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Introduction 
 

 

During my PhD program my interest has been addressed to the statistical 

analysis of two different complex phenotypes: longevity and neuroblastoma. 

In the first year I participated in the study “The genetic component of human 

longevity: analysis of the survival advantage of parents and siblings of 

Italian nonagenarians” where our aim was to estimate the genetic component 

of longevity from families of nonagenarians from a population of southern 

Italy, Calabria. We analyzed the survival functions comparing parents and 

siblings of long-lived subjects to the appropriate Italian birth cohorts and 

siblings to their spouses. 

The reduced mortality of relatives of centenarians has suggested the 

presence of a genetic component in the longevity trait. Heritability of a trait 

is population specific and it may be influenced by different factors acting 

differently on certain traits in different populations such as living in areas 

with slower progress (such as Calabria). We conducted an analysis on 

parents and siblings of the probands, finding that they both have a significant 

survival advantage over their Italian birth cohort counterparts, but female 

siblings did not show the advantages that males did. 

Our results should be read with some considerations as to the largely rural 

and underdeveloped society where our data comes from, which has 

maintained strong social differences until a few decades ago. 

In the subsequent and last two years of my PhD course I collaborated on a 

GWAs project at the Children’s Hospital of Philadelphia (CHOP) resulting 

in a work called “Replication and fine mapping of neuroblastoma SNP 
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association at the BARD1 locus in African-Americans”. We analyzed data 

from the African-American population to replicate results from a previous 

analysis on Caucasian to find genetic association with neuroblastoma. 

We performed both a GWAs analysis and a Candidate Gene analysis. Our 

results confirmed our expectations but only for the BARD1 gene. To 

increase the power and have more reliable result we need to increase the 

sample size and to replicate results in other populations.  

 

In the following chapters I will present in details the work on GWAs 

analysis for mapping neuroblastoma genes in African-Americans. In the 

appendix the published paper “The genetic component of human longevity: 

analysis of the survival advantage of parents and siblings of Italian 

nonagenarians” (European Journal of Human Genetics) is presented. 
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Neuroblastoma: Clinical, 

epidemiological and molecular aspects 
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Neuroblastoma is an embryonal cancer arising from any neural crest of the 

sympathetic nervous system. It is the most common cancer diagnosed during 

the first year of life and is often lethal.  

The cell of origin is thought to be a developing and incompletely committed 

precursor cell derived from neural-crest tissues.  

The neural crest is a group of cells in the early embryo that give rise to many 

tissues and organs. Cells migrate to form parts of the autonomic nervous 

system, which controls body functions such as breathing, blood pressure, 

heart rate, and digestion and also give rise to many tissues in the face and 

skull, and other tissue and cell types. Although many lower-stage 

neuroblastomas are encapsulated and can be surgically excised with little 

chance of complications, higher-stage tumors often infiltrate local organ 

structures, surround critical nerves and vessels such as the celiac axis, and 

are largely unresectable at the time of diagnosis. Neuroblastomas typically 

metastasize to regional lymph nodes and to the bone marrow by means of 

the hematopoietic system. Tumor cells metastatic to marrow can infiltrate 

cortical bone. However, transient and complete regression often occurs with 

no intervention other than supportive care (Westermann et al. 2002, Maris et 

al. 2007, Henderson et al. 2011).  

Neuroblastoma and other cancers occur when a build-up of genetic 

mutations in critical genes, usually those that control cell proliferation or 

differentiation, allow cells to grow and divide uncontrollably to form a 

tumor. In most cases, these genetic changes are acquired during a person's 

lifetime, and such changes are known as somatic mutations. 

Despite the wealth of knowledge about somatically acquired genomic 

aberrations that correlate with tumor phenotype, little is known about the 

events that predispose to the development of neuroblastoma. 
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A common environmental exposure that influences susceptibility to 

neuroblastoma has been difficult to identify using epidemiologic studies 

(Maris et al. 2007). Due to the lethality of neuroblastoma in early childhood, 

genetic studies of hereditary disease have been hampered by the rarity of the 

condition and the small size of pedigrees (Maris et al. 2008). 

The clinical presentation is highly variable, and although a substantial 

proportion of affected individuals may show a favorable outcome and may 

even have spontaneous regression of a localized, or even disseminated, 

tumor. Approximately 50% of cases show an aggressive clinical course with 

widespread metastatic disease that have survival rates of less than 35% 

despite aggressive therapy with dose-intensive induction chemotherapy and 

surgery, followed by myeloablative therapy with stem cell rescue, local 

radiation therapy and biological response modification using retinoids and/or 

immunotherapy. Survivors often have serious lifelong coexisting conditions 

(Maris et al. 2007). 

Tumors from patients with an aggressive phenotype resistant to therapy 

often show focal amplification of the MYCN oncogene or deletions of 

chromosome arms 1p and 11q, or both. However, because MYCN is so 

aberrantly dysregulated, and no putative tumor suppressor gene at 1p and 

11q has been shown to harbor inactivating mutations in more than a small 

percentage of cases, no tractable molecular target approaches at present exist 

for this disease (Mosse et al. 2008).  

Until recently little was known about the constitutional genetic events that 

initiate tumorigenesis, although these somatically acquired genomic 

alterations are of clinical use as prognostic biomarkers. 

On the other hand, tumors showing no structural chromosomal changes but 

hyperdiploidy due to whole-chromosome gains are more easily cured and 
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may even spontaneously regress (Wang et al. 2010). 

Such different clinical behaviors permit a classification of neuroblastoma 

into three risk groups: high-risk, intermediate-risk and low-risk (Nguyen 

2011). 

Patients with widely disseminated disease at diagnosis and a poor survival 

probability are classified as high-risk, while low-risk patients are those that 

show favorable clinical features including spontaneous regression of disease 

with a greater than 95% survival probability with minimal or any 

chemotherapy. Intermediate-risk cases are the most heterogeneous, and are 

also the smallest subset using current definitions, comprising about 15% of 

all neuroblastoma patients. 

Neuroblastoma can occur with disorders related to abnormal development of 

neural-crest-derived tissues such as central congenital hypoventilation 

syndrome and Hirschsprung’s disease. Like most human cancer, 

neuroblastoma arise sporadically, with less than 1% of cases inherited in an 

autosomal dominant fashion with a standardized incidence ratio of 9.7 for 

siblings of index cases. Because of the lethality of the condition before 

reproductive age, previous genetic linkage scans have been underpowered 

and results have been difficult to replicate (Mosse et al. 2008). 

Rare mutations in the PHOX2B gene have been identified in people with 

neuroblastoma. The PHOX2B gene provides instructions for making a 

protein that acts early in development to help promote the formation of 

nerve cells and regulate the process by which the neurons mature to carry 

out specific functions. The protein is active in the neural crest. 

Somatic mutations are present only in certain cells and are not inherited and, 

less commonly, gene mutations that increase the risk of developing cancer 

can be inherited from a parent. Both types of mutation occur in 
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neuroblastoma. Somatic mutations in the PHOX2B gene increase the risk of 

developing sporadic neuroblastoma, and inherited mutations in the PHOX2B 

gene increase the risk of developing familial neuroblastoma. 

Mutations in the PHOX2B gene change a single protein building block in the 

PHOX2B protein or it could be an addition or deletion of several DNA 

building blocks in the PHOX2B gene. Addition or deletion of nucleotides 

changes the sequence of amino acids in the PHOX2B protein. All of these 

types of mutations have been found in familial and sporadic neuroblastoma. 

The mutations are believed to interfere with the PHOX2B protein's role in 

promoting nerve cell differentiation, which results in an excess of immature 

nerve cells and leads to neuroblastoma.  

However, PHOX2B mutations explain only a small subset of hereditary 

neuroblastoma of cases with associated disorders of neural-crest-derived 

tissues, and are not somatically acquired in tumors, leaving the genetic 

aetiology for most familial neuroblastoma cases (Mosse et al. 2008). 

Germline mutations in the anaplastic lymphoma kinase (ALK) gene explain 

most hereditary neuroblastomas. It was identified as a familial 

neuroblastoma gene in 2008 (Mosse et al. 2008) and only half of familial 

cases that are ~1% of the total. 

The fact that no commonly mutated gene has been identified suggest locus 

heterogeneity with both benign and malignant forms occurring in the same 

family. 

We therefore hypothesize that neuroblastomas arise from relatively common 

DNA variations that predispose to an increased risk of neuroblastic 

malignant transformation (Diskin et al. 2009). 
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The publication in 2000 of the first draft of the human genome sequence, the 

deposition of millions of SNPs into public databases, rapid improvements in 

SNP genotyping technology and the initiation of the International HapMap 

Project have set the stage for genome-wide association studies, in which a 

dense set of SNPs across the genome is genotyped to find disease genetic 

variants for complex traits (Collins et al. 1997). 

Genetic variation in DNA sequence affect susceptibility to common diseases 

and also influence disease-related quantitative traits. Identifying relevant 

causal genes involved in common ‘complex diseases’  has proven much 

more difficult than studies on genetic variations causing phenotypes  

showing a clear Mendelian segregation. In the latter case the carriers of the 

mutated alleles carry a quantifiable risk of the disease; on the other hand, in 

complex phenotypes each causal gene only makes a small contribution to 

overall heritability, neither necessary nor sufficient to individually cause the 

disease (Zondervan et al. 2007, Ziegler et al. 2008).  

Genetic association studies try to identify correlation between a phenotype, 

in many cases a binary disease status, and one or more SNPs, genetic 

markers that are easy to type and that are abundant in the human genome. 

Population-based case–control studies and family-based studies are the two 

main types of genetic association studies (Patterson et al. 2009).  

