, it identifies
(up to) B masters that can be assigned the backup role, and sends a back-
upJobAssigned message to them (lines 10-16); similarly, if S > 0, it identifies
S slaves, and assigns a subset of the tasks to each of them through a taskAs-
signed message (lines 18-29); finally, if B > 0 or S > 0, a jobUpdate event is
sent to each backup master associated with the managed job (lines 30-35).
The search for backup and slave nodes is performed by querying the discovery
service.

In the MONITORING state four events can happen:

• An internal timeout elapses, causing a transition to the ASSIGNMENT state
(line 39). This enforces the Job Manager to periodically check whether
there are backup or slave nodes to be assigned.

• The failure of a backup master is notified by the network module (back-
upMasterFailure) (line 41). The failed backup master is removed from the
backupMasterList and a transition to the ASSIGNMENT state is performed
to find a suitable replacement (lines 42-43).

• The failure of a slave is detected (slaveFailure) (line 45), and is managed
similarly to the backupMasterFailure event.

38 3 P2P-MapReduce

• A taskCompleted event is received from a slave (line 54). The event in-
cludes the identifier of the completed task (completedTaskId) and its sta-
tus (completedTaskStatus). The Job Manager identifies the corresponding
task from the jobTaskList, changes its status, and notifies all the backup
masters about this update through a jobUpdate message (lines 55-60).
If the task has not completed with success, the Job Manager returns
to the ASSIGNMENT state to reassign it (lines 61-62). Finally, if all the
tasks have completed with success, it sends a jobCompleted message to
the MANAGEMENT state.

Figure 3.10 describes the behavior of a Task Manager. When started, the
Task Manager transits to two concurrent states: EXECUTION and PRIMARY MONITORING

(line 4). The EXECUTION state executes the assigned task; on task completion,
it sends a taskCompleted message to the SLAVE state (lines 8-10).

Fig. 3.10: Pseudo-code describing the behavior of a Task Manager.

The PRIMARY MONITORING macro-state allows to monitor the primary mas-
ter responsible for the job of the managed task. In the case a failure of the
primary master is detected (line 18), the Task Managers waits for the elec-
tion of a new primary (line 26); if the election is not completed within a time
limit, the Task Manager enters a PRIMARY UNAVAILABLE state and sends a
taskCompleted event to the SLAVE state (line 32).

Finally, the Backup Job Manager pseudo-code is shown in Figure 3.11.
Initially, the Backup Job Manager enters the CHECK PRIMARY state (line 4).
If a primary master failure is detected, the backup master passes to the
ELECTING PRIMARY state and a procedure to elect the new primary master
begins. This election algorithm is the same to elect the network coordinator.
The new primary transits to the NEW PRIMARY state.

3.3 System Mechanisms 39

Fig. 3.11: Pseudo-code describing the behavior of a Backup Job Manager.

The Backup Job Manager performs the following operations in the NEW PRIMARY

state (lines 23-26): informs the other backup masters that this node became
the new primary master; removes itself from the backupMasterList of the man-
aged backupJob; sends a backupJobCompleted message to the RECOVERY state;
sends a jobReassigned message to the MANAGEMENT state.

3.3.3 User Behavior

Fig. 3.12: Pseudo-code describing the behavior of a user node.

We conclude this section by describing the behavior of user nodes (see Fig-
ure 3.12). Each user includes an identifier (userId) and a list of jobs submitted
(userJobList). Three events are possible:

• submitJob, a user-generated event (for this reason not listed in Table 3.1)
which requires the submission of a new job (line 4). The job is added to the
userJobList ; then, a master is searched and the job is assigned to it using
a jobAssigned message (lines 5-8). The search for a master is performed
by querying the discovery service for nodes whose role is MASTER.

• primaryUpdate, which informs the user that the primary master has
changed (line 10). The message includes the identifier of the job whose
primary master has changed, and the identifier of the new primary master
(updatedPrimaryId). The user identifies the job in the userJobList, and
changes its primaryId to updatedPrimaryId (lines 11-12).

40 3 P2P-MapReduce

• jobCompleted, which notifies the user that a job has completed its exe-
cution (line 14). The message includes the identifier of the job and its
status (completedJobStatus). The job is identified in the userJobList, and
its status is changed to completedJobStatus (lines 15-16).

3.4 Implementation

We implemented a prototype of the P2P-MapReduce framework using the
JXTA framework [46]. JXTA provides a set of XML-based protocols that
allow computers and other devices to communicate and collaborate in a peer-
to-peer fashion. Each peer provides a set of services made available to other
peers in the network. Services are any type of programs that can be networked
by a single or a group of peers.

In JXTA there are two main types of peers: rendezvous and edge. The
rendezvous peers act as routers in a network, forwarding the discovery requests
submitted by edge peers to locate the resources of interest. Peers sharing a
common set of interests are organized into a peer group. To send messages to
each other, JXTA peers use asynchronous communication mechanisms called
pipes. Pipes can be either point-to-point or multicast, so as to support a
wide range of communication schemes. All resources (peers, services, etc.)
are described by advertisements that are published within the peer group for
resource discovery purposes.

All master and slave nodes in the P2P-MapReduce system belong to a
single JXTA peer group called MapReduceGroup. Most of these nodes are
edge peers, but some of them also act as rendezvous peers, in a way that is
transparent to the users. Each node exposes its features by publishing an ad-
vertisement containing basic information that are useful during the discovery
process, such as its role and workload. Each advertisement includes an ex-
piration time; a node must renew its advertisement before expiration; nodes
associated with expired advertisements are considered as no longer present in
the network.

Each node publishes its advertisement in a local cache and sends some keys
identifying that advertisement to a rendezvous peer. The rendezvous peer uses
those keys to index the advertisement in a distributed hash table called Shared
Resource Distributed Index (SRDI), that is managed by all the rendezvous
peers of MapReduceGroup. Queries for a given type of resource (e.g., master
nodes) are submitted to the JXTA Discovery Service that uses SRDI to locate
all the resources of that type without flooding the entire network. For example,
if a user node wants to search for all the available masters, it submits a query to
the JXTA Discovery Service asking for all the advertisements whose field role
is equal to MASTER. Note that M-net and S-net, introduced in Section 3.2, are
“logical” networks in the sense that queries to M-net (or S-net) are actually
submitted to the whole MapReduceGroup but restricted to nodes having their
field role equal to MASTER (or SLAVE) using the SRDI mechanisms.

3.4 Implementation 41

Pipes are the fundamental communication mechanisms of the P2P-MapReduce
system, since they allow the asynchronous delivery of event messages among
nodes. Different types of pipes are employed within the system: bidirectional
pipes are used between users and primary masters to submit jobs and return
results, as well as between primary masters and their slaves to submit tasks
and receive results notifications, while multicast pipes are used by primary
masters to send job updates to their backups.

In JXTA pipes it is possible to rebind one endpoint without affecting
the other endpoint. We use this feature when a failure occurs: in fact, the
new primary master can bind the pipes that were previously used by the old
primary master, without affecting the entities connected at the other endpoint
(i.e., the user node and the slave nodes).

We conclude this section briefly describing the software modules inside
each node and how those modules interact each other in a P2P-MapReduce
network. Figure 3.13 shows such modules and interactions using the UML
Deployment/Component Diagram formalism.

Node 1

Node 2
Node 3

<<JXTA Pipe>> <<JXTA Pipe>>

Data

store

Network module

Node module

FSM

MapReduce

module

JXTA
Discovery
Service

Fig. 3.13: UML Deployment/Component Diagram describing the software
modules inside each node and the interactions among nodes.

Each node includes three software modules/layers: Network, Node and
MapReduce:

42 3 P2P-MapReduce

• The Network module is in charge of the interactions with the other nodes
by using the pipe communication mechanisms provided by the JXTA
framework. When a connection timeout is detected on a pipe associated
with a remote node, this module propagates the appropriate failure event
to the Node module. Additionally, this module allows the node to inter-
act with the JXTA Discovery Service for publishing its features and for
querying the system (e.g., when looking for idle slave nodes).

• The Node module controls the lifecycle of the node in its various aspects,
including network maintenance, job management, and so on. Its core is
represented by the FSM component which implements the logic of the
finite state machine described in Figure 3.4, steering the behavior of the
node in response to inner events or messages coming from other nodes
(i.e., job assignments, job updates, and so on).

• The MapReduce module manages the local execution of jobs (when the
node is acting as a master) or tasks (when the node is acting as a slave).
Currently this module is built around the local execution engine of the
Hadoop system [16].

While the current implementation is based on JXTA for the Network layer
and on Hadoop for the MapReduce layer, the layered approach described in
Figure 3.13 is thought to be independent from a specific implementation of
the Network and MapReduce modules. In other terms, it may be possible to
adopt alternative technologies for the Network and MapReduce layers without
affecting the core implementation of the Node module.

3.5 System Evaluation

A set of experiments has been carried out to evaluate the behavior of the P2P-
MapReduce framework compared to a centralized implementation of MapRe-
duce in the presence of different levels of churn. In particular, we focused on
comparing P2P and centralized implementations in terms of fault tolerance,
network traffic, and scalability.

The remainder of this section is organized as follows. Section 3.5.1 de-
scribes the experimental setup and methodology. Section 3.5.2 compares fault
tolerance capability of P2P and centralized MapReduce implementations. Sec-
tion 3.5.3 analyzes the systems in terms of network traffic. Section 3.5.4 con-
centrates on the scalability of the systems. Finally, 3.5.5 summarizes the main
results of the present evaluation.

3.5.1 Experimental Setup and Methodology

The evaluation has been carried out by using a custom-made discrete-event
simulator that reproduces the behavior of the P2P-MapReduce prototype de-
scribed in the previous section, as well as the behavior of a centralized MapRe-
duce system like that introduced in Section 2.4.1. While the P2P-MapReduce

3.5 System Evaluation 43

prototype allowed us to perform functional testing of the system mechanisms
on a small scale, the simulator allowed us to perform non-functional testing
(i.e., performance evaluation) on large networks (thousands of nodes), which
represent our reference scenario.

The simulator models joins and leaves of nodes and job submissions as
Poisson processes; therefore, the interarrival times of all the join, leave and
submission events are independent and obey an exponential distribution with
a given rate. This model has been adopted in literature to evaluate several
P2P systems (see, for example, [47] and [48]), for its ability to approximate
real network dynamics reasonably well.

Table 3.2 shows the input parameters used during the simulation.

Symbol Description Values

N Initial number of nodes in the network
5000, 7500, 10000, 15000,
20000, 30000, 40000

NM Number of masters (% on N) 1 (P2P only)

NB Number of backup masters per job 1 (P2P only)

LR
Leaving rate: avg. number of nodes that leave the
network every minute (% on N)

0.025, 0.05, 0.1, 0.2, 0.4

JR
Joining rate: avg. number of nodes that join the net-
work every minute (% on N)

equal to LR

SR
Submission rate: avg. number of jobs submitted ev-
ery minute (% on N) 0.01

JT Job type A, B, C (see Table 3.3)

Table 3.2: Simulation parameters

As shown in the table, we simulated MapReduce systems having an initial
size ranging from 5000 to 40000 nodes, including both slaves and masters. In
the centralized implementation, there is one master only and there are not
backup nodes. In the P2P implementation, there are 1% masters (out of N)
and each job is managed by one master which dynamically replicates the job
state on one backup master.

To simulate node churn, a joining rate JR and a leaving rate LR have been
defined. On average, every minute JR nodes join the network, while LR nodes
abruptly leave the network so as to simulate an event of failure (or a graceless
disconnection). In our simulation JR = LR to keep the total number of nodes
approximatively constant during the whole simulation. In particular, we used
five values for JR and LR: 0.025, 0.05, 0.1, 0.2 and 0.4, so as to evaluate the
system under different churn rates. Note that such values are expressed as a
percentage of N . For example, if N = 10000 and LR = 0.05, there are on
average 5 nodes leaving the network every minute.

Every minute, SR jobs are submitted on average to the system by user
entities. The value of such submission rate is 0.01, expressed, as for JR and

44 3 P2P-MapReduce

LR, as a percentage of N . Each job submitted to the system is characterized
by two parameters: total computing time and number of tasks. To evaluate
the behavior of the system under different loads, we defined three job types
(JT), A, B and C, as detailed in Table 3.3.

Type
Total computing
time (hours) Number of tasks

A 100 200

B 150 300

C 200 400

Table 3.3: Job types and associated parameters (average values)

Hence, the jobs submitted to the system simulator belong either to type
A, B or C. For a given submitted job, the system calculates the amount of
time that each slave needs to complete the task assigned to it as the ratio
between the total computing time and the number of tasks required by that
job. Tasks are assigned to the slaves with the lowest workload, i.e., with the
lowest number of assigned tasks. Each slave keeps the assigned tasks in a
priority queue. After the completion of the current task, the slave selects for
execution the task that has failed the highest number of times among those
present in the queue.

In order to compare the P2P-MapReduce system with a centralized
MapReduce implementation, we analyzed several scenarios characterized by
different combinations of simulation parameters (i.e., network size, leaving
rate, job type). For each scenario under investigation, the simulation ends af-
ter the completion of 500 jobs. At the end of the simulation, we collect four
performance indicators:

• The percentage of failed jobs, which is the number of jobs failed expressed
as a percentage of the total number of jobs submitted.

• The percentage of lost computing time, which is the amount of time spent
executing tasks that were part of failed jobs, expressed as a percentage of
the total computing time.

• The number of messages exchanged through the network during the whole
simulation process.

• The amount of data associated with all the messages exchanged through
the network.

For the purpose of our simulations, a “failed” job is a job that does not
complete its execution, i.e., does not return a result to the submitting user
entity. The failure of a job is always caused by a not-managed failure of the
master responsible for that job. The failure of a slave, on the contrary, never
causes a failure of the whole job because its task is reassigned to another slave.

3.5 System Evaluation 45

3.5.2 Fault Tolerance

As mentioned earlier, one of the goals of our simulations is to compare the
P2P and centralized implementations in terms of fault tolerance, i.e., the
percentage of failed jobs and the corresponding percentage of lost computing
time. The results discussed in this section have been obtained considering the
following scenario: N = 10000 and LR ranging from 0.025 to 0.4. Figure 3.14
compares the percentage of failed jobs in such scenario, for each of the job
types defined above: (a) JT=A; (b) JT=B; (c) JT=C.

Fig. 3.14: Percentage of failed jobs in a network with 10000 nodes: (a) JT=A;
(b) JT=B; (c) JT=C.

As expected, with the centralized MapReduce implementation the per-
centage of failed jobs significantly increases with the leaving rate, for each job
type. For example, when JT = B, the percentage of failed jobs passes from
2.5 when LR = 0.025, to 38.0 when LR = 0.4. Moreover, we can observe that,
fixed the value of LR, the percentage of failed jobs increases from JT=A to
JT=B, and from JT=B to JT=C. For example, with LR=0.1, the percent-
age of failed jobs is 3.3 for JT=A, 7.8 for JT=B, and 14.2 for JT=C. This
is motivated by the fact that longer jobs (as jobs of type C are compared to
jobs of type B and A) are statistically more subject to be affected by a failure
of the associated master.

