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Abstract

This dissertation presents a class of novel distributed supervision strategies
for multi-agent linear systems connected via data networks and subject to co-
ordination constraints. Such a coordination-by-constraint paradigm is charac-
terized by a set of spatially distributed dynamic systems, connected via com-
munication channels, with possibly dynamical coupling amongst them which
need to be supervised and coordinated in order to accomplish their overall ob-
jective. The basic design philosophy of the Command Governor (CG) set-point
management is used here in order to maintain a pre-stabilized system within
prescribed constraints.

While in traditional CG schemes the set-point manipulation is undertaken
on the basis of the actual measure of the state, in this dissertation it is shown
that the CG design problem can be solved also in the case that such an ex-
plicit measure is not available by forcing the state evolutions to stay ”not too
far” from the manifold of feasible steady-states. This approach, referred to as
Feed-Forward CG (FF-CG), is a convenient solution to be used in distributed
applications where the cost of measuring the overall state and distributing it
amongst the agents may be a severe limitation.

Several distributed strategies, based both on CG and FF-CG ideas, will be
fully described and analyzed. First, we propose some “non-iterative” schemes
in which the agents acting as supervisors communicate once during the deci-
sion process. In this respect, a “sequential” distributed strategy in which only
one agent at the time is allowed to manipulate its own reference signal is
proposed. Such a strategy, although interesting by itself in some applications,
will be instrumental to introduce a more effective “parallel” distributed strat-
egy, in which all agents are allowed, under certain conditions, to modify their
own reference signals simultaneously. Then an “iterative” procedure, borrowed
from the literature, has been here adapted in order to build more efficient dis-
tributed schemes which however require larger amount of data exchanges for
their implementation. With the aim of evaluating the distributed methods here
proposed, several cases of study involving the coordination autonomous vehi-
cles, power networks and water networks management are illustrated.
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1

Introduction

1.1 The Command Governor approach

The Command Governor (CG) approach can be regarded as a constrained su-
pervision strategy which computes its actions by solving on-line a constrained
convex optimization problem based on future system predictions, similarly
to any Model Predictive Control (MPC) strategy. A CG unit is a nonlin-
ear device which is added to a plant, regulated by a primal controller and
separately designed w.r.t. the CG to guarantee stability and tracking perfor-
mance requirements. The CG main objective is that of modifying, whenever
necessary, the reference signal to be supplied to such a pre-compensated sys-
tem when its unmodified application would lead to constraint violations. This
modification is typically achieved according to a receding horizon philosophy
consisting of solving on-line at each time instant a constrained optimization
problem whose constraints take into account future system predictions. As in
MPC schemes, a modified reference sequence is computed at each sampling
instant and, according to the receding horizon control (RHC) policy, only the
first sample of such a sequence is applied and the entire procedure is repeated
at the next time instant.

Command Governor strategies have recently gained interest in the con-
trol system literature for their capability to rigorously fulfil on-line set-
membership-in-time constraints, allowing the off-line control design phase to
be undertaken without considering their presence altogether.

Although a CG exhibits typically degraded performances with respect to
the constrained predictive control, its design results simplified. Furthermore,
in most cases, MPC computations amount to solve on-line high dimensional
programming problems. For this reasons, CG usage can be justified in indus-
trial applications wherein a massive amount of flops per sampling time is not
allowed, and/or peripheral units which do not alter the structure of the primal
compensated system need to be added to existing standard control stucture
(PID like compensator etc.).
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The CG design problem is usually solved by resorting to the theory of
the Maximal Output Admissible Set introduced in [1] and [2]. Many mature
assessments of the CG approach can be found in [1]-[4]. In particular, CG
schemes dealing with disturbances were considered in [3] and [5], with model
uncertainties in [6] and [5] and with partial state information in [7]. For spe-
cific results on CG applied to nonlinear systems see e.g. [8, 9, 10] and [4],
for networked master/slave frameworks [11] and for recent results on hybrid
Piecewise-Affine systems [12]. Different perspectives on the proposed refer-
ence management strategy have been reported in [13] and [14]. For recent
applications see [15] and [16].

1.2 Motivations

The reasons of the development of large-scale networked systems are mainly
technological and economical. Examples include groups of vehicles, large-scale
chemical processes, supply-chain management systems and electrical genera-
tors in networked power grids, just to mention a few. The derivation of efficient
supervisory control strategies for these systems is of paramount importance
for the economic growth, the environment preservation and the quality of
life. It is sufficient to estimate, as an example, the economic loss and public
transport problems due to blackouts.

For these reasons, their management should be characterized by efficiency,
reliability and safety. Large Scale Networked systems are often a composi-
tion of a huge number of interacting subsystems. In such a case, a centralized
control architecture could not be an adequate choice because the correspond-
ing computational burdens could be unnecessarily prohibitive and the needed
communication infrastructures could not be directly implemented. All these
reasons justify new research efforts in the development of distributed control
and supervising methodologies. In such contexts, the control action is decen-
tralized and performed by a set of control devices, often called agents, acting
in general on a restricted part of the overall system to be supervised.

Because of its natural capability to handle in a systematic manner hard
constraints on inputs and state-related variables, the Command Governor
(CG) approach seems to be very suitable for the above tasks. To this end, our
approach aims mainly at the development of novel CG methods for supervising
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efficiently large-scale distributed systems when a centralized solution is hard
to be design or implemented. In particular, several distributed CG variants
based on different optimization methods and coordination algorithms will be
presented and discussed and their properties fully investigated.

1.3 Decentralized and Distributed Control Architectures

In this section the distributed and decentralized control concepts will be clari-
fied to put in light the differences. Although a clear distinction is not present
in the literature and, even, the two terms are used one in place of the other,
in this dissertation we will refer to the definitions adopted in the survey [21]
that can be summarized as follows:

• Decentralized Control - The agents do not exchange any kind of infor-
mation and consequently their control decisions are taken independently
(see Figure 1.2);

• Distributed Control - The agents exchange information (control deci-
sion and state measurement) and control decisions can be taken indepen-
dently if no negotiations are undertaken. However, in some cases there
could be several data exchange iterations among the agents before they
arrive to an agreement and take decisions (see Figure 1.3).

In this thesis will focus on the more general class of distributed control strate-
gies only and additional notions will be introduced to classify the paradigms
and algorithms categories used within this dissertation.

• Sequential Schemes - In this case, one agent per time updates its con-
trol action according a prefixed order while all others agents keep applying
previous applied commands

• Parallel Schemes - In this case, agents computed independently their
new commands and apply them simultaneously.

Also note that mixed sequential-parallel approaches are possible. In general
sequential methods are easier to be implemented but the related performance
decrease steadily with the number of agents. On the contrary, parallel methods
are usually more efficient but require more complex and numerically demand-
ing coordination algorithms to be implemented.

As mentioned above, distributed and decentralized schemes differ in the
possibility fthat a decentralized paradigm share information amongst agents.
In particular, such a data exchange can occur in two ways ([21]):

• Noniterative Schemes - The information is transmitted/received only
once by the agents within the decision time
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Fig. 1.2. Decentralized Control Schemes

• Iterative Schemes - Pieces of information can be transmitted/received
several times during the decision time as long an agreement is found

When considering iterative schemes, the large amount of exchanged data is
usually exploited by the agents to achieve, by successive refinements, an agree-
ment amongst all agents on the action to be performed on the overall system.
In this respect, a further classification is mandatory in order to describe the
behavior of the agents during the decision process ([21])

• Non-Cooperating Agents - Each agent computes its action by mini-
mizing a local performance index

• Cooperating Agents - All agents contribute individually to the mini-
mization of a global performance index

In general, as mentioned in [21], as far as the performance is concerned co-
operating schemes are better that non-cooperating ones. In particular, from
a game theory point of view ([22]), an iterative procedure with agents acting
cooperatively leads to a so-called Pareto Optimal solution. On the contrary,
when agents have an non-cooperating (egoistic) behaviour, a Nash equilibrium
can be reached and usually such a kind of solutions have not any optimality or
stability properties ([22]). In this work we will focus our attention on both iter-
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Fig. 1.3. Distributed Control Schemes

ative and non-iterative non-cooperative methods. Both parallel and sequential
implementations will be discussed.

1.4 Coordination-by-Constraint Approach

As previously stated, we will focus on the development of distributed su-
pervision strategies based on Command Governor (CG) ideas for multi-agent
systems when using a centralized coordination unit is impracticable because of
unrealistic or unavailable communication infrastructures. A centralized solu-
tion to this problem has been recently proposed in [11] in a quite general con-
text depicted in Fig. 1.4 and it will be referred hereafter as the Coordination-
by-Constraint approach.

There, the master station is in charge of supervising and coordinating the
slave systems via a data network. In particular, ri, gi, xi, yi and ci repre-
sent respectively: the nominal references, the feasible references, the states,
performance-related and coordination-related outputs of the slave systems. In
such a context, the supervision task can be expressed as the requirement of
satisfying some tracking performance, viz. yi ≈ ri, whereas the coordination
task consists of enforcing some pointwise-in-time constraints ci ∈ Ci and/or
f(c1, c2, ...., cN ) ∈ C on each slave system and/or on the overall network evo-
lutions. To this end, the supervisor is in charge of modifying the nominal
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Fig. 1.4. Multi-agent master/slave architectures

references into the feasible ones, when the tracking of the nominal references
would lead the evolution of any ci to violate prefixed constraints.

Here we will consider several distributed supervision strategies for the
coordination problem without considering the presence of a single centralized
master unit in charge of modifying the nominal set-point. On the contrary,
the supervisory task is now distributed amongst many master agents which
are assumed to be able to communicate each other and with the slave systems
as well.

The scheme here described is depicted in Figure 1.5 where the same con-
strained supervision and coordination task of Figure 1.4 is addressed but with
the noticeable difference that the single subsystem reference sequence ri is ma-
nipulated by a dedicated master agent, which is informed on all other master
agents/remote subsystems states xi and commands gi via a data network.
In addition to the general scheme of Figure 1.5 we will also consider a slight
different simplified approach depicted in Figure 1.6 where each agent, in order
to accomplish the supervision and coordination task, is not aware on use of
any measurement or state estimates of its own and other subsystems. In this
case, it is required that the coordination amongst agents would be achieved
only by exchanging applied references gi.

Such an approach represents a particularly interesting solution in large-
scale problems. In fact, this solution is based on a recently proposed alternative
solution ([23],[24]) to the CG design problem, referred to as the Feed Forward
CG (FF-CG) approach, that, at the price of some additional conservativeness,
is able to accomplish the CG task in the absence of an explicit measure of the
state.

The idea behind such an approach is that, if sufficiently smooth transitions
in the set-point modifications are acted by the CG unit, it is possible to
achieve a certain level confidence on the expected value of the state, even
in the absence of an explicit measure, thanks to the asymptotical stability
property enjoyed by the system model.
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The FF-CG scheme is an attractive solution for distributed supervision
and coordination frameworks because it is not necessary to build the en-
tire aggregate state, or substantially parts of it, known to all agents at each
time instant. This results in a lower amount of information on-line exchanged
amongst agents.
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1.5 Distributed Model Predictive Control: a short
overview

Most of the distributed strategies presented in the literature are based on the
well known Model Predictive Control Scheme (MPC, see [64, 19]) that has
gained a large popularity in the process industry and represents a very pow-
erful method, supported by well established theoretical foundations, capable
to handle a huge number of industrial control problems.

Here we chronologically describe significant work in literature dealing with
the Distributed MPC. Such a choice is justified due to the CG features which
are taken from Predictive Control main concepts, as the resolution of a opti-
mization based control strategy, the RHC philosophy and the direct inclusion
of constraints in the optimization problem. Nonetheless, CG solutions have
peculiar aspects making them in some sense different from standard MPC
approaches. In particular, the CG optimization problems are usually more
simpler and the overall on-line strategy is less numerically demanding. Fur-
thermore, it does not seem to exist MPC schemes working without an explicit
state (estimate) or system output measurements. This is a crucial difference
in that, on the contrary, such GG strategies exist and will be described in
next chapters.

In the past years several approaches have been proposed in literature
where MPC is presented in a distributed or decentralized fashion to tackle
situations described in the section 1.2. From a theoretical point of view, dis-
tributed control policies for dynamically coupled systems have been stud-
ied in [31, 32] where non-iterative and non-cooperating algorithms have been
presented for discrete-time linear time-invariant systems. Discrete-time LTI
models are also considered in [33], where an iterative cooperating procedure
is described. In particular, the proposed approach ensures the achievement of
the global (Pareto) optimum when the iterative procedure converges. More-
over, the method still guarantees closed-loop stability and feasibility if the
procedure is stopped at any intermediate iterate. Following the same lines,
in [36] a distributed model predictive control scheme for decoupled systems
with preliminary stability and feasibility results has been proposed. There,
each agent optimizes its local objective which contains also a penalizing term
on the coupling neighboring dynamics. Such a problem has been faced also in
[35] where vehicles with independent second-order non-linear continuous-time
dynamics and coupling cost functions have been considered.

A non-cooperating non-iterative MPC algorithm guaranteeing stability for
non-linear continuous-time systems has been presented in [34], where infor-
mation is transmitted only amongst neighboring subsystems. The stabilizing
property of that method proposed strongly depends on a weak dynamic inter-
actions between agents and on a particular constraints considered in the MPC
problem that forces the actual input and state sequences to not differ too
much from their predicted values. Disturbed subsystems with discrete-time
LTI models with independent dynamics but subject to coupling constraints
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are considered in [38]. A non-iterative procedure is proposed as solution in
which each regulators perform an optimization of a local index but it is aware
of the most recent or predicted action of other agents. In the non-iterative
and non-cooperating MPC algorithm presented in [39, 40], conditions for a-
posteriori stability analysis are introduced which are also valid in the case of
data-loss among agents.

1.6 Thesis Overview

1.6.1 Thesis Outline

This thesis is organized in two parts as follows:

Part I

This part starts with the description of the existing centralized standard Com-
mand Governor (CG) approach and moves towards the presentation of the
FeedForward Command Governor (FF-CG) approach which is an original con-
tribution of this thesis. In particular,

• Chapter 2 describes the problem, the basic ideas and the main properties
of the CG approach. All computational details concerning the solution and
the implementation of Command Governor (CG) devices are also reported.

• In Chapter 3 the FeedForward Command Governor (FF-CG) approach
is presented in full details.

• Chapter 4 addresses the problem of improving the effectiveness of the
FF-CG scheme proposed in Chapter 3. A novel less conservative FF-CG
solution is discussed which leads to improved performance. Although more
efficient, its extension to the distributed case is still under investigation
because of higher level of complexity introduced and will be presented else-
where. Moreover both proposed FF-CG schemes are applied to a position
servomechanism and numerical simulations are reported in order to show
the effectiveness of the proposed schemes also with respect to the standard
state-based CG scheme.

Part II

• In Chapter 5 two distributed strategies based on the FF-CG approach
presented in Chapter 3 will be fully described and analyzed. In particular a
sequential distributed strategy (S-FFCG) will be presented in which only
one agent at the time is allowed to manipulate its own reference signal.
Moreover a complete liveliness analysis will be reported. A geometrical
Constraints Qualification (CQ) condition on the prescribed constraints
is proposed whose fulfilment avoid deadlock situations and ensure viable
solutions. Such a sequential scheme will be instrumental to introduce, a
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more effective parallel distributed strategy (P-FFCG), in which all agents
are allowed, under certain conditions, to modify their own reference signals
simultaneously.

• In Chapter 6 a customization of the distributed schemes described in
Chapter 5 to situations where each agent is provided with the local state
measurements is undertaken. Although the resulting schemes (S-CG and
P-CG) present a higher level of complexity, a complete characterization is
given.