Genetic association study can be Candidate Gene (CG), focusing on a 

particular gene or area of the genome, or can involve genome-wide 

association (GWA) analyses conducted without prior hypotheses (Kruglyak 

2008, McCarthy et al. 2008). Candidate gene association studies analyze 

SNPs in candidate genes or regions. These candidates are plausible because 

of previous study results or on the basis of biological hypotheses, and some 

of them have strong genetic effects. This approach has sometime been 
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successful but it is inadequate to fully explain the genetic basis of the disease 

when its fundamental physiological defects are not known. In addition, 

many CG studies have not provided evidences for the success or failure of 

their intended objectives because they have been poorly designed in terms of 

case definition, control selection, genetic marker selection and particular 

sample size (Clarke et al. 2011).  

More recently, because of reductions in genotyping costs and more 

sophisticated specifications of the genotyping arrays in terms of SNP 

numbers and coverage, the potential for GWA studies has been considered. 

In fact, to fully understand the allelic variation that underlies common 

diseases, complete genome sequencing for many individuals with and 

without disease would be required. This is still not technically and 

economically feasible. However, it has become possible to carry out partial 

surveys of the genome by genotyping large numbers of common SNPs. In 

these GWAs, several hundreds of thousands SNPs are analyzed at the same 

time, posing substantial biostatistical and computational challenges. In fact, 

as the GWAS approach looks at many SNPs simultaneously and each SNP 

tested constitutes a separate hypothesis test, so it needs very significant 

associations and large sample sizes to avoid false positives and to find 

variants with low odds ratios (Hirschhorn et al. 2005, Frazer et al. 2009, 

Balding  2006, Wang et al. 2005).  

In the design of GWA analysis, as for any case–control study, the first step 

is to adequately define the disease or phenotype of interest. Nonspecific case 

definitions could increase both the genetic and the environmental 

heterogeneity underlying causal factors, decrease the power of detection of 

an effect and make the replication of the study impossible (Brookfield 

2010).  
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The required size of each study will depend on whether the analysis includes 

case subgroups; whether the analysis is on candidate genes with a limited 

number of independent tests or GWAs with many thousands of tests; and 

whether there is an a priori hypothesis to be tested relating to a 

polymorphism of known allele frequency.  

The variables in a GWA (SNP genotypes) are generated in a highly 

automated way and this poses further challenges for the quality control of 

the data. With GWAs hundreds of thousands or even a million genotypes are 

assessed per individual. In removing false-positive associations, one must 

undertake several quality control (QC) steps to remove individuals or 

markers with particularly high error rates. If many thousands of cases and 

controls have been genotyped to maximize the power to detect association, 

the removal of a small quantity of individuals, given the large number of 

markers genotyped in modern GWA studies, should not markedly decrease 

the overall power of the study (Storey and Tibshirani 2003). The impact of 

removing one marker is potentially greater than the removal of one 

individual. It is important to apply quality control per sample and per SNP 

starting from genotyping errors, especially if occurring differentially 

between cases and controls. The frequency of missing genotypes for each 

SNP is another important quality criterion that should be investigated 

separately for all study groups because of the possibility of differential 

missingness. The acceptable SNP call rate is typically 95%. 

SNPs are often excluded from analysis if the minor allele frequency (MAF) 

is low. If a SNP has an allele frequency <1% it is reasonable to exclude this 

SNP because of the low power to detect an association between the SNP and 

the trait of interest.  
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The Hardy-Weinberg Equilibrium (HWE) law provides a model that 

describes and predicts genotype and allele frequencies in a non-evolving 

population.  

Deviations from HWE can be due to inbreeding, population stratification or 

selection (Balding 2006, Anderson et al. 2010). 

Testing for deviations from HWE can be carried out using a Pearson 

goodness-of-fit test. It is easy to compute, but the χ2 approximation can be 

poor when there are low genotype counts, and it is better to use a Fisher 

exact test, which does not rely on the χ2 approximation. Typically the test is 

verified on the control group and SNPs are excluded from further analysis if 

the p-value is less than 10^(-4).  

Odds ratios associated with the risk allele are initially over-estimated, 

usually in the range of 1.2 to 1.3. It often leads to replication studies that 

lack sufficient sample size and power to replicate the association because 

larger samples are needed to detect smaller odds ratios. 

Further complexity in the analysis emerges due to the multiple testing 

carried out in GWA studies. The most common manner of dealing with this 

problem is to apply the Bonferroni correction, in which the conventional P 

value is divided by the number of tests performed. This correction assumes 

independent associations of each SNP with disease even though individual 

SNPs are known to be correlated due to linkage disequilibrium, so it could 

result over-conservative (Balding 2006, Dudbridge et al. 2008, Clarke et al. 

2011). 

Each individual carries 2 copies of each autosomal SNP, so the frequency of 

each of 3 possible genotypes can be compared in cases and controls, and 

represented in a contingency table of counts of disease status by either 

genotype count or allele count (McCarthy et al. 2008).  
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Under the null hypothesis of no association with the disease, we expect that 

the relative allele or genotype frequencies is the same in case and control 

groups. The test of association is a χ2 test for independence of the rows and 

columns of the 2 × 3 contingency table of case-control genotype counts with 

2 degrees of freedom, where each of the genotypes is assumed to have an 

independent association (Clarke et al. 2011).  

One important assumption is the presence of HWE in controls. If it is not 

satisfied, an alternative methods must be used to test for multiplicative 

models as the Cochran-Armitage trend test (Ziegler et al. 2008).  

Tests of association can also be conducted with likelihood ratio (LR) 

methods where the likelihood of the observed data under the proposed model 

of disease association is compared with the likelihood of the observed data 

under the null model of no association.  

When there is a need to include additional covariates to handle complex 

traits, in situations in which the disease risk can be modified by 

environmental effects such as epidemiological risk factors, population 

stratification, or interactive and joint effects of other marker loci, more 

complicated logistic regression models of association are used. In logistic 

regression models, the logarithm of the odds of disease is the response 

variable, with linear combinations of the explanatory variables entering into 

the model as its predictors (Clarke et al. 2011).   

Controls should be selected from the same population of the cases, and 

should be representative of the population who would have become cases 

according to the case definition and recruitment strategies for the study. 

Applying this rule spurious findings, due to information and selection biases, 

and confounding are minimized. It is worth mentioning that in genetic 

association studies the most important type of bias is related to the ethnic 
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origin of cases and controls, confounding that is often referred to as 

population stratification. It could be avoided matching controls to cases on 

potentially important confounders or adjusting the results for these 

confounders. Matching is necessary just when the frequency of the 

confounder shows a big difference between cases and controls. Population 

stratification, that is, confounding by ethnicity, occurs when the population 

substructure is not equally distributed between case and control groups. 

Large sample sizes are required to detect common variants in complex 

diseases, so a small degree of population stratification can affect a GWA 

study and association could be found because of allele frequency differences 

between the founder populations that differentially comprise cases and 

controls (Ioannidis et al. 2009).  

It is useful to remove or reduce the effect of population stratification through 

the removal of individuals of divergent ancestry. Correction for fine-scale or 

within-population substructure can be attempted during association testing. 

The most common method for identifying and subsequently removing 

individuals with large-scale differences in ancestry is principal component 

analysis (PCA). An alternative method is multidimensional scaling. For 

illustration, a Q–Q-plot of all test statistics can be generated showing the 

degree of inflation of test statistics. Deviations from the diagonal identity 

line could suggest that the assumed distribution is incorrect and significant 

differences exist in population structure between cases and controls.  

A way of separating the many false-positive associations from the few true-

positive associations with disease in GWA studies is the replication of 

results in independent samples. This is typically included in a single GWA 

report as part of a multistage design where all SNPs are tested in a random 

subset of cases and controls, and those exhibiting a nominal predetermined 
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significance level are taken through to be tested in the remainder of the study 

sample. Subsequent analysis needs to be carried out for the different stages 

combined to maintain power level (Altschuler et al. 2008).  

When designing a replication study, one should base sample size 

calculations on a smaller effect size than found in the original study. The 

two studies should have same or very similar phenotype and population. The 

replication study will involve analysis of the same SNP and the same allele 

as the initial one (Goldstein et al. 2009). 

Frequently the genetic associations fail to be replicated and this could be 

attributed to population stratification, phenotype differences, selection 

biases, genotyping errors, and other factors. The best way of resolving these 

inconsistencies is to increase the sample sizes, although this may not be 

feasible for rare conditions or for associations identified in unique 

populations (Pearson et al. 2008). 

GWAS, like all association studies, are largely based on the idea that most 

alleles are in linkage disequilibrium (LD). Many SNPs have alleles that 

show strong LD with other nearby SNP alleles so it is possible to perform 

genome-wide association studies with a selection of SNPs (tag SNPs) that 

can provide adequate ‘coverage’ of the region in an association study. In 

order to have information on the LD of different chromosome regions, the 

Hap Project has been successfully carried out. HapMap provides information 

on the location of millions of common SNPs across the genome in 

populations of different ethnic origin and their LD, the allelic association 

between SNPs located near each other in order to select sets that would 

efficiently capture untyped common variants to maximize efficiency and 

power (McCarthy et al. 2008). 

LD indicated the non-random association of alleles at nearby genetic loci, 
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and is the result of shared ancestry where alleles tend to be inherited together 

on the same chromosome, with specific combinations of alleles known as 

haplotypes. It permits the analysis of a large number of genes that occur in 

regions of high LD gaining cost efficiency because it is not necessary to 

genotype all the SNPs. Choosing a subset of SNPs, or tagSNPs, in strong LD 

with other SNPs, will capture most of the allelic variation in a region. We 

suppose that the chosen SNPs may be in close vicinity to functional 

mutations and therefore associated with the disease because of LD rather 

than be the cause of the disease. LD is crucial to the design of association 

studies. If a causal polymorphism is not genotyped, we can still hope to 

detect its effects through LD with polymorphisms that are typed (Frazer et 

al. 2009).  