In contrast to the centralized implementation, the P2P-MapReduce frame-
work is limitedly affected by job failures. In particular, for any job type, the
percentage of failed jobs is 0% for LR ≤ 0.2, while it is ranges from 0.2%
to 0.4% for LR = 0.4, even if only one backup master per job is used. It is
worth recalling here that when a backup master becomes primary master as
a consequence of a failure, it chooses another backup in its place to maintain
the desired level of reliability, as discussed in Section 3.3.

Figure 3.15 reports the percentage of lost computing time in centralized
and P2P implementations related to the same experiments of Figure 3.14,
for different combinations of network sizes, leaving rates and job types. The
figure also shows the amount of lost computing time, expressed in hours, in
correspondence of each graph point for the centralized and P2P cases.

46 3 P2P-MapReduce

Fig. 3.15: Percentage of lost time in a network with 10000 nodes: (a) JT=A;
(b) JT=B; (c) JT=C. The numbers in correspondence of each graph point
represent the amount of lost computing time expressed in hours (some zero
values are omitted for readability).

The lost computing time follows a similar trend as the percentage of failed
jobs, and it results affected by the same dependence from the job type. For
example, when LR=0.4, the percentage of lost computing time for the central-
ized system passes from 9.2 for JT=A to 25.5 for JT=C, while the percentage
of time lost by the P2P system is under 0.1% in the same configurations. The
difference between centralized and P2P is even clearer if we look at the ab-
solute amount of computing time lost in the various scenarios. In the worst
case (LR=0.4 and JT=C), the centralized system loses 57090 hours of com-
putation, while the amount of lost computing time with the P2P-MapReduce
system is only 84 hours.

3.5.3 Network Traffic

This section compares the P2P and centralized implementations of MapRe-
duce in terms of network traffic, i.e., the number of messages exchanged
through the network during the whole simulation, and the corresponding
amount of data expressed in MBytes. The amount of data is obtained by
summing the sizes of all the messages that are exchanged through the net-
work.

In order to calculate the size of each messages, Table 3.4 lists the sizes of
all the basic components that may be found in a message.

3.5 System Evaluation 47

Message components Size (Bytes)

Header 260

Identifier (e.g., jobId, taskId) 4

Code (job.code, task.code) 4000

URL (e.g., job.input, job.output) 150

Integer (e.g., job.M, job.R) 4

Status (e.g., task.type, jobStatus) 1

Table 3.4: Sizes of message components

Each message includes a header that represents the fixed amount of traffic
each message generates independently from the specific payload. Its size has
been determined experimentally by measuring the average amount of traffic
generated to transfer an empty message from a host to another host using
a TCP socket. The sizes for identifier, integer and status variables are those
used in common system implementations. The size of the code component is
the average code size observed on a set of MapReduce applications; the size
of the URL component has been calculated similarly.

For example, let’s calculate the size of a jobAssigned message. From Table
3.1, we know that a jobAssigned message includes three parts: 1) one Job
tuple; 2) one UserIdType variable; 3) one header (implicitly present in each
message). While the size of the second and third parts are known (respectively
4 and 260 Bytes), the size of the first part must be calculated as the sum of
each of its fields. From Section 3.2.1, a Job tuple includes the following fields:
jobId (4 Bytes), code (4000 Bytes), input (150 Bytes), output (150 Bytes), M
(4 Bytes) and R (4 Bytes), for a total of 4312 Bytes. Therefore, the size of a
jobAssigned message is equal to 4576 Bytes.

The size of messages that include lists, like taskAssigned, is calculated
taking into account the actual number of elements in the list, and the size of
each such elements. For the messages generated by the discovery service and
by the election algorithms, we proceeded in the same way. We just mention
that most of such messages are very small since they include only a few fields.

For the purpose of the evaluation presented below, we distinguish four
categories of messages:

• Management : messages exchanged among nodes to manage jobs and tasks
execution. Referring to Table 3.1, the management messages are those as-
sociated with the following (not inner) events: jobAssigned, jobCompleted,
taskAssigned and taskCompleted.

• Recovery : messages exchanged among primary masters and their backups
to dynamically replicate job information (backupJobAssigned, backupJob-
Completed, jobUpdate and primaryUpdate), as well as to elect a new pri-
mary in the case of a master failure (messages specific to the election
algorithm used).

48 3 P2P-MapReduce

• Coordination: messages generated by the coordinator to perform network
maintenance operations (becomeMaster and becomeSlave), as well as to
elect the new coordinator (specific to the election algorithm).

• Discovery : messages generated to publish and search information about
nodes using the JXTA Discovery Service.

Management messages are present both in the P2P and in the central-
ized case, since they are generated by the standard execution mechanisms of
MapReduce. In contrast, recovery, coordination and discovery operations are
performed only by the P2P-MapReduce system, therefore the corresponding
messages are not present in the centralized case.

We start focusing on the total traffic generated, without distinguishing
the contribution of the different categories of messages, in order to obtain
an aggregate indicator of the overhead generated by the two systems. As for
the previous section, the results presented here are obtained considering a
network with N = 10000 and LR ranging from 0.025 to 0.4. In particular,
Figure 3.16 compares the total number of messages exchanged for three job
types: (a) JT=A; (b) JT=B; (c) JT=C.

Fig. 3.16: Number of messages exchanged in a network with 10000 nodes: (a)
JT=A; (b) JT=B; (c) JT=C.

As shown by the graphs, the total number of messages generated by the
P2P system is higher than that generated by the centralized system in all the
considered scenarios. This is mainly due to the presence in the P2P system of
discovery messages, which are not present in the centralized system. We will
discuss later in this section the impact of the different types of messages also
in terms of amounts of data exchanged.

We observe that in both cases - P2P and centralized - the number of
messages increases with the leaving rate. This is due to the fact that by
increasing the leaving rate also the number of failed jobs increases; since failed
jobs are resubmitted, a subsequent increase in the number of management
messages is produced. As shown in the figure, such increase is higher with the
centralized MapReduce implementation, being higher the number of failed
jobs compared to P2P-MapReduce.

3.5 System Evaluation 49

The increase in the number messages is higher for heavy jobs (i.e., JT=B
or JT=C), since their failure requires the reassignment of a greater number of
tasks, thus producing a higher number of management messages. For example,
Figure 3.16c shows that with JT=C, the number of messages for the P2P case
passes from 1.12 millions when LR = 0.025, to 1.23 millions when LR = 0.04,
which corresponds to an increase of about 10%. In contrast, the number of
messages for the centralized case passes from 0.43 to 0.86 millions, which
corresponds to an increase of 100%.

Figure 3.17 shows the amount of data associated with all the messages
exchanged through the network.

Fig. 3.17: Data exchanged (MBytes) in a network with 10000 nodes: (a)
JT=A; (b) JT=B; (c) JT=C.

For the P2P case, the amount of data for a given job type increases very
little with the leaving rate. In fact, the few jobs that fail even with the higher
leaving rate, produce a relatively little number of additional management mes-
sages and so they have a limited impact in terms of amount of data exchanged.
For the centralized case, the amount of data for a given job type increases sig-
nificantly with the leaving rate, since the percentage of failed jobs grows faster
than the P2P case.

It is interesting to observe that, in some scenarios, the amount of data
exchanged in the centralized implementation is greater than the amount of
data exchanged in P2P-MapReduce. In our simulations this happens when
LR > 0.2 for JT=B (see Figure 3.17b), and when LR > 0.1 for JT=C (see
Figure 3.17c). In particular, with LR = 0.4 and JT=C, the amount of data
exchanged is equal to 1369 MB for the P2P system and 2623 MB for the
centralized implementation.

We conclude the traffic analysis by showing what is the contribution of
the different types of messages (management, recovery, coordination and dis-
covery) in terms of number of messages and corresponding amount of data
exchanged through the network. Figure 3.18 presents the results of such anal-
ysis for a network with N = 10000 and JT=C.

50 3 P2P-MapReduce

Fig. 3.18: Detailed traffic in a network withN = 10000 and JT=C: (a) number
of messages; (b) amount of data.

As stated earlier, in the centralized case only management messages are
generated. Therefore, their number and corresponding amount of data are the
same already shown in Figures 3.16c and 3.17c. We just highlight that, for
high values of leaving rate, the number of messages and the amount of data
grows significantly.

For the P2P case, we observe that the management messages represent
only one third of the total number of messages. Discovery messages represent
40% in terms of number of messages, but only 10% in terms of amount of data.
This is due to the fact that the size of discovery messages is very small, as
mentioned earlier, and so they do not produce a significant network overhead.
Also recovery and coordination messages have limited impact on the total
network traffic, both in terms of number of messages and amount of data.

3.5.4 Scalability

We finally conducted a set of simulations to evaluate the behaviors of the P2P
and centralized MapReduce implementations by varying the network size. In
particular, Figure 3.19 compares P2P and centralized systems with LR = 0.1,
JT=C, and N ranging from 5000 to 40000, in terms of: (a) percentage of
failed jobs; (b) percentage (and absolute amount) of lost computing time; (c)
number of messages; (d) amount of data exchanged.

3.5 System Evaluation 51

Fig. 3.19: Comparison of P2P and centralized systems with LR = 0.1, JT=C,
andN ranging from 5000 to 40000: (a) percentage of failed jobs; (b) percentage
(and absolute amount) of lost computing time; (c) number of messages; (d)
amount of data exchanged.

As shown in Figure 3.19a, the percentage of failed jobs for the centralized
case slightly decreases when the network size increases. This is due to the
fact that jobs complete faster in larger networks, since the number of slaves
increases and the job type is fixed (JT=C in our case), and so they are less
affected by failure events. On the other hand, in the P2P case the percentage
is always zero, independently from the network size. For the percentage of lost
computing time (see Figure 3.19b) a similar trend can been noted.

Regarding network traffic (see Figures 3.19c and 3.19d), we observe that,
in the P2P case, the number of messages slightly increases with the number
of nodes. This is due to the higher number of discovery and coordination mes-
sages that are generated in larger networks. However, in terms of amount of
data this increment is negligible. Also for the centralized system the variation
is not significant passing from 5000 to 40000 nodes.

3.5.5 Remarks

The results discussed above confirm the fault tolerance level provided by
the P2P-MapReduce framework compared to a centralized implementation

52 3 P2P-MapReduce

of MapReduce, since in all the scenarios analyzed the amount of failed jobs
and the corresponding lost computing time was negligible. The centralized
system, on the contrary, was significantly affected by high churn rates, pro-
ducing critical levels of failed jobs and lost computing time.

The experiments have also shown that the P2P-MapReduce system gener-
ates more messages than a centralize MapReduce implementation. However,
the difference between the two implementations reduces as the leaving rate
increases, particularly in the presence of heavy jobs. Moreover, if we com-
pare the two systems in terms of amount of data exchanged, we see that in
many cases the P2P-MapReduce system is more efficient than the centralized
implementation.

We have finally assessed the behavior of P2P-MapReduce with different
network sizes. The experimental results showed that the overhead generated
by the system is not significantly affected by an increase of the network size,
thus confirming the good scalability of our system.

In summary, the experimental results show that even if the P2P-MapReduce
system consumes in most cases more network resources than a centralized im-
plementation of MapReduce, it is far more efficient in job management since
it minimizes the lost computing time due to jobs failures.

3.6 Conclusion

The P2P-MapReduce framework exploits a peer-to-peer model to manage
node churn, master failures, and job recovery in a decentralized but effective
way, so as to provide a more reliable MapReduce middleware that can be
effectively exploited in dynamic Cloud infrastructures.

This chapter provided a detailed description of the basic mechanisms that
are at the base of the P2P-MapReduce system, presented a prototype im-
plementation based on the JXTA peer-to-peer framework, and an extensive
performance evaluation of the system in different network scenarios.

The experimental results showed that, differently from centralized master-
server implementations, the P2P-MapReduce framework does not suffer from
job failures even in presence of very high churn rates, thus enabling the exe-
cution of reliable MapReduce applications in very dynamic Cloud infrastruc-
tures.

4

COMPSs applications on the Cloud

The growth of Cloud services and technologies has brought many advantages
and opportunities to scientific communities offering users efficient and cost-
effective solutions to their problems of lack of computational resources. Even
though the Cloud paradigm does not address all the issues related to the port-
ing and execution of scientific applications on distributed infrastructures, it
is widely recognized that, through Clouds, researchers can provision compute
resources on a pay-per-use basis, thus avoiding to enter in a procurement pro-
cess that implies investment costs for buying hardware or access procedures
to supercomputers.

Recently, several Grid initiatives and distributed computing infrastruc-
tures [49] [50] [51] have started to develop Cloud services in order to provide
existing services through virtualized technologies for the dispatch of scientific
applications. These technologies allow the deployment of hybrid computing
environments where the provision of private Clouds is backed up by pub-
lic offerings such as Azure[9] or Amazon[10]. The VENUS-C[52] project in
particular aims to support research and industry user communities to lever-
age Cloud computing for their applications through the provision of a hybrid
platform that provides commercial (Azure) and open source Cloud services.

In such a hybrid landscape, there are technical challenges such as interop-
erability that need to be addressed from different points of view. The inter-
operability concept can refer to different things at many levels. It could mean
the ability to keep the behavior of an application when it runs on different
environments such as a cluster, a Grid or an IaaS provided infrastructure like
Amazon instances. At lower level, it might refer to a single application run-
ning in many Clouds being able to share information, which might require
having a common set of interfaces and the ability of users to use the same
management tools, server images and other software with a variety of Cloud
computing providers and platforms.

From a programming framework perspective these issues have to be solved
also at different levels, developing the appropriate interfaces to interact with
several Cloud providers, ensuring that the applications are executed on dif-

54 4 COMPSs applications on the Cloud

ferent infrastructure without having to adapt them and handling data move-
ments seamlessly amongst different Cloud storages.

The COMP Superscalar[20] programming framework allows the program-
ming of scientific applications and their execution on a wide number of dis-
tributed infrastructures. In Cloud environments, COMPSs provides scaling
and elasticity features allowing to adapt the number of available resources to
the actual need of the execution. The availability of connectors for several
providers makes possible the execution of scientific applications on hybrid
Clouds taking into account the above mentioned issues related to the porting
of applications to a target Cloud and their transparent execution with regards
to the underlying infrastructure. This chapter describes the developments for
making COMPSs interoperable with Windows Azure Platform through the
design of a specific adaptor.

The rest of the chapter is organized as follows. Section 4.1 describes the
COMPSs framework. Section 4.2 details the developed Azure GAT Adaptor.
Section 4.3 illustrates the porting of a data mining application to COMPSs.
Section 4.4 evaluates the performance of the ported application. Section 4.5
discusses the related work. Section 4.6 presents the conclusions and the future
work.