• In Chapter 7 a distributed iterative optimization method borrowed from
[60] is reported for solving the coordination problem of interconnected non-
linear discrete-time dynamic systems with multiple agents. Such a method
is shown to be instrumental for the development of CG and FF-CG based
distributed iterative methods.

• Chapter 8 reports a wide comparison of all proposed strategies on an
eight-tank cascaded system.

Last chapter summarizes the results of this thesis and gives directions for fu-
ture research.

1.6.2 Contributions

The main contributions of the research described in this Ph.D thesis with
respect to Command Governor and its distributed versions are the following:

• A sensorless CG scheme for linear-time invariant system here referred to
as Feed-Forward CG (FF-CG) has been presented in [23, 24].

• A different and more efficient FF-CG scheme has been presented in [42].
• Sequential and parallel non-iterative FF-CG schemes with application to

autonomous vehicles have been presented in [43] and [44]. Moreover, a
complete analysis of the sequential scheme with the investigation of its
liveliness properties can be found in [48] and [49].

• A parallel non-iterative FF-CG scheme with application to a network of
water tanks is appeared in [42].

• A sequential non-iterative CG based scheme with application to Load/Fre-
quency control problems in multi-area power systems has been presented
in [46].

• A mixed-integer formulation of the CG strategy for collision avoidance
problems has been presented in [45].



Part I

State-Based and Feed-Forward Command
Governor schemes





2

The Command Governor Design Problem
(Standard CG)

In order to make precise statements and comparisons with existing techniques
and introduce the relevant notation, this chapter recalls the notions and ideas
underlying the standard CG approach for linear systems subject to bounded
disturbances (see Figure 2.1). The entire chapter is instrumental to introduce
the novel FF-CG scheme in the next chapter.

As mentioned before in the Introduction, a CG is a nonlinear device which
is added to a primal compensated control system. The latter, in the absence of
the CG, is designed so as to perform satisfactorily in the absence of constraints.
Whenever necessary, the CG modifies the input to the primal control system
so as to avoid violation of the constraints. Seminal works about this kind of
supervision strategy involved in more complicated scenarios characterized by
nonlinear systems, uncertain systems, tele-operated systems are represented
e.g. by [5] and [17].

This chapter is organized as follows. In Section 2.1 the Feedback CG design
problem is formulated whereas its solution is recalled in Section 2.2 where its
main properties are pointed out as well. Finally, in Section 2.3 all computa-
tional details are reported.

2.1 System Description and Problem Formulation

Let the closed-loop system, consisting of the plant and primal controller of
Fig. 3.1, be described by the following discrete-time modelx(t+ 1) = Φx(t) +Gg(t) +Gdd(t)

y(t) = Hyx(t)
c(t) = Hcx(t) + Lg(t) + Ldd(t)

(2.1)

where: t ∈ ZZ, x ∈ IRn is the state vector (which includes the controller states
under dynamic regulation), g ∈ IRm the manipulable reference vector which,
if no constraints (and no CG) were present, would coincide with the desired
reference r ∈ IRm and y ∈ IRm the output vector which is required to track r.
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The vector d ∈ IRnd is a disturbance signal assumed to belong to the convex
and compact set D ⊂ IRnd :

d(t) ∈ D, ∀t ∈ ZZ+. (2.2)

It is also assumed that 0nd
∈ D. Finally, c ∈ IRnc represents the constrained

outputs vector which has to fulfill the set-membership constraints

c(t) ∈ C, ∀t ∈ ZZ+, (2.3)

regardless of any possible admissible disturbance sequence realization d(·) ∈
D, with C being a prescribed convex and compact set with non empty interior.
It is further assumed that:

A1.The overall system (2.1) is asymptotically stable.
A2.System (2.1) is offset free, i.e. Hy(In − Φ)−1G = Im.

In words, the CG design problem we want to solve is that of determining, at
each time step t, a suitably modified reference signal g(t) which is the best
approximation of r(t) compatible with the constraints, such that its applica-
tion never produces constraints violation along the system evolutions induced
by the CG commands, i.e. c(t) ∈ C, ∀t ∈ ZZ+,∀d(·) ∈ D.

2.2 The Standard Command Governor Approach

The classical solution of the above stated CG design problem is achieved by
finding, at each time t, a modified command g(t) as a function of the current
reference r(t) and measured state x(t)

g(t) := g(r(t), x(t)) (2.4)

such that g(t) is the best approximation of r(t) under the condition c(t) ∈
C, ∀d(·) ∈ D.

Let us consider the closed-loop system (2.1)-(2.3) satisfying assumptions
A1-A2. We will suppose the state be measurable at each time instant and
consider the CG design problem as formulated in (2.4). As a first step let us
define the following set recursions

Ck := C ∼ ∆k, k > 0, C∞ := C ∼ ∆∞ (2.5)

where
∆0 = LdD, ∆k = ∆k−1 ⊕HcΦ

k−1GdD. (2.6)

In (2.5) and (2.6), for given sets A, E ⊂ IRn, A∼ E denotes the Pontryagin
set difference defined as ([50])

Definition 2.1. ( Pontryagin-Minkowski set difference) -

A∼ E := {a : a+ e ∈ A,∀e ∈ E}
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66

Plant
Primal

controller

χp(t)χc(t)

•
•

x(t) =

[
χc(t)
χp(t)

]

r(t) g(t) u(t) y(t) ≈ r(t)

c(t) ∈ C

d(t) ∈ D

?

Fig. 2.1. Classical CG structure (based on state measurement)

and A⊕ E the Pontryagin-Minkowski set sum, i.e.

Definition 2.2. ( Pontryagin-Minkowski set sum) -

A⊕ B := {a+ b|a ∈ A, b ∈ B}.

Moreover,∆∞ is the Hausdorff limit of the set sequence∆k. Because of asymp-
totical stability of Φ, it can be proved (see [3]) that ∆∞ is convex and compact
and that, provided all Ck are non-empty, they are also convex and compact,
satisfy the nesting condition Ck ⊂ Ck−1 and make C∞ a nonempty convex and
compact set.
Let us introduce now the set-valued future predictions (virtual evolutions)
of the c-variable along the virtual time k under a constant virtual command
g(k) ≡ g and for all possible disturbance sequence realizations {d(l) ∈ D}kl=0

from the initial state x (at virtual time k = 0)

c(k, x, g, d(·)) =
∪

d(·)∈D

{
Hc

(
Φkx+

k−1∑
i=0

Φk−i−1(Gg +Gdd(i))

)
+ Lg + Ldd(k)

}
(2.7)

By linearity, the latter can be rewritten as the sum of two terms: c(k, x, g, d(·)) =
c(k, x, g) + c̃(k, d(·)), where

c(k, x, g) = Hc

(
Φkx+

k−1∑
i=0

Φk−i−1Gg

)
+ Lg (2.8)

represents the disturbance-free evolution of the c-variable along the virtual
time k under a constant virtual command g(k) ≡ g and initial state x and

c̃(k, d(·)) :=
∪

d(·)∈D

{
k−1∑
i=0

HcΦ
k−i−1Gdd(i)+Ldd(k)

}
⊆ ∆k, (2.9)
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the set-valued virtual evolutions due to all possible disturbance sequence re-
alizations, all contained in ∆k. As a consequence we have

c(k, x, g) ∈ Ck, ∀k ∈ ZZ+

⇓
c(k, x, g) = c(k, x, g) + c̃(k, d(·)) ⊂ C, ∀k ∈ ZZ+

(2.10)

Thus, constraints fulfilment can be ensured by only considering the disturbance-
free evolutions of the system (2.1) and adopting a ”worst-case” approach. To
this end, let us introduce, for a given sufficiently small scalar δ > 0, the sets:

Cδ := C∞ ∼ Bδ, Wδ := {g ∈ IRm : cg ∈ Cδ} (2.11)

where Bδ is the ball of radius δ centered at the origin and Wδ, which we
assume non-empty, the closed and convex set of all constant commands g
whose corresponding disturbance-free equilibrium points

cg := Hcxg + Lg (2.12)

satisfy the constraints with margin δ, being

xg := (In − Φ)−1Gg (2.13)

the steady state solutions for 2.1.

The main idea behind this CG design problem is to choose at each time
step a constant virtual command g(·) ≡ g, with g ∈ Wδ, such that the corre-
sponding virtual evolutions fulfil the constraints over a semi-infinite horizon
k ∈ [0, ∞) and its “distance” from the constant reference of value r(t), valu-
ated by ∥g − r(t)∥2Ψ , Ψ = ΨT > 0, is minimal. Such a command is applied, a
new state is measured and the procedure is repeated at the next time instant,
as shown in Figure 2.2. Formally, if we introduce the set of all admissible
virtual sequences from initial state x

V(x) =
{
g ∈ Wδ : c̄(k, x, g) ∈ Ck, ∀k ∈ Z+

}
(2.14)

the CG will choose a command g(t) at each time instant t as the solution of
the following constrained optimization problem

g(t) = arg min
g∈V(x(t))

∥g − r(t)∥2Ψ (2.15)

The following Theorem, proved in [5] and [17], summarizes the properties of
the standard CG Algorithm:

Theorem 2.3. - Let assumptions A1-A2 be fulfilled. Consider system (2.1)-
(2.3) along with the CG selection rule (2.15) and let V(x(0)) be non-empty.
Then:
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t

x(t0)

c(k,x(t0),g(t0))

c(k,x(t0),r(t0))

C

g(k) g(t0)

k

r(k) r(t0)

r(t0)

g(t0)

x(t1)

c(k,x(t1),g(t1))

c(k,x(t1),r(t1))

C

g(k) g(t1)

k

r(k) r(t1)

r(t1)

g(t1)

Fig. 2.2. CG evolution: the CG selects at each time step a constant virtual command
g(·) ≡ g, such that the corresponding virtual evolutions fulfil the constraints over
a semi-infinite horizon k ∈ [0, ∞) and its “distance” from the constant reference
of value r(t), is as small as possible. The reference is applied at time t and the
procedure is reiterated at time instant t+ 1.

1. At each decision time t, the minimizer in (2.15) uniquely exists and can
be obtained by solving a convex constrained optimization problem;

2. The set V(x), ∀x ∈ IRn, is finitely determined, viz. there exists an a priori
known integer k0 (see [1]) such that if c̄(k, x, w) ∈ Ck, k ∈ {0, 1, . . . k0},
then c̄(k, x, w) ∈ Ck ∀k ∈ ZZ+.

3. The system supervised by the CG never violates the constraints, i.e.
c(t) ∈ C for all t ∈ ZZ+ regardless of any possible admissible disturbance
realization d(·) ∈ D;

4. The overall system is asymptotically stable. Moreover, whenever r(t) ≡ r,
with r a constant set-point, the sequence of g(t)’s converges in finite time
either to r or to its best admissible steady-state approximation r̂:

∃ts > 0 t.c. g(t) = r̂ := arg min
g∈Wδ

∥g − r∥2Ψ ,∀t ≥ ts (2.16)

and

lim
t→∞

x̂(t) = xr̂, lim
t→∞

ŷ(t) = yr̂= r̂, lim
t→∞

ĉ(t)=cr̂. (2.17)
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2.3 Computational details

This section is added for the sake of completeness and recalls material pre-
sented in [51].

2.3.1 Linear constraints: The disturbance-free case

In this section we will present all computational details for the design and
the implementation of the above CG strategy in the disturbance-free case
d(t) = 0, ∀t. Because linear constraints for c(t) ∈ C are assumed, they can be
represented as

c(t) ∈ C ⇐⇒ C := {c ∈ IRnc : Tc ≤ q} (2.18)

T =


TT
1

TT
2

· · ·
TT
z

 ∈ IRz×nc , q =


q1
q2
· · ·
qz

∈ IRz, z ≥ nc,(2.19)

rank (T ) = nc (2.20)

(2.21)

with TT
i and qi denoting respectively the i-th rows of T and q. Notice that

the number z of rows of T is in general larger than the number of columns
and the rank condition on T ensures that C is a bounded set. Closure and
convexity trivially follow.

In the disturbance-free case all sets Ck defined in (2.5) coincide with C.
Therefore, the set Cδ is given by

Cδ = C ∼ Bδ = {c ∈ IRnc : TT
i c ≤ qi − δ

√
TT
i Ti, i = 1, ...., z}

where the terms δ
√
TT
i Ti is the support function of the ball Bδ. See the Ap-

pendix for the computation of the support functions of use for the computation
of the P-difference. Then, the Wδ set can be directly computed and results

Wδ = {w ∈ IRm : c̄w ∈ Cδ} (2.22)

= {w ∈ IRm : T
(
Hc(I − Φ)−1G+ L

)
w ≤ q − δ[

√
TT
i Ti]} (2.23)

where

[
√
TT
i Ti] :=


√

TT
1 T1√

TT
2 T2

....√
TT
z Tz

 (2.24)

It remains to characterize the set V(x) which, in the disturbance-free case, is
defined as
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V(x) = {w ∈ Wδ : c̄(k, x, w) ∈ C, k = 0, ...., k0} (2.25)

where the integer k0 will be specified in a while. It is also easy to understand
that

x̄(k, x, g) = Φkx+

(
k−1∑
i=0

ΦiG

)
g

= Φkx+Rx
kg (2.26)

c̄(k, x, g) = Hcx̄(k, x, g) + Lg

= HcΦ
kx+ (HcRk + L) g

= HcΦ
kx+Rc

kg (2.27)

and hence

V(x) = {w ∈ Wδ : THcΦ
kx+ TRc

kg ≤ q, k = 0, ..., k0} (2.28)

Finally, the CG action computation consists of solving the following QP
optimization problem

g(t) = argming(g − r(t))TΨ(g − r(t)) (2.29)

subject to (2.30)

THcΦ
kx(t) + TRc

kg ≤ q, k = 0, ..., k0 (2.31)

T
(
Hc(I − Φ)−1G+ L

)
g ≤ q − δ[

√
TT
i Ti] (2.32)

In order to compute the constraint horizon k0 define

Gk(j) := maxx∈IRn,g∈Wδ
TT
j c̄(k, x, g)− qj (2.33)

subject to

TT
j c̄(i, x, g) ≤ qj , i = 0, ..., k − 1

Then, the following procedure can be used k0:

Algorithm 2.3.1 (k0 computation)

1. k = 1

2. if Gk(j) ≤ 0, ∀j = 1, ..., z then k0 = k and stop;

3. k = k + 1, goto 2

which is ensured to converge in a finite number of steps.