To assess the power of a study design we need to measure LD that actually 

is a non-quantitative phenomenon: there is no natural scale for measuring it. 

The two most important measures that have been proposed for two-locus 

haplotype data, are D′ and r2. 

For two biallelic loci D is the difference between the observed and expected 

frequencies of a gamete (haplotype) and D′ is the standardized modification 

of D. D′ is sensitive to even a few recombinations between the loci and it 

measures only recombinational history while r2 reflects statistical power to 

detect association and it summarize both recombinational and mutational 

history. D′ is inflated with small sample sizes, which is why r2 is often 

preferred over D′ (Ioannidis et al. 2009, Brookfield et al. 2010). 

 

 

 



 

 20

References 

 
Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human 

disease. Science, 322, 881-888. 

 

Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, 

Zondervan KT (2010) Data quality control in genetic case-control 

association studies. Nat Protoc  5, 1564–1573. 

 

Balding DJ (2006) A tutorial on statistical methods for population 

association studies Nature Reviews Genetics  7, 781-791. 

 

Brookfield JFY (2010) Q&A: promise and pitfalls of genome-wide 

association studies. BMC Biology 8, 41. 

 

Cardon LR (2006) Genetics: Enhanced: Delivering New Disease Genes. 

Science 314, 1403-1405. 

 

Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G 

(2007) NCI-NHGRI Working group on replication in association 

studies, replicating genotype–phenotype associations. Nature 447, 655-660.  

 

Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, 

Zondervan KT (2011) Basic statistical analysis in genetic case-control 

studies nature protocols. Nat Protoc 6,121-133. 

 

 



 

 21

Collins FS, Guyer MS, Chakravarti A (1997) Variations on a Theme: 

Cataloging Human DNA Sequence Variation. Science 278, 1580-1581.  

 

Dudbridge F, Gusnanto A (2008) Estimation of Significance Thresholds for 

Genomewide Association Scans. Genet. Epidemiol  32, 227–234. 

 

Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic 

variation and its contribution to complex traits. Nature Reviews Genetics 10, 

241–251. 

 

Goldstein DB (2009) Common Genetic Variation and Human Traits. N Engl 

J Med 23, 1696-1698. 

 

Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for 

common diseases and complex traits. Nat Rev Genet  6, 95-108. 

 

Hongzhe L, Zhi W (2010) A hidden Markov random field model for 

genome-wide association studies. Biostatistics 11, 139–150. 

 

Ioannidis JPA, Thomas G Daly MJ (2009) Validating, augmenting and 

refining genome-wide association signals Nature Reviews Genetics 10, 318-

329. 

 

Kruglyak L (2008) The road to genome-wide association studies. Nature 

Reviews Genetics 9, 314-318.  

 



 

 22

McCarthy MI,  Abecasis GR, Cardon  LR, Goldstein DB, Little J, Ioannidis 

JPA, Hirschhorn JN (2008) Genome-wide association studies for complex 

traits: consensus, uncertainty and challenges. Nature Reviews 

Genetics 9, 356-369. 

 

Pearson TA, Manolio TA (2008) How to Interpret a Genome-wide 

Association Study. JAMA 299, 1335-1344. 

 

Pettersson FH, Anderson CA, Clarke GM, Barrett JC, Cardon LR, Morris 

AP, Zondervan KT (2009) Marker selection for genetic case–control 

association studies. Nat Protoc  4, 743-752. 

 

Spix C, Pastore G, Sankila R, Stiller CA, Steliarova-Foucher E (2006) 

Neuroblastoma incidence and survival in European children (1978–1997): 

Report from the Automated Childhood Cancer Information System project. 

Eur J Cancer 42, 2081–2091. 

 

Storey JD and Tibshirani R (2003) Statistical significance for genomewide 

studies. PNAS vol. 100, 9440–9445.  

 

Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide 

association studies: theoretical and practical concerns. Nature Reviews 6, 

109-118.  

 

Ziegler A, Kænig IR, Thompson JR (2008)Biostatistical Aspects of 

Genome-Wide Association Studies.  Biometrical Journal 50, 8-28.  

 



 

 23

Zondervan KT  and Cardon LR (2007) Designing candidate gene and 

genome-wide case–control association studies. Nat Protoc 2, 2492-501. 
 
 

 
 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 24

 
 
 
 
 
 
 
 

CHAPTER III 
Genetic history of Africans and African 

Americans 
 
 

 

 

 

 

 

 

 

 

 

 



 

 25

 

Most of the present day African-Americans are the descendants of the slaves 

which have been brought to America from Africa through the first half of the 

XIX century.  Although the genetic structure of this population has been 

influenced by a significant contribution of Caucasians, we need to consider 

the characteristic of the African population, in order to understand most of 

the genetic features of African-Americans and, then, to investigate and 

explain some of the dynamics that led to the genetics of contemporary 

populations. 

 

African Diversity 

 

The climate in Africa varies from region to region. The different climates 

range from those of the world’s largest desert and second largest tropical 

rainforest to those of savanna, swamps and mountain highlands, and in the 

past 10 000 years, in some cases, these climates have gone through dramatic 

shifts (Reed et al. 2006). 

Due to huge environmental diversity, African populations not only differ 

genetically but they also show a range of linguistic, cultural, and phenotypic 

variation. 

In Africa has been estimated more than 2000 distinct ethno-linguistic groups 

speaking language that constitute nearly one-third of all languages spoken in 

the world. These languages have been classified into four major 

macrofamilies: Niger- Kordofanian, Afroasiatic, Nilo-Saharan and Khoesan. 

There are few isolated languages which no relationship with all the others 

has been found (Tishkoff et al. 2009). 
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Paleontology 

 

As human paleontology says, humans have spread at least twice from Africa 

to Eurasia. The two migrations involved first archaic populations such as 

Homo erectus and Homo heidelbergensis and then anatomically modern 

humans, even though the transition to modern humans occurred over a 

substantial period of time and across a broad geographic range within Africa 

(Reed et al. 2006). 

Considering the greater potential for migration and admixture within a single 

continental region, the hypothesis of a multiregional origin model for modern 

humans within Africa seems to be likely to have occurred, even though a 

stronger evidence suggest that East Africa could be the most recent common 

origin of all modern humans that spread across the rest of the globe within 

the past ~100,000 years. 

Thus, modern humans have existed continuously in Africa longer than in any 

other geographic region and have maintained relatively large effective 

population sizes, resulting high levels of genetic variation not only within but 

also between populations, due to long and short-range of migration events. 

Genetic studies results on mtDNA confirm this hypothesis on the historical 

origin of modern human population (Reed et al 2006).  

Although the presence of substructure in the African population can cause 

spurious results, analysis of African population plays a very important role to 

characterize the pattern of genetic variation and the relationships among 

ethnically diverse African populations to reconstruct human evolutionary 

history (Sankaraman et al. 2008). 
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Individuals genomes from admixed populations consist of chromosomal 

segments of distinct ancestry. Estimating individuals local ancestry, number 

of copies of each ancestry at each location in the genome could have very 

important applications in disease mapping and in understanding human 

history. 

Meiotic crossover in admixed populations leads to a mosaic of chromosomal 

segments derived from one or the other ancestral subpopulation. The 

proportion of admixture and the length of chromosomal segments is 

influenced by the duration, direction, and rate of gene flow between the two 

populations, which will vary among individuals.  

The gene flow can be a single event in time or continuous over many 

generations and it results in the temporary generation of long haplotype 

blocks, which includes polymorphic variants, derived from one or the other 

ancestral population (Shriner et al. 2010).  

In the first few generations of following introgression these blocks of alleles 

in LD are extremely extended, but with increasing generations they become 

progressively shorter by recombination. The length of haplotype segments 

depends on both the number of generations since the initial admixture event 

and the duration of gene flow (Winkler et al. 2010). 

Within the last several hundred years gene flow began between 

reproductively isolated populations resulting in chromosomal admixture. In 

admixed populations linked alleles will show extended linkage 

disequilibrium (LD) relative to the ancestral populations. 

Gene flow and resulting admixture have occurred throughout human history, 

but it is the relatively recent gene flow between continental populations that 

could bring important results for admixture mapping (Tishkoff et al. 2009, 

Cheng et al. 2010, Hooker et al. 2010).  
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African diaspora started at the beginning of 16th century and has resulted in 

gene flow between previously separated human subpopulations, specifically 

in two-way admixture between Africans and Europeans in the United States. 

For a single individidual African ancestry proportions may vary from 100% 

to 1% African, and on average African Americans have gametes which 

proportion is approximately 80% African and 20% European (Zheng et al. 

2010). 

The development of high-throughput SNP genotyping methodologies and the 

use of elevated levels of LD in recently admixed populations, such as African 

population, hold great potential for reconstructing patterns of African 

ancestry among African Americans and for enabling genome-wide 

association mapping of complex disease susceptibility and pharmacogenomic 

response in African-American populations (Sankaraman et al. 2008, Yang et 

al. 2010). 

But still little is known about fine- scale population structure at a genome-

wide level because previous studies of high-density SNP and haplotype 

variation among global human populations have included few African 

populations and in detailed studies of genetic structure among African 

populations a modest number of markers has been included. 

Africa has a complex population history and variation in climate diet and 

exposure to infection disease. Their populations exhibit a high level of 

genetic diversity and phenotypic variation that means that there is great 

potential to find genetic polymorphism at disease susceptibility loci.  