4.1 The COMPSs framework

COMPSs is a programming framework, composed of a programming model
and an execution runtime, whose main objective is to ease the development
of applications for distributed environments.

The programming model aims to keep the programmers unaware of the
execution environment and parallelization details. They are only required to
create a sequential application and specify which application methods will be
executed as remote tasks. This specification is done with an “annotated inter-
face”, i.e. a description about methods to execute on remote nodes and their
parameters. Specifically, the description includes the name of the class that
implements the method(s) and, for each parameter, its type (e.g., primitive,
file) and direction (in, out or in/out). The user can also express capabilities
that a resource must fulfill to run a certain method (e.g., CPU number and
type, memory, disk size). Figure 4.1 shows an example of BLAST [14] appli-
cation porting in COMPSs, as outlined in [53]: the user specifies the main of
the application (a), method that will be executed on remote nodes, and the
annotated interface (c).

4.1 The COMPSs framework 55

(a)

(b)

(c)

Fig. 4.1: COMPSs application definition: (a) Application main; (b) Method
executed on a remote node; (c) Annotated interface.

The runtime is in charge of optimizing the performance of the application
by exploiting its inherent concurrency. Figure 4.2 shows the operations per-
formed by runtime in order to execute a COMPSs application. The runtime
intercepts any call to a selected method creating a representative task and
finding the data dependencies with all the previous ones that must be con-
sidered along the application run. The task is added to a task dependency
graph as a new node and such dependencies are represented by edges of the
graph. Tasks with no dependencies enter the scheduling step and are assigned
to available resources. This decision is made according to a scheduling algo-
rithm that takes into account data locality, task constraints and the workload
of each node. According to this decision the input data for the scheduled task
are transferred to the selected host and the task is remotely submitted. Once

56 4 COMPSs applications on the Cloud

a task finishes, the task dependency graph is updated, possibly resulting in
new dependency-free tasks that can be scheduled.

Resource 1

...
for (i=0; i<N; i++){

T1 (data1, data2);
T2 (data4, data5);
T3 (data2, data5, data6);
T4 (data7, data8);
T5 (data6, data8, data9);

}
...

Sequential Code

��
� ��

�

��
�

��
�

��
�

��
� ��

�

��
�

��
�

��
�

…

(c) Scheduling,
data transfer,

task execution

(d) Task completion,
synchronization

Resources

(a) Task selection +

parameters direction

(input, output, inout)

Resource 2

Resource N

. . .

(b) Task graph creation
based on data
dependencies

...
T1 (IN data1, INOUT data2);
T2 (IN data4, INOUT data5);
T3 (IN data2, data5, data6);
...

Annotated Interface

Fig. 4.2: Operations performed by COMPSs runtime during the execution of
an application.

Paper[53] describes how COMPSs could also benefit from Infrastructure-
as-a-Service (IaaS) offerings. Through the monitoring of the workload of the
application, the runtime determines the excess/lack of resources and turns to
Cloud providers enforcing a dynamic management of the resource pool. In
order to make COMPSs interoperable with different providers, a common in-
terface is used, which implements the specific Cloud provider API. Currently,
there exist connectors for Amazon EC2 and for providers that implement
the Open Cloud Computing Interface (OCCI)[7] and the Open Virtualization
Format (OVF)[8] specifications for resource management.

4.2 The Azure JavaGAT Adaptor

In order to solve the interoperability issues related to the execution of tasks us-
ing an heterogeneous pool of resources in distributed environments, COMPSs
adopts JavaGAT[54] as the uniform interface to underlying Grid and Cloud
middlewares implemented in several adaptors. Whenever a task has to be ex-
ecuted on a specific resource, COMPSs manages all the data transfers and
submits the task using the proper adaptor. The Azure JavaGAT Adaptor
here described enriches COMPSs with data management and execution ca-
pabilities that make it interoperable with Azure and implemented using two
subcomponents.

4.2 The Azure JavaGAT Adaptor 57

Data management is supported by a subcomponent called Azure File
Adaptor. It allows to read and write data on the Azure Blob Storage (Blobs),
to deploy the libraries needed to execute on Azure and to store the input and
output data (taskdata) for the tasks. The Azure Resource Broker Adaptor,
on the other side, is responsible for the task submission. Following the Azure
Work Queue pattern, this subcomponent adds into a Task Queue the tasks
that must be executed on an Azure resource by aWorker. The implementation
of these COMPSs workers as Worker Role instances is based on a previous
work on a Data Mining Cloud App framework[55]. In order to keep the run-
time informed about each task execution, the status of the tasks is updated in
a Task Status Table. The whole architecture of the Azure JavaGAT Adaptor
is depicted in Figure 4.3.

Task Status Table

Task Queue

Windows

Azure

Worker Role instances

Task Status Table

Tables

Worker
Worker

Worker
Worker

Task Queue

Queues Worker

Blobs
Client

User

1

2

3

libraries libraries

kMeans.jar matmul.jar

blast.jar

worker.jar

sparseLu.jar

taskdata taskdata

job1.out job1.err

input1 output1

4.1

5

4.2

COMPSs
G

A

T

Azure

GAT Adaptor

COMPSs
GG

AA

TT

Azure

GAT Adaptor

4.3

4.4

IaaS

Clouds

SSH GAT
Adaptor

Amazon
EC2

Eucalyptus

Emotive
Cloud

OpenNebula

Fig. 4.3: The Azure GAT adaptor architecture.

The numbered components in Figure 4.3 correspond to each item in the
list below, which describes the different stages of a remote task execution
on Azure. The whole process starts when the COMPSs runtime decides to
execute a dependency-free task t in the platform following the next steps:

1. The Azure GAT adaptor, through the Azure File adaptor, prepares the
execution environment uploading the input application files and libraries
into the Blob containers, taskdata and libraries.

2. The adaptor, via the Azure Resource Broker, inserts a task t description
into the Task Queue.

3. The adaptor sets the status of the task t to Submitted in the Task Status
Table and polls periodically in order to monitor its status until it becomes
Done or Failed.

58 4 COMPSs applications on the Cloud

4. An idle worker W takes the task t description from the queue and, after
parsing all the parameters, it runs the task. This step can be divided in
the following sub-steps:
4.1.The worker W takes the task t from the Task Queue starting its execu-

tion on a virtual resource. The worker sets the status of t to Running.
4.2.The worker gets the needed input data and the needed libraries ac-

cording to the description of t. To this end, a file transfer is performed
from the Blob, where the input data is located, to the local storage of
the resource, and the task is executed.

4.3.After a task completion, the worker W moves the resulting files in the
taskdata Blob container.

4.4.The worker updates the status of the task in the Task Status Table
setting it to a final status that could be Done or Failed.

5. When the adaptor detects that the task t execution has finalized, it notifies
the execution end to the runtime which looks for new dependency-freed
tasks to be executed. If the output files are not going to be used by any
other task, the runtime downloads them from the Azure Blob.

4.3 Data mining on COMPSs: a classifier-based workflow

In order to validate the described work, a data mining application has been
adapted to run in a Cloud environment through COMPSs. Such application
runs multiple instances of the same classification algorithm on a given dataset,
obtaining multiple classification models, then chooses the one that classify in a
more accurate way. Thus, the aim is twofold: first, validate the implementation
checking that the system is able to manage the execution on different Cloud
deployments; second, compare the performance of the proposed solution on
an hybrid Cloud scenario. The rest of the section describes the data mining
application as a workflow (Section 4.3.1), its Java implementation (Section
4.3.2) and the porting to COMPSs (Section 4.3.3).

4.3.1 The application workflow

Figure 4.4 depicts the four general steps of the classifier-based workflow:

1. Dataset partition: the initial dataset is split into two parts: a training
set, which trains the classifiers, and a test set to check the effectiveness of
the achieved models.

2. Classification: during this step, the training dataset is analyzed in paral-
lel using multiple instances of the same classifier algorithm with different
parameters.

3. Evaluation: the quality of each classification model is measured using dif-
ferent performance metrics (e.g., number of misclassified items, precision
and recall measure, F-measure).

4.3 Data mining on COMPSs: a classifier-based workflow 59

4. Model selection: finally, the best model is selected optimizing the chosen
performance metrics.

������� ����	
��

����
��

�������

�������	
��

������
���

������
���

������
���

�������	�

�������	�

�������	�

��
��

��
��

��
��

��������

��
��

��������

��
��

��������

��
��

����

��
��
�	���

������	�

Fig. 4.4: The data mining application workflow

4.3.2 The application implementation

Following the described workflow, the initial dataset is divided in two parts:
2/3rd are left as a training set and the remaining 1/3rd is used as test set.
The classification algorithm is the J48, provided in Weka[56] data mining
toolkit, based on C4.5[57] algorithm. This algorithm builds a decision tree
using the concept of information entropy to classify the different items in
the training set. The different models are obtained varying the confidence
value parameter of J48 in a range of values (i.e., from 0.05 to 0.50). Such
range is divided in a certain number of intervals specified by the user as
an application parameter. Each model is evaluated using, as a performance
metric, the number of misclassified items. Figure 4.5 presents the main code
of the application:

60 4 COMPSs applications on the Cloud

Fig. 4.5: Main application code.

As described in the application workflow section, the methods in lines 7
and 8 correspond to the classification and evaluation steps of the workflow.
The c min val and c max val are the limits of the confidence value range, and
num itvls is the number of intervals specified by user. The model selection
step (lines 11 − 22) is performed in binary tree way in order to exploit the
possibility to be parallelized by COMPSs as detailed in along the next section.

4.3.3 Parallelization with COMPSs: the interface

The main step of the porting of an application to COMPSs includes the prepa-
ration of a Java annotated interface provided by the programmer in order to
select which methods will be executed remotely. For each annotated method,
the interface specifies some information like the name of the class that imple-
ments it, and the type (e.g., primitive, object, file) and direction (e.g., in, out
or in/out) of its parameters. The user can add some additional metadata to
define the resource features required to execute each method. The Figure 4.6
shows the annotated interface for the presented application.

4.3 Data mining on COMPSs: a classifier-based workflow 61

Fig. 4.6: Application Java interface.

The COMPSs runtime intercepts the invocations in the main code to any
method contained in this interface by generating a task-dependency graph.
Figure 4.7 shows an example of the resulting dependency graph of the data
mining application. The red circles corresponds to learning tasks which for-
wards their results to the evaluate tasks represented in yellow, creating de-
pendencies between them. All these evaluations end in a reduction process
implemented using getBestIndex tasks, colored as blue, which find the model
that minimizes the number of classification errors.

1

9

2

1 0

3

1 1

4

1 2

5

1 3

6

1 4

7

1 5

8

1 6

1 7 1 81 9 2 0

2 12 2

2 3

Fig. 4.7: Task dependency graph automatically generated by COMPSs.

62 4 COMPSs applications on the Cloud

4.4 Performance evaluation

In order to evaluate the performance of the workflow application, a set of ex-
periments has been conducted using three different configurations: i) a private
Cloud environment managed by Emotive Cloud[58] middleware; ii) a public
Cloud testbed made of Azure instances; iii) an hybrid configuration using
both private and public Clouds.

The private Cloud included a total of 96 cores available in the following
way: 4 nodes with 12 Intel Xeon X5650 Six Core at 2.6GHz processors, 24GB
of memory and 2TB of storage each, and 3 nodes with 16 AMD Opteron
6140 Eight Core at 2.6GHz processors, 32GB of memory and 2TB of storage
each. The nodes were interconnected by a Gigabit Ethernet network and the
storage was offered through a GlusterFS[59] distributed file system running in
a replica configuration mode providing a total of 8TB of usable space. On this
testbed 8 quad-core virtual instances with 8GB of memory and 2GB of disk
space have been created running a fresh Debian Squeeze Linux distribution.

The public testbed based on Windows Azure was composed of up to 20
small virtual instances with 1.6GHz single core processor, 1.75GB of memory
and 225GB of disk space each. In order to reduce the impact of data transfer
on the overall execution time, the Azure’s Affinity Group feature has been
exploited allowing the storage and servers to be located in the same data
center for performance reasons.

The covertype1 dataset has been used as data source. This dataset con-
tains information about forest cover type of a large number of sites in the
United States. Each instance, corresponds to a site observation and contains
54 attributes that describe the main features of a site (e.g., elevation, aspect,
slope, etc.). A subset with 290.000 instances has been taken from this dataset
creating a new 36MB large one.

Table 4.1 presents the execution times and the speedup of an application
run with 100 different models and up to 20 and 32 processors available in
the public and private Cloud deployments respectively. Table 4.2 presents the
results of the same experiment running on the hybrid Cloud scenario; in this
case, Cloud outsourcing is used to expand the computing pool out of the
private Cloud domain.

As depicted in Figure 4.8, execution times are similar in both cases where
a single Cloud provider is used: Emotive Cloud and Azure. The speedup keeps
a quasi-linear gain along the execution up to the point where the outsourcing
starts. The trend changes observed in the speedup curve are not originated
by the usage of outsourced resources but by a workload unbalance due to the
impossibility to adjust the total number of tasks (constrained by the specific
use case) to the amount of available resources. When the number of resources
allows a good load balancing, the speedup curve recovers some of the lost
performance as depicted in the 32+12 case where the gain is increased over the

1 http://kdd.ics.uci.edu/databases/covertype/covertype.html

4.4 Performance evaluation 63

N. of
cores

Private Cloud
(Emotive Cloud)

Public Cloud
(Microsoft Azure)

Execution
time

Speedup Execution
time

Speedup

1 7:34:41 1 8:19:05 1

2 3:50:25 1.97 4:18:04 1.93

4 2:07:35 3.56 2:07:30 3.91

8 1:08:51 6.6 1:08:15 7.31

16 0:37:13 12.22 0:36:22 13.72

20 0:28:11 16.13 0:29:55 16.68

32 0:18:24 24.71 N/A N/A

Table 4.1: Private and public Cloud deployment execution times.

N. of cores
Private Cloud + Azure

Execution
time

Speedup

32 + 2 0:17:29 26.01

32 + 4 0:17:07 26.56

32 + 8 0:16:38 27.34

32 + 12 0:14:14 31.94

32 + 16 0:14:06 32.25

32 + 20 0:13:17 34.23

Table 4.2: Hybrid Cloud deployment execution times.

 0

 5000

 10000

 15000

 20000

 25000

 30000

2 4 8 16 20 32 32+4
32+8

 32+12

 32+16

 32+20

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of processors

 Private
 Azure

 Private + Azure

 0

 10

 20

 30

 40

 50

2 4 8 16 20 32 32+4
32+8

 32+12

 32+16

 32+20

S
p
e
e
d
u
p

Number of processors

 Private
 Azure

 Private + Azure
 Linear speedup

(a) (b)

Fig. 4.8: Execution time and speedup values depending on the number of
processors.