2.3.2 Linear constraints: The disturbance acting case

We assume here that the disturbances are bounded and characterizable as
follows:
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d(t) ∈ D ⇐⇒ D := {d ∈ IRnd : Ud ≤ h} (2.34)

U =


UT
1

UT
2

· · ·
UT
u

 ∈ IRu×nd , h =


h1

h2

· · ·
hu

 ∈ IRu, (2.35)

u ≥ nd, rank U = nd, hi ≥ 0 (2.36)

with UT
i and hi denoting respectively the i-th rows of U and h. Notice that

the number u of rows of U is in general larger than the number of columns.
The rank condition on U ensures that D is a bounded set whereas hi ≥ 0
ensures that 0nd

∈ D. Closure and convexity trivially follow.
The set inclusions (2.5-2.6) can be computed as follows

C0 = C ∼ LdD = {c ∈ IRnc : TT
i c ≤ qi − sup

d∈D
TT
i Ldd, i = 1, ...., z}

= {c ∈ IRnc : TT
i c ≤ q0i , i = 1, ...., z} (2.37)

C1 = C0 ∼ HcGdD = {c ∈ IRnc : TT
i c ≤ q0i − sup

d∈D
TT
i HcGdd, i = 1, ...., z}

= {c ∈ IRnc : TT
i c ≤ q1i , i = 1, ...., z} (2.38)

· · ·
Ck = Ck−1 ∼ HcΦ

k−1GdD = {c ∈ IRnc: TT
i c ≤ qk−1

i (2.39)

− sup
d∈D

TT
i HcΦ

k−1Gdd, i = 1, ...., z} = {c ∈ IRnc : TT
i c ≤ qki , i = 1, ...., z}

In order to compute Wδ one should evaluate Cδ by computing C∞ first. To
this end, a convenient approximation of C∞ can becomputed by looking for a
convenient set C∞(ε) such that

C∞(ε) ⊂ C∞ ⊂ C∞(ε) + Bε (2.40)

Such a set, unlike C∞, is computable in a finite number of steps. In fact, it
can be shown that

C∞ = Ck ∼

( ∞∑
i=k

HcΦ
iGdD

)
(2.41)

Moreover, because of stability of Φ, there exist two constants M > 0 and
λ ∈ (0, 1) such that

∥Φk∥ ≤ Mλk

Boundedness of D also implies that there exists finite

d̄ := max
d∈D

∥d∥2 (2.42)

The above facts are enough to ensure that, once chosen the desired accuracy
ε, there exists an index kε such that
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∞∑
i=kε

HcΦ
iGdD ⊂ Bε (2.43)

In fact, it suffices that

d̄σ̄(Hc)σ̄(Gd)M

∞∑
i=kε

λi ≤ ε (2.44)

which, after direct steps, gives rise to

kε =
log ε+ log(1− λ)− log[σ̄(Hc)σ̄(Gd)Md̄]

log λ
(2.45)

Then, the desired approximation can be computed as

C∞(ε) = Ckε ∼ Bε (2.46)

and, in turn,

Cδ(ε) = (Ckε ∼ Bε) ∼ Bδ

= {c ∈ IRnc : TT
i c ≤ qkε − (ε+ δ)[

√
TT
i Ti]} (2.47)

Wδ = {g ∈ IRm : c̄w ∈ Cδ
∞(ε)} (2.48)

= {w∈ IRm :T
(
Hc(I − Φ)−1G+L

)
w≤qkε−(ε+ δ)[

√
TT
i Ti]}(2.49)

Of course, emptiness of Cδ
∞(ε) or Wδ, that is at least one component of qkε −

(ε+ δ)[
√
TT
i Ti] is strictly negative, implies that the problem is not solvable.

In this case, V(x) can be characterized as

V(x) = {g ∈ Wδ : c̄(k, x, g) ∈ Ck, k = 0, ...., k0} (2.50)

where the integer k0 will be specified in while. Because we work with
disturbance-free predictions, we can use (2.26) and (2.27) also in this case.
Hence

V(x) = {g ∈ Wδ : THcΦ
kx+ TRc

kg ≤ qk, k = 0, ..., k0} (2.51)

Finally, the CG action computation consists of solving the following QP
optimization problem

g(t) = ming(g − r(t))TΨ(g − r(t)) (2.52)

subject to (2.53)

THcΦ
kx(t) + TRc

kg ≤ qk, k = 0, ..., k0

T
(
Hc(I − Φ)−1G+ L

)
g ≤ qkε − (ε+ δ)[

√
TT
i Ti]

The computation of the constraint horizon k0 can be accomplished via the
following procedure. Define
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Gk(j) := maxx∈IRn,g∈Wδ
TT
j c̄(k, x, g)− qkj (2.54)

subject to

TT
j c̄(i, x, g) ≤ qij , i = 0, ..., k − 1

Then, the following procedure can be proved to converge to k0:

Algorithm 2.3.2 (k0 computation)

1. k = 1

2. if Gk(j) ≤ 0, ∀j = 1, ..., z then k̄ = k and stop;

3. k = k + 1, goto 2

2.4 Conclusion

In this chapter the Standard Command Governor design problem and its
solution have been recalled in order to make clear what the starting point was
to the novel techniques introduced in the next chapters. The key points of the
standard CG approach are as follows: 1) the use of an inner-loop aimed at
compensating the given plant and ensuring desirable control properties when
the constraints are not active (linear regimes); 2) the design of an outer-loop
involving the CG unit in charge to enforce input and state-related constraints
by modifying, whenever necessary on the basis of the actual state, the reference
signal.

The concept of ”virtual” command sequence has been shown to be instru-
mental for synthesizing a CG having the required properties. This has been
achieved by: first, parameterizing the virtual command sequence by a suit-
able vector of free parameters; second, choosing at each sampling time such a
free parameter vector as the one minimizing a constrained quadratic selection
index.

2.5 Appendix

2.5.1 P-difference

Given two sets A and B of IRn we define the P-difference between A and B,
and denotes it as A ∼ B, the following set

A ∼ B := {x ∈ IRn ; x+ b ∈ A, ∀b ∈ B}

Whenever the set A ∼ B is not empty, it enjoys the following properties.

Properties
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Fig. 2.3. P-difference of intervals

(i) A ∼ B = ∩b∈B(A− b)

(ii) (A ∼ B)⊕ B ⊂ A
(iii) If 0n ∈ B, then A ∼ B ⊂ A
(iv) Let A = A1 ∩ A2, then A ∼ B = (A1 ∼ B) ∩ (A2 ∼ B)
(v) Let B = B1 ⊕ B2, then A ∼ B = (A ∼ B1) ∼ B2

(vi) If A is bounded, closed, convex, then A ∼ B is bounded, closed, convex

When A and B are intervals, subset of IR, the above property (i) allows
directly the determination of the interval A ∼ B. When A is a subset of IRn,
the determination of A ∼ B can be done quite directly when A is a polyhedral
set

A = {a ∈ IRn : α′
ia ≤ bi, i = 1, ..., N} (2.55)

To this end, we need to consider the support function of a convex and compact
set B

Def. - Let B ⊂ IRn. The support function of B evaluated in η ∈ IRn is defined
as

hB(η) = sup
b∈B

η′b
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Fig. 2.4. P-difference of polyhedral: A (dash), B (thin continuous), A ∼ B (thick
continuous)

Then, if A ⊂ IRn is as in (2.55), one has that

A ∼ B = {a ∈ IRn : α′
ia ≤ bi − hB(αi), i = 1, ..., N} (2.56)

The numerical evaluation of the support function requires the use of LP pro-
gramming when B is a polyhedral set. When, B is an ellipsoidal set, viz.
B := {b ∈ IRn : b′Qb ≤ 1}, with Q = Q′ > 0, it can be shown that

hB(η) =
√

η′Q−1η. Observe further that the evaluation of A ∼ MB, when-
ever M is a matrix of appropriate dimensions, is any longer more complex
than evaluating A ∼ B. In fact, one has that

hMB(η) = hB(M
′η)

In next Figure 2.5.1, the P-difference for the following sets

(Left) A =


−x1 + x2 ≤ 6
2
5x1 − x2 ≤ 4
−2x1 − x2 ≤ 1
−2 ≤ x1 ≤ 10

x2 ≤ 10

B =

{
0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 2

(Right) A =


−10 ≤ −x1 + x2 ≤ 10

5 ≤ x1 + x2 ≤ 25
0 ≤ x1 ≤ 15
0 ≤ x2 ≤ 15

B =

{
−5 ≤ x1 + x2 ≤ 1
−1 ≤ −x1 + x2 ≤ 1

are reported.



2.5 Appendix 25

2.5.2 Convergence results on sequences of compact sets

Consider a family of compact sets Fk defined as

F0 = {0n} (2.57)

Fk =

k−1∑
i=0

ΦiGD, k ≥ 1 (2.58)

where Φ is an asymptotically stable matrix and D a compact set containing
0d. Then, in the topology induced by the Hausedorff’s metrics1 it is possible
to show that

Theorem - Let D be compact and Φ asymptotically stable. Then, there exists
a compact set F such that

(i) Fk ⊂ F ,∀k ∈ ZZ+

(ii) ∀ε > 0,∃kε : F ⊂ Fk + Bε.

1 Hausedorff’s metrics - Let ρ be a whatever bounded metrics in IRn and R the set
of all compact subsets of IRn. Let A and B arbitrary elements of R and consider
the function dH : R×R → IR defined as

dA(B) := sup
x∈B

ρ(A, x), ρ(A, x) := inf
y∈A

ρ(x, y)

dH(A,B) := max{dA(B), dB(A)}
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The Feed-Forward Command Governor
Approach

This chapter presents a novel class of Command Governor (CG) strategies
for input and state-related constrained discrete-time LTI systems subject to
bounded disturbances in the absence of explicit state or output measurements.

While in traditional CG schemes the set-point manipulation is undertaken
on the basis of either the actual measure of the state or its suitable estimation,
it is shown here that the CG design problem can be solved, with limited
performance degradation and with similar properties, also in the case that
such an explicit measure is not available.

This approach, which will be referred to as the Feed-Forward CG (FF-
CG) approach, may be a convenient alternative CG solution in all situations
whereby the cost of measuring the state may be a severe limitation, e.g. in
distributed or decentralized applications. This chapter and the preceding are
mandatory for the reader in order to understand distributed implementations
of the CG scheme. The Chapter is organized as follows. In Section 3.1, the
FF-CG scheme is introduced and its main properties investigated. In Section
3.2, some of the technical details underlying the derivation of the FF-CG
scheme are discussed for the sake of clarity. Finally, in Section 3.3 numerical
details are presented and applied to a simple numerical example in order to
give a complete picture of the numerical complexity underlying the FF-CG
implementation.

3.1 Problem Formulation

In this section the goal is to present a different approach to the CG design
problem for systems of the form 2.1-2.3 which satisfy also assumptions A1-
A2 which enables us to deal with the case that no state measurements are
available to the CG unit. To this end, a FF-CG action of the form

g(t) = g(r(t), g(t− 1), ρ(t)) (3.1)
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will be considered where g(t− 1) is the last applied command, ρ(t) is a scalar
whose meaning will be clarified later and g(t) is the best approximation of
r(t), to be computed so as to ensure constraints satisfaction along the system
virtual evolutions.

-
-

-
CG

--

-
�

6

Plant
Primal

controller

χp(t)χc(t)

•
•

x(t) =

[
χc(t)
χp(t)

]

r(t) g(t) u(t) y(t) ≈ r(t)

c(t) ∈ C

d(t) ∈ D

?

Fig. 3.1. Feedforward CG structure (without state measurement)

The idea underlying such an approach is that any admissible variation of
the manipulated reference g(·) always produces a guaranteed bounded per-
turbation on the actual constraints vector c around a suitable feasible steady-
state value. Such a property can be ensured by properly bounding the CG
action variations by means of the following technical expedients depicted in
Figure 3.1:

1. the computation of a new FF-CG action g(t) is performed every τ steps,
being τ a suitable integer to be determined, rather than at each time
instant t as in the standard CG approach. Moreover, each new FF-CG
command is applied for exactly τ steps;

2. the displacement between the new FF-CG command g(t) and the previous
one g(t − τ) is explicitly bounded during the FF-CG computation, i.e.
g(t)− g(t− τ) ∈ ∆G(g(t− τ), ρ(t− τ)),

where the integer τ > 0 and the closed and convex set ∆G(g, ρ) ⊂ IRm are
determined from the outset whereas ρ(t) is a time-varying scalar parameter
selected on-line. The definitions and meanings of τ , ∆G(g, ρ) and ρ(·) will be
introduced and discussed later.

The first difference with the standard CG design method is relies on the
disturbance effects and their management by the proposed scheme. In fact,
while in the standard CG approach the virtual evolutions c̄(k, x, g) in (2.8) are
computed on the basis of the measured state x(t) and the effect of disturbances
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t

τ
g(t)

g(t-τ)

r(t)

t-τ t+τ
Δg(t)

Fig. 3.2. Graphical representation of technical expedients adopted.

on the predictions can be exactly characterized along the prediction horizon,
such an information is not here available and the disturbances need to be taken
into account as if they were acting on each element of the sequence c̄(k, x, g)
starting from a remote time instant. In order to deal with this problem, denote

x(t) = x̂(t) + x̃(t) (3.2)

where x̂ is the disturbance-free component of the state and x̃ depending only
on the disturbances. Then, c̄(k, x, g) can be rewritten as the sum of three
terms

c(k, x, g, d(·)) = c̄(k, x̂, g) + c̃(k, d(·)) +HcΦ
kx̃. (3.3)

Note that if no state measure is available, x̃ is not identified as a single vector
but is a set instead depending on all possible disturbance history d(·) ∈ D. It
can be characterized as

HcΦ
kx̃=

∪
d(·)∈D

{
HcΦ

k
0∑

i=−∞
Φ−iGdd(i− 1)

}
⊆

∞∑
i=k

HcΦ
iGdD. (3.4)

By recalling equations (2.9), we know that

c̃(k, d(·)) ⊆ LdD ⊕
k−1∑
i=0

HcΦ
iGdD

which implies that the following inclusion holds true

c̃(k, d(·)) +HcΦ
kx̃ ⊆ ∆∞. (3.5)
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It finally results that c̄(k, x̂, g) ∈ C∞, ∀k ∈ ZZ+ =⇒ c(k, x, g, d(·)) ⊂ C, ∀k ∈
ZZ+ . As a consequence, in the present context, the constraints fulfilment is
obtained by ensuring that

c̄(k, x̂, g) ∈ C∞,∀k ∈ ZZ+ . (3.6)

Such a condition can be further simplified by manipulating the virtual evolu-
tions c̄(k, x, g) as follows

c̄(k, x̂, g) = cg +HcΦ
k(x̂− xg) (3.7)

where xg and cg represent the steady-state values of the state and constrained
vector already defined in (2.12)-(2.13) andHcΦ

k(x̂−xg) the constrained vector
transient evolution. Like in the standard CG solution, we will restrict our

g
gc

C

C

Fig. 3.3. Geometrical representation of condition (3.8) for c ∈ IR2

attention to virtual commands g contained in Wδ. Then, the steady-state
component of the virtual evolutions will always belong to Cδ, viz. cg ∈ Cδ. As
depicted in Figure 3.3, a sufficient condition to ensure that the constraints
will be satisfied, although in a quite arbitrary and conservative way, is that
of ensuring that the vanishing transient component of c̄ is confined into a ball
of radius ρg

∥HcΦ
k(x̂− xg)∥ ≤ ρg,∀k ≥ 0 (3.8)

where ρg represents the minimum distance between cg and the border of C∞.
Such a quantity can be computed by solving the following simple optimization
problem

ρg := argmaxρ ρ
subject to Bρ(cg) ⊆ C∞.

(3.9)

where Bρ(cg) represents the ball of radius ρ centered in cg. Notice that, by
construction, ρg ≥ δ,∀g ∈ Wδ. Details on the solution of (3.9) are reported
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in next Subsection 3.2.2. Then, the key idea behind the construction of an
effective FF-CG algorithm is as follows: the FF-CG modifies command signal
only every τ steps under the assumption that, at time t − τ , a command
g(t − τ) ∈ Wδ has been computed such that the transient component of
c̄(k, x̂(t− τ), g(t− τ)) is confined in a ball of known radius ρ(t− τ) (which is
also contained into the ball of radius ρg(t−τ)). This makes the condition (3.8)
to hold true, i.e.

∥ HcΦ
k(x̂(t− τ)− xg(t−τ)) ∥≤ ρ(t− τ) ≤ ρg(t−τ), ∀k ≥ 0. (3.10)

If we build an algorithm which, on the basis of the above information, were
able to select at time t a new command g(t) ∈ Wδ and a scalar ρ(t) ≥ 0 such
that the transient components of c̄(k, x̂(t), g(t)) were confined within a ball of
radius ρ(t) ≤ ρg(t), then the constraints would be again satisfied, i.e.