Mapping complex disease is more and more getting less expensive and it will 

facilitate the possibility of doing whole-genome association studies of large 

number of individuals (Shlush et al. 2010).  
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Genetics 

 

In studies that estimated admixture proportions in African Americans it was 

used just a single ancestral African population which is Yoruba. Comparing 

the inferred West African segments of African-American genomes with con- 

temporary West African populations  it was found that the ancestry of the 

West African component of African Americans is most similar to the profile 

from non-Bantu Niger-Kordofanian- speaking populations, which include the 

Igbo, Brong, and Yoruba. All these three populations are likely to have 

contributed ancestry to present-day African Americans so any of them could 

be used in admixture mapping studies (Alexander et al. 2009, Bryc et al 

2010). 

Historical documents show that the Igbo and Yoruba are within the most 

frequent ethnicities in slave trade records, even though also other African 

populations not sampled, including those from Sierra Leone, Senegal, Guinea 

Bissau, and Angola, are also good as ancestral population of some African 

Americans. 

Some self-reported ethnicity as African American show almost no West 

African ancestry and others show almost complete West African ancestry, 

these individuals are most likely descendants of individuals of recent African 

immigrants.  

Assuming that the reported ethnicity of these individuals are not mislabeled, 

it seems that the term African American implies an extremely diverse range 

of genetic ancestry (Bryc et al 2010). 
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Neuroblastoma (NBL) is a severe pediatric cancer with an incidence in white 

American children of approximately 11.5 per million (Stiller 1992). NBL is 

reported to be rarer among African-Americans, with an incidence of 8.5 per 

million (Stiller 1992). Limited data exist on incidence of NBL in Africa, but 

reports suggest it is similar to that of African-Americans or lower (Stiller 

1992). Odds-ratio of NBL by parental ethnic origin relative to white 

American children was only 0.74 (95% CI 0.56-0.96) for children with both 

African-American parents (Chow 2010). However, a recent study has shown 

that black children in the US are more likely to have the high-risk form of 

the disease than white children (57% vs 44%; P<0.001), and have associated 

lower overall survival (OS) (67% vs 75%) and event free survival (EFS) 

(56% vs 67%) (Henderson 2010). 

Genetic risk factors may contribute to disparities in cancer prevalence and 

outcome. In recent years, findings from case-control genome wide 

association studies (GWAS) (Maris 2008 , Capasso 2009, Diskin 2009, 

Wang 2010 , Nguyen 2011) and family-based linkage analysis (Mosse 2008) 

have improved our understanding of the genetic susceptibility to NBL. 

GWAS have identified common variants within FLJ22536 (Maris 2008), 

BARD1 (Capasso 2009) and LMO1 (Wang 2010) as significantly associated 

with high-risk neuroblastoma. GWAS on low-risk cases identified SNPs 

within DUSP12, DDX4 and IL31RA (both at 5q11.2), and HSD17B12 as 

being associated with the less aggressive form of the disease (Nguyen 2011). 

Heritable mutations of ALK are the main cause of familial neuroblastoma 

(Mosse 2008). 

Individuals of European descent constitute the majority of NBL patients in 

the United States, and so far genetic studies of NBL have been limited to this 

ethnic group. We have obtained genome-wide SNP data on a number of 
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African-American NBL patients collected by the Children’s Oncology 

Group, and have used this information in a case-control study to evaluate 

whether the same genes and SNPs identified in the European-American 

studies affect risk of NBL in African-American children. Our results show 

that of all the risk variants identified so far, only SNPs of BARD1 

unequivocally have an effect on NBL risk in African-American children. 

Whether this is due to difference in genetic susceptibility or limited power to 

detect small genetic effects remains to be determined. 

 

Materials and Methods 

 

Patients and controls 

We performed an unmatched case control study to find association with 

NBL. 

DNA samples and clinical information were available for 390 African-

American NBL patients from the Children’s Oncology Group. All subjects 

were African-Americans based on self-reported ethnicity. A total of 2500 

control samples were selected based on self-reported African-American 

ethnicity from a large group of children collected by the Center for Applied 

Genomics at the Children’s Hospital of Philadelphia (CHOP). 

 

Genotyping 

Genome-wide SNP genotype data from 390 NBL patients and 2500 disease-

free control subjects were obtained using the Illumina HumanHap 550K 

(243 cases, 1875 controls) and Human610-Quad (147 cases, 625 controls) 

chips. 

Only SNPs that were included in both chips were evaluated. 
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The Illumina Genotyping BeadChip is a relatively new method of 

performing multiplex SNP analysis. It consists of high density genotyping 

platforms 

which enable whole genome genotyping of up to 655 thousand SNP 

markers. The large number of markers means that automated genotype 

calling procedures are required for assigning genotypes based on 

fluorescence intensities from hybridization. 

 

Quality Control 

Prior to statistical analysis, individual data were filtered on the basis of 

standard quality control measures, including call rates, discrepancy between 

reported sex and X chromosome marker heterozygosity, and cryptic 

relatedness, using the software PLINK. The software is able to rapidly 

manipulate and analyze large data sets comprising hundreds of thousands of 

markers genotyped for thousands of individuals with five main functions: 

data management, summary statistics, population stratification, association 

analysis, and identity-by-descent estimation. 

A total of 38 samples (25 case subjects and 9 control subjects) had genotype 

yields of less than 95% and were removed, leaving 365 cases and 2491 

controls available for analysis. 

SNPs were excluded from further analysis if they showed deviation from 

Hardy–Weinberg equilibrium with a p-value less than 10-4 in controls or 10-7 

in cases, a genotype yield of less than 95%, a minor allele frequency of less 

than 1%, and difference in missing rates between cases and controls with a 

p-value less than 10-4. This filtering resulted in a total of 504,535 autosomal 

SNPs available for the subsequent analyses. Among these, we selected SNPs 

included in the genes showing association to NBL in previous GWAS of 
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European-American studies +/- an interval of 10 KB around them (Maris 

2008 , Capasso 2009, Diskin 2009, Wang 2010 , Nguyen 2011), namely 

FLJ22536 (136 SNPs), BARD1 (25), LMO1 (30), DUSP12 (7), DDX4 (13), 

IL31RA (15), and HSD17B12 (27), for a total of 253 SNPs to be tested for 

association. To perform our analysis on African-Americans we took 

advantage of data from the International HapMap Project. Human genetic 

code discovery has made possible the development of a haplotype map of 

the human genome. The HapMap is a map of haplotype blocks and the 

specific SNPs that identify the haplotypes are called tag SNPs. In 10 million 

SNPs exist roughly 500,000 tag SNPs. Finding regions with genes that affect 

diseases is made much more efficient and comprehensive, since effort is not 

wasted typing more SNPs than necessary and all regions of the genome can 

be included.Coverage of common variants in the candidate genes was 

estimated using HapMap Phase 2 data in the CEU  and YRI  populations 

using the Tagger option of Haploview with pairwise tagging at r2=0.8. 

Haploview is a software package that provides computation of linkage 

disequilibrium statistics and population haplotype patterns from primary 

genotype data. It generates marker quality statistics, LD information, 

haplotype blocks, population haplotype frequencies and single marker 

association statistics. The table shows how many of the SNPs in the dataset 

have been successfully tagged by the set of chosen tests. The mean 

r2 represents the mean for only those SNPs successfully captured. Power to 

detect association in our sample for varying allele frequency and genetic risk 

effect was estimated using Quanto. 

 

 

Analysis of stratification and admixture 
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African-Americans are a recently admixed population with two major 

founder groups. Admixture may introduce a bias in association tests if 

ancestry proportions are different between cases and controls. The 

availability of hundreds of thousands of markers across the genome  allows 

for a very accurate empirical assessment of stratification due to admixture 

differences. Ancestry proportions in our cases and controls were estimated 

using the software ADMIXTURE and assuming 2 founder populations. 

ADMIXTURE is a tool for maximum likelihood estimation of individual 

ancestries that uses a block relaxation approach to alternately update allele 

frequency and ancestry fraction parameters. 

We also evaluated stratification in our case-control sample by 

multidimensional scaling (MDS) using the procedure implemented in 

PLINK and a subset of independent SNPs (r2<0.0001). PLINK provides a 

simple way to handle large GWAS data sets and assess confounding due to 

stratification and nonrandom genotyping failure. It performs classical 

multidimensional scaling (MDS) to visualize substructure, producing a k-

dimensional representation, and provide quantitative indices of population 

genetic. One requirement of this approach is that SNPs are in approximate 

linkage equilibrium in the population. We pruned the SNP panel to a 

reduced subset of approximately independent SNPs using a repeated, sliding 

window procedure, recursively pruning SNPs based on pairwise r2. MDS 

data from our cases and controls were compared to those obtained from the 

HapMap Phase 2 in the 4 major populations (CEU, CHB, JPT, YRI). 

 

 

 

Association analysis 
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To account for possible difference in substructure between cases and 

controls due to varying levels of admixture, we tested SNPs for association 

with NBL by logistic regression using the proportion of African ancestry 

estimated by ADMIXTURE as covariate. We also tested for association 

using a stratified Cochran-Mantel- Haenszel (CMH) test implemented in 

PLINK based on the clusters identified by the MDS analysis. 

Then we performed association analysis for both chips separately, 550k and 

610quad, and combined their p-values through a meta-analysis. 

Results of the association tests with the three methods were almost identical 

and only results of logistic regression are reported. 

To correct for multiple testing, we accounted for the number of SNPs tested 

in each gene by means of a Bonferroni correction, setting a threshold for 

significance equal to 0.05 divided by the number of SNPs tested in that 

particular gene. These correspond to 0.0004 for FLJ22536 (136 SNPs), 

0.002 for BARD1 (25), 0.0017 for LMO1 (30), 0.0071 for DUSP12 (7), 

0.0038 for DDX4 (13), 0.0033 for IL31RA (15), and 0.0019 for HSD17B12 

(27). Since all these genes have been previously reported to be associated to 

NBL in multiple independent datasets, we did not correct for the number of 

genes tested. All p-values reported in our tables are uncorrected, asymptotic 

p-values from the corresponding tests. 