64 4 COMPSs applications on the Cloud

ideal line. Generally, when the workload does not depend on the application
input, the COMPSs runtime scheduler is able to adapt the number of tasks
to the number of available resources.

4.5 Related work

There already exist several frameworks that enable the programming and ex-
ecution of applications in the Cloud and several research products are being
developed to enhance the execution of applications in the Azure Platform.
MapReduce [29], a widely-offered programming model, permits the process-
ing of vast amounts of data by dividing it into many small blocks that are
processed in parallel (i.e, map phase) and their results merged (i.e., reduce
phase).

Hadoop[16] is an open source software platform which implements MapRe-
duce using the Hadoop Distributed File System (HDFS). HDFS creates multi-
ple replicas of data blocks for reliability and places them on compute nodes so
they can be processed locally. Hadoop on Azure[60] is a new Apache Hadoop
based distribution for Windows Server. Microsoft Daytona[61] presents an it-
erative MapReduce runtime for Windows Azure designed to support a wide
class of data analytics and machine learning algorithms. Also Google supports
MapReduce executions in its Google App Engine[62], which provides a set of
libraries to invoke external services and queue units of work (tasks) for ex-
ecution. Twister[63] is an enhanced MapReduce runtime with an extended
programming model that supports iterative MapReduce computations effi-
ciently. These public Cloud platforms have a high level of user’s intervention
in the porting of the applications requiring the use of specific APIs and the
deployment and execution of the applications on their own infrastructure thus
avoiding to port the code to another platform. COMPSs, on the contrary, can
execute the applications on any supported Cloud provider without the need
to adapt the original code to the specific target platform nor writing the map
and reduce functions as in MapReduce frameworks.

Manjrasoft Aneka[26] platform provides a framework for the development
of application supporting not only the MapReduce programming model but
also a Task Programming and Thread Programming ones. The applications
can be deployed on private or public Clouds such as Windows Azure, Amazon
EC2, and GoGrid Cloud Service. The user has to use a specific .NET SDK for
the porting of the code also to enact legacy code. Microsoft Generic Worker[64]
has been extended in the context of the VENUS-C project to ease the porting
of legacy code in the Azure platform. Even if the user does not have to change
the core of the code, the creation of workflows is not automated, as is in
COMPSs, in any of them; but has to be explicitly enacted through separated
executions. Moreover, an application executed through the Generic Worker,
can not be ported to other platforms.

4.6 Conclusions and future work 65

4.6 Conclusions and future work

This chapter presents the extensions of COMPSs programming framework to
make it able to execute e-Science applications also on the Azure Platform.
The contribution include the development of a JavaGAT adaptor that allows
the scheduling of COMPSs tasks on Azure instances taking care of the related
data transfers, and the implementation of a set of components deployed on
Azure to manage the execution of the tasks internally to the instances. The
proposed approach has been validated through the execution of a data mining
workflow ported to COMPSs and executed on an hybrid testbed composed of
a private Cloud managed by Emotive Cloud and Azure machines. The results
demonstrate that the runtime is able to manage and schedule the tasks on
different infrastructures in a transparent way, keeping the overall performance
of the application.

Future work includes the creation of a new connector in COMPSs to sup-
port the dynamic resource provisioning in Azure and enhancements to the
Azure JavaGAT adaptor to optimize data transfers among different Clouds,
and the possibility to specify input files already available on the Azure stor-
age. The scheduling of the COMPSs runtime will be also optimized to better
balance the execution of tasks taking also into account the required time to
transfer data.

5

Data Mining Cloud Framework

In many application areas, Knowledge Discovery in Databases (KDD) tech-
niques are used to extract useful knowledge from large datasets. Very often,
distributed KDD approaches must be used, since datasets are too large to
be analyzed in a single site, or because they are inherently distributed across
many locations and cannot be moved to a central site for processing. Several
distributed KDD systems have been proposed so far. In most cases, those sys-
tems had to face with infrastructure-level issues, such as resource allocation,
execution management, fault tolerance, and so on.

In this chapter we study how Cloud computing technologies can be ex-
ploited to implement a distributed KDD system without worrying about low-
level aspects, since they are already addressed by the Cloud infrastructure.
First, we discuss the functional requirements of a generic distributed KDD
system, and how these requirements can be fulfilled by a Cloud platform.
Then, as a case study, we describe how we used a Cloud platform to design
and develop a framework, the Data Mining Cloud Framework, which supports
the distributed execution of KDD applications.

The Data Mining Cloud Framework supports both parameter sweeping
and workflow-based KDD applications. The architecture of the system and
its implementation on Windows Azure are described and discussed. In ad-
dition, some experimental results from real applications implemented on the
framework are presented.

5.1 Cloud-based Data Mining

In this section we identify the main requirements that should be satisfied
by a generic distributed KDD system. The system requirements are divided
into functional and non-functional requirements: the former specifies which
functionalities the system should provide; the latter includes quality criteria
mostly related to system performance. Then, how Clouds can be exploited as
effective infrastructures for handling knowledge discovery applications.

68 5 Data Mining Cloud Framework

5.1.1 Functional requirements

The functional requirements that should be satisfied by a generic distributed
KDD system can be grouped into two main classes: resource management and
application management requirements. The former refers to requirements re-
lated to the management of all the resources (data, tools, results) that may be
involved in a knowledge discovery application; the latter refers to requirements
related to the design and execution of the applications themselves.

Resource management

Resources of interests in distributed KDD applications include data sources,
knowledge discovery tools, and knowledge discovery results. Therefore, a dis-
tributed knowledge discovery system should deal with the following resource
management requirements:

• Data management Data sources can be in different formats, such as
relational databases, plain files, or semi-structured documents (e.g., XML
files). The system should provide mechanisms to store and access such
data sources independently from their specific format. In addition, meta-
data formalisms should be defined and used to describe the relevant in-
formation associated with data sources (e.g., location, format, availability,
available views), in order to enable their effective access and manipula-
tion. In particular, metadata can be exploited to index data sources and
to search them based on the features of interest.

• Tool management Knowledge discovery tools include algorithms and
services for data selection, pre-processing, transformation, data mining,
and results evaluation. The system should provide mechanisms to access
and use such tools independently from their specific implementation. Meta-
data should be used to describe the most important features of KDD tools
(e.g., their function, location, usage). Hence, metadata information can be
used to search for knowledge discovery tools based on users and applica-
tions needs.

• Result management The knowledge obtained as the result of a knowl-
edge discovery process is represented by a data mining model. The system
should provide mechanisms to store and access such models, independently
from their structure and format. As for data and tools, data mining models
should be described by metadata to explain and interpret their content,
and to enable their effective retrieval. By retrieving the results of previ-
ous knowledge discovery tasks, we can avoid re-computation of already
inferred knowledge and use the available models as input for subsequent
computations.

5.1 Cloud-based Data Mining 69

Application management

A distributed KDD system should provide effective mechanisms to design
KDD applications (design management) and to control their concurrent exe-
cution (execution management):

• Design managementDistributed knowledge discovery applications range
from simple data mining tasks, to complex data mining patterns expressed
as workflows. From a design perspective, three main classes of knowledge
discovery applications can be identified: single-task applications, in which
a single data mining task such as classification, clustering, or association
rules discovery is performed on a given data source; parameter sweeping
applications, in which a dataset is analyzed using multiple instances of the
same data mining algorithm with different parameters; workflow-based ap-
plications, in which possibly complex knowledge discovery applications are
specified as graphs that link together data sources, data mining algorithms,
and visualization tools. A general system should provide environments to
effectively design all the above-mentioned classes of KDD applications.
Particular emphasis should be put on the possibility of composing new
tasks from existing tasks, e.g., designing a complex workflow starting from
single tasks or basic data mining patterns, such as parallel classification
or meta-learning, in turn defined as workflow-based tasks.

• Execution management The system should provide a distributed exe-
cution environment that supports the concurrent execution of knowledge
discovery applications designed by the users. As mentioned above, appli-
cations may range from single tasks to complex knowledge discovery work-
flows, therefore the execution environment should cope with such a variety
of applications. In particular, the execution environment should provide
the following functionalities, which are related to the different phases of
application execution: accessing the data sources to be mined; allocating
the needed compute resources; running the application based on the user
specifications, which may be expressed as a workflow; presenting the re-
sults to the user. Additionally, the system should allow users to monitor
the application execution.

5.1.2 Non-functional requirements

Non-functional requirements can be defined at three levels: user, architecture,
and infrastructure. User requirements specify how the user should interact
with the system; architecture requirements specify which principles should
inspire the design of the system architecture; finally, infrastructure require-
ments describe the non-functional features of the underlying computational
infrastructure.

70 5 Data Mining Cloud Framework

User requirements

From a user point of view, the following non-functional requirements should
be satisfied:

• Usability. The system should be easy to use by the end-users, without the
need of undertaking any specialized training.

• Ubiquitous access. Users should be able to access the system from anywhere
using standard network technologies (e.g., Web sites, Web services) either
from a desktop PC or from a mobile device.

• Data protection. Data represents a key asset for the users; therefore, the
system should protect data to be mined and inferred knowledge from both
unauthorized access and intentional/incidental losses.

• On-premises data/software support. The system should offer users the pos-
sibility to interact with on-premises data sources and software.

Architecture requirements

The main non-functional requirements at the architectural level are:

• Service-orientation. The architecture should be designed as a set of network-
enabled software components (services) implementing the different opera-
tional capabilities of the system, to enable their effective reuse, composi-
tion, and interoperability.

• Openness and extensibility. The architecture should be open to the inte-
gration of new knowledge discovery tools and services. Moreover, existing
services should be open for extension, but closed for modification, accord-
ing to the open-closed principle.

• Independence from infrastructure. The architecture should be designed to
be as independent as possible from the underlying infrastructure; in other
terms, the system services should be able to exploit the basic functionalities
provided by different infrastructures.

Infrastructure requirements

Finally, from the infrastructure perspective, the following non-functional re-
quirements should be satisfied:

• Standardized access. The infrastructure should expose its services using
standard technologies (e.g., Web services), to make them usable as building
blocks for high-level services or applications.

• Heterogeneous/Distributed data support. The infrastructure should be able
to cope with very large and high dimensional data sets, stored in different
formats (e.g., relational databases, semi-structured documents) in a single
data center, or geographically distributed across many sites.

5.1 Cloud-based Data Mining 71

• Availability. The infrastructure should be in a functioning condition even
in the presence of failures that affect a subset of the hardware/software
resources. Thus, effective mechanisms (e.g., redundancy) should be imple-
mented to ensure dependable access to sensitive resources such as user
data and applications.

• Scalability. The infrastructure should be able to handle a growing workload
(deriving from larger data to process or heavier algorithms to execute)
in an efficient and effective way, by dynamically allocating the needed
resources (processors, storage, network). Moreover, as soon as the workload
decreases, the infrastructure should release the unneeded resources.

• Efficiency. The infrastructure should minimize resource consumption for
a given task to execute. In the case of parallel/distributed tasks, efficient
allocation of processing nodes should be guaranteed. Additionally, the in-
frastructure should be highly utilized so to provide efficient services.

• Security. The infrastructure should provide effective security mechanisms
to ensure data protection, identity management, and privacy.

5.1.3 Cloud for distributed KDD

A key aspect of Cloud computing is that end-users do not need to have nei-
ther knowledge nor control over the infrastructure that supports their appli-
cations. In fact, Cloud infrastructures are based on large sets of computing
resources, located somewhere “in the Cloud,” which are allocated to appli-
cations on-demand. Cloud resources are provided in highly scalable way, i.e.,
they are allocated dynamically to applications depending of the current level
of requests. Although similar in overall aims to a Grid systems, Clouds are
different because hide the complexity of the underlying infrastructure, provid-
ing services ready to use where end-users pay only for the resources effectively
used (pay-per-use).

Clouds can be exploited as effective infrastructures for handling knowl-
edge discovery applications. In particular, KDD services may be implemented
in within each of Cloud computing service models (see /refsec:ccom-service-
models):

• KDD as SaaS, where a single well-defined data mining algorithm or a
ready-to-use knowledge discovery tool is provided as an Internet service to
end-users, who may directly use it through a Web browser.

• KDD as PaaS, where a supporting platform is provided to developers that
have to build their own applications or extend existing ones. Developers
can just focus on the definition of their KDD applications without worrying
about the underlying infrastructure or distributed computation issues.

• KDD as IaaS, where a set of virtualized resources are provided to devel-
opers as a computing infrastructure to run their data mining applications
or to implement their KDD systems from scratch.

72 5 Data Mining Cloud Framework

In all three scenarios listed above, the Cloud plays the role of infrastruc-
ture provider, even if at the SaaS and PaaS layers the infrastructure can
be transparent to the end-user. In the following we discuss an example of a
proprietary PaaS environment that can be effectively exploited to implement
KDD systems and applications: Windows Azure.

Therefore, it is useful to evaluate how the infrastructure requirements for
a distributed KDD system, as introduced in Section 5.1.2, can be satisfied by
current Cloud platforms:

• Standardized access. Most Cloud platforms offer their services through
standard Web service technologies. The trend is to exploit the two main
classes of Web services: REST-compliant Web services, to query or modify
resources, identified by a URI, through a predefined set of stateless opera-
tions (i.e., HTTP requests); Arbitrary Web services, which allow to define
arbitrary operations, but at the cost of a higher invocation overhead.

• Heterogeneous/Distributed data support. Cloud systems provide storage
services that exploit large storage facilities geographically distributed
across several data centers. Most Cloud platforms offer specialized data
types which are optimized to provide high scalability, flexibility, and avail-
ability. Moreover, Cloud storage services allow users to remotely access
data archived in many standard data types, such as XML, HTML, and so
on.

• Availability. Cloud platforms use replication to create and maintain mul-
tiple copies of the same data or service. Whenever a problem affects the
primary instance of a service or data, a secondary instance can be restarted
or accessed. In most cases, data are divided into blocks and each block is
replicated on a distributed file system. Through virtualization and serial-
ization mechanisms, also services can stored as data, hence allowing their
replication and migration.

• Scalability. Cloud platforms are able to dynamically allocate/deallocate
resources whenever the workload produced by user requests increases/de-
creases. This elasticity is implemented by allocating a variable number of
virtual machines on a large number of physical servers, which are typically
distributed on several data centers.

• Efficiency. In Cloud systems, efficiency is mainly achieved using virtualiza-
tion mechanisms. In fact, by means of virtualization, it is possible to run
multiple virtual machines on the same real server, this way achieving high
levels of utilization and therefore minimizing resource consumption. Par-
allel task execution is also supported by Cloud systems exploiting simple
but efficient models, like the popular MapReduce programming model.

• Security. Cloud providers offer different security features such as data pro-
tection, identity management and data privacy. The large variety of secu-
rity solutions implemented by the various Cloud providers, demands for
standardization initiatives to ensure that appropriate levels of security are
met according with precise assessment procedures.