∥ HcΦ
k(x̂(t)− xg(t)) ∥≤ ρ(t) ≤ ρg(t),∀k ≥ 0 (3.11)

and, by induction, a FF-CG command g(t) would be proved to exist at each
time instant t ∈ ZZ+ provided that it would exist at time t = 0. It is worth
noticing that ρ(t) and ρg represent two distinct terms in the sense that ρ(t)
represents the actual ”radius” of a ball that contains the future transient
evolutions of c̄, while ρg is the maximum value (depending on g) that such
a radius may assume without violating the constraints. It is important to
separate the two concepts because in many cases ρ(t) << ρg.

The term ∥ HcΦ
k(x̂(t)−xg(t)) ∥ can be bounded. By observing that, if we

wait for a sufficient long time after the application of a new FF-CG command,
the transient contribution decreases and its 2-norm reduces of a certain frac-
tion of its initial value. The following notion of Generalized Settling Time can
be stated:

Definition 3.1. (Generalized Settling Time) - The integer τ > 0 is said
to be a Generalized Settling Time with parameter γ, with 0 < γ < 1, for the
pair (Hc, Φ), if

∥HcΦ
kx∥≤ M(x), ∀k = 0, 1, ..., τ − 1

⇓
∥HcΦ

τ+kx∥≤ γM(x),∀k ≥ 0
(3.12)

holds true for each x ∈ IRn, with the real M(x) > 0 any upper-bound to
∥HcΦ

kx∥,∀k ≥ 0.

As a consequence, if the time interval between two command variations τ
were chosen to be a generalized settling time with parameter γ ∈ (0, 1) and
g(t− τ) = g(t− τ +1) = ... = g(t− 1), the disturbance free c-transient would
be bounded as follows
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∥ HcΦ
k(x̂(t)− xg(t−τ)) ∥≤ γρ(t− τ), ∀k ≥ 0, (3.13)

because Φτ (x̂(t− τ)− xg(t−τ)) = (x̂(t)− xg(t−τ)). The latter observation can
be used to characterize the set of all possible feasible commands which may
be applied at time t complying with the constraint (3.11). To this end, let
us parameterize the generic, non necessarily feasible, command g ∈ Wδ to be
applied to the system at time t as the sum of the previously applied command
g(t − τ) and of a command increment ∆g to be determined by the FF-CG,
i.e. g = g(t− τ) +∆g. By noticing that x∆g = xg − xg(t−τ) and by exploiting
the triangular inequality, we can easily bound the transient component of
c̄(k, x̂(t), g) as follows

∥ HcΦ
k(x̂(t)− xg) ∥=∥ HcΦ

k(x̂(t)− xg(t−τ))−HcΦ
kx∆g ∥ (3.14)

≤ ∥HcΦ
k(x̂(t)−xg(t−τ))∥ + ∥HcΦ

kx∆g∥ (3.15)

≤ γρ(t− τ)+ ∥HcΦ
kx∆g ∥≤ ρ(t), ∀k ≥ 0. (3.16)

Then, a possible way to define the scalar ρ(t) at time t complying with (3.16)
is:

ρ(t) := γρ(t− τ) +maxk≥0 ∥ HcΦ
kx∆g ∥ (3.17)

where such a bound, as will be clearer in the next Section, is finitely deter-
minable w.r.t. k. Moreover, note also that it does not depend on the state but
only on ρ(t− τ) ≤ ρg(t−τ) and on the free command increment ∆g, which has
to be determined so that (3.11) holds true. By direct examination, the latter
requirement simply consists of selecting ∆g such that ρ(t) ≤ ρg. In fact, the
last condition can be explicitly rewritten as follows

∥ HcΦ
kx∆g ∥≤ ρg(t−τ)+∆g − γρ(t− τ),∀k ≥ 0. (3.18)

Finally, by recalling the static map x∆g = (I−Φ)−1G∆g, the set of all feasible
FF-CG commands at time t can be characterized as{

g ∈ Wδ

(g − g(t− τ)) ∈ ∆G(g(t− τ), ρ(t− τ))
(3.19)

where ∆G(g, ρ) is defined as the set of all τ -step incremental commands from
g(t− τ) ensuring inequality (3.18) to hold true:

∆G(g, ρ) :=
{
∆g :∥HcΦ

k(I−Φ)−1G∆g∥≤ ρg+∆g−γρ,∀k ≥ 0
}
. (3.20)

The properties of above set will be detailed in next Section 3.2 where it will
be shown that it is finitely determinable ((3.18) have to be explicitly checked
only for 0 ≤ k ≤ k0, where k0 is a certain integer k0 ≤ τ) convex and closed
set. Moreover, it will be proved that it is nonempty because it always contains
a ball of radius η∗ > 0,∆G(g, ρ) ⊇ Bη∗ for any possible command g ∈ Wδ and
for any scalar ρ : 0 ≤ ρ ≤ ρg. Finally, by using the same selection index of
the standard CG approach, we can formulate the Feed-Forward CG algorithm
as follows
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Algorithm 3.1.1 The FF-CG Algorithm
at each time t=kτ, k=1, 2 . . .

1.1solve
g(t) = argmin

g
∥ g − r(t) ∥2Ψ (3.21)

subject to (3.19)
1.2apply g(t) for the next τ steps
1.3update ρ(t) = γρ(t− τ) +maxk≥0 ∥ HcΦ

k(I − Φ)−1G∆g(t) ∥ .

It is possible to prove that, under the assumption that a feasible couple
(g(0), ρ(0)) complying with (3.11) is known at time t = 0 (which also im-
plies constraints specification and disturbance set D which make Wδ and
G(g(0), ρ(0)) non-empty), the above FF-CG scheme enjoys the following prop-
erties:

Theorem 3.2. - Let assumptions A1-A2 be fulfilled. Consider system (2.1)
along with the FF-CG selection rule and let an admissible command signal
g(0) ∈ Wδ be applied at t = 0 and a scalar ρ(0) exist such that ∥ HcΦ

k(x(0)−
xg(0)) ∥≤ ρ(0) ≤ ρg(0), ∀k ≥ 0. Then:

1. At each istant t=kτ, k ∈ ZZ+, the minimizer in (3.21) uniquely exists and
can be obtained by solving a convex constrained optimization problem;

2. The system acted by the FF-CG never violates the constraints, i.e. c(t) ∈ C
for all t ∈ ZZ+ regardless of any possible admissible disturbance realization
d(·) ∈ D. Namely at each time step such a vector will satisfy:

c(t) ∈
(
cg(t) ⊕ Bρ(t)

)
⊕∆∞,∀t ∈ ZZ+ (3.22)

where the term
(
cg(t) + Bρ(t)

)
is a ball of center cg(t) and radius ρ(t) <

ρg(t), g(t) = g
(⌊

t
τ

⌋
τ
)
and ρ(t) = ρ

(⌊
t
τ

⌋
τ
)
. ⌊·⌋ denotes the standard floor

operator;
3. The disturbance-free state x̂(t) lies into a convex and closed set centered

in the steady-state value xg(t−1), i.e.

x̂(t) ∈
(
xg(t−1) ⊕Xρ(t),∀t ∈ ZZ+

)
(3.23)

where
Xρ=

{
x∈ IRn

∣∣||HcΦ
kx||≤ρ, k=0, ...,∞

}
. (3.24)

Moreover, if (Hc, Φ) is observable, Xρ is compact.
4. Whenever r(t) ≡ r, with r a constant set-point, the sequence of g(t)’s

converges in finite time either to r or to its best admissible steady-state
approximation r̂, i.e. ∃t′ > 0 such that

g(t) = r̂ := arg min
g∈Wδ

∥g−r∥2Ψ ,∀t≥ t′ (3.25)

and moreover
lim
t→∞

x̂(t) = xr̂, lim
t→∞

ŷ(t) = yr̂ = r̂. (3.26)
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Proof

1) The existence of an admissible solution at each time instant kτ can be
proved by simply remarking that g(t) = g(t− τ), to be chosen along with
ρ(t) = γρ(t − τ), is always an admissible, although not necessarily the
optimal, solution for the prescribed problem at time t. Moreover, being
the admissible region (3.19) the intersection of two convex regions Wδ and
∆G(g, ρ) it results to be a convex set as well. Then, a minimizer for the
constrained optimization problem (3.21) subject to (3.19) always exists
and its uniqueness follows from the strict convexity of its cost function
and admissible region.

2) At each time instant t = kτ , with k ∈ ZZ+, a command g(kτ) comply-
ing with (3.19) is applied to the plant. By construction, the latter im-
plies that the set-valued virtual predictions along the virtual time i de-
fined in (2.7) satisfy c(i, x(kτ), g(kτ), d(·)) ⊆ C, ∀d(·) ∈ D, ∀i ∈ ZZ+ .
Then, the statement is proved by simply noticing that the inclusion
c(t) ∈ c(i, x(kτ), g(kτ), d(·)) ⊆ C, ∀d(·) ∈ D holds true for all time in-
stants t = kτ + i, i ∈ {0, 1, ..., τ − 1} and by repeating the same argument
for all k ∈ ZZ+. Moreover, it can be observed that, under the FF-CG ac-
tion g(kτ), ĉ(t) = c̄(i, x̂(kτ), g(kτ)), for t = kτ + i,∀i ∈ {0, 1, ..., τ − 1}.
Then, the fulfillment of conditions (3.19) implies, via equation (3.11), that
∥c̄(i, x̂(kτ), g(kτ)) − cg(kτ)∥ ≤ ρ(kτ),∀i ∈ ZZ+, which, by combining the
latter with (3.3) and (3.5), implies (3.22).

3) Conditions (3.23) and (3.24) simply follow by noting that, thanks to (3.11),
the following bound holds true

∥HcΦ
k+i
(
x̂(t)−xg(t)

)
∥=∥HcΦ

k
(
x̂(t+i)−xg(t)

)
∥ ≤ ρ(t),

i=0, ..., τ − 1, k=0, ...,∞ (3.27)

The convexity of the set X (ρ) can be proved by means of classical trian-
gular inequalities arguments. In fact, because∥∥HcΦ

k (λx′ + (1− λ)x′′)
∥∥ =

∥∥λHcΦ
kx′ + (1− λ)HcΦ

kx′′
∥∥ ≤

≤ λ
∥∥HcΦ

kx′
∥∥+ (1− λ)

∥∥HcΦ
kx′′
∥∥ (3.28)

one can state that if x′, x′′ ∈ X (ρ) for a fixed value of ρ, then (λx′ +
(1 − λ)x′′) ∈ X (ρ),∀λ ∈ [0 1]. Finally, consider the first n conditions
∥HcΦ

kx∥ ≤ ρ, k = 0, 1, ..., n−1 of (3.24). They define a compact set inside
the image of the linear map cx = Θx with Θ the Observability matrix

Θ := [(Hc)
T (HcΦ)

T (HcΦ
2)T . . . (HcΦ

n−1)T ]T

and
cx := [(Hcx)

T , (HcΦx)
T , ..., (HcΦ

n−1x)T ]T (3.29)

Whenever the pair (Hc, Φ) is completely observable, the rank of Θ is
full and coincides with its column-rank n. In this case, the linear map
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between x and cx is injective and admits the left-inverse operator x =
(ΘTΘ)−1ΘT cx. As a consequence, any compact set inside the image of Θ
has a compact pre-image on x.

4) Consider r(t) = r,∀t ≥ t∗ and assume, without loss of generality, Ψ = I.
Let g(t) be the FF-CG action at time t, solution of the optimization prob-
lem (3.21) with optimal cost V 2(t) =∥ g(t) − r ∥2 . Clearly, V (t) corre-
sponds to the minimal Euclidean distance between g(t) and r compatible
with the constraints. As already stated, at time t + τ, g(t) is still an ad-
missible, though not necessarily the optimal, solution at time t+1. Hence

V (t+ τ) =∥ g(t+ τ)− r ∥≤∥ g(t)− r ∥= V (t). (3.30)

Thus V (t), for constant set-points r(t) ≡ r, is a monotonically not in-
creasing sequence. In order to prove the finite-time convergence of this
succession to r̂, it is enough to evaluate the two possible exclusive situa-
tions:
1 - if the optimal g(t + τ) is such that ∆g(t + τ) belongs to the interior

of ∆G(g(t), ρ(t)), i.e. ∆g(t + τ) ∈ In[∆G(g(t), ρ(t))], then no points
g ∈ Wδ belonging to any sufficiently small neighborhood g ∈ Ξ of
g(t + τ) would give rise to a lower cost ∥ g − r ∥<∥ g(t + τ) − r ∥,
for all g ∈ Ξ. This implies that, because of convexity of the objective
function (3.21), g(t+ τ) = r̂.

2 - if g(t+τ) is such that ∆g(t+τ) belongs to the border of ∆G(g(t), ρ(t)),
then, because of Proposition 3.5’s results, the distance between the old
command g(t) and the new command g(t + τ) is at least η∗. This
implies that V (t + τ) will at least decrease by either η∗, in the case
g(t+ τ) ∈ In[Wδ], or a fixed and computable amount ∆Vmin(r) > 0 in
the case g(t+ τ) belongs also to the border of Wδ.

The latter allows one to conclude that for any r ∈ IRm there exists an
integer

t′ ≤ τ

⌈
V (0)− V̂r

∆Vmin(r)

⌉
(3.31)

with ⌈·⌉ denoting the ceiling operator and V̂r := ∥r̂−r∥. Finally, conditions
(3.26) follow directly from A1-A2.

3.2 Solvability and Computability

In this section, a complete characterization of the main properties of the
generalized settling time τ and of the convex set ∆G(g, ρ) will be provided
along with a description of the underlying computational aspects. Moreover,
in the last subsection we will show how proposed general schemes can be
properly tailored for the special (but very common) box constraints case.
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3.2.1 Generalized Settling Time τ

In order to build an efficient FF-CG algorithm is important to determine a
good estimate of the minimum generalized settling time τ for a given factor
value γ. As a first step, let us recall the following result proved in [1]:

Lemma 3.3. Let Φ asymptotically stable. Then, for any x ∈ IRn there exists
an integer k0 ∈ Z+ such that ∥HcΦ

kx∥ ≤ M,k = 0, . . . , k0 implies ∥HcΦ
kx∥ ≤

M,k = k0 + 1, ...,∞ for a whatever sufficiently large positive real M ∈ IR+.

As already noticed, such a result makes many of the quantities (e.g. G(g, ρ)
in (3.20)) of the above FF-CG scheme finitely determinable once the integer
k0 is determined, e.g. via the algorithm provided in Section 2.3. Interestingly
enough such an integer k0 can be seen as a particular case of a generalized
settling time when γ = 1. The following result shows, for the general case
of γ < 1, the existence of an analytically determinable upper-bound to the
minimum generalized settling time:

Lemma 3.4. Let the pair (Ho
c , Φ

o) be the observable subsystem obtained via
a canonical Kalman observability decomposition of (Hc, Φ) and Φ be asymp-
totically stable. Then, the integer

τ̄=

logλ
 γ

σ̄(Ho
c )Bσ̄

{
((Θo)TΘo)

−1
(Θo)T

}√
n

 (3.32)

provides an upper-bound to the minimum generalized settling time τ with

parameter γ for (Hc, Φ), where Θ
o :=

[
(Ho

c )
T , (Ho

cΦ
o)T , . . . , (Ho

c (Φ
o)n−1)T

]T
and B and λ two scalars such that ||(Φo)k|| ≤ Bλk.