 

Results 

 

Power and SNP tagging 

Our power calculation shows that we have greater than 80% power to 

replicate association at a nominal level of significance for MAF 10% or 
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more and Genetic Relative Risk 1.4 or more, which should be sufficient to 

replicate the association found in the Caucasian cohort  (Figure 1a). 

Percentage of HapMap Phase II SNP coverage for the individual genes 

provided by the SNPs included in our analysis varied from 50% for 

FLJ22536 to 75% for IL31RA in the YRI population, and from 70% for 

LMO1 to 91% for HSD17B12 in the CEU population (Figure 1b).  

 

Stratification and admixture 

MDS analysis of cases (Figure 2a) and controls (Figure 2b) together with the 

4 major HapMap populations showed that our samples cluster along a 

continuum between the CEU and the YRI populations as expected . 

Genome-wide estimates of African ancestry assuming 2 founder populations 

had a mean of 0.76%±0.23 in cases and 0.76%±0.19 in controls. There were 

some slight differences between the two groups with more cases than 

controls at the extremes of the distribution (0-10% and 80%-90% African 

ancestry) (Figure 2c). 

 
Association analysis 

Based on the genome-wide data, we estimated a genomic inflation factor 

(GIF) of the logistic regression test of 0.98. In contrast, the GIF of the 1 

degree-of-freedom allelic test was 1.15. We are thus confident that the 

procedures implemented to control population stratification were effective in 

reducing any potential inflation in type 1 error. The GIF was obtained taking 

the median of the distribution of the chi-square statistic from logistic 

regression test results and dividing this median by the median of the 

corresponding (ideal) chi-square distribution. We expect this value to be 

close to one if there is no excess type 1 error due to possible bias. 
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Results for the most significant SNPs reported in previous GWAS of 

European-American patients are reported in Table 1. Two SNPs of BARD1, 

rs7587476 and rs6435862, showed significant p-values (p<0.002 when 

accounting for the number of SNPs tested in BARD1), and the other 3 

BARD1 SNPs reached nominal significance. None of the SNPs in the other 

genes reached even nominal levels of significance (all p-values > 0.05). For 

the 5 BARD1 SNPs, the direction of the association was the same as the one 

observed in the European-American patients. 

Because our previous studies in European-Americans had found that 

association signals were stronger when analysis was restricted to specific 

phenotypic categories (high-risk patients for FLJ22536, BARD1, and 

LMO1, and low-risk patients for DUSP12, DDX4, IL31RA, and 

HSD17B12), we repeated the association analysis in these two subgroups of 

patients (180 high-risk, 97 low-risk) separately against all controls. One SNP 

of BARD1 became more significant (rs7587476, p=8x10-8), two had similar 

results to those observed in all patients, and two became not significant. One 

SNP in LMO1 reached nominal significance in the high-risk group 

(rs294938, p=0.03). All the other SNPs reported in previous studies were 

still not significant. 

We then asked whether other candidate gene SNPs, different from those 

reported as most significant in the European-American patients, reached 

statistical significance in the African-American patients. Only one BARD1 

SNP (in addition to those already reported in Table 1) showed significant 

association (rs16852804, p=0.0007). When we looked at the high-risk and 

low-risk subgroups separately, in the high-risk patients two additional 

BARD1 SNPs (rs7599060, p=0.0009, and rs16852804, p= 0.0018) and one 

SNP in LMO1 (rs4237769, p=5x10-5) reached statistical significance. No 
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SNP showed statistical significance after correction for multiple SNPs tested 

in each gene in the low-risk group (all p>0.01). 

Overall, three SNPs of BARD1 reached statistical significance after 

correction for the number of SNPs tested (p<0.002), and six more had p-

values less than 0.05. To test whether these may represent multiple 

independent signals of association, we performed the logistic regression test 

conditional on the most significant SNP, rs7587476. The p-value for 

rs6435862 went from 0.00002 to 0.04, and for rs16852804 from 0.0007 to 

0.005 (Figure 3). All other p-values were now greater than 0.05. 

To examine the extent of the associated region, we plotted the r2 values 

relative to rs7587476 for all the SNPs in a 100Kb region around it against 

their genomic location. We chose rs7587476 as the reference SNP because 

not only is the most strongly NBL associated SNP in this study, but is also 

the most significant BARD1 SNP in our most recent analysis of European 

Americans (8). Using data from the 1000 Genomes Project Pilot 1 in the 

CEU and YRI populations and the web- based software SNAP (15), we 

determined the size of the region which includes SNPs with r2 >0.5 with 

rs7587476 (Figure 4). In the YRI population, this region extends from 

215,348,641 to 215,367,140 bp and comprises introns 2-4 and exons 3-4 of 

BARD1. In the CEU population, this region extends from 215,344,039 to 

215,457,501 bp, and thus for an additional 4.6 Kb proximally and 90.4 Kb 

distally. 

 

Discussion 

 

SNPs of BARD1 associated to NBL in European-American patients show 

similar, strongly significant association in African-Americans. In particular 
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most of the association detected in BARD1 seems to be explained by one 

SNP, rs7587476, located in intron 3, with some residual association signal 

detected by two other SNPs located in the first intron. In contrast, the 

association in European Americans extended further to intron 4, possibly 

due to the more extensive LD around the associated SNPs. This information 

may be helpful in locating the causal BARD1 variants. 

Besides the BARD1 SNPs, the only other SNP significant after correction 

for number of SNPs tested in a given gene was rs4237769 (p=5x10-5) in 

LMO1, when analysis was restricted to patients from the high-risk group. 

Five other SNPs in or around LMO1 had p-values <0.05 in the high-risk 

group, including rs204938 (p=0.04) reported associated to NBL by Wang et 

al (2011) The second most significant LMO1 SNP in the high-risk group in 

this study, rs3794012 (p=0.005) also had a p-value of 3x10-5 in Wang et al 

(2011). However, the rare C allele is associated to NBL in the African-

American patients, rather than the common T allele as observed in the 

European American cases. 

The different structure and lower linkage disequilibrium in the African-

American population may have prevented us to detect association in the 

other genes. 

Interestingly we did not detect association with SNPs of FLJ22536, which 

are the most strongly associated to NBL in European-Americans (Wang). 

The most significant FLJ22536 SNP in our study was rs1207774 with a p-

value of 0.005 in the high-risk group. However this is hardly significant 

when considering the large number of SNPs tested in this gene (136). Based 

on HapMap CEU and YRI Phase II data, among the genes tested coverage of 

variation in FLJ22536 is the lowest in Africans (50%) and the most 

divergent from that of European-Americans (78%). 
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None of the genes associated to the low-risk group in European-Americans 

(ref) showed significant association in our study, either in all patients or in 

the low-risk sub-category, after accounting for the multiple SNPs tested. 

However this risk group includes only 97 African-American cases and 

limited power may have prevented us to detect a significant association. 

This study shows the difficulty to detect association in African-Americans 

even for SNPs that are confirmed and show strong significant association in 

multiple European or European-American populations. A more detailed 

analysis genotyping additional SNPs not included in the GWAS chip will be 

necessary to be able to conclude on the role of these genes on susceptibility 

to NBL in African-Americans. Furthermore, a larger sample of African 

American patients would allow genome-wide analysis and possibly 

detection of novel association. 
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Figure legends 

 

 

Figure 1.  

Power and tagging analysis. a) Power to detect association for varying odds-

ratios (1.2-1.6) and risk allele frequencies (0.1- 0.9) at significance levels 

defined by a Bonferroni correction for the number of SNPs tested in the 

candidate genes (0.0004 for FLJ22536; 0.0016 for LMO1; 0.0015 for 

BARD1 (not shown) was identical to power for LMO1). b) Percentage of 

HapMap Phase II SNPs in the three candidate genes in the YRI and CEU 

populations tagged by the SNPs included in the analysis. 

 

Figure 2.  

MDS plots and distribution of African ancestry. Multidimensional scaling 

plots of cases (a) and controls (b) against the four major HapMap 

populations. c) Distribution of percentage of African ancestry in cases and 

controls. 

 

Figure 3.  

Regional association plots for BARD1 SNPs. a) Negative log10 p-values 

from logistic regression analysis for all SNPs tested in the BARD1 region 

plotted against their genomic location. b) Negative log10 p-values from 

logistic regression analysis conditional on association at rs7587476. Color 

shading for r2 is relative to the most significant SNP (rs7587476) based on 

data from the YRI population. 
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Figure 4.  

Regional LD plots in BARD1 genomic region. r2 values relative to 

rs7587476 in the YRI (a) and CEU (b) populations for SNPs in a 100Kb 

window around it plotted against their genomic location. Data are from the 

1000 Genomes Project Pilot 1. Dotted vertical lines delimit regions 

including SNPs with r2>0.5. 
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Methodological Appendix 

 

Hardy Weinberg Equilibrium 

Genotype frequencies at any locus are a simple function of allele frequencies 

in  absence of migration, mutation, natural selection, and assortative mating. 

This phenomenon is called  “Hardy-Weinberg equilibrium”. We used exact 

tests for HWE for our large-scale study of SNP data including hundreds of 

thousands of markers. 

Considering a sample of SNP genotypes for N unrelated diploid individuals 

measured at an autosomal locus, the sample includes 2N alleles, with nA 

copies of the A rarer allele and nB copies of the common allele. Let the 

number of heterozygous AB genotypes be nAB and the numbers of AA and 

BB homozygous genotypes are  nAA = (nA − nAB ) /2   and    

nBB = (nB − nAB) /2. 