5.2 Data Mining Cloud Framework 73

5.2 Data Mining Cloud Framework

This section provides a conceptual description of Data Mining Cloud Frame-
work that is independent from specific Cloud implementations. The remainder
of this section describes system model, general architecture, execution mech-
anisms, and user interface.

5.2.1 System Model

The model introduced here provides an abstraction to describe the charac-
teristics of applications as they are seen in our system. For the reader’s con-
venience, Figure 5.1 illustrates the system model entities and their interrela-
tionships using the UML Class Diagram formalism.

requires

taskId : IdType
appId : IdType
tool : Tool
taskStatus : TaskStatus
dependencyList : Task

Task

toolId : IdType
name : String
executable: String
libraryList : Library
parameterList:
Parameter

Tool

workerId : IdType

Worker

libraryId : IdType

Library

*

Output

1
*

*

dependencies

executes

appId : IdType
userId : IdType
appStatus : AppStatus
taskList : Task

Application

userId : IdType

User

1..n

defines

ParameterSweeping

SingleTask

Workflow-Based

*

name : String
description: String
type: ParameterType
flag : String
mandatory : boolean
value : String

Parameter

*

Input

String
Integer
Real
File

<<enumeration>>
ParameterType

1

Submitted
Ready
Running
Done
Failed

<<enumeration>>
AppStatus

1

Submitted
Ready
Running
Done
Failed

<<enumeration>>
TaskStatus

1

Fig. 5.1: System model described through the UML Class Diagram formalism.

An application is modeled as a tuple:

application = ⟨appId, userId, appStatus, taskList⟩

where appId is the application identifier, userId is the identifier of the user
who submitted the application, appStatus represents the status of the ap-
plication (submitted, ready, running, done, or failed), and taskList contains

74 5 Data Mining Cloud Framework

the tasks that form the application. In case of single-task applications, the
taskList will contain exactly one task; in case of parameter-sweeping applica-
tions, the taskList will contain multiple independent tasks; finally, the taskList
of workflow-based applications will include multiple tasks with dependencies.

A task is modelled as a tuple:

task = ⟨taskId, appId, tool, taskStatus, dependencyList⟩

where taskId is the task identifier, appId is the identifier of the application
the task belongs to, tool is a reference to the tool to be executed, taskStatus
represents the task status (see Table 5.1), and dependencyList contains the
identifiers of the other tasks this task depends on. A Task Tj depends on a
task Ti (i.e., Ti → Tj) if Tj can be executed only after that Ti has successfully
completed its execution. Thus, the dependencyList of a task Tj contains a set
of n tasks T1...Tn such that Ti → Tj for each 1 ≤ i ≤ n.

Status Description

submitted The task has been created after application submission.
ready The task is ready for execution, i.e., there are no tasks it depends on.
running The task is currently being processed.
done The task has completed successfully.
failed The task has completed with failure.

Table 5.1: Task statuses.

A tool is defined as follows:

tool = ⟨toolId, name, executable, libraryList, parameterList⟩

where toolId is the tool identifier, name is a descriptive name for the tool,
executable is a reference to the executable (program or script) that launches
the tool, libraryList contains the references of the required libraries, and pa-
rameterList is a list of parameters used to configure the use of the tool.

A parameter is defined as a tuple:

parameter = ⟨name, description, type, flag, mandatory, value⟩

where name is the parameter name, description is a parameter description,
type specifies the parameter type (e.g., string, integer, etc.), flag is a string
that precedes the parameter value to allow its identification in a command line
invocation, mandatory is a boolean that specifies whether the parameter is
mandatory or not, value contains the parameter value. Note that a parameter
can be either an Input or an Output parameter.

5.2 Data Mining Cloud Framework 75

�������

����

������	�
�	
��

���
�	��	
��

�	����� ����
	�

���	
�����

���
����� ���� �����

�����������
����� ����
��������	
�����

�������

�������

������

�������

�������

������

�������

���

������

���� ������
���
������

�������

�������

������

�������

�������

������

�������

�������

������

�������

�������

������

�������

�������

������

�������

�������

������

�������

�������

������

�������

�������

������

Fig. 5.2: System components.

5.2.2 General architecture

The Data Mining Cloud Framework architecture includes different kinds of
components that can be grouped into storage and compute components (see
Figure 5.2).

The storage components include:

• A Data Folder that contains data sources such as relational databases,
plain files, or semi-structured documents and also the the results of knowl-
edge discovery processes. Similarly, a Tool folder contains libraries and ex-
ecutable files for data selection, pre-processing, transformation, data min-
ing, and results evaluation.

• Data Table and Tool Table contain metadata information associated with
data sources and tools respectively.

• Application Table, Task Table, and Users Table keeps information about
applications, tasks and users.

• The Task Queue contains the tasks ready to be executed.

The compute components are:

• A pool of Virtual Compute Servers, which are in charge of executing the
data mining tasks submitted by users.

76 5 Data Mining Cloud Framework

• A pool of Virtual Web Servers host the Website, by allowing users to
submit, monitor the execution, and access the results of their data mining
tasks.

5.2.3 Execution mechanisms

The following steps are performed to develop and execute a knowledge dis-
covery application through the system:

1. A user accesses the Website and develop her/his application (either single-
task, parameter-sweeping, or workflow-based) through a Web-based inter-
face. After completing the application, she/he can submit it for execution.

2. After the application submission, a set of tasks are created and inserted
into the Task Queue on the basis of the application submitted by the user.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and
starts its execution on a virtual server.

4. Each Virtual Compute Server gets the input dataset from the location
specified by the application. To this end, a file transfer is performed from
the Data Folder where the dataset is located, to the local storage of the
Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the result on
the Data Folder.

6. The Website notifies the user as soon as her/his task(s) have completed,
and allows her/him to access the results.

The set of tasks created on the second step depends on the type of ap-
plication submitted by the user. In the case of a single-task application, just
one data mining task is inserted into the Task Queue. If the user submits a
parameter-sweeping application, one task for each combination of the input
parameters values is executed 1. In the case of a workflow-based application,
the set of tasks created depends on how many data mining tools are invoked
within the workflow; initially, only the workflow tasks without dependencies
are inserted into the Task Queue.

The actions performed by each Virtual Compute Server are detailed in
Figure 5.3. The Virtual Compute Server cyclically checks whether there are
tasks ready to be executed in TaskQueue. If so, the first task is taken from the
queue (line 3) and its status is changed to ’running’ (line 4). Two local folders
are created to temporarily stage input data and tools, which include both
executables and libraries (lines 5-6). Input and output lists are created on lines
7-13. Then, the transfer of all the needed input resources (files, executables
and libraries) is performed (lines 14-18). At line 19, the Virtual Compute
Server locally executes the task and waits for its completion.

1 In general, the number of tasks is given by
∏n

i=1
vi, where n is the number of

input parameters and vi is the number of values assumed by the ith parameter

5.2 Data Mining Cloud Framework 77

If the task is ’done’ (line 20), the output results are copied to a remote
data folder (lines 21-22), and the task status is changed to ’done’ also in the
Task Table (line 23). Then, for each task apptask that belongs to the same
application of task (line 24), if apptask has a dependency with task (line 25),
that dependency is deleted (line 26). If apptask remains without dependencies
(line 27), it becomes ’ready’ and is added to the Task Queue (lines 28-29). If
the task has failed (line 30), all the tasks that directly or indirectly depend on
it will be marked as ’failed’ (lines 31-40). Finally, the task is removed from the
Task Queue (line 41), and the local data and tools folders are deleted (lines
42-43).

78 5 Data Mining Cloud Framework

Fig. 5.3: Cyclic operations performed by each Virtual Compute Server.

5.3 Implementing the Data Mining Cloud Framework 79

5.2.4 User Interface

As mentioned earlier, the Website allows a user to submit, monitor the exe-
cution, and access the results of the data mining tasks. The Website includes
three main sections:

• App submission that allows users to submit single-task, parameter sweep-
ing, or workflow-based applications;

• App monitoring that is used to monitor the status of submitted applica-
tions and to access results; the workflow-based applications submitted.

• Data/Tool management that allows users to manage input/output data
and tools.

��������������

�

�

	

�������

��������	
��

��������

�������

��	
����
��������

�
����

������ ����
��������

������

��	���

�

�������

�

��	�
�

���	�

����������

����������

�

� �
�������������
�������

��
����

����

����������

Fig. 5.4: Architecture of the Data Mining Cloud Framework.

5.3 Implementing the Data Mining Cloud Framework

We discuss in this section how our system was implemented on the Azure
platform (see 2.3.1). First, we describe how Azure components can fulfill the
functional requirements of a generic distributed KDD system (Section 5.3.1).
Then, we describe how the generic components of our architecture are mapped
to the components provided by Azure (Section 5.3.2). Finally, we introduce
the Web interface of our system to illustrate the main functionalities provided
to the users (Section 5.2.4).

80 5 Data Mining Cloud Framework

5.3.1 Fulfilling the functional requirements with Azure

Based on our study summarized in Table 5.2, the Azure components and
mechanisms can be effectively exploited to fulfill the requirements of a generic
distributed KDD system that have been introduced in Section 5.1.1. We ex-
ploited these components and mechanisms to implement the Data Mining
Cloud Framework described in the next section.

KDD system requirements Azure components

Resource
management

Data

- Different data formats: Binary large objects (Blobs); non-
relational tables (Tables); queues for communication data
(Queues); relational databases (SQL Database).

- Metadata support: Tables/SQL Azure Databases to store
data descriptions; custom description fields can be added to
Blobs containing data sources.

Tools

- Implementation-independent access: Tools can be exposed as
Web services.

- Metadata support: Tables/SQL Databases to store tools de-
scriptions; custom description fields can be added to Blobs
containing binary tools; WSDL descriptions for Web services.

Results

- Models storing: Blobs to store results either in textual or
visual form.

- Metadata support: Tables/SQL Databases to describe mod-
els format; custom description fields can be added to Blobs
containing data mining models.

Application
management

Design

- Single-task applications: Programming the execution of a sin-
gle Web service or binary tool on a single Worker role in-
stance.

- Parameter sweeping applications: Programming the concur-
rent execution of a set of Web services or binary tools on a
set of Worker role instances.

- Workflow-based applications: Programming the coordinated
execution of a set of Web services or binary tools on a set of
Worker role instances.

Execution

- Storage resources access: Managed by the Storage layer.
- Compute resources allocation: Managed by the Compute

layer.
- Application execution and monitoring: Web services/Worker

role instances to run the single tasks; Tables to store tasks
status information; Web role instance to present monitoring
information.

- Results presentation: Blobs/Tables to store/interpret the in-
ferred models; Web role instance to present results.

Table 5.2: How Azure components can fulfill the functional requirements of a
generic distributed KDD system

5.3.2 Implementing the system components on Azure

As shown in Figure 5.2, the architecture of our framework distinguishes its
high-level components into two groups, Storage and Compute, following the
same approach followed by Azure and other Cloud platforms. In this way,
we were able to implement our Storage and Compute components by fully
exploiting the Storage and Compute components and functionalities provided

5.4 Parameter-sweeping data mining applications 81

by Azure. In particular, for the Storage components, we adopted the following
mapping:

• Data Folder and Tool Folder are implemented as Blob containers.
• Data Table, Tool Table, Application Table, Task Table, and Users Table

are implemented as non-relational Tables.
• The Task Queue is implemented as an Azure’s Queue.

For the Compute components, the following mapping with Azure was
adopted:

• The Virtual Compute Servers are implemented as Worker Role instances.
• The Virtual Web Servers are implemented as Web Role instances. Figure

5.4 shows the architecture of the Data Mining Cloud Framework, as it is
implemented on Windows Azure.

Figure 5.4 shows how Azure components can be exploited to performs the
steps described in Section 5.3. Each Worker Role instance executes the opera-
tions described by Algorithm 5.3. This requires file transfers to be performed
when input/output data have to be moved between storage and servers. To
reduce the impact of data transfer on the overall execution time, we exploit
the Azure’s Affinity Group feature, which allows storage and servers to be
located near to each other in the same data center for optimal performance.
The Web Role instances allow users to submit and manage their data mining
applications, as detailed in the next section.

5.4 Parameter-sweeping data mining applications

In the following, we focus on task submission and management, by describing
how the Data Mining Cloud Framework Website is used to submit a parameter
sweeping data mining application.

After logging into the Website, a user goes the App Submission/Par.
sweeping menu, and select the algorithm to be used (see Figure 5.5). A list of
the available algorithms is shown to the user, who selects the one of interest.
In the example, the K-Means clustering algorithm [65] from the Weka library
is selected.

82 5 Data Mining Cloud Framework

Fig. 5.5: Selection of the data mining algorithm.

As soon as the algorithm has been selected, the Website shows to the user
a form with the relevant parameters that he/she can specify for the algorithm
(see Figure 5.6). For K-Means, besides the input dataset, the relevant param-
eters are the number of clusters and the seed. The user can choose whether
to sweep or not a certain parameter. In the example, the user chose to sweep
both the number of clusters and the seed. For the former, a range of values is
specified, while for the latter, a list of values is provided.

Fig. 5.6: Choice of the algorithm parameters.

5.5 Workflow-based data mining applications 83

After submission, the system generates a number of independent tasks
that are executed on the Cloud as discussed earlier. The user can monitor
the status of each single task through the Task Status section of the Website
(see Figure 5.7). For each task, the current status (submitted, running, done
or failed) and status update time are shown. Moreover, for each task that
has completed its execution, the system enables two links: the first one (Stat)
gives access to a file containing some statistics about the amount of resources
consumed by the task; the second one (Result) visualizes the task result.

Fig. 5.7: Task status monitoring.

5.5 Workflow-based data mining applications

Here we show how the Web interface is used to design and execute workflow-
based data mining applications.

We prototyped the programming interface and its services to support the
composition and execution of workflow-based knowledge discovery applica-
tions in our Cloud framework. Following the approach proposed in [66] and
extending it, we model a knowledge discovery workflow as a graph whose
nodes represent resources (datasets, data mining tools, data mining models),
implemented as Cloud services, and whose edges represent dependencies be-
tween resources. To support the workflow composition, we implemented a
Website section that, using native HTML 5 features, allows users to design
service-oriented knowledge discovery workflows with a simple drag-and-drop
approach.

84 5 Data Mining Cloud Framework

5.5.1 Workflow formalism

In our framework a workflow is a directed acyclic graph whose nodes represent
resources and whose edges represent the dependencies among the resources.
The graph is bipartite and composed by two types of resources (graphically
depicted by the icons shown in Figure 5.8):

• Data node, which represents an input or output data source. Two sub-
types exist: Dataset, which represents a data collection, and Model, which
represents a model generated by a data mining tool (e.g., a decision tree,
a set of association rules).

• Tool node, which represents a tool performing any kind of operation that
can be applied to a data node (data mining, filtering, splitting, voting
operations, etc.).

��������� 	��
 ����

������� ����	
��	

Fig. 5.8: Nodes types.