Proof - First observe that the constraints are influenced only by the observable
part of the state xo, with xo = P ox and P o accounting for the change of
state coordinates defined by the Kalman observability decomposition. In fact,
one has that HcΦ

kx = Ho
c (Φ

o)kxo, ∀k ∈ ZZ+ . Moreover, the asymptotical
stability of Φ (and hence of Φo) implies the exponential convergence of its
modes. Then, there exist two computable positive scalars B > 0, λ ∈ (0, 1)
such that ∥(Φo)k∥ ≤ Bλk. Our goal is to find an integer τ such that if

||Ho
c (Φ

o)kxo|| ≤ M(xo), k = 0, ...,∞ (3.33)

then ||Ho
c (Φ

o)k+τxo|| ≤ γM(xo), k = 0, ...,∞ follows. By resorting to the
notation and results of Theorem 3.2, we can prove that

∥xo∥ =
∥∥∥((Θo)TΘo

)−1
(Θo)T cx

∥∥∥ ≤ σ̄
{(

(Θo)TΘo
)−1

(Θo)T
}
∥cx∥ , (3.34)

where cx is the vector defined in (3.29) and σ̄
{(

(Θo)TΘo
)−1

(Θo)T
}
denotes

the largest singular value of
(
(Θo)TΘo

)−1
(Θo)T . Under the hypothesis (3.33)

holding true, we can easily show that
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∥cx∥2 = ||Ho
cx

o||2 + ||Ho
cΦ

oxo||2 + . . .+ ||Ho
c (Φ

o)n−1xo||2 ≤ nM2(xo) (3.35)

and, because ∥cx∥ ≤
√
nM(xo), we can bound ||xo|| as

∥xo∥ ≤ σ̄
{(

(Θo)TΘo
)−1

(Θo)T
}√

nM(xo). (3.36)

Then, by exploiting the exponential stability of Φo, the term ∥Ho
c (Φ

o)kxo∥
can be bounded as

∥Ho
c (Φ

o)kxo∥ ≤ σ̄(Ho
c )Bλkσ̄

{(
(Θo)TΘo

)−1
(Θo)T

}√
nM(xo). (3.37)

and an upper-bound to the minimum generalized settling time can be deter-
mined by looking for the minimum integer τ such that

σ̄(Ho
c )Bλτ σ̄

{(
(Θo)TΘo

)−1
(Θo)T

}
M(xo)

√
n≤γM(xo). (3.38)

Finally, (3.32) is obtained by resorting to the logarithms’ properties.
The settling time value obtained by means of the previous result might be

quite conservative. Hereafter we propose a method to find tighter value of τ
complying with (3.12). Note first that, for our goals, we do not need to verify
(3.12) for all x ∈ IRn, but we can restrict our attention to a convex and closed
set described by a finite number of constraints:

Ω :=
{
x∈ IRn : ∥HcΦ

kx∥≤ρmax, k=0, ...,∞
}
=

=
{
x ∈ IRn : ∥HcΦ

kx∥≤ρmax, k=0, ..., k0
}

with k0 complying with Lemma 3.3 as computed in Section 2.3 and ρmax =
maxg∈Wδ

ρg denoting the maximum distance ρg between the steady-state
value cg and C∞ frontier obtainable for any admissible input vector g ∈ Wδ.
Then, our task is to find an integer τ ensuring that the satisfaction of

∥ HcΦ
kx ∥≤M(x), ∀x ∈ Ω, ∀k = 0, . . . , τ−1 (3.39)

for someM(x) implying that ∥ HcΦ
τ+ix ∥≤ γM(x),∀x ∈ Ω,∀i = 0, . . . , k0 are

satisfied as well. Consider now the function M ′(x) := maxk=0,...,τ−1 ∥HcΦ
kx∥.

By construction, such a function is a lower-bound for any possible M(x) com-
plying with (3.39). Because M ′(x) ≤ M(x), we can recast the computation of
the generalized settling time as the problem of finding an integer τ such that

∥ HcΦ
τ+ix ∥≤γ max

k=0,...,τ−1
∥HcΦ

kx∥,∀x∈Ω,∀i=0, . . . , k0.

A necessary and sufficient condition for the latter is that there exists an integer
k ∈ {0, ..., τ − 1} such that γ ∥ HcΦ

kx ∥ − ∥ HcΦ
τ+ix ∥≥ 0,∀x ∈ Ω,∀i =

0, . . . , k0. Then, our goal can be rewritten as the problem of finding a τ such
that there exists a k ∈ {0, ..., τ − 1} ensuring

min
x∈Ω

(
γ ∥ HcΦ

kx ∥−∥ HcΦ
τ+ix ∥

)
≥0,∀i=0, . . . , k0. (3.40)
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The latter reformulation can be used to build up an algorithm for the deter-
mination of the minimum τ by performing a binary search in the range [1, τ̄ ]
as follows

Algorithm 3.2.1 Generalized Settling Time Algorithm

1.1 set l := 1
1.2 set l̄ := τ̄
1.3repeat until l̄ − l > 1

1.3.1 set τ := ⌈(l + l̄)/2
1.3.2 if τ is such that it exists k ∈ {1, ..., τ − 1} ensuring (3.40)

1.3.2.1 set l̄ := τ
else
1.3.2.2 set l := τ

1.3.3 go to (3.1)

Note that even such an algorithm is heavy from a computational point of
view, it is not unrealistic to off-line solve it from the outset. Furthermore, it
is worth to remark that even if problem (3.40) is non-convex, it relies in the
special class of the Difference of Convex functions programming (a.k.a. DC
programming) problems and can be thus solved in an efficient way (see the
Appendix).

3.2.2 Computation and properties of ∆G(g, ρ)

The goal of this subsection is to completely characterize the set ∆G(g, ρ) when
C∞ consists of polyhedral constraints, which are described as a collection of
linear inequalities to computed by following the procedure (2.37-2.46)

C∞ := {c ∈ IRnc : Tc ≤ qkε} (3.41)

where T = [T1, ..., Tnv ]
T ∈ IRnv×nc , qkε =

[
qkε
1 , ..., qkε

nv

]T
∈ IRnv and the

operator ≤ acts component-wise. By resorting to its definition in (3.20) and
by exploiting Lemma 3.3, the set ∆G(g, ρ) consists of all vectors ∆g such that
inequalities ||HcΦ

k(I − Φ)−1G∆g∥≤ ρg+∆g − γρ hold true for k = 0, ..., k0.
The first step in order to understand the meaning of the above inequali-

ties is to make clear what the term ρg+∆g is. By definition (3.9), the latter
represents the minimum Euclidean distance between cg+∆g and the border of
the admissible set C∞. Being the admissible set a polyhedron, such a distance
can be computed as the minimum of the Euclidean distances between the
point cg+∆g and each of the hyperplanes TT

i c = qkε
i , i = 1, . . . , nv defining

the half-spaces TT
i c ≤ qkε

i , i = 1, . . . , nv. By using standard geometrical re-
sults, such a distance can be computed as the solution of the following linear
programming problem
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ρg+∆g = maxρ̄ρ̄ (3.42)

subject to : 0 ≤ ρ̄ ≤ qkε
i − TT

i cg+∆g

||Ti||
, i = 1, ..., nv (3.43)

where the scalar ρ̄ is a slack variable and the right-most term in (3.43) de-
scribes the standard unsigned Euclidean distance between cg+∆g and the i-
th hyperplane describing the boundaries of the polyhedral set C∞. Because
cg+∆g ∈ C∞, such a term is always non-negative. The latter expression allows
one to describe the set ∆G(g, ρ) as the set of vectors ∆g such that a positive
scalar ρ̄ ≥ γρ exists ensuring

∥ HcΦ
k(I − Φ)−1G∆g∥≤ ρ̄− γρ, k = 0, ..., k0 (3.44)

ρ̄≤
qkε
i − TT

i

[
Hc(I − Φ)−1G(g+∆g)+L(g+∆g)

]
||Ti||

, i = 1,...,nv

By means of the previous recasting and by taking into account the evaluation
of set Wδ in (2.49), the problem (3.21) at the generic time instant t, involving
conditions (3.19) can be translated as

g(t) = argming(g − r(t))TΨ(g − r(t))

s.t.


T
(
Hc(I − Φ)−1G+ L

)
g ≤ qkε − (ε+ δ)[

√
TT
i Ti]

∥ Ti ∥∥ HcΦ
k(I − Φ)−1G(g − g(t− τ)) ∥

+ TT
i (Hc(I − Φ)−1G+ L)g ≤ qkε

i − (ε+ γρ(t− τ))
√
TT
i Ti,

i = 1, ..., nv, k = 0, ..., k0
(3.45)

where [
√
TT
i Ti] is defined in (2.24), k0 is computed by means of Algorithm

2.3.2 and τ for the considered γ is evaluated according to Algorithm 3.2.1
Moreover, formulation (3.44) allows one to prove the following properties.

Proposition 3.5. - Let the set ∆G(g, ρ) be characterized by (3.44)-(3.45) for
any g ∈ Wδ and ρ ∈ IR such that, 0 ≤ ρ ≤ ρg. Then, such a set results:

1. convex, closed and finitely determinable;
2. nonempty. In particular, there exists a scalar η∗ > 0 such that the set

∆G(g, ρ) contains a ball of radius η∗, i.e. ∃η∗ > 0 : ∆G(g, ρ) ⊇ Bη∗ , ∀g ∈
Wδ,∀ρ ≤ ρg, ρ ≥ 0;

3. compact, whenever rank{Go} = m where the tuple (Ho
c , Φ

o, Go) is the
observable subsystem obtained via a canonical Kalman observability de-
composition of (Hc, Φ,G).

Proof - 1) Closure and finite constraints cardinality follow by the fact that
the set ∆G(g, ρ) may be computed by means of the finite set of non-strict in-
equalities (3.44)-(3.45). For what regards convexity, let us assume two vectors
[∆gT1 , ρ̄1]

T and [∆gT2 , ρ̄2]
T are given complying with (3.44)-(3.45). We need to
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prove that, for any λ ∈ [0, 1], the vector [λ∆gT1 +(1−λ)∆gT2 , λρ̄1+(1−λ)ρ̄2]
T

still complies with (3.44)-(3.45). This may be trivially verified for what regards
the linear inequalities (3.45). Let us focus on the left hand side (3.44). By the
triangular inequality, we obtain

∥HcΦ
k(I−Φ)−1G(λ∆g1+(1−λ)∆g2)∥

=∥λHcΦ
k(I−Φ)−1G∆g1+(1−λ)HcΦ

k(I−Φ)−1G∆g2∥
≤λ∥HcΦ

k(I−Φ)−1G∆g1∥+(1−λ)∥HcΦ
k(I−Φ)−1G∆g2∥,

k = 0, ..., k0

Then, because [∆gT1 , ρ̄1]
T and [∆gT2 , ρ̄2]

T satisfy (3.44), for λ ≥ 0, (1−λ) ≥ 0
we obtain

∥HcΦ
k(I−Φ)−1G(λ∆g1+(1− λ)∆g2)∥

≤ λ(ρ̄1−γρ)+(1−λ)(ρ̄2−γρ) = (λρ̄1+(1−λ)ρ̄2)−γρ,

for all k = 0, ..., k0 which finally ensures

∥HcΦ
k(I − Φ)−1G(λ∆g1 + (1− λ)∆g2)∥

≤ (λρ̄1 + (1− λ)ρ̄2)− γρ, k = 0, ..., k0.

2) If we denote the Euclidean distance between the point cg and the i-th

support hyperplane of C∞ as ρg,i =
qkε
i

−(TT
i (Hc(I−Φ)−1G+L)g)

∥Ti∥ , i = 1, .., nv we

can rewrite the inequality (3.45) as

ρ̄ ≤ ρg,i −
TT
i

(
Hc(I − Φ)−1G+ L

)
∆g

∥ Ti ∥
, i = 1, . . . , nv (3.46)

By combining (3.46) with (3.44), we can also rewrite ∆G(g, ρ) as the set of
all vectors ∆g such that

∥HcΦ
k(I−Φ)−1G∆g∥≤ρg,i−

TT
i (Hc(I−Φ)−1G+L)∆g

∥Ti∥ −γρ, k ≥ 0, i=1, . . . , nv.

(3.47)
Then, because ρg ≥ ρ, a sufficient condition ensuring (3.47) holding true is
given by

∥HcΦ
k(I−Φ)−1G∆g∥≤−TT

i (Hc(I−Φ)−1G+L)∆g

∥Ti∥ + ρg,i−γρg, k ≥ 0, i = 1, . . . , nv.

(3.48)
Let us focus now on the term ρg,i − γρg. By construction ρg ≤ ρg,i. Then,
ρg,i − γρg ≥ (1 − γ)ρg ≥ 0. Moreover, g ∈ Wδ implies that ρg ≥ δ. Then,
ρg,i − γρg ≥ (1− γ)δ and the condition (3.48) can be rewritten as

∥HcΦ
k(I−Φ)−1G∆g∥+|T

T
i (Hc(I−Φ)−1G+L)∆g|

∥Ti∥ ≤ (1− γ)δ, k ≥ 0, i = 1, . . . , nv.

(3.49)
Now, if we decompose the FF-CG action increment ∆g ∈ IRm as the product
of an arbitrary unitary vector v̂ ∈ IRm (||v̂|| = 1) and of scalar η > 0, such
that ∆g = v̂η, condition (3.49) becomes
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η

(
∥HcΦ

k(I−Φ)−1Gv̂∥+|T
T
i (Hc(I−Φ)−1G+L)v̂|

∥Ti∥

)
≤ (1−γ)δ, k ≥ 0, i = 1, . . . , nv.

(3.50)
To prove the claim it is enough to note that, for each possible k ≥ 0, i =
1, ..., nv and for any possible direction v̂, the term ∥ HcΦ

k(I−Φ)−1Gv̂ ∥ +
|TT

i (Hc(I−Φ)−1G+L)v̂|
∥Ti∥ is bounded. Then, there exists a sufficiently small value

η∗ such that inequality (3.50) holds true for any possible direction vector v̂
and for any η ≤ η∗.
3) In order to prove compactness consider that, being C∞ a compact set, the
scalar ρmax ≥ ρg,∀g ∈ Wδ is always bounded. Then, a necessary condition
for (3.44) being satisfied is

∥ HcΦ
k(I − Φ)−1G∆g∥≤ ρmax, k ≥ 0, (3.51)

which is equivalent to

∥ Ho
c (Φ

o)k(I − Φo)−1Go∆g∥≤ ρmax, k ≥ 0. (3.52)

By resorting to the same arguments used in Theorem 1, the latter implies that
for any admissible ∆g ∈ ∆G(g(t−τ), ρ(t−τ)) the vector v = (I−Φo)−1Go∆g
belongs to set of observable states which can be shown to be compact with
the same arguments used in the proof of item 2 of Theorem 3.2. This finally
implies that all ∆g inverse-images of such v have to belong to a compact
set as well if the matrix (I − Φo)−1Go is full column rank, which requires
rank{Go} = m, being (I − Φo)−1 invertible by assumption.