There are (2N)!/nA!nB!  possible arrangements for the alleles in the sample 

and 2nAB N!/(nAA!nAB!nBB!)  of these arrangements correspond to exactly 

nAB  heterozygotes. 

Thus, the probability of observing exactly nAB  heterozygotes in a sample of 

N individuals with nA   minor alleles under the assumption of HWE is 

 

P(NAB = nAB | N,nA ) =
2nAB N!

nAA!nAB!nBB!
×

nA!nB!

(2N)!  .     (1) 
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Equation (1) holds for each possible number of heterozygotes, nAB . When 

nA   is odd, possible numbers of heterozygotes are 1, 3, 5,…, nA    and 

when nA  is even they are 0, 2, 4,…, nA .  The expression for  

P(nAB | N,nA )   given in equation (1) leads to natural tests for HWE. 

 

Hapmap Project 

The HapMap is an international project that aims to identify and catalog 

genetic similarities and differences in human beings comparing the genetic 

sequences of different individuals to identify chromosomal regions where 

genetic variants are shared. The ultimate goal is to help find genes that affect 

health, disease, and individual responses to medications and environmental 

factors. Over the course of many generations, segments of the ancestral 

chromosomes in an interbreeding population are shuffled through repeated 

recombination.  They are separated by places where recombination has 

occurred but they  have not been broken up by it. These segments are the 

haplotypes, a group of genes within an organism that was inherited together 

from a single parent because of genetic linkage, the tendency of 

certain loci or alleles to be inherited together. In addition, the term 

"haplotype" can also refer to the inheritance of a cluster of single nucleotide 

polymorphisms (SNPs), which are variations at single positions in the DNA 

sequence occurring when a single nucleotide — A, T, C, G --- in the 

genome  differs between members of a biological  species or 

paired chromosomes in an individual. By examining haplotypes it is possible 

to identify patterns of genetic variation that are associated with health and 

disease states analyzing stretches of DNA near the SNP cluster to try to 
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identify the genes responsible for causing the disease. The chromosomes in 

human cells occur in pairs (with the exception of the sex cells) of exactly 46 

chromosomes, 22 homologous pairs of autosomes and one pair of sex 

chromosomes. The complete set is the diploid complement where one 

member of each chromosome pair is inherited from the father and the other 

from the mother. The two homologues have the same sequence of genes in 

the same positions, but they can be distinguished because of sequence 

variations at several loci. The haplotypes in the human genome have been 

produced by the molecular mechanisms of sexual reproduction and by the 

history of our species. It might seem that there is a 50% probability that any 

given gamete receives one chromosome rather than the other from a 

particular homologous pair, and that there are 2 to the power of 23 distinct 

gametes that any given individual might produce. Instead, when sperm and 

egg cells are being formed the gamete receives a mixture of the two 

homologous chromosomes because of crossover. Crossover can split alleles 

that lie together on a common parental chromosome and results in a hybrid 

chromosome containing pieces from both members of a chromosome pair 

that could contains alleles that originally came from different grandparents. 

This process is called recombination; the further apart two genes are, the 

higher the probability of an odd number of crossovers and therefore of 

observing a recombination, to a maximum of 50% frequency. The 

proportion of meioses that result in a recombination is called “recombination 

fraction” and it is an indication of how far apart two genes are. From a 

genetic point of view it seems that all humans today are descended from 

anatomically modern ancestors who lived in Africa about 150,000 years ago. 

Humans migrated out of Africa carrying with them part but not all of the 

genetic variation of the ancestral population. Thus, the haplotypes in non-
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African populations tend to be subsets of the haplotypes inside Africa and 

tend to be longer because populations in Africa have been larger through 

much of our history and recombination has had more time there to break up 

haplotypes. Through random chance, natural selection, and other genetic 

mechanisms, the frequency of haplotypes came to vary from region to region 

as modern humans spread throughout the world. A given haplotype can 

occur at different frequencies in different populations, especially when those 

populations are widely separated and unlikely to exchange much DNA 

through mating. A gene mutation is a permanent change in the DNA 

sequence that makes up a gene. Gene mutations occur in two ways: they can 

be inherited from a parent or acquired during a person’s lifetime, when it is 

caused by environmental factors such as ultraviolet radiation from the sun, 

or if a mistake is made as DNA copies itself during cell division. Mutations 

create new haplotypes, and most of the recently arising haplotypes have not 

had enough time to spread widely beyond the population and geographic 

region in which they originated. Because of the history of the human 

species, most of the common haplotypes in human chromosomes occur in all 

human populations, some haplotypes may be more common in one 

population and less common in another, and newer haplotypes may be found 

in just a single population. 

 

The 4 HapMap populations included in our analysis are: 

• Yoruba in Ibadan, Nigeria (YRI): These samples were collected in a 

particular community in Ibadan, Nigeria, from individuals who 

identified themselves as having four Yoruba grandparents. These 

samples should not be described merely as "African," "Sub-Saharan 
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African," "West African," or "Nigerian," since each of those 

designators encompasses many populations with many different 

ancestral geographies. 

• Japanese in Tokyo, Japan (JPT): These samples were collected in the 

Tokyo metropolitan area, from people who came from (or whose 

ancestors came from) many different parts of Japan. Thus, this set of 

samples can be viewed as representative of the majority population in 

Japan. 

• Han Chinese in Beijing, China (CHB): These samples were collected 

from individuals living in the residential community at Beijing 

Normal University who were self-identified as having at least three 

out of four Han Chinese grandparents. Although individuals of 

Beijing Normal University were from many different parts of China, 

this set of samples was not drawn to be representative of all Han 

Chinese people. The samples also should not be seen as representing 

all people in China, where there are 56 officially recognized 

ethnicities. 

• CEPH (Utah residents with ancestry from northern and western 

Europe) (CEU): These samples were collected from people living in 

Utah with ancestry from northern and western Europe. The term 

"CEPH" stands for the Centre d'Etude du Polymorphisme Humain, the 

organization that collected these samples in 1980. Because the 

importance of precision in assigning group membership to prospective 

donors based on ancestral geography was not well appreciated in 

1980, it is unclear how accurately these samples reflect the patterns of 

genetic variation in people with northern and western European 

ancestry. 
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Power analysis 

QUANTO allows for unequal numbers of cases and controls in the sample, 

with K denoting the control-to-case ratio. 

The likelihood for the logistic model for N cases and N×K controls has form 
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where the first product is taken over the N cases and the second is taken over 

the N×K controls. MLE’s obtained from this model are consistent estimators 

of the log-odds-ratio parameters from the logistic model. 

 

 

Admixture 

Population stratification is a confounding factor in genetic association 

studies. To correct its effects we used an approach known as ”structured 

association” and estimated ancestries from the genotypes actually collected 

in our study through the software ADMIXTURE. 

We estimated the global ancestry that is the proportion of ancestry from each 

contributing population, considered as an average over the individual’s 

entire genome, while in the local ancestry paradigm each person’s genome is 

divided into chromosome segments of definite ancestral origin. “Global 

ancestry estimation” consider two approaches: “model-based ancestry 

estimation” and “algorithmic ancestry estimation”. 

ADMIXTURE estimates ancestry coefficients as the parameters of a 
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statistical model, and simultaneously population allele frequencies along 

with ancestry proportions. It performs a block relaxation algorithm  that 

alternates between updating the ancestry coefficient matrix Q and the 

population allele frequency matrix F. Finally, there is an acceleration of the 

convergence of block relaxation by a novel quasi- Newton method. Here we 

present the underlying statistical model and describe the optimization 

techniques used to maximize the likelihood. 

Genotype data consist of a large number J of SNPs from a large number I of 

unrelated individuals from an admixed population with contributions from K 

postulated ancestral populations. 

Population k contributes a fraction qik of individual i’s genome. Allele 1 at 

SNP j has frequency fkj in population k, and both the qik and the fkj are 

unknown. We are primarily interested in estimating the qik to control for 

ancestry in an association study, but our approach also yields estimates of 

the fkj. 

The model makes the assumption of linkage equilibrium among the markers 

and our SNP set was pruned to mitigate background linkage disequilibrium 

(LD). 

Let gij represent the observed number of copies of allele 1 at marker j of 

person i. Thus, gij equals 2, 1, or 0 accordingly, as i has genotype 1/1, 1/2, or 

2/2 at marker j. Since individuals are considered independent, the log-

likelihood of the entire sample is 

 

 

L(Q,F) = gij ln qik
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up to an additive constant that does not enter into the maximization problem. 
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The parameter matrices Q = {qik} and F = {fkj} have dimensions I x K and 

K x J, for a total of K(I + J) parameters. As an optimization method the EM 

algorithm is used to get quickly to the vicinity of the maximum and then 

shift to accelerated block relaxation that alternates updates of the Q and q 

parameters. 
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ARTICLE

The genetic component of human longevity: analysis
of the survival advantage of parents and siblings
of Italian nonagenarians

Alberto Montesanto1, Valeria Latorre1, Marco Giordano1, Cinzia Martino1, Filippo Domma2 and
Giuseppe Passarino*,1

Many epidemiological studies have shown that parents, siblings and offspring of long-lived subjects have a significant survival

advantage when compared with the general population. However, how much of this reported advantage is due to common

genetic factors or to a shared environment remains to be resolved.We reconstructed 202 families of nonagenarians from a

population of southern Italy. To estimate the familiarity of human longevity, we compared survival data of parents and siblings

of long-lived subjects to that of appropriate Italian birth cohorts. Then, to estimate the genetic component of longevity while

minimizing the variability due to environment factors, we compared the survival functions of nonagenarians’ siblings with those

of their spouses (intrafamily control group).We found that both parents and siblings of the probands had a significant survival

advantage over their Italian birth cohort counterparts. On the other hand, although a substantial survival advantage was observed

in male siblings of probands with respect to the male intrafamily control group, female siblings did not show a similar

advantage. In addition, we observed that the presence of a male nonagenarians in a family significantly decreased the instant

mortality rate throughout lifetime for all the siblings; in the case of a female nonagenarians such an advantage persisted only for

her male siblings.The methodological approach used here allowed us to distinguish the effects of environmental and genetic

factors on human longevity. Our results suggest that genetic factors in males have a higher impact than in females on attaining

longevity.