When a node is created in a workflow, a label with a unique name is
attached below the corresponding icon. In order to ease the workflow com-
position and to allow users to monitor its execution, each resource icon has
a symbol representing the status in which the corresponding resource is at a
given time. The resource statuses can be divided into two categories:

• Composition-time statuses describe the resource during the workflow com-
position.

• Run-time statuses describe the resource during the workflow execution.

Table 5.3 and 5.4 show the composition and run-time statuses of Data and
Tool resources.

5.5 Workflow-based data mining applications 85

Time Symbol Status Description

Composition
time

Undefined
The Data node does not refer to any data
sources in the Cloud.

Defined
The Data node refers to a data source available
in the Cloud.

Not Well
Defined

The Data node is not well defined.

Run
time

Not Yet
Available

The data source has not yet been generated.

Available
The data source has been created or was al-
ready present.

Not
Available

The data source has not been correctly gener-
ated.

Table 5.3: Data composition and run time statuses.

Time Symbol Status Description

Composition
time

Undefined
The Tool node does not refer to any data
source.

Defined
All Tool parameters and input/output edges
have been correctly defined.

Not Well
Defined

Some Tool parameters or input/output edges
have not been correctly defined.

Run
time

Submitted
A task has been created starting from the Tool
definition.

Ready The task is ready for execution.

Running The task is currently being processed.

Done The task has completed successfully.

Failed The task has completed with failure.

Table 5.4: Tool composition and run time statuses.

86 5 Data Mining Cloud Framework

The nodes can be connected with each other through direct edges, estab-
lishing specific dependency relationships among them. When an edge is being
created between two nodes, a label is automatically attached to it represent-
ing the kind of relationship between the two nodes. For example, Figure 5.9
shows a J48 Tool (a Java implementation of the C4.5 algorithm [57]) that
takes in input a TrainSet and generates a Model.

Fig. 5.9: J48 Tool connected to an input dataset and an output model.

For each Tool node, input/output connections are allowed on the basis of
the Tool definition, which is stored Tool Table. An example of Tool definition
(in JSON format) is shown in Figure 5.10. In this example, based on the Tool
definition, the system allows the creation of a single edge from an input Data
node with label dataset, and an edge to an output Data node with label model.
In addition, the Tool definition states that the user can specify a single input
parameters (the confidence value).

"J48": {

"libraryList": ["java.exe","weka.jar"],

"executable": "java.exe -cp weka.jar weka.classifiers.trees.J48",

"parameterList": [{

"name": "input",

"flag": "-t",

"mandatory": true,

"parType": "IN",

"type": "file",

"array": false,

"description": "Input Dataset"

},{

"name": "confidence",

"flag": "-C",

"mandatory": false,

"parType": "OP",

"type": "real",

"array": false,

"description": "Confidence value",

"value": "0.25"

},{

"name": "model",

"flag": "-d",

"mandatory": true,

"parType": "OUT",

"type": "file",

"array": false,

"description": "Output model"

}]

}

Fig. 5.10: Example of Tool definition.

5.5 Workflow-based data mining applications 87

A user can define the relevant information associated with each workflow
node through a configuration pop-up panel that appears selecting the node,
as shown in Figure 5.11.

Fig. 5.11: Pop-up panel that shows the user-definable parameters for the J48
Tool.

Data and Tool nodes can be added to the workflow singularly or in array
form, as shown in Figure 5.12.

������ ���	

Fig. 5.12: Single and array nodes types.

A Data array is an ordered collection of input/output data sources (e.g.,
collection of dataset to be analyzed, collection of models that a classifier can
use to classify a dataset).

88 5 Data Mining Cloud Framework

A Tool array represents multiple instances of the same tool; it can be used
to execute two types of operations:

• Parameter sweeping, where a data source is analyzed using multiple in-
stances of the same tool with different parameters. In this case, the size
of the Tool array is equal to the number of different combinations of the
parameters values.

• Input sweeping, where each element of a Data array is analyzed by the
corresponding element of a Tool array. This requires the Tool array and
Data array have the same size.

Figure 5.13 (a) shows an example of parameter sweeping. A Tool array, la-
beled as J48[3], represents three instances of the J48 tool, where each instance
is configured to use a different confidence value. Each instance of J48 analyzes
the same input TrainSet; as a result, three independent classification models,
denoted as Model[3], are generated. In short, J48[i] takes in input TrainSet
and generates Model[i], for 1 ≤ i ≤ 3.

An example of input sweeping is shown in Figure 5.13 (b). In this case,
three instances of J48 (J48[3]), configured to use the same parameters, analyze
in parallel three training sets (TrainSet[3]). In other terms, J48[i] takes in
input TrainSet[i] to produce Model[i], for 1 ≤ i ≤ 3.

a)

b)

Fig. 5.13: a) Example of parameter sweeping; b) Example of input sweeping.

5.5.2 Workflow composition

Here we use a data mining application composed of several sequential and
parallel steps as an example for presenting the main features of the visual
programming interface of the Data Mining Cloud Framework.

Figure 5.14 shows a screenshot of the Website taken at the beginning the
composition of a knowledge discovery workflow.

5.5 Workflow-based data mining applications 89

Fig. 5.14: Workflow interface.

On the top-left of the window, some buttons allow user to insert a new data
or tool nodes into the workflow and also to save, load or submit a workflow.
Once placed into the workflow, a node can be linked to others to establish the
desired dependencies as described in the previous section.

The example application analyses a dataset by using n instances of the
J48 classification algorithm that work on n partitions of the training set and
generate n knowledge models. By using the n generated models and the test
set n classifiers produce in parallel n classified datasets (n classifications). In
the final step of the workflow, a voter generates the final dataset by assigning
a class to each data item, choosing the class predicted by the majority of the
models [67].

Figure 5.15 shows a snapshot of the visual interface where the first step
of the workflow is designed. In particular, we can see the splitting of the
original dataset in training and test set operated by a partitioning tool. A
set of configuration parameters are associated with each workflow node. The
parameters of a given node can be specified through a pop-up panel that
appears when that node is selected. For example, the right part of Figure 5.15
shows the configuration panel for the partitioning tool. In this case, only one
parameter can be specified, namely which percentage of the input dataset
must be taken to produce the training set.

90 5 Data Mining Cloud Framework

Fig. 5.15: First step: The input dataset is partitioned into train and test set.

As a second step, the training set is partitioned into 10 parts using an-
other partitioning tool (see Figure 5.16). The 10 training sets resulting from
the partitioning are represented in the workflow as a single data array node,
labeled as TrainSetPart[10].

Fig. 5.16: Second step: The train set is partitioned into 10 parts.

Figure 5.17 shows the third step of the workflow, in which the 10 training
sets are analyzed in parallel by 10 instances of the J48 classification algorithm,
to produce the same number of classification models. A tool array node, la-
beled as J48[10], is used to represent the 10 instances of the J48 algorithm,
while another data array node, labeled as Model[10], represents the models
generated by the classification algorithms. In practice, this part of the work-
flow specifies thatJ48[i] takes in input TrainSetPart[i] to produce Model[i],
for 1 ≤ i ≤ 10.

5.5 Workflow-based data mining applications 91

Fig. 5.17: Third step: Each train set part is analyzed by an instance of the
J48 classification tool; as a result, 10 classification models are produced.

The fourth step classifies the test set using the 10 models generated on
the previous step (see Figure 5.18). The classification is performed by 10
classifiers that run in parallel to produce 10 classified test sets. More in detail,
Classifier[i] takes in input TestSet andModel[i] to produce ClassTestSet[i],
for 1 ≤ i ≤ 10.

Fig. 5.18: Fourth step: The test set is classified by 10 classifiers, which perform
the tasks using the 10 classification models generated on the previous step.

As the last step, the 10 classified test sets are passed to a voter tool that
produces the final dataset, labeled as FinalClassTestSet (see Figure 5.19).

92 5 Data Mining Cloud Framework

Fig. 5.19: Fifth step: The 10 instances of the classified test set are compared
instance-by-instance by a voter to produce the final classified test set.

When the workflow is complete, it can be submitted for execution. User
can submit a workflow pressing the Submit workflow button in the toolbar.
After that, the workflow execution starts and proceeds as detailed in the next
section.

5.5.3 Workflow execution

Fig. 5.20: Workflow application and its tasks.

The workflow defined in the previous section includes five tools (Parti-
tionerTT, Partioner, J48, Classifier, and Voter), which are translated into
five tasks, indicated as {T1...T5}, as shown in Figure 5.20. Differently from
parameter-sweeping applications whose tasks are independent each other and
therefore can be executed in parallel, the execution order of workflow tasks
depends on the dependencies specified by the workflow edges. To ensure the
correct execution order, each task is associated with a list of tasks that must
be completed before starting its execution. Figure 5.21 shows a possible order

5.5 Workflow-based data mining applications 93

in which the tasks are generated and inserted into the Task Queue. For each
task, the list of tasks to be completed before its execution is included. Note
that task T3, which represents the execution of ten instances of J48, is trans-
lated into ten sub-tasks T3[1]...T3[10]. Similarly, T4 is translated into sub-tasks
T4[1]...T4[10].

According with the tasks dependencies specified by the workflow, the ex-
ecution of T2 will start after completion of T1. As soon as T2 completes, the
ten sub-tasks that compose T3 can be run concurrently. Each sub-task T4[i]
can be executed only after completion of both T2 and T3[i], for 1 ≤ i ≤ 10.
Finally T5 will start after completion of all sub-tasks that compose T4.

T2

<T1>

T1

<>

T3[1]

<T2>

T3[10]

<T2>

T4[1]

<T1, T3[1]>

T4[10]

<T1, T3[10]>

T5

<T4[1], ...T4[10]>

Fig. 5.21: A possible order in which the tasks are generated and inserted into
the Task Queue.

Figure 5.22 shows a snapshot of the workflow taken during its execution.
The figure shows that PartitionerTT has completed the execution, Partioner
is running, while the other tools are submitted.

Fig. 5.22: The final workflow during its execution.

Figure 5.23 shows the workflow after the completion of its execution. Some
statistics about the overall application are shown on the upper left part of the
window. In this example, it is shown that, using 10 virtual machines, the
workflow completed 264 seconds after its submission, with a total execution
time (i.e., the sum of the execution times of all the tasks) of 1604 seconds.

94 5 Data Mining Cloud Framework

Fig. 5.23: The final workflow after completion of its execution.

5.6 Experimental results

Here we describe some data mining applications designed and executed with
the Data Mining Cloud Framework. The Cloud environment was composed
by 1 virtual server for the Web role instance (which hosts the Website), and
up to 19 virtual servers for the Worker Role instances. Each virtual server was
equipped with a single-core 1 GHz CPU, 0.75 GB of memory, and 20 GB of
disk space, with a cost of $0.05 per hour. Each test has been executed by vary-
ing both the size of the input dataset and the number of virtual servers used
to run the application. As performance indicators, we used the turnaround
time, the achieved speedup, and the total cost paid.

5.6.1 Parameter sweeping data mining applications

In this section we present performance results obtained by executing clustering
and classification parameter sweeping data mining applications on a set of
publicly available datasets.

Clustering Application

The clustering application discussed here is the same introduced in Section 5.4
to describe the user interface for defining and executing parameter sweeping
applications.

As input data source we used the US Census 1990 ’s dataset2 from the
UCI KDD archive [68], which contains part of US 1990’s census information.
Each tuple in the dataset contains information about a US citizen, consisting
of 68 categorical attributes (e.g., sex, age). The original dataset is composed
of about 2,458,000 instances, stored in a file of 345 MB. In order to evaluate
the system with increasing workloads, we extracted three datasets with size

2 http://kdd.ics.uci.edu/databases/census1990/USCensus1990.html

5.6 Experimental results 95

of 20 MB, 40 MB and 80 MB, with 143,000, 286,000 and 572,000 tuples,
respectively.

For each of the three datasets, we submitted the execution of the K-Means
clustering algorithm with the following swept parameters: number of clusters
(N) from 2 to 9; seed (S) equal to 1211 or 1311. We have 8 different values
for N , which combined with the 2 values of S generate 16 configurations.
Therefore, for each dataset size, the Data Mining Cloud Framework executed
16 independent tasks.

N. of
servers

20MB dataset 40MB dataset 80MB dataset

Turnaround
time

Cost
Turnaround

time
Cost

Turnaround
time

Cost

1 0:51:37 $0.04 2:10:37 $0.11 13:43:45 $0.69

2 0:27:25 $0.04 1:07:23 $0.11 7:49:33 $0.72

4 0:14:22 $0.04 0:40:02 $0.11 4:14:39 $0.65

8 0:08:55 $0.04 0:23:11 $0.11 2:28:14 $0.65

16 0:05:43 $0.04 0:17:07 $0.11 2:09:32 $0.69

Table 5.5: Turnaround times and costs for the parameter sweeping clustering
application.

 0

 10000

 20000

 30000

 40000

 50000

1 2 4 8 16

T
ur

ar
ou

nd
 ti

m
e

(s
ec

.)

Number of servers

20MB
40MB
80MB

 0

 2

 4

 6

 8

 10

1 2 4 8 16

S
pe

ed
up

Number of servers

20MB
40MB
80MB

(a) (b)

Fig. 5.24: Turnaround times and speedup values for the parameter sweeping
clustering application by varying number of virtual servers and dataset size.

Table 5.5 presents the turnaround times and costs of the clustering appli-
cation when 1, 2, 4, 8 and 16 virtual servers are used. The turnaround time
includes the file transfer overhead (copying the input dataset from a Blob to
the local storage of a virtual server). In our experiments this overhead was
very low (only a few seconds) even with the largest of the three datasets,

96 5 Data Mining Cloud Framework

due to the use of the Affinity Group feature provided by Azure, as already
discussed in Section 2.3.1.

For the smallest dataset (20 MB), the turnaround time decreases from
about 52 minutes obtained with a single server, to about 6 minutes using 16
servers. For the medium-size dataset (40 MB), the turnaround time passes
from 2.2 hours to 17 minutes, while for the largest dataset (80 MB), the
turnaround time ranges from 13.7 hours to 2.2 hours. As shown in the table,
for a given dataset size, the total cost paid does not change with the num-
ber of virtual servers used, because the total execution time does not vary
significantly by changing configuration.

Fig. 5.24 shows turnaround times and speedup values obtained by varying
number of virtual servers and dataset size. For the 20 MB dataset, the speedup
passes from 1.9 using 2 servers to 9.0 using 16 servers. For the 40 MB dataset,
the speedup ranges from 1.9 to 7.6. Finally, with the 80 MB dataset, we
obtained a speedup ranging from 1.8 to 6.4.

The speedup achieved does not increase linearly with the number of servers
used since the 16 clustering tasks are very heterogeneous in terms of execution
times. In fact, the turnaround time is bound to the execution time of the
slowest task instances. In our case, the slowest task instances are those in
charge of grouping data into a larger number of clusters (e.g., N = 9), which
are much slower (up to six times) than those with small values of N .