3.2.3 The special case of box constraints

In many practical applications the constraints have a box structure

C := {c ∈ IRnc

: q
i
≤ ci ≤ q̄i, i = 1, . . . , nc.} (3.53)

with q
i
∈ IR and q̄i ∈ IR representing respectively the maximum and the

minimum value that the i-th component of the constrained vector c may
assume. By exploiting this particular constraints structure it is possible to
simplify the design of the presented FF-CG and reduce its conservativeness.
The main insight is that we can easily decompose the constraint set C∞ into
the Cartesian product of nc sets of scalar intervals:

C = C(1) × C(2) × ...× C(nc) (3.54)

where
C(i) :=

{
ci ∈ IR

∣∣∣q
i
≤ ci ≤ q̄i

}
(3.55)

or equivalently

C(i) :=

{
ci ∈ IR

∣∣∣∣[ ci
−ci

]
≤
[

q̄i
−qi

]}
. (3.56)
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As consequence, the set C∞ results decomposed in nc decoupled subsets as
well as C(i)

C∞ = C(1)
∞ × C(2)

∞ × ...× C(nc)
∞ (3.57)

where, by exploiting procedure (2.37-2.46), each set C(i)
∞ has the following

formulation

C(i)
∞ :=

{
ci ∈ IR

∣∣∣∣[ ci
−ci

]
≤
[

q̄kϵ
i − (ε+ δ)

−qi
kϵ − (ε+ δ)

]}
(3.58)

While this structure does not give any benefit in the computation of the set
Wδ, it may give advantages in the computation of the command increment
∆g. The idea is that, if we choose ∆gi such that ĉi(k, x̂(t), gi(t)) ∈ C(i), k ≥ 0
for all i = 1, ..., nc, then c̄(k, x̂(t), g(t)) ∈ C∞, k ≥ 0. This can be easily ex-
ploited by means of the following algorithm:

Algorithm 3.2.2 The FF-CG Algorithm (Box constraints)
at each time t=κτ, κ=1, 2 . . .

1.1solve
g(t) = argmin

g
∥ g − r(t) ∥2Ψ (3.59)

subject to{
g ∈ Wδ

(g−g(t−τ))∈∆G(i)(g(t−τ), ρ(i)(t−τ)), i=1, ..., nc
(3.60)

1.2apply g(t)
1.3update ρ(i)(t) = γρ(i)(t − τ) + maxk≥0{|Hc,iΦ

k(I − Φ)−1G∆g|}, i =
1, . . . , nc

where Hc,i represents the i-th line of Hc and sets ∆G(i)(g, ρ(i)) are defined as

∆G(i)(g, ρ(i)) :=
{
∆g∈ IRn: |Hc,iΦ

k(I−Φ)−1G∆g|≤ρ
(i)
g+∆g−γρ(i), k≥0

}
. (3.61)

Note that, being the Euclidean distance defined as

ρ
(i)
g+∆g = min

{
cig+∆g − qkε

i
, q̄kε

i − cig+∆g

}
(3.62)

those sets are very easily computable. In fact, in this case (3.59)-(3.60) can
be recast in the following QP problem with linear constraints

g(t) = argming(g − r(t))TΨ(g − r(t))

s.t.



(Sc,i) g ≤ q̄kε
i − δ

(−Sc,i) g ≤ −qkε

i
− δ

(Rk
c,i + Sc,i)g −Rk

c,ig(t− τ) ≤ q̄kε
i − (ε+ δ)− γρ(i)(t− τ)

(−Rk
c,i + Sc,i)g +Rk

c,ig(t− τ) ≤ q̄kε
i − (ε+ δ)− γρ(i)(t− τ)

(Rk
c,i − Sc,i)g −Rk

c,ig(t− τ) ≤ −qkε

i
− (ε+ δ)− γρ(i)(t− τ)

(−Rk
c,i − Sc,i)g +Rk

c,ig(t− τ) ≤ −qkε

i
− (ε+ δ)− γρ(i)(t− τ),

i = 1, ..., nc, k = 0, ..., k0
(3.63)
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where
Rk

c,i := Hc,iΦ
k(I − Φ)−1G (3.64)

Sc,i := Hc,i(I − Φ)−1G+ L. (3.65)

Note that also the computation of the generalized settling time with parameter
γ can be simplified in this case. In fact, it can be computed as the largest
of all settling times obtained for each single constrained variable, i.e. τ =
maxi=1,...,nc{τ (i)} where τ (i) is the settling time with parameter γ for the
pair (Φ,Hc,i).

3.3 Simulation Studies

In this section, we investigate the effect of different choices of the free param-
eters involved in the FF-CG design. A simple example will be used for that
purposes and also to make comparisons with the classical CG solution. The
simulation results presented hereafter have been achieved by using Matlab
7.12 + Simulink 7.7 on a Core 2 Quad personal computer. The standard Mat-
lab fmincon.m routine was used for the quadratic optimization. Consider the
following linear time invariant systemx(t+ 1) = Φx(t) +Gg(t)

y(t) = Hyx(t)
c(t) = Hcx(t)

(3.66)

where

Φ =

[
1.5402 −0.6703

1 0

]
, Hy =

[
−0.8935 1.0237

]
,

G =

[
1
0

]
, Hc =

[
−0.8935 1.0237

1 0

] (3.67)

The CG task is that of ensuring reference tracking while maintaining the
output c inside the following set

C := {c ∈ IR2 : −0.4 ≤ c1 ≤ 0.4 ∧ −3 ≤ c2 ≤ 3} (3.68)

Note that y(t) = c1(t). The (3.66)-(3.67) constraints vector time evolution
with initial conditions x(0) = [−1.5,−1.5]T to a constant reference g(t) =
r(t) = 0.38 is depicted in Figure 3.4. When neither CG nor FF-CG units are
used, the system responses clearly violate the prescribed constraints.

The FF-CG free parameters are δ, γ and Ψ . Actually, because the reference
g is scalar, the choice of Ψ has no influence on the optimization problem to
solve. Hence, we only take care about the parameters δ and γ which represent
the available design knobs of the FF-CG scheme. In particular, δ affects the
number of constraints involved in the on-line optimization problem by having
a strict relationship with the constraint horizon k0. On the contrary, the choice
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of both δ and γ influence the generalized settling time τ , which indicates the
amount of sampling steps over which the FF-CG has to constantly apply a
previous computed action.

Figure 3.5 shows τ as a function of δ and γ. As expected, for fixed δ
and increasing values of γ, the parameter τ becomes increasingly larger. On
the contrary, by fixing γ and for decreasingly values of δ, which are the ones
of practical interest, τ is increasingly larger. Thus, in this respect, it is no
convenient to select both δ and γ very small.

Figure 3.6 shows the system responses y(t) supervised by a FF-CG unit
for different values of γ and τ , when δ = 0.05. Although different values of
these parameters do not give rise to very different tracking performance, it is
suggested to select δ and γ in order to work with small value of τ . This can
be a good design choice if the desired reference r(t) changes quickly because
the FF-CG scheme will update its action more often.

In the following simulations we used δ = 0.05 and γ = 0.7, which involve
the use of k0 = 5 and τ = 7. The initial supposed uncertainty was ρ(0) = 0.2
and the initial applied command was g(0) = −0.2. Both FF-CG strategies
presented respectively in Algorithms (3.1.1) and (3.2.2) (Box constraints for-
mulation) are considered.

3.3.1 FF-CG Numerical problem

The next on-line optimization problem underlying the FF-CG formulation
follows directly from (3.45)

g(t) = argming(g − 0.38)TΨ(g − 0.38)

s.t.


T
(
Hc(I − Φ)−1G

)
g ≤ q − (0.05)[

√
TT
i Ti]

∥ Ti ∥∥ HcΦ
k(I − Φ)−1G(g − g(t− 7)) ∥

+ TT
i (Hc(I − Φ)−1G)g ≤ q − (0.7ρ(t− 7))

√
TT
i Ti,

i = 1, ..., 4, k = 0, ..., 5
(3.69)

where ρ(t), by recalling Algorithm (3.1.1), is

ρ(t) = 0.7ρ(t− τ) +maxk∈{1,...,5} ∥ HcΦ
k(I − Φ)−1G(g(t)− g(t− 7)) ∥

and the matrices appearing in this formulation take the following values

Hc(I − Φ)−1G =

[
1.0008
7.6864

]

HcΦ
0(I − Φ)−1G =

[
1.0008
7.6864

]
, HcΦ

1(I − Φ)−1G =

[
1.8943
6.6864

]
,

HcΦ
2(I − Φ)−1G =

[
2.2467
5.1462

]
, HcΦ

3(I − Φ)−1G =

[
2.1907
3.4443

]
,

HcΦ
4(I − Φ)−1G =

[
1.8681
1.8554

]
, HcΦ

5(I − Φ)−1G =

[
1.4089
0.5490

]
.
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Fig. 3.4. Constrained variables evolution related to a constant reference g(t) =
r(t) = 0.38 with no CG installed.
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Fig. 3.5. Generalized settling time τ computed via (3.2.1) as a function of δ and γ.
The values corresponding to γ = 1 represents the computed horizon k0 as a function
of δ.
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T =


1 0
0 1

−1 0
0 −1

, q =


0.4
3
0.4
3

 .

3.3.2 FF-CG(Box) Numerical problem

In this case the optimization problem to solve on-line comes from Algorithm
(FFCGBoxalg) and problem (3.63). For this example, it results to be given
by

g(t) = argming(g − r(t))TΨ(g − r(t))

s.t.



[
Sc,i

−Sc,i

]
g ≤

[
q̄i
q
i

]
− δ

[
1
1

]


Rk
c,i + Sc,i

−Rk
c,i + Sc,i

Rk
c,i − Sc,i

−Rk
c,i − Sc,i

 g ≤


q̄i
q̄i
−q

i
−q

i

−
(
δ + 0.7ρ(i)(t− 7) +Rk

c,ig(t− 7)
)

1
1
1
1


i = 1, 2, k = 0, ..., 5

(3.70)
where each ρ(i)(t), i = 1, 2 is computed according to (3.62)

ρ(i)(t) = 0.7ρ(i)(t− 7) +maxk∈{1,...,5}{|Rk
c,i(g(t)− g(t− 7))|}, i = 1, 2

and matrices and vectors appearing in the latter two equations have the fol-
lowing values

Sc,1 = 1.0008, Sc,2 = 7.6864

R0
c,1 = 1.0008, R1

c,1 = 1.8943, R2
c,1 = 2.2467,

R3
c,1 = 2.1907, R4

c,1 = 1.8681, R5
c,1 = 1.4089

R0
c,2 = 7.6864, R1

c,2 = 6.6864, R2
c,2 = 5.1462,

R3
c,2 = 3.4443, R4

c,2 = 1.8554, R5
c,2 = 0.5490.

q̄1 = 0.4, q̄2 = 3, q
1
= −0.4, q

2
= −3.
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3.3.3 Simulation Results

The results of simulations of the CG and FF-CG governed system are reported
in Figure 3.7, where the output y(t) = c1(t) (upper) and the computed CG
commands g(t) (lower) are depicted for the same set-point r(t) = 0.38. In this
figure, the classical CG solution (CG in the figures) and both FF-CG schemes,
presented respectively in the Algorithm (3.1.1) and the FF-CG(Box) scheme
related to the Algorithm (3.2.2), are considered.

It is fair commenting that both the CG and FF-CG(Box) algorithms have
been built up so as to exploit the fact that the system is subject to box
constraints whereas the FF-CG method does not enjoy this capability and,
in turn, it expected to behave more conservatively. In fact, the performance
of the CG and FF-CG(Box) algorithms are quite similar while the FF-CG
has a slight worse behavior. This fact can be explained by looking at the
Figure 3.9 where the uncertainty sequences ρ(t) computed by the FF-CG and
FF-CG(Box) schemes are depicted. As shown in that figure, the uncertainty
related to FF-CG(Box), represented by ρ1(t) and ρ2(t), decreases faster than
in the FF-CG case.

In Figure 3.8, the constrained variables are depicted: in this case they
always satisfy the respective constraints. It is worth noticing that the trajec-
tories of the system acted by the standard CG and the FF-CG(Box) schemes
are very close each other and both are much closer to the constraint bound-
aries than the ones resulting for the FF-CG scheme.

Figure 3.10 shows the system evolution in the c1 − c2 plane and corrobo-
rates the theory presented above, that is based on the idea that the FF-CG
based strategies maintain the variable c in a suitable neighborhood of the
feasible steady-state set, in the figure depicted by the dotted line. Finally,
the on-line computational burdens per step of all schemes are reported in
the following Table 3.3.3. Please note that, as expected, FF-CG(Box) is more

CG FF-CG(Box) FF-CG

CPU Time per step [ms] 30.0 27.2 42.5

Table 3.1. On-line phase - CPU time per step

efficient than FF-CG because it has to solve a simpler and less demanding
convex optimization problem than the one solved, in general, by FF-CG.

3.4 Conclusions

In this Chapter, a novel Feed-Forward CG approach has been proposed which,
thanks to the asymptotic stability of the pre-compensated system, doesn’t
base its action computation on the explicit measure of the state. On the
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Fig. 3.10. Geometrical representation of condition (3.8) for c ∈ IR2

contrary, by suitably limiting its action variations it is able to always maintain
the constrained variable trajectory ”not too far” from the set of admissible
steady-state equilibria.

The properties of the proposed algorithm have been fully analyzed and
the differences with the standard Feedback CG approach pointed out. Com-
parisons with the classical CG solution have been presented and commented
in the final illustrative example. As discussed in the next chapters of this the-
sis, this class of solutions may be of interest in all applications where either
the measure or the estimation of the whole state is problematic, e.g. in de-
centralized or distributed networked applications where the cost to make all
the entire aggregate state known to all agents at each time instant could be
unrealistic or require unrealistic communication infrastructures.

3.5 Appendix

The algorithm proposed in [52] is here reported in order to solve problem
(3.40). Consider the DC programming problem of the form

min{f(x) = g(x)− h(x) : x ∈ X} (3.71)

where g and h are finite convex functions and X is a convex subset of IRn.
Moreover, we assume that the convex set X is compact with a nonempty
interior, that is a point y0 ∈ int{X} exists. It is proved in [52] that a point
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x∗ ∈ X is an optimal solution to (3.71) if and only if there exists a t∗ ∈ IR
such that

0 = inf{−h(x) + t : x ∈ X, t ∈ IR, g(x)− t ≤ g(x∗)− t∗}. (3.72)

We present an algorithm for solving DC programming problems of the form
(3.71). Since the interior of int{X} is not empty, it can be packed into an n-
simplex S0 ⊂ IRn. The main idea of the algorithm is to generate a sequence
of feasible points {y0, y1...} ⊂ X, until a feasible point yk is achieved which
fulfills the condition (3.72). For each polytope P , we denote by V (P ) the set
of its vertices.

Algorithm 3.5.1 Initialization.

1.1 let w0 = g(y0)− h(y0) be the first upper-bound to the optimal value w∗ of
problem (3.71);

1.2 construct a polytope P 0 containing the set {(x, t) : x ∈ X, t ∈ IRn, g(x) −
t− w∗ = 0} and compute V (P 0);

1.3 set k = 0.

Iteration k.

1.1Compute an optimal solution (xk, tk) to the problem min{−h(x) + t :
(x, t) ∈ V (P k)}; if −h(xk)+tk = 0, then stop: yk is an optimal solution to
problem (3.71) with optimal value wk; otherwise, compute yk+1 ∈ X such
that wk+1 = g(yk+1)− h(yk+1) < wk;

1.2 construct a cutting plane, i.e., an affine function lk(x, t) such that

lk(xk, tk) > 0, (3.73)

lk(x, t) ≤ 0, for x ∈ X, g(x)− t− wk+1 ≤ 0; (3.74)

1.3 set: P k+1 = P k ∩ {(x, t) : lk(x, t) ≤ 0}, and compute V (P k+1);
1.4 set k = k + 1, and return to 1.1.