European Journal of Human Genetics advance online publication, 16 March 2011; doi:10.1038/ejhg.2011.40

Keywords: human longevity; genetic component; inheritance; familial determinants

INTRODUCTION

In the last decade many epidemiological studies on human longevity
have shown that parents, siblings and offspring of long-lived subjects
have a significant survival advantage compared with the general
population in attaining longevity.1–11 Although these studies do not
distinguish between shared environmental and genetic factors, twin
data suggest that genes may have a modest role in achieving long-
evity.12,13 In order to better distinguish the effect of genes from the
effect of shared familial environment, Schoenmaker et al3 analyzed the
survival data of the spouses of long-lived subjects as an additional
control group. They found that members of this control group, who
shared most of their adult life with the long-lived partner, did not
show any advantage/benefit in terms of survival, suggesting that a
substantial contribution in the familiarity of human longevity is
attributable to genetic factors. However, as a complex trait, the
heritability of ‘lifespan’ may be influenced by an interplay of genetic,
environmental and stochastic factors.14,15 In addition, the influence of
the genetic component on lifespan is expected to be stronger in
populations of areas where environmental factors are harsher16 as
demonstrated in different studies.9,17,18

Calabria is one of the poorest Italian regions located in the southern
part of the peninsula. In the present study we aimed (i) to estimate the
familial component of human longevity in Calabrian population;

(ii) to uncouple within such a familial component the genetic from
the environmental component. For these purposes, we reconstructed
202 pedigrees of Calabrian families where at least one nonagenarian
individual was present. In order to estimate the presence of a familial
component of longevity, we compared the survival data of parents and
siblings of long-lived subjects with appropriate Italian birth cohorts.
Then, to minimize the variability of familial environmental factors, we
compared the survival functions of long-lived siblings with those of
their spouses (intrafamily control group). This approach allowed us to
estimate how much of the familiarity of the analyzed phenotype is due
to genetics.

MATERIALS AND METHODS
Our sample consisted of the members of 202 families identified in seven

municipalities (Bisignano, Cariati, Cosenza, Luzzi, Montalto Uffugo, Rende,

and Rose) of Calabria (southern Italy). Each municipality was contacted in

2006 and invited to send a list of subjects living in their territory born in 1916

or before (probands). In total, 1475 eligible probands were identified. In the

present study, which started in October 2008, we reconstructed the family

pedigree of 202 probands.

Age validation
For complete age validation of long-lived individuals, their parents, siblings

and the long-lived spouses of siblings, the following documents were
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examined: the birth certificate, marriage certificate(s), the population registry

(Anagrafe) personal sheet, the birth certificate of both parents (except for non-

related parents) and death certificates. In addition, in order to further confirm

the completeness of the reconstructed pedigrees, specialized personnel con-

tacted a relative (usually a child or nephew/niece) for each proband whose

genealogical tree had been reconstructed to verify information regarding the

name(s), places and dates of birth, marriage, death, and emigration of the

parents, all siblings and their spouses of the long-living probands.

Statistical analyses
As we focused on the mortality and survivorship of their parents and siblings,

the probands were not included in the analysis described here. Because of our

interest in longevity, we examined the survival patterns of the parents and

siblings of the probands conditional on survival to age 30. We chose age 30 as a

cutoff because siblings who died at younger ages probably did so because of

stochastic, non-heritable factors (eg, infectious diseases, accidents, violence).4,9

This minimizes the effect of such errors on cumulative survival probability.

In order to verify whether parents of probands lived longer than expected,

we compared their life span with that of their respective Italian birth cohort. We

first estimated the mean age at death of proband’s parents conditional on

survival to age 30. All parents had died, and thus their survival experience was

complete. Following Perls et al,19 we then matched each participant by year of

birth and sex with their respective Italian cohort to obtain life expectancies

conditional on survival to age 30. For the Italian population, sex-specific life

tables are available from the Human Mortality Database (HMD) with the

percentages of death for each year of age in the range of 0–100 years and each

birth year since 1872 (http://www.mortality.org). The weighted average of these

cohort-specific estimates was then compared with the corresponding estimates

obtained for the parents of the probands.

Death rates for siblings and their spouses were computed, separately, from

tabulations by age of sibling deaths and censored observations. Both the death

counts and exposure estimates were aggregated in 5-year age groups. Standard

demographic methods were used to calculate the mortality rate and its

variance. Death rates, dx, were computed as the ratio of deaths, Dx, over the

exposure-to-risk Ex in a given age group:

dx ¼
Dx

Ex

Ex was calculated as the number of sibling survivors at the beginning of an age

interval, Nx, minus half of the deaths, Dx, and censorings, Wx, during the

interval:

Ex ¼ Nx �
1

2
ðDx+WxÞ

The variance of the estimated mortality rate was calculated according to

Poisson distribution.20

The survival rate for interval x was computed as following:

px ¼
Rx � Dx

Rx

The risk-set Rx equaled the number of sibling survivors at the beginning of an

age interval, minus half of the censorings over that interval:

Rx ¼ Nx �
1

2
Wx

The survival curves, Sx, were computed as Sx¼p0p1ypx�1.

Standard errors for sibling survival probabilities were calculated based on an

assumption of binomial variability (conditional on the observed collection of

Rx values) using Greenwood’s formula.21 The obtained survival curves were

then compared by log-rank test.

In order to investigate whether proband siblings had lower mortality and

higher probability of surviving at advanced ages, siblings survival curves were

compared with (i) the corresponding survival curves of the 1910 birth cohort

for the general Italian population (the average year of birth for siblings was

1911) and (ii) the survival curves of their spouses (intrafamily control group).

In this case, as survival experiences of proband siblings were not complete

(some were still alive at the time of the study) the approach used for the parents

of the probands was not applicable. To bypass this problem, we used an

approach widely applied in other studies1,9 that is, to define a ‘control group’ by

determining the mean year of birth of the siblings of the probands. Then, we

compared their survival experience with respect to those of the Italian birth

cohort of such year. Survival data from the 1910 cohort were derived from the

HMD. As in the previous case, survival probabilities were conditional on

survival to age 30. The siblings of the probands and their respective spouses

who emigrated from Italy were excluded from the study and their immigration

periods were used as censoring dates. The exclusion circumvented the intro-

duction of a bias due to the effect exerted on the phenotype by the ‘new’

environment in which they went to live.

In order to quantify the survival advantage due to a presence of a long-lived

individual in the reconstructed family, the siblings’ hazard function was

compared with those of their spouses using a Cox regression model.22 In this

model ‘relationship to the proband’, ‘gender of the sibling/spouse’ and their

interaction were used as explanatory covariates.

RESULTS

Table 1 reports a descriptive analysis of the subjects analyzed for
this study. Of the 202 probands (126 women and 76 men), 129 were
deceased (63.9%) at the time of this analysis and 73 (36.1%) were
alive. The probands had a median of six siblings with a range of 1–13.
A total of 1160 siblings, 593 men and 567 women, were identified
for the analysis. Of these, 90 (15.2%) males and 105 (18.5%) females
died in childhood (0–10 years of age). Of the remaining, at the time
of data collection 63 (12.5%) male and 68 (14.7%) female siblings
were still alive. These and siblings who migrated produced a total of
179 (18.5%) censored observations. In addition, a total of 669
non-related individuals (spouses of siblings, 298 men and 371
women) were identified for the same analysis. At the time of data
collection, 18 (6.0%) male spouses and 90 (24.3%) female spouses
were still alive. These and siblings’ spouses who migrated outside
of Italy gave a total of 128 (19.1%) censored observations. In the
case of the siblings, early childhood mortality was included,
hence the relatively large difference in number of deceased vs deceased
Z30.

The average year of birth of the probands was 1910 and for their
siblings the average was 1911. With regard to parent’s data, for 43
mothers and 33 fathers information on age at death were unknown.
The average year of birth for fathers was 1876 and for mothers 1882.

Median ages at death for fathers and mothers of the probands were
77.5 and 79 years, respectively. Excluding deaths which occurred
before age 30, the median age at death of the siblings of probands
was higher than those observed in the relevant spouses (78 years in
male siblings of probands vs 75 of the male spouses; 81 years in female
siblings of probands vs 79 of the female spouses).

Table 2 shows the results for comparisons of mean ages at death of
the proband’s parents with the corresponding estimates for Italian
birth cohort conditioned on survival to the age of 30 years. The mean
age at death of the father’s of probands was about 75 years. These
estimates were substantially higher than the corresponding estimates
for the respective Italian birth cohorts. In fact, the mean age at death
was about 11% higher (8.05 years, Po0.001) when compared with the
relevant Italian birth cohorts.

Figure 1 shows the survival curves obtained for the siblings of the
probands and the 1910 Italian birth cohort. Both curves are condi-
tioned for survival to the age of 30 years, as reported in Materials and
Methods. Although the 1910 Italian birth cohort is not totally
extinguished, Figure 1 shows the presence of a substantial survival
advantage, which is more evident in male siblings (Po0.001) than in
females (P¼0.01).
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Figure 2 compares the survival curves of the siblings of probands
with those of their spouses. A substantial survival advantage is
observed in male siblings of probands with respect to the male spouses
(Po0.001). This is not true for women (P¼0.950). In both genders
the chances of survival for the two groups does not differ substantially
during early adulthood. However, after the age of 50, the survival
patterns begin to diverge in favor of male siblings with respect to the
intrafamily control group, revealing a significant gap, which becomes
more evident at very old ages.