Classification Application

In this second set of experiments, we use the Data Mining Cloud Framework
to run a parameter sweeping classification.

The dataset covertype 3, has been used as data source. This dataset con-
tains information about forest cover type for a large number of sites in the
United States. Each dataset instance, corresponding to a site observation, is
described by 54 attributes that give information about the main features of
a site (e.g., elevation, aspect, slope, etc.). The 55th attribute contains the
cover type, represented as an integer in the range 1 to 7. The original dataset
is made of 581,012 instances and is stored in a file having a size of 72 MB.
From this dataset we extracted three datasets with 72500, 145000 and 290000
instances and a file size of 9 MB, 18 MB and 36 MB respectively. As the
classification algorithm we used J48.

For each dataset size, we submitted to the Data Mining Cloud Framework
the execution of the J48 algorithm, by sweeping its confidence value parameter
from 0.05 to 0.50 with a step of 0.03, which produces 16 different tasks. Table
5.6 shows the turnaround times of the clustering application when 1, 2, 4, 8
and 16 virtual servers are used.

For the 9 MB dataset the turnaround time decreases from 3.9 hours ob-
tained with a single server, to about 16 minutes using 16 servers. For the 18

3 http://kdd.ics.uci.edu/databases/covertype/covertype.html

5.6 Experimental results 97

N. of
servers

9MB dataset 18MB dataset 36MB dataset

Turnaround
time

Cost
Turnaround

time
Cost

Turnaround
time

Cost

1 3:53:15 $0.19 11:46:14 $0.59 41:07:17 $2.06

2 2:11:05 $0.19 5:53:56 $0.59 23:04:56 $2.06

4 1:00:05 $0.19 2:59:16 $0.59 10:18:40 $1.99

8 0:30:34 $0.19 1:30:01 $0.58 5:25:04 $2.03

16 0:16:12 $0.20 0:48:30 $0.60 2:52:44 $2.10

Table 5.6: Turnaround times and costs for the parameter sweeping classifica-
tion application.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 4 8 16

T
ur

ar
ou

nd
 ti

m
e

(s
ec

.)

Number of servers

 9MB
18MB
36MB

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
pe

ed
up

Number of servers

 9MB
18MB
36MB

(a) (b)

Fig. 5.25: Turnaround times and speedup values for the parameter sweeping
classification application by varying number of virtual servers and dataset
size.

MB dataset the turnaround time passes from 11.8 hours to 49 minutes. With
the 36 MB dataset, the turnaround time ranges from about 41 hours to 2.9
hours. As already noted for the clustering application, also in this case the
total cost paid does not significantly vary with the number of virtual servers
used.

Fig. 5.25 shows turnaround times and speedup values by varying number
of virtual servers and dataset size. For the 9 MB dataset, the speedup passes
from 1.8 using 2 servers to 14.4 using 16 servers. For the 18 MB dataset, the
speedup ranges from 2.0 to 14.6. Finally, with the 36 MB dataset, the speedup
ranged from 1.8 to 14.3.

Note that, differently from the clustering experiments discussed earlier, in
this case the speedup does increase linearly with the number of servers used,
since the 16 classification tasks are homogeneous in terms of execution times.

98 5 Data Mining Cloud Framework

5.6.2 Workflows-based data mining applications

In the following we describe two workflow-based data mining applications
designed with our system.

Association analysis application

The application is based on DMET-Analyzer [69], a tool for the automatic as-
sociation analysis among the variation of the patient genomes and the clinical
conditions of patients. The dataset used in our experiments contains informa-
tion about the status of a set of probes (i.e., fragments of DNA or RNA of
variable length) of 28 subjects: 14 subjects have a specific disease, the others
are healthy. Each dataset row represents the status of a probe, and each col-
umn represents a subject. The DMET-Analyzer calculates for each probe a
p-value, which measures the correlation between a status of a probe and the
disease.

To evaluate our framework with increasing workloads, we generated three
synthetic datasets with size of 12.5 MB, 25 MB and 50 MB. These datasets
have a constant number of subjects (28) but varies the number of probes
examined: around 10,000 probes for the dataset of 12.5 MB, 20,000 for 25
MB, and 40,000 for 50 MB dataset.

The application workflow, shown in Figure 5.26, performs the following
steps. The initial dataset is partitioned in n parts. The number of partitions
n is equal to the number of available Workers (in our case it has been instan-
tiated 16 Workers). Each part DatasetPart[i] is analyzed by an instance of
DMET-Analyzer (DMETAnalyzer[i]) and generates PartialModel[i], which
contains the p-values of each probe. The partial models PartialModel[n] are
corrected using two statistical correctors: Corrector 0 uses an FDR correc-
tion, while Corrector 1 uses a Bonferroni correction. The ModelMerger tool
merges partial model parts into a single model. We use it to create three
models ModelNC, ModelFDR and ModelBONF , which are respectively
the model with no corrections (composition of PartialModel[n]), the model
with FDR correction (composition of PartialModelFDR[n]) and, the model
with Bonferroni correction (composition of PartialModelBONF [n]). Finally,
the ModelsMerger tool combines ModelNC, ModelFDR and ModelBONF
in order to generate a single file combining the information of the three models
from which it derives.

5.6 Experimental results 99

Fig. 5.26: DMET-Analyzer workflow-based application.

Table 5.7 shows the turnaround times of the application when 1, 2, 4, 8
and 16 virtual servers are used. For the 12.5 MB dataset the turnaround time
decreases from around 35 minutes obtained with a single server, to about 2.6
minutes using 16 servers. For the 25 MB dataset the turnaround time passes
from 1.2 hours to 5 minutes. With the 50 MB dataset, the turnaround time
ranges from about 2.5 hours to around 10 minutes.

Fig. 5.27 shows turnaround times and speedup values by varying number of
virtual servers and dataset size. For the 12.5 MB dataset, the speedup passes
from 1.9 using 2 servers to 13.7 using 16 servers. For the 25 MB dataset, the
speedup ranges from 2.0 to 14.9. Finally, with the 50 MB dataset, the speedup
ranged from 2.0 to 15.2.

N. of
servers

12.5MB dataset 25MB dataset 50MB dataset

Turnaround
time

Turnaround
time

Turnaround
time

1 0:35:54 1:12:45 2:27:19

2 0:18:21 0:36:34 1:12:57

4 0:09:21 0:18:43 0:36:46

8 0:04:53 0:09:21 0:18:41

16 0:02:37 0:04:52 0:09:38

Table 5.7: Turnaround times for the DMET-Analyzer workflow-based appli-
cation.

100 5 Data Mining Cloud Framework

 0

 2000

 4000

 6000

 8000

 10000

1 2 4 8 16

T
ur

ar
ou

nd
 ti

m
e

(s
ec

.)

Number of servers

12.5MB
25MB
50MB

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
pe

ed
up

Number of servers

12.5MB
25MB
50MB

(a) (b)

Fig. 5.27: Turnaround times and speedup values of the DMET-Analyzer
workflow-based application.

Ensemble learning application

This application is based on the implementation of a multi-class cancer clas-
sifier based on the analysis of genes, as described in [70]. The input dataset is
the Global Cancer Map (GCM)4, which contains the gene expression profiles
of 280 samples representing 14 common human cancer classes. For each sam-
ple is reported the status of 16,063 genes and the type of tumor (class label).
The dataset is divided in training set containing 144 instances and test set
with 46 instances.

The goal of this application is to demonstrate how our framework can be
used to build a multi-class classifier (using an ensemble approach), and how
such classifier can be efficiently used to classify a big unlabeled dataset. To
this end, we designed two different workflows.

The first workflow is shown in Figure 5.28. The input training set, GCM -
train, is analyzed by:

• 9 instances of the J48 [57] classification algorithm, obtained sweeping the
confidence value and the minNumObjects (minimum number of instances
per leaf) parameters;

• 9 instances of the JRip [71] classification algorithm, obtained sweeping the
numFolds (number of folders) and seed parameters.

Each instance of J48, J48[i], generates two outputs: a model (Model 0[i])
and an evaluation of such model (EvalModel 0[i]). The evaluation, obtained
using a 10-fold cross-validation, measures different performance metrics such
as number of misclassified items, precision, recall and F-measure. Each in-
stance of JRip, JRip[i], generates a model (Model 1[i]) and its evaluation
(EvalModel 1[i])

4 http://tunedit.org/repo/BioInformatics Seville/Global Cancer Map

5.6 Experimental results 101

Starting from the 18 models and the test set GCM -testset, 18 classifiers
produce concurrently the same number of classified test sets (ClassTestSet[18]).
In the final step, a voter generates FinalClassTestSet by assigning a class to
each data item, by choosing the class predicted by the majority of the mod-
els. Since that classifiers in the ensemble may have not the same accuracy, a
weighted majority voting is performed [72]. For each model, we use as weight
the number of correctly classified items, divided by the total number of items.

Fig. 5.28: Ensemble learning first workflow: models creation and combination

At this point, we can use our ensemble classifier to classify new datasets.
This is shown in the second workflow (see Figure 5.29). We created an un-
labeled dataset composed by 20,000 samples, GCM2000[4], divided in four
parts. Each part is analyzed using the set of models (Model[18]) and the cor-
responding evaluations (EvalModel[18]) generated by the previous workflow.

Fig. 5.29: Ensemble learning second workflow: Using of the classifier generated
by first workflow to classify an unlabeled dataset.

102 5 Data Mining Cloud Framework

Table 5.8 shows some statistics about the execution of the two workflow:
the turnaround time, number of tasks, and the total execution time (i.e., the
sum of the execution times of all the tasks) performed on 19 Workers.

Step Turnaround
time

Number of
tasks

Total exec.
time

First workflow 0:05:08 37 0:56:01

Second workflow 0:06:13 76 1:46:37

Table 5.8: Some statistics on the ensemble learning application.

5.7 Conclusions

We need new distributed infrastructures and smart scalable analysis tech-
niques to solve more challenging problems in science. Cloud computing sys-
tems can be effectively used as scalable infrastructures for service-oriented
knowledge discovery applications. Based on this vision, we designed the Data
Mining Cloud Framework for large-scale data analysis on the Cloud. The
workflow composition interface allows users to design and execute knowledge
discovery applications defined as complex workflows.

We evaluated the performance of the system through the execution of
parameter-sweeping and workflow-based knowledge discovery applications on
a pool of virtual servers hosted by a Microsoft Cloud data center. The experi-
mental results demonstrated the effectiveness of the framework, as well as the
scalability that can be achieved through the execution of knowledge discovery
applications on the Cloud.

Besides performance considerations, we point out that the main goal of
the Data Mining Cloud Framework is providing an easy-to-use SaaS interface
to reliable data mining algorithms, thus enabling end-users to focus on their
data mining applications without worrying about low level computing and
storage details, since they are transparently managed by the underlying Cloud
infrastructure.

6

Conclusions

New parallel and distributed computing infrastructures are necessary to run
smart scalable analysis techniques to solve more challenging problems in sci-
ence, particularly when large data sets are involved or real-time evaluation
is needed. Cloud computing systems are used today for implementing dy-
namic data centers and for high-performance computing on massive number
of processors. They can also be effectively used as scalable infrastructures
for running big data analysis that often involve large data sets and complex
algorithms. The goal of this thesis was studying how the Cloud paradigm
can be exploited to support scalable data processing and knowledge discovery
applications in distributed scenarios.

As a first result of this study we presented the P2P-MapReduce system,
an extension of current MapReduce implementations to make the program-
ming model suitable for dynamic large-scale Cloud environments. The system
exploits a peer-to-peer model to manage node churn, master failures, and job
recovery in a decentralized but effective way, so as to provide a more reliable
MapReduce middleware that can be effectively exploited in dynamic Cloud
infrastructures. We provided a detailed description of the basic mechanisms
that are at the base of the P2P-MapReduce system, discussed a prototype
implementation based on the JXTA framework, and presented an extensive
performance evaluation of the system in different network scenarios. The ex-
perimental results showed that, differently from centralized master-server im-
plementations, the P2P-MapReduce framework does not suffer from job fail-
ures even in presence of very high churn rates, thus enabling the execution of
reliable MapReduce applications in very dynamic Cloud infrastructures.

As a second result of our work, we described an extension of COMPSs,
a framework that provides a programming model and a runtime system to
ease the development of distributed applications and their execution on a
wide range of computational infrastructures. The goal of the extension was
enhancing the interoperability layer to support the execution of COMPSs
applications into the Windows Azure Platform. The proposed approach has
been validated through the execution of a data mining workflow ported to

104 6 Conclusions

COMPSs and executed on an hybrid testbed composed of machines from the
Microsoft Azure Cloud and from a private infrastructure managed by Emotive
Cloud. The results demonstrated that the COMPSs runtime is able to manage
and schedule the tasks on different Cloud infrastructures in a transparent way,
keeping the overall performance of the application.

Finally, we presented a Data Mining Cloud Framework designed to sup-
port the execution of data analysis applications on the Cloud. The framework
allows users to design and execute three classes of knowledge discovery ap-
plications: single-task, parameter-sweeping, and workflow-based applications.
A Web-based interface allows users to design and execute workflow-based
applications with a visual drag-and-drop approach. We evaluated the perfor-
mance of the system through the execution of a set of parameter-sweeping and
workflow-based knowledge discovery applications on a pool of virtual servers
hosted by a Microsoft Cloud data center. The experimental results demon-
strated the effectiveness of our framework, as well as its scalability. Besides
performance considerations, we point out that the Cloud approach imple-
mented in our framework enables end-users to focus on their data mining
applications at a high level of abstraction, thus freeing them from the need to
cope with computing, storage and execution details, which are transparently
managed by the system.

Acknowledgements

During the time of writing of this PhD thesis I received support and help from
many people. In particular, I am thankful to my supervisors, Domenico Talia
and Paolo Trunfio, who were very generous with their time and knowledge
and helped me in each step to complete my PhD course.

I am also grateful to Rosa Maria Badia, who has given me the opportunity
to work with her at the Barcelona Supercomputing Center. Many thanks also
to other guys that I met in Barcelona.

And finally, but not least, thanks go to my family, colleagues, friends, and
Laura for their indispensable support essential to reach this goal.

References

1. R. Barga, D. Gannon, D. Reed. 2011. “The Client and the Cloud: Democratizing
Research Computing”. IEEE Internet Computing, 72-75, 2011.