For the implementation of Algorithm 3.5.1, we have to specify the following
main points:

a) the construction of a first polytope P 0 and its vertex set V (S0);
b) the choice of the point yk for k ≥ 1 and the construction of an affine

function lk, k ≥ 0, satisfying condition (3.73);
c) the computation of the set V (P k), k ≥ 1.

In order to compute the vertex set of a polytope defined as the intersection
of a polytope with a halfspaces [Task (c)], the methods discussed in [53] can
be used. Tasks (a) and (b) are implemented as follows.
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Construction of a First Polytope P 0 and Its Vertex Set.

Let
V (S0) = {v1, ..., vn+1}

be the set of n+ 1 vertices of the n-simplex S0, and let s be a subgradient of
the convex function g at the point y0. Further, define the affine function

l(x) = (x− y0)s+ g(y0). (3.75)

Then, l(x) is an underestimation of the convex function g(x), and we have

{(x, t) : x ∈ X, t ∈ IRn, g(x)− t− w∗ = 0}
⊂ {(x, t) : x ∈ X, t ∈ IRn, g(x)− t− w0 ≤ 0}
⊂ {(x, t) : x ∈ X, t ∈ IRn, l(x)− t− w0 ≤ 0}

Next, let w̄ and t be real numbers satisfying

w̄ = min{l(x) : x ∈ V (S0)} −max{h(x) : x ∈ V (S0)},

t̄ > max{g(x) : x ∈ V (S0)} − w̄.

Then, obviously we have w̄ < w∗ and

{(x, t) : x ∈ X, t ∈ IRn, g(x)− t− w∗ = 0}
⊂ {(x, t) : x ∈ X, t ∈ IRn, g(x)− t− w̄ ≥ 0}
⊂ {(x, t) : x ∈ X, t ∈ IRn, t ≤ t̄}.

Thus, a first polytope P 0 containing the set

{(x, t) : x ∈ X, t ∈ IRn, g(x)− t− w∗ = 0}

can be defined by

P 0 := {(x, t) : x ∈ S0, t ≤ t̄, l(x)− t− w0 ≤ 0}. (3.76)

The set V (P 0) consists of the 2(n+ 1) points

(vi, t̄), i = 1, ..., n+ 1,
(vi, l(vi)− w0), i = 1, ..., n+ 1.

(3.77)

Moreover, by construction, the following property holds:

g(y0)− t̄− w < 0, ∀w ≥ w∗ (3.78)
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Choice of yk and Construction of lk.

In what follows, we assume that the convex set X is given by

X = {x ∈ IRn : a(x) ≤ 0}, (3.79)

where a is a convex function defined on IRn. Moreover, at Iteration k of the
algorithm, we define a convex function βk : IRn+1 → IR by

βk(x, t) = max{a(x); g(x)− t− wk}. (3.80)

Because y0 ∈ int{X}, it follows from the latter that

βk(y0, t̄) < 0, ∀k ≥ 0. (3.81)

At the k-th iteration, consider the point (xk, tk). Notice that, whenever the
algorithm does not terminate at this iteration, we have −h(xk) + tk < 0. If
xk ∈ X, then set

wk+1 = min{wk; g(xk)− h(xk)};

choose yk+1 such that

g(yk+1)− h(yk+1) = wk+1.

An affine function lk(x, t) is defined by

lk(x, t) = (x− xk)sk + g(xk)− wk+1 − t
= skx− t− (skxk − g(xk) + wk+1),

(3.82)

where sk is a subgradient of g at xk. Obviously, lk(x, t) satisfies condition
(3.73). If xk /∈ X, then βk(xk, tk) > 0. Compute the point (ξk, θk) in the line
segment [(xk, tk), (y0, t̄)] satisfying β(ξk, θk) = 0. Set

wk+1 = min{wk; g(ξk)− h(ξk)};

choose yk+1 such that

g(yk+1)− h(yk+1) = wk+1.

An affine function lk(x, t) is defined as

lk(x, t) = ((x, t)− (ξk, θk))sk + βk(ξk, θk), (3.83)

where sk is a subgradient of β at (ξk, θk). Obviously, lk(x, t) satisfies

k(xk, tk) > 0,
lk(x, t) ≤ 0, ∀x ∈ X, g(x)− t− wk ≤ 0.

Therefore, it satisfies condition (3.73) because wk+1 ≤ wk. The convergence
of Algorithm 3.5.1 is proved in [52].





4

An Improved FF-CG approach

This chapter presents an enhanced control algorithm belonging to the class of
the Feed-Forward Command Governor (FF-CG) strategies. Although effective
the previously proposed FF-CG has an inherent limitation when considering
bounded disturbance because the CG output is instructed to stay at a constant
level for a given number of sampling steps instants between two successive CG
computations. The tracking performance of the proposed scheme is obviously
affected when references with rapid variations are considered.

The aim of this chapter is to complete the analysis on the FF-CG approach
and present a novel class of enhanced FF-CG strategies where such a drawback
is completely overcome, in that in this improved algorithm the FF-CG action
can now be computed and applied at each sampling time. Such a solution is
achieved by observing that, under the same assumptions adopted in chapters
2 and 3, the uncertainty about the state evolution arising from the absence
of measurements, involves only the dynamics related to the initial conditions.
Such an uncertainty can be bounded and estimated and the resulting FF-CG
strategy formulated as a standard state-feedback CG on the basis of a suitable
feedback signal, under a restricted set of constraints to be fulfilled. Moreover,
in the disturbance-free case it is proved that the performance of this particular
FF-CG scheme asymptotically equals that of the standard state-based CG
strategy.

The chapter is organized as follows. In Section 4.1, the improved FF-CG
scheme is introduced and completely analyzed. In Section 4.2, the numerical
details are presented along with several numerical simulations.

4.1 Problem Formulation and improved FF-CG approach

Consider the previously described closed-loop system (2.1)-(2.3) satisfying
assumptions A1-A2.

Here we will address a slight different approach to the FF-CG design prob-
lem, characterized again by the absence of any state measurement in determin-
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ing g(t). In order to better introduce the key ideas, let’s consider temporarily
the disturbance-free (d(t) ≡ 0nd

) case and adopt the following notations for
the steady-state solutions of (2.1) to a constant command g(t) ≡ g, ∀t

xg:=(In−Φ)−1Gg, yg:=Hy(In−Φ)−1Gg, cg:=Hcxg+Lg. (4.1)

The idea explicitly employed in the FF-CG scheme of the previous chapter
is that, if the generation rate of the modified command g(·) is significantly
greater w.r.t. the system dynamics, then, because of system stability (see
A1), the constrained vector c(t) can always be held within a certain known
(and “small”) distance ρ(t) > 0 from the closed-loop steady-state equilibrium
c-vector cg(t)

c(t)− cg(t) ∈ Bρ(t) (4.2)

where Bρ(t) represents the ball of radius ρ(t) centered at the origin. This has
been achieved in chapter 3 with strategies of the form

g(t) = g(r(t), g(t− τ), ρ(t− τ)) (4.3)

where g(t) is computed every τ sampling steps and it is constantly applied
between two successive CG action computations.

In this chapter, a less conservative approach is discussed. To this end,
observe that, because cg(t) unambiguously depends on g(t) and ρ(t), it may
be proven to be a function of its initial condition ρ(0) and of the commands
history up to time t− 1

gt−1 := {g(t− 1), g(t− 2), ..., g(0)} (4.4)

It is then possible conceive FF-CG schemes where, instead of considering the
dependence on the measured state x(t), decisions can be taken on the basis
of ρ(0) and of the past values of g(t), that is

g(t) = g(r(t), gt−1, ρ(0)) (4.5)

As it will be clear soon, the entire sequence gt−1 it is not necessary to be
stored. In fact, a suitable aggregate expression equivalent to the knowledge of
gt−1 for the computation of (4.5) can be found.

In order to make precise statements consider the constrained closed-loop
system (2.1)-(2.3) satisfying assumptions A1-A2. As proved in Section 3.1,
in spite of state unavailability,

c(k, x̂, g) ∈ C∞, ∀k ∈ ZZ+

⇓
c(k, x, g, d(·))=c(k, x̂, g)+ c̃(k, d(·))+HcΦ

kx̃⊂ C,∀k∈ZZ+

(4.6)

Thus, the constraints fulfilment can be ensured also in this case by only con-
straining the disturbance-free evolutions as follows
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g ∈ Wδ (4.7)

c̄(k, x̂, g) = cg +HcΦ
k(x̂− xg) ∈ C∞ (4.8)

where Wδ, C∞ and c̄(k, x̂, g) are defined respectively in (2.8), (2.11). The key
idea used here for the construction of an effective FF-CG algorithm is as
follows. Let us assume that at time t = 0 a command g(0) ∈ Wδ has been
applied to the system, the transient components of c̄(k, x̂(0), g(0)), k ≥ 0,
being confined into a ball of known radius ρ(0) around cg(0) and the constraints
are not violated, i.e. cg(0) ∈ C∞ ∼ Bρ(0). The transient part of the predictions
will be thus bounded as follows

∥HcΦ
k(x̂(0)−xg(0))∥≤ρ(0),∀k≥0. (4.9)

It can be noted that if a long time interval lasts after the application of a
new FF-CG command, the transient contribution would decrease and could
be bounded within a certain percentage of its initial bound ρ(0). For the
forthcoming discussion, the following definitions are in order:

Definition (Guaranteed Contraction Sequence) - The sequence γ(k|t) ≤
1,∀k ≥ 0 is a Guaranteed Contraction Sequence for the pair (Hc, Φ) at time
t if

∥HcΦ
kx∥≤ M(x), k = 0, 1, ..., t− 1

⇓
∥HcΦ

t+kx∥≤ γ(k|t)M(x), k = 0, 1, ...,∞
(4.10)

holds true for each x ∈ IRn, with the real M(x) > 0 any upper-bound to
∥HcΦ

kx∥,∀k ≥ 0.

Definition 4.1. (Maximal Guaranteed Contraction Sequence) - The
sequence γ∗(k|t) ≤ 1,∀k ≥ 0 is a Maximal Guaranteed Contraction Sequence
for the pair (Hc, Φ) at time t if

i. γ∗(k|t) is a Guaranteed Contraction Sequence for the pair (Hc, Φ) at time
t.

ii. γ∗(k|t) ≤ γ(k|t), ∀k, for all Guaranteed Contraction Sequences γ(k|t) for
the pair (Hc, Φ) at t.

A direct consequence of the above definitions is that if the command g(0)
computed at time t = 0 were constantly applied for the subsequent t steps,
i.e. g(0) = g(1) = ... = g(t−1), then, given a Maximal Guaranteed Contraction
Sequence γ∗(·|t), t ∈ Z+, the disturbance-free c-transient would be bounded
as

∥ HcΦ
k(x̂(t)− xg(0)) ∥≤ γ∗(k|t)ρ(0), ∀k ≥ 0 (4.11)

because of the following equalities

Φt(x̂(0)− xg(0)) = (x̂(t)− xg(0)) =

(
Φtx̂(0)+

t−1∑
i=0

Φt−i−1Gg(0)− xg(0)

)
(4.12)
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holding true. In chapter 3, the latter idea has been exploited to build up a
FF-CG scheme where the command signal g(t) is modified only every τ∗ steps,
being τ∗ a Generalized Settling Time (Definition 3.1).

In this Chapter, we will overcome such a limitation as follows: consider at
time t the disturbance-free c-transient evolution along the virtual horizon k
assuming that a generic sequence of inputs g(0), g(1), ..., g(t) has been applied
from time t = 0

c(k, x̂(t), g(t)) = cg +HcΦ
k
(
x̂(t)− xg(t)

)
= cg +HcΦ

k

(
Φtx̂(0)+

t−1∑
i=0

(
Φt−i−1Gg(i)

)
−xg(t)

)
(4.13)

The latter, by introducing the translated command

∆g(t) := g(t)− g(0) (4.14)

may be rewritten as

c(k, x̂(t), g(t)) = cg(t) +HcΦ
k
(
x̂(t)− xg(t)

)
= cg(t)+HcΦ

k

(
Φtx̂(0)+

t−1∑
i=0

(
Φt−i−1G (g(0)+∆g(i))

)
−xg(0)−x∆g(t)

)
= cg(t) +HcΦ

k

(
Φtx̂(0)+

(
t−1∑
i=0

Φt−i−1Gg(0)

)
−xg(0)

)
+HcΦ

k

(
t−1∑
i=0

(
Φt−i−1G∆g(i)

)
− x∆g(t)

)
(4.15)

By recalling (4.11), the term depending from the initial conditions may be
embedded as follows(

HcΦ
k

(
Φtx̂(0) +

(
t−1∑
i=0

Φt−i−1Gg(0)

)
− xg(0)

))
∈ Bρ(0)γ∗(k|t) (4.16)

where the quantity γ∗(k|t)ρ(0) represents an upper-bound to the effects of the
initial conditions on the dynamics at time t. By definition, γ∗(k|t) = 1 for all
k, t such that k+ t < τ ′ and γ∗(k|t) < 1 for all k such that k+ t ≥ τ ′, τ ′ being
the Minimal Generalized Settling time for the system (2.1). Then, it follows
that γ∗(k|t)ρ(0) < ρ(0),∀k when t ≥ τ ′. This inequality allows us to say that
a sufficient condition for (4.8) to hold true is that(

cg(t) +HcΦ
k

(
t−1∑
i=0

(
Φt−i−1G∆g(i)

)
− x∆g(t)

))
∈ C∞ ∼ Bρ(0)γ∗(k|t) (4.17)

By introducing now the translated state

∆x(t) =

(
t−1∑
i=0

Φt−i−1G∆g(i)

)
(4.18)
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it can be seen that it satisfies

∆x(t+ 1) = Φ∆x(t) +G∆g(t) (4.19)

under the assumption ∆x(0) = 0. By using such a definition and remember-
ing that cg(t) = cg(0)+∆g(t) = cg(0) + c∆g(t), one may rewrite the sufficient
condition (4.17) as

cg(0) + c̄(k,∆x(t),∆g(t)) ∈ C∞ ∼ Bρ(0)γ∗(k|t)∀k ≥ 0. (4.20)

Finally, we can denote

V(∆x, ρ(·)) :={g∈Wδ: cg(0) + c̄(k,∆x, g − g(0)) ∈C∞∼ Bρ(k), k ≥ 0}. (4.21)

as the set of all admissible FF-CG commands g for a given sequence ρ(k).
On-line, at each time t, this sequence is instantiated as ρ(k|t) = ρ(0)γ∗(k|t).
Because C∞ ∼ Bρ(k) is a convex set and the predictions are linear, the latter
results to be a convex and compact set. Then, by using a quadratic selection
index, we may formulate the FF-CG algorithm as follows.

Algorithm 4.1.1 (The FF-CG Algorithm) repeat at each time t

1.1solve

g(t) = arg min
g∈V(∆x(t),ρ(0)γ∗(·|t))

∥ g − r(t) ∥2Ψ , Ψ = Ψ ′ > 0 (4.22)

1.2apply g(t)
1.3update (4.19)

The above FF-CG scheme enjoys the following properties.