In order to quantify the survival advantage due to a presence of a
long-lived subject in the family, the siblings’ hazard function was
compared with those of their spouses by means of a Cox regression
model. In this model, ‘relationship to the proband’, ‘gender of the
sibling/spouse’ and their interaction were used as explanatory covari-
ates. In Table 3, the maximum likelihood estimation of the parameters
of this model and the hazard ratio (HR) for mortality risk are

reported. From this model, a significant survival advantage for male
siblings of probands is shown. In fact, they have a substantial mortality
reduction of about 28% (e�0.005�0.325) when compared with the
spouses of female siblings (HR¼0.719). Also adjusting for cohort
effect (by inserting the year of birth of siblings/spouses as adjunctive
covariate in the model) this reduction remained almost constant (data
not shown).

In order to further investigate whether the sex of the proband had
an effect on the survival probabilities of their siblings, we split the data
set according to the sex of the proband. In 76 out of 202 families the
sex of the proband was male. Figures 1 and 2 of the Supplementary
Material show the survival curves of the siblings of probands and
those of their spouses according to the sex of the proband. When the
sex of the proband was male (Supplementary Figure 1), both male and
female siblings had a survival advantage with respect to their spouses
(P¼0.029 for males; P¼0.037 for females). When only families with a
female proband were analyzed (Supplementary Figure 2), only male
siblings showed a survival advantage with respect to the intrafamily
control group (P¼0.007). Parallel results were obtained by Cox
regression analysis (see Table 4). In fact, siblings of male probands
had a mortality reduction of about 23% with respect to their spouses
(HR¼0.772; P¼0.004). On the contrary, when the sex of the proband
was female, only male siblings showed such a survival advantage. In
fact the interaction term of the correspondent model indicated that
male siblings had a significant mortality reduction of about 30%
(e0.144�0.494).

It is of note that, although life tables show that women live longer
than males (about 5 years), none of the results obtained here differed if
we considered different cut offs (between 91 and 99) to define female
probands.

DISCUSSION

For years, the reduced mortality of family members of centenarians
has suggested the presence of a genetic component in the longevity
trait. However it has always been very clear to scientists studying this
issue that environmental and familiar factors (such as economic and
social status) could influence the probability of attaining longevity
together with genetics. In addition, it is well known that the herit-
ability of a trait is population specific, as it may be influenced by
different factors acting differently on certain traits in different popula-
tions. This is probably particularly true for longevity, which is
increasing due to environmental factors (better food, better medical
assistance and so on) across western countries but at different speeds.
It is then likely that the importance of genetics on longevity may be
higher in areas with slower yet more recent progress (such as Calabria
and Sardinia) than in other areas of Western Countries.17,18 Finally,
many cues support the hypothesis that the heritability of longevity
might be higher in males than in females.

The present study has confirmed the presence of a strong familiar
component on longevity. In fact both the parents and the siblings
(either females and males) of long-lived probands were found to live
longer than the general contemporary population. On the other hand,
the comparison of survival curves of the siblings of nonagenarians
with those of their spouses (which are genetically unrelated but share a
great part of their environment) shows a slightly different picture. In
fact, we found that brothers of nonagenarians lived significantly longer
than the husbands of their sisters. By contrast, no difference could be
detected between survival curves of sisters of nonagenarians and
the survival curves of the wives of their brothers, suggesting that the
heritability of longevity is higher in males than in females. This is
further reinforced by the subsequent observation that the siblings of

Table 2 Comparisons of mean ages at death (SE in parenthesis)

conditioned on survival to age 30 of parents of probands with the

respective Italian birth cohort, birth years 1876 for fathers, 1882 for

mothers

Parents of

probands

Mean age at death by

sex conditional on

survival to age 30

Italian cohort

life tablesa

Excess

years P-valueb

Men (N¼166) 75.49 (0.98) 67.44 8.05 o0.001

Women (N¼157) 76.06 (1.10) 70.78 5.28 o0.001

Note: source, Human Mortality Database: http://www.mortality.org; calculations by the authors.
aLife expectancy at birth conditioned on survival to age 30 for the Italian birth cohort. Cohort
life table estimates were assumed to have zero variance.
bP-value refers to t-Student’s test.

Table 1 Characteristics of the subjects (belonging to 202 families)

analyzed in the study. Median age and interquartile range are

displayed

Men Women

N Age N Age

Parents of proband

Deceased 167a 77.5 (68–85) 157b 79 (70–86)

Deceased (Z30 years) 166 78 (68–85) 157 79 (70–86)

Sibling

Alive 63c 85 (81–89) 68c 86 (81–90)

Deceased 450 73 (33.75–82) 481 74 (22.5–85)

Deceased (Z30 years) 384 78 (68–84) 355 81 (71–86)

Proband sibling’s spousesd

Alive 18c 84 (82–87.5) 90c 82.5 (77–87)

Deceased 272 75 (64–82) 269 79 (71–85)

Deceased (Z30 years) 270 75 (64.75–82) 267 79 (71–85)

1910 Italian birth cohort

Life expectancy at birth 49.33 54.52

Life expectancy conditional

on survival to age 30 years

71.12 78.15

a33 fathers had unknown age at death.
b43 mothers had unknown age at death.
cCensored for immigration not included.
dCalculations include only the first spouse.

The genetic component of human longevity
A Montesanto et al

3

European Journal of Human Genetics



male probands (either males or females) show a reduced mortality
than their spouses. By contrast, when we analyzed the siblings of
female probands we found that only their brothers had a lower
mortality when compared with the male spouses. This result suggests
that, independently of gender, family members with a male proband
share, on average, a significant genetic advantage. On the other hand,
in the sibships with a female proband, the genetic share of the familial
advantage is on average lower, and the female spouses of brothers of
nonagenarians benefit most from the familial advantage. These results
confirm that longevity has a genetic component, and suggest that such
a component is stronger in males than in females. On the other hand,
they also suggest that females can take advantage of a favorable
environment more than males. In fact, we may state that, according

to our data, being the sister of a long-lived subject or marrying one of
the brothers of this subject provides a woman almost with the same
survival advantage.

It is certainly important to outline some limitations of the study.
First of all it is important to point out that our results may be in part
specific to a largely rural and underdeveloped society where social
differences are very strong, especially until a few decades ago.23 In fact,
in contrast to the study of Shoenmaker et al,3 spouses of proband’s
siblings also live longer than the corresponding birth cohort. It is also
worth mentioning that males in these cohorts may have taken
advantages of their families more than their sisters in terms of wealth
and social benefits. Indeed, we previously showed that only a very
small percentage of women born around the beginning of the XX

Figure 1 Survival probabilities from age 30 for siblings of probands with respect to the Italian 1910 cohort by gender.

Figure 2 Survival probabilities from age 30 for siblings of probands with respect to the relevant intrafamily control group.

Table 3 Maximum likelihood estimation of the parameters of the fitted Cox proportional hazards model

95% CI for HR

Variables Coefficient (b) SE Wald P-value* HR Lower Upper

Relation to the proband¼sibling �0.005 0.081 0.003 0.953 0.995 0.849 1.167

Gender of the sibling/spouse¼female 0.521 0.087 36.260 0.000 1.684 1.422 1.996

Relation to the proband*, gender of the sibling/spouse �0.325 0.114 8.182 0.004 0.723 0.578 0.903

Abbreviations: CI, confidence interval; HR, hazard ratio.
SE of the estimated coefficients with the relevant HR and CI of the model are reported.
*P-values refer to the Wald tests.
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century were properly scholarized.23 This may partly explain the small
excess in survival of sisters over the wives of the brothers or over the
birth cohort as compared with the same groups in men.

In addition we need to point out that we used life tables referring to
the 1910 Italian birth cohort as for that period they are not available
for the Calabrian population alone. Calabrian life tables from 1940s
onward do not show significant differences with respect to the average
Italian mortality data. However, we may suppose that, based on its
socio economic conditions,24 life expectancy in Calabria at the
beginning of the XX century was lower than in the rest of Italy,
where, on turn, it was lower than in northern European countries.25

Therefore we can expect that this point does not affect our results or
led to an underestimate of survival advantage with respect to the
general population cohorts. On the other hand, our results are in
agreement with numerous demographic reports showing that in the
last decades, where medical and social conditions have greatly
improved, the increase in the number of female centenarians in
Europe has been by far faster than the increase of male centenarians.26
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Table 4 Maximum likelihood estimation of the parameters for the Cox regression models with respect to the sex of the proband

Variables Coefficient (b) SE Wald P-value* HR 95% CI for HR

(a) Sex of the proband¼female

Relation to the proband¼sibling 0.144 0.104 1.902 0.168 1.155 0.941–1.417

Gender of the sibling/spouse¼female 0.691 0.113 37.178 o0.001 1.996 1.598–2.492

Relation to the proband *, gender of the sibling/spouse �0.494 0.147 11.305 0.001 0.610 0.458–0.814

(b) Sex of the proband¼malea

Relation to the proband¼sibling �0.258 0.090 8.165 0.004 0.772 0.647–0.922

Gender of the sibling/spouse¼female 0.254 0.090 8.035 0.005 1.289 1.082–1.537

Abbreviations: CI, confidence interval; HR, hazard ratio.
SE of the estimated coefficients with the relevant HR and CI of the model are reported.
aThe interaction term was not significant (b¼�0.092; P¼0.607; HR¼0.912 with a CI¼0.641–1.297).
*P-values refer to the Wald tests.
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