2. A. Li, X. Yang, S. Kandula, M. Zhang. “CloudCmp: comparing public cloud
providers”. 10th ACM SIGCOMM conference on Internet measurement (IMC
’10). New York, USA, 2010

3. SOAP, http://www.w3.org/TR/soap/
4. L. Richardson, S. Ruby. “RESTful Web Services”. O’Reilly & Associates, Cal-

ifornia, 2007.
5. J. J. Garrett. “Ajax: A New Approach to Web Applications”. Technical report,

Adaptive Path, 2005.
6. HTML5, http://www.w3.org/TR/html5/
7. Open Cloud Computing Interface Working Group, http://www.occi-wg.org
8. Distributed Management Task Force Inc., Open Virtualization Format Specifi-

cation v1.1, DMT Standar DSP0243,2010.
9. Microsoft Azure, http://www.microsoft.com/azure

10. Amazon Web Services, http://aws.amazon.com/
11. B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster. “Virtual Infrastructure

Management in Private and Hybrid Clouds”, IEEE Internet Computing, vol.
13, 14-22, 2009.

12. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. “The Eucalyptus Open-Source Cloud-Computing System”. In
Proceedings of the 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGRID ’09). Washington, USA,2009

13. G. Fox, D. Gannon. “Cloud Programming Paradigms for Technical Computing
Applications” Technical report, Indiana University, 2012.

14. S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman. “Basic local alignment
search tool”. Journal of Molecular Biology, 1990.

15. J. Dean, S. Ghemawat. “MapReduce: Simplified data processing on large clus-
ters”. 6th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI’04), San Francisco, USA, 2004.

16. Hadoop. http://hadoop.apache.org (site visited December 2010).
17. S. Papadimitriou, J. Sun. “DisCo: Distributed Co-clustering with Map-Reduce:

A Case Study towards Petabyte-Scale End-to-End Mining”. 8th IEEE Interna-
tional Conference on Data Mining (ICDM’08), Pisa, Italy, 2008.

http://hadoop.apache.org

108 References

18. J. Ekanayake, S. Pallickara, G. Fox. “Mapreduce for data intensive scientic
analyses”. 4th IEEE International Conference on e-Science (e-Science’08), In-
dianapolis, USA, 2008.

19. D. Rao, D. Yarowsky. “Ranking and semi-supervised classification on large scale
graphs using map-reduce”. Workshop on Graph-based Methods for Natural
Language Processing (TextGraphs’09), Stroudsburg, USA, 2009.

20. E. Tejedor, R.M. Badia. “COMP Superscalar: Bringing GRID superscalar and
GCM Together”. IEEE Int. Symposium on Cluster Computing and the Grid,
Lyon, France, 2008.

21. Y. Gu, R. Grossman. “Sector and Sphere: The Design and Implementation of
a High Performance Data Cloud”. Philosophical Transactions, Series A: Math-
ematical, physical, and engineering sciences, 367(1897), 2429-2445, 2009.

22. R. Grossman, Y. Gu, “Data Mining Using High Performance Data Clouds:
Experimental Studies Using Sector and Sphere”. Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining,
Las Vegas, USA, 2008.

23. C. Moretti , J. Bulosan , D. Thain , P. J. Flynn. “All-Pairs: An Abstraction
for Data-Intensive Cloud Computing”. IEEE Int. Symposium on Parallel and
Distributed Processing (IPDPS’08), Miami, USA, 2008.

24. M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad: distributed data-
parallel programs from sequential building blocks”. 2nd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems (EuroSys’07), Lisbon, Por-
tugal, 2007.

25. J. Ekanayake, T. Gunarathne, G. Fox, A. S. Balkir, C. Poulain, N. Araujo, R.
Barga. “DryadLINQ for Scientific Analyses”. 5th IEEE International Confer-
ence on e-Science (e-Science’09), Oxford, UK, 2009.

26. Y. Wei, K. Sukumar, C. Vecchiola, D. Karunamoorthy, R. Buyya. “Aneka
Cloud Application Platform and Its Integration with Windows Azure”. CoRR,
abs/1103.2590, 2011.

27. Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce (site
visited December 2010).

28. Mapper API for Google App Engine. http://googleappengine.blogspot.

com/2010/07/introducing-mapper-api.html (site visited December 2010).
29. J. Dean, S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clus-

ters”. Communications of the ACM, 51(1), 107-113, 2008.
30. Google’s Map Reduce. http://labs.google.com/papers/mapreduce.html

(site visited December 2010).
31. F. Marozzo, D. Talia, P. Trunfio. “Adapting MapReduce for Dynamic Environ-

ments Using a Peer-to-Peer Model”. 1st Workshop on Cloud Computing and
its Applications (CCA’08), Chicago, USA, 2008.

32. F. Marozzo, D. Talia, P. Trunfio. “A Peer-to-Peer Framework for Supporting
MapReduce Applications in Dynamic Cloud Environments”. In: N. Antonopou-
los, L. Gillam (eds.), Cloud Computing: Principles, Systems and Applications,
Springer, Chapter 7, 113-125, 2010.

33. A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, V. H. Tuulos. “Misco: A
MapReduce framework for mobile systems”. 3rd Int. Conference on Pervasive
Technologies Related to Assistive Environments (PETRA’10), New York, USA,
2010.

34. Gridgain. http://www.gridgain.com (site visited December 2010).

http://aws.amazon.com/elasticmapreduce
http://googleappengine.blogspot.com/2010/07/introducing-mapper-api.html
http://googleappengine.blogspot.com/2010/07/introducing-mapper-api.html
http://labs.google.com/papers/mapreduce.html
http://www.gridgain.com

References 109

35. Skynet. http://skynet.rubyforge.org (site visited December 2010).
36. MapSharp. http://mapsharp.codeplex.com (site visited December 2010).
37. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, G. Fox.

“Twister: A Runtime for Iterative MapReduce”. 1st International Workshop
on MapReduce and its Applications (MAPREDUCE’10), Chicago, USA, 2010.

38. Disco. http://discoproject.org (site visited December 2010).
39. M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, I. Stoica. “Improv-

ing MapReduce Performance in Heterogeneous Environments”. 8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’08), San
Diego, USA, 2008.

40. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, R. Sears.
“MapReduce Online”. 7th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’10), San Jose, USA, 2010.

41. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis. “Eval-
uating MapReduce for multi-core and multiprocessor systems”. 13th Interna-
tional Symposium on High-Performance Computer Architecture (HPCA’07),
Phoenix, USA, 2007.

42. H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, Z. Zhang. “MOON:
MapReduce On Opportunistic eNvironments”. 19th International Symposium
on High Performance Distributed Computing (HPDC’10), Chicago, USA, 2010.

43. B. Tang, M. Moca, S. Chevalier, H. He, G. Fedak. “Towards MapReduce for
Desktop Grid Computing”. 5th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC’10), Fukuoka, Japan, 2010.

44. G. Fedak, H. He, F. Cappello. “BitDew: A Data Management and Distribution
Service with Multi-Protocol and Reliable File Transfer”. Journal of Network
and Computer Applications, 32(5), 961975, 2009.

45. H. Garcia-Molina. “Election in a Distributed Computing System”. IEEE Trans-
actions on Computers, 31(1), 48-59, 1982.

46. L. Gong. “JXTA: A Network Programming Environment”. IEEE Internet Com-
puting, 5(3), 88-95, 2001.

47. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
H. Balakrishnan. “Chord: a scalable peer-to-peer lookup protocol for internet
applications”. IEEE/ACM Transactions on Networking, 11(1), 17-32, 2003.

48. K. Albrecht, R. Arnold, M. Gahwiler, R. Wattenhofer. “Join and Leave in
Peer-to-Peer Systems: The Steady State Statistics Service Approach”. Technical
Report 411, ETH Zurich, 2003.

49. European Grid Infrastructure, http://www.egi.eu
50. StratusLab, http://www.stratuslab.eu
51. European Middleware Initiative, http://www.eu-emi.eu
52. Virtual multidisciplinary ENvironments USing Cloud infrastructures,

http://www.venus-c.eu
53. D. Lezzi, R. Rafanell, A. Carrion, I. Blanquer, R.M. Badia, V. Hernandez. “En-

abling e-Science applications on the Cloud with COMPSs”. Cloud Computing:
Project and Initiatives, 2011.

54. G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky,
R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. T. Schütt, E. Seidel, B. Ullmer.
“The Grid Application Toolkit: Towards Generic and Easy Application Pro-
gramming Interfaces for the Grid”. Proceedings of the IEEE, vol. 93, no. 3,
Mar 2005.

http://skynet.rubyforge.org
http://mapsharp.codeplex.com
http://discoproject.org

110 References

55. F. Marozzo, D. Talia, P. Trunfio. “A Cloud Framework for Parameter Sweeping
Data Mining Applications”. 3rd IEEE Int. Conference on Cloud Computing
Technology and Science (CloudCom ’11), Athens, Greece, 2011.

56. H. Witten, E. Frank. Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann Publishers, 2000.

57. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers, 1993.

58. I. Goiri, J. Guitart, J. Torres. “Elastic Management of Tasks in Virtualized
Environments”. XX Jornadas de Paralelismo (JP 2009), Coruña, Spain, 2009.

59. GlusterFS Distributed Network File System, http://www.gluster.org
60. Hadoop on Azure, https://www.hadooponazure.com
61. Project Daytona, http://research.microsoft.com/en-us/projects/daytona
62. Google App Engine, http://code.google.com/intl/de/appengine
63. J. Ekanayake, Hui Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, G. Fox.

“Twister: A Runtime for Iterative MapReduce”. 1st Int. Workshop on MapRe-
duce and its Applications (MAPREDUCE’10), Chicago, USA, 2010.

64. Y. Simmhan, C. Ingen, G. Subramanian, J. Li. “Bridging the Gap between
Desktop and the Cloud for eScience Applications”. 3rd IEEE Int. Conference
on Cloud Computing (CLOUD ’10), Washington, USA, 2010.

65. J. B. MacQueen. “Some Methods for classification and Analysis of Multivari-
ate Observations”. 5th Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, UK, 1967.

66. E. Cesario, M. Lackovic, D. Talia, P. Trunfio, “Programming Knowledge Dis-
covery Workflows in Service-Oriented Distributed Systems”. Concurrency and
Computation: Practice and Experience, Wiley InterScience, 2012.

67. Z. H. Zhou.“Semi-supervised learning by disagreement”. 4th IEEE International
Conference on Granular Computing, pp. 93, 2008.

68. S. Hettich, S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine,
CA: University of California, Department of Information and Computer Sci-
ence, 1999.

69. P. H. Guzzi, G. Agapito, M. T. Di Martino, M. Arbitrio, P. Tassone, P.
Tagliaferri, M. Cannataro. “DMET-Analyzer: automatic analysis of Affymetrix
DMET Data”. BMC Bioinformatics, 13, 2012.

70. S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C.-H. Yeang, M. Angelo,
C. Ladd, M. Reich, E. Latulippe, J.P. Mesirov, T. Poggio, W. Gerald, M. Loda,
E.S. Lander and T.R. Golub. “Multiclass cancer diagnosis using tumor gene
expression signatures”. Proceedings of the National Academy of Sciences USA
(PNAS). vol. 98(26), December, 2001.

71. W. W. Cohen. “Fast Effective Rule Induction”. Twelfth International Confer-
ence on Machine Learning, 115-123, 1995.

72. L. I. Kuncheva. “Combining Pattern Classifiers: Methods and Algorithms”.
Wiley-Interscience. 2004.

73. D. Talia, P. Trunfio. How Distributed Data Mining Tasks can Thrive as Knowl-
edge Services. Communications of the ACM, 53(7), 132-137, 2010.

74. V. Stankovski, M. T. Swain, V. Kravtsov, T. Niessen, D. Wegener, J. Kinder-
mann, W. Dubitzky. Grid-enabling data mining applications with DataMin-
ingGrid: An architectural perspective. Future Generation Computer Systems,
24(4), 259-279, 2008.

References 111

75. S. AlSairafi, F. S. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo, D. Kalait-
zopoulos, M. Osmond, A. Rowe, J. Syed, P. Wendel. The Design of Discovery
Net: Towards Open Grid Services for Knowledge Discovery. Int. Journal of High
Performance Computing Applications, 17(3), 297-315, 2003.

76. P. Brezany, J. Hofer, A. M. Tjoa, A. Woehrer. “GridMiner: An Infrastructure for
Data Mining on Computational Grids”. Proc. APAC Conference and Exhibition
on Advanced Computing, Grid Applications and eResearch (APAC’03), Gold
Coast, Australia, 2003.

77. A. Congiusta, D. Talia, P. Trunfio. Distributed data mining services leveraging
WSRF. Future Generation Computer Systems, 23(1), 34-41, 2007.

78. D. Talia, P. Trunfio, O. Verta. The Weka4WS framework for distributed data
mining in service-oriented Grids. Concurrency and Computation: Practice and
Experience, 20(16), 1933-1951, 2008.

79. S. Woodman, H. Hiden, P. Watson, J. Cala. “Workflows and Applications in e-
Science Central”. 5th IEEE International Conference on E-Science Workshops,
UK, 2009.

80. W.i Lu, J. Jackson, R. Barga. 2010. “AzureBlast: a case study of developing
science applications on the cloud”. 19th ACM International Symposium on
High Performance Distributed Computing (HPDC ’10). New York, USA, 2010.

81. G. Juve, E.Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman, P. Maech-
ling. “Scientific workflow applications on Amazon EC2”. 5th IEEE Interna-
tional Conference on E-Science Workshops, Oxford, UK, 2009.

	Introduction
	Objectives of the Research
	P2P-MapReduce
	COMPSs with Azure
	Data Mining Cloud Framework

	Publications
	Journals
	Book Chapters
	Papers in refereed conference proceedings
	Other publications

	Organization of the Thesis

	Cloud computing
	Service models
	Deployment models
	Development environments
	Windows Azure
	Amazon Web services
	OpenNebula

	Programming paradigms and frameworks
	MapReduce
	COMPSs
	Sector/Sphere
	All-Pairs
	Dryad
	Aneka

	P2P-MapReduce
	Background and Related Work
	The MapReduce Programming Model
	Related Work

	System Model and Architecture
	System Model
	Architecture

	System Mechanisms
	Node Behavior
	Job and Task Management
	User Behavior

	Implementation
	System Evaluation
	Experimental Setup and Methodology
	Fault Tolerance
	Network Traffic
	Scalability
	Remarks

	Conclusion

	COMPSs applications on the Cloud
	The COMPSs framework
	The Azure JavaGAT Adaptor
	Data mining on COMPSs: a classifier-based workflow
	The application workflow
	The application implementation
	Parallelization with COMPSs: the interface

	Performance evaluation
	Related work
	Conclusions and future work

	Data Mining Cloud Framework
	Cloud-based Data Mining
	Functional requirements
	Non-functional requirements
	Cloud for distributed KDD

	Data Mining Cloud Framework
	System Model
	General architecture
	Execution mechanisms
	User Interface

	Implementing the Data Mining Cloud Framework
	Fulfilling the functional requirements with Azure
	Implementing the system components on Azure

	Parameter-sweeping data mining applications
	Workflow-based data mining applications
	Workflow formalism
	Workflow composition
	Workflow execution

	Experimental results
	Parameter sweeping data mining applications
	Workflows-based data mining applications

	Conclusions

	Conclusions
	References