Theorem 4.2. - Let assumptions A1-A2 be fulfilled. Consider system (2.1)
along with the FF-CG selection rule (4.22) and let an admissible command
signal g(0) ∈ Wδ such that cg(0) ∈ C∞ ∼ Bρ(0) be applied at time t = 0 where
ρ(0) is a known scalar such that

∥ HcΦ
k(x(0)− xg(0)) ∥≤ ρ(0), ∀k ≥ 0 (4.23)

Then:

1. At each decision time t, the minimizer in (4.22) uniquely exists and can
be obtained by solving a convex constrained optimization problem;

2. The system supervised by the FF-CG never violates the constraints, i.e.
c(t) ∈ C for all t ∈ ZZ+ regardless of any possible admissible disturbance
realization d(·) ∈ D;

3. Let gCG(t) = argming∈V(x(t)) ∥ g − r(t) ∥2Ψ denote the standard CG solu-
tion as described in Chapter 2 for the disturbance-free CG design problem
(d(t) ≡ 0,∀t) where

V(x) := {g ∈ Wδ : c̄(k, x, g) ∈ C, k ≥ 0}. (4.24)
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is the state-dependent admissible region and c̄(k, x, g) defined in (3.3).
Then, the time-varying regions of admissible commands V(∆x(t), ρ(·|t)),
achieved by applying the FF-CG actions g(t) at each time instant, asymp-
totically converge to (4.24) and limt→∞(g(t) − gCG(t)) = 0m, regardless
of the reference sequence r(t);

4. The sequence of g(t)’s is bounded for any arbitrary bounded reference se-
quence r(t) ∈ IRm. Moreover, whenever r(t) ≡ r, with r a constant set-
point, the sequence of g(t)’s converges in finite time either to r or to its
best admissible steady-state approximation r̂:

∃ts > 0 t.c. g(t) = r̂ := arg min
g∈Wδ

∥g − r∥2Ψ ,∀t ≥ ts (4.25)

and

lim
t→∞

x̂(t) = xr̂, lim
t→∞

ŷ(t) = yr̂= r̂, lim
t→∞

ĉ(t)=cr̂. (4.26)

Proof

1) The existence of an admissible solution at each time t can be proved by
simply remarking that g(t) = g(t − 1) is always an admissible, although
not necessarily the optimal, solution for the prescribed problem at time t.
Moreover, being the admissible region (4.21) convex and the cost function
(4.22) strictly quadratic the optimal solution is unique.

2) At each time t ≥ 0 the command g(t) ∈ V(∆x(t), ρ(·|t)) is applied to
the plant. Observe that the set V(∆x(t), ρ(·|t)) has been built up so as to
ensure the fulfilment of (4.20). This, because of (2.10), implies also that
c(k, x(t), g(t), d(·)) ⊆ C, ∀d(·) ∈ D, ∀k ≥ 0,∀t ≥ 0. The statement is thus
proved by simply noticing that the latter inclusion, being true ∀k ≥ 0 is
true in particular for k = 0. Then, c(t) ∈ c(0, x(t), g(t), d(·)) ⊆ C, ∀d(·) ∈
D,∀t ≥ 0.

3) The main observation here is that, in the absence of disturbances, by
combining (4.15), (4.16) and (4.20) we have that at each time instant the
following inclusion holds true

c̄(k, x(t), g(t)) = c̄(k, x̂(t), g(t)) ∈ c̄(k,∆x(t),∆g(t))⊕ cg(0) ⊕ Bρ(·|t)
(4.27)

where ρ(·|t) := ρ(0)γ∗(k|t) and the + operator denotes the Pontryagin
sum. Moreover, consider the evolution of the sequence ρ(k|t) in the set
V(∆x(t), ρ(·|t)). Being γ∗(k|t) a Maximal Guaranteed Contraction Se-
quence, there exists a finite time t′ such that ρ(k|t) = ρ(0)γ∗(k|t) ≤
αδ,∀t ≥ t′,∀k ≥ 0, with α ∈ (0, 1). Then, if t > t′, a non-empty admissible
region V(∆x(t), αδ) exists such that

V(∆x(t),ρ(·|t)) ⊇ V(∆x(t), αδ),∀t > t′. (4.28)

In order to prove the statement, we have to note that ρ(0)γ∗(k|t) → 0 for
t → ∞ under the action of the FF-CG action g(t). Therefore, because of
(4.27)
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c̄(k, x(t), g(t)) = c̄(k,∆x(t), ∆g(t)) + cg(0) (4.29)

and the equation (4.28) takes the following form

lim
t→∞

V(∆x(t), ρ(·|t))={g ∈ Wδ : c̄(k,∆x(t),∆g(t)) + cg(0) ∈ C, k ≥ 0}

= {g∈Wδ: c̄(k, x(t), g(t))∈C, k≥0}
= V(∆x(t), 0) = V(x(t)). (4.30)

4) The boundedness of g(t),∀t ≤ 0, follows by the coercivety and strict con-
vexity of the cost function under bounded r(t). In fact, for all r(t) bounded,
if g(t) = ∞ were the optimum it would imply ∥g(t)−r(t)∥Ψ = ∞. However,
this is not possible because the existence of an admissible and bounded
g(0) guarantees at time t the existence of a bounded admissible, although
not optimal, solution g(t). In order to prove the finite-time convergence
when r(t) is constant it is worth recalling, from the above item 3, the exis-
tence of the set V(∆x(t), αδ), α ∈ (0, 1) ensuring (4.28) which allows one
to approximate the FF-CG problem for all t > t′ as

g(t) = arg min
g∈V(∆x(t),αδ)

∥ g − r(t) ∥2Ψ . (4.31)

Furthermore, let us introduce the following properties holding true for
linear and asymptotically stable systems: first, one has that

g(t) → g ∈ IRm ⇒ lim
t→∞

c̄(t) = cg, (4.32)

second, ∀x(0) ∈ IRn when g(t) ≡ g, ∀t, ∀λ > 0 there exists a real β(λ) > 0
such that

∥c(0)− cg∥ ≤ β(λ) ⇒ ∥c̄(t)− cg∥ ≤ λ,∀t ≥ 0,∀g ∈ Wδ. (4.33)

Next, let g(t) be the FF-CG solution at time t of (4.31) with r(t) ≡ r.
As already discussed, g(t) is still an admissible, though not necessarily the
optimal, solution at time t + 1. Hence, the sequence of cost ||g(t) − r||2Ψ
is non increasing, i.e. ∥ g(t + 1) − r ∥2Ψ≤∥ g(t) − r ∥2Ψ . As consequence,
the sequence of solutions g(t) converges to g∞ that is necessarily g∞ = r̂.
In fact, if g∞ ̸= r̂, because of strict convexity of ∥ · ∥2Ψ it would be, for a
certain ϵ ∈ (0, 1)

∥g∞ + ϵ(r̂ − g∞)− r∥2Ψ < ∥g∞ − r∥2Ψ . (4.34)

By exploiting property (4.32) for system (2.1), for t → ∞, ∥c̄(t)−cg∞∥ = 0
which would implies the sure existence of an ϵ > 0 such that ∥c̄(t) −
cg∞+ϵ(r̂−g∞)∥ ≤ (1 − α)δ. Then the FF-CG would be capable to switch
from g∞ to the better command g∞ + ϵ(r̂ − g∞) and g∞ would not be a
convergence point. Now let’s define

∆c(t) := Hc∆x(t) + L∆g(t) (4.35)
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By taking into account properties (4.32) and (4.33) for system (4.19), and
by notice that g(t) → r̂ ⇒ ∆g(t) → r̂ − g(0), we can state that it exists
a finite time t′′ > t′ such that ∥∆c(t′′) − cr̂−g(0)∥ < β((1 − α)δ) which
implies ∥∆c(t)− cr̂−g(0)∥ ≤ (1− α)δ,∀t ≥ t′′, or equivalently that

∆c(t)− cr̂−g(0) ∈ B(1−α)δ,∀t ≥ t′′. (4.36)

The latter indicates that predictions for c̄ along virtual time k, starting
from ∆x(t′′), will satisfy

c̄(k,∆x(t′′), r̂ − g(0))− cr̂−g(0) ∈ B(1−α)δ,∀k ≥ 0 (4.37)

Since cr̂ ∈ C∞ ∼ Bδ, if we add cr̂ to the right side of the latter we will
obtain

cg(0) + c̄(k,∆x(t′′), r̂ − g(0)) ∈ C∞ ∼ Bδ ⊕ B(1−α)δ,∀k ≥ 0 (4.38)

that becomes

cg(0) + c̄(k,∆x(t′′), r̂ − g(0)) ∈ C∞ ∼ Bαδ,∀k ≥ 0. (4.39)

Then, because r̂ ∈ V(∆x(t′′), αδ), the FF-CG will select for sure r̂ at
finite time ts = t′′. Finally, conditions (4.26) simply follow by asymptotic
stability of (2.1).

4.2 Computational details

4.2.1 Maximal Guaranteed Contraction Sequence γ(·|t)

For what regards the Maximal Guaranteed Contraction Sequence, in princi-
ple, one should determine any possible sequence γ∗(·|t) for every t. However,
interesting enough, the following recursive property holds true

γ∗(k|t) = γ∗(k + t|0),∀k (4.40)

and only γ∗(k|0) has to be computed in practice. Moreover, by inheriting
the technicalities introduced in Subsection 3.2.1 for the computation of the
Generalized Settling Time, the computation of γ∗(·|t) may be performed as
follows:

Algorithm 4.2.1 Maximal Guaranteed Contraction Sequence Algo-
rithm

1.1 set γ∗(0|0) = 1;
1.2 set ϵ > 0;
1.3repeat for each k>0

1.3.1set γ̄ = γ∗(k − 1|0)
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1.3.2set γ = 0
1.3.3repeat until γ̄ − γ > ϵ

1.3.3.1 set γ∗(k|0) := (γ + γ̄)/2
1.3.3.2 find Generalized Settling Time τ with parameter

γ∗(k|0) as in Subsection 3.2.1
1.3.3.3 if τ > k

1.3.3.3.1 set γ := γ∗(k|0)
1.3.3.4 else

1.3.3.4.1 set γ̄ := γ∗(k|0)
1.3.3.5 go to (3.1)

Observe also that the computation should be done for any k. Then, from a
practical point of view it is only possible to compute a finite sub-sequence
of γ∗(k|0). However, the proof Theorem 4.2 shows that any approximating
Guaranteed Contraction Sequence γ(k|0) such that limk→∞ γ(k|0) = 0 may
be used in the place of γ∗(k|0) at the price of introducing some conserva-
tiveness in the plant start-up phase of the algorithm but without affecting
its feasibility properties. Then, an alternative practicable procedure is then
that of computing offline and storing only the first k′ samples of γ∗(k|0) and
approximating the tail with the exponentially decreasing sequence directly
derived from (3.38)

γ(k|0) = σ̄(Ho
c )Bλkσ̄

{(
(Θo)TΘo

)−1
(Θo)T

}
M(xo)

√
n, k > k′. (4.41)

4.2.2 Linear constraints: The disturbance-free case

In this section we will present all computational details for the design and
the implementation of the above FF-CG strategy in the disturbance-free case
d(t) = 0, ∀t. Because, also in this case, linear constraints for c(t) ∈ C are
assumed, they can be represented as in (2.18)-(2.21) of Section 2.3.1 from
which we inherit the usual expression for Cδ and Wδ

Cδ = {c ∈ IRnc : T ′
i c ≤ qi − δ

√
T ′
iTi, i = 1, ...., nvc} (4.42)

Wδ = {w ∈ IRm : T
(
Hc(I − Φ)−1G+ L

)
g ≤ q − δ[

√
TT
i Ti]} (4.43)

It remains to characterize the set V(∆x, ρ(·)) which, in the disturbance-free
case, is defined as

V(∆x, ρ(·)) :={g∈Wδ: cg(0) + c̄(k,∆x, g − g(0)) ∈C∼ Bρ(k), k ≥ 0} (4.44)

where the integer k0 is computed according to Algorithm 2.3.1. It is also easy
to understand that
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∆x̄(k,∆x, g − g(0)) = Φk∆x+

(
k−1∑
i=0

ΦiG

)
(g − g(0))

= Φk∆x+Rx
k(g − g(0)) (4.45)

c̄(k, x, g) = Hc∆x̄(k,∆x, g − g(0)) + L(g − g(0))

= HcΦ
k∆x+ (HcRk + L) (g − g(0))

= HcΦ
k∆x+Rc

k(g − g(0)) (4.46)

and hence

V(∆x, ρ(·)) = {g ∈ Wδ : T
(
Hc(I − Φ)−1G+ L

)
g(0) + THcΦ

k∆x+

+TRc
k(g − g(0)) ≤ q − γ(k|0)ρ(0)[

√
TT
i Ti], k = 0, ..., k0}

(4.47)

Finally, the CG action computation consists of solving the following QP op-
timization problem

g(t) = ming(g − r(t))TΨ(g − r(t))

subject to

T
(
Hc(I − Φ)−1G+ L

)
g(0) + THcΦ

k∆x(t) + TRc
k(g − g(0)) ≤ q

− γ(k + t|0)ρ(0)[
√
TT
i Ti], k = 0, ..., k0

T
(
Hc(I − Φ)−1G+ L

)
g ≤ q − δ[

√
T ′
iTi] (4.48)

where the sequence γ∗(k|0) can be computed according to the Algorithm 4.2.1.

4.2.3 Linear constraints: The disturbance acting case

We assume here the same characterization used in Section 2.3.2 for bounded
disturbances d(t). By means of recursions (2.37)-(2.46), we have the following
approximation for C∞

C∞ ≃ {c ∈ IRnc : Tc ≤ qkε} (4.49)

In this case, V(x) can be characterized as

V(∆x, ρ(·)) = {g ∈ Wδ : T
(
Hc(I − Φ)−1G+ L

)
g(0) + THcΦ

k∆x+

+TRc
k(g − g(0)) ≤ qkε − γ(k + t|0)ρ(0)[

√
TT
i Ti], k = 0, ..., k0}

(4.50)

Finally, the CG action computation consists of solving the following QP op-
timization problem

g(t) = ming(g − r(t))TΨ(g − r(t))

subject to

T
(
Hc(I − Φ)−1G+ L

)
g(0) + THcΦ

k∆x(t) + TRc
k(g − g(0)) ≤ qkε

− (ε+ γ(k|0)ρ(0))[
√
TT
i Ti], k = 0, ..., k0

T
(
Hc(I − Φ)−1G+ L

)
g ≤ qkε − δ[

√
T ′
iTi] (4.51)

The computation of the constraint horizon k0 can be accomplished via the
Algorithm 2.3.2.
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4.3 Simulation Studies

4.3.1 Example 1

In this subsection we show the effectiveness of the improved FF-CG presented
in this chapter by comparing it with all other strategies on the same system
(3.66)-(3.66) already analyzed in Section 3.3. In order to distinguish it from
other FF-CG based techniques, the improved one will be referred hereafter as
FF-CG2. Also in this case the standard Matlab fmincon.m routine has proved
sufficient to solve the resulting quadratic optimization. As before, the task of
the CG is to ensure good set-point tracking for r(t) = 0.38 and maintain the
constrained output c in the set (3.68).

The unique FF-CG2 free parameter is δ, that affects constraint hori-
zon k0 − 1 and consequently the evaluation of γ(·, t), or equivalently that
of γ(k, 0), k ≥ 0 as discussed in Section (4.2). Figure 4.1 shows γ(k, 0), k ∈
{0, ..., 22} for different value of δ.
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0.010.020.050.10.20.30.40.50.60.70.8

0

0.2

0.4

0.6

0.8

1

δ

k

γ(
k

,0
)

Fig. 4.1. Maximal Guaranteed Contraction Sequence γ(k|0) computed via (4.2.1)
as a function of δ and k.

As expected, for fixed δ and increasing values of k, γ(k, 0) becomes increas-
ingly lower. On the contrary, by fixing k and for increasingly smaller values for
δ, γ(k, 0) is increasingly larger. Thus, it is no convenient to select δ very small
because we would be constrained to use a sequence γ(k, 0) that equals 1 for
many k after k = 0. In the following simulations, we undertook comparisons
amongst the present FF-CG2 scheme, the standard CG and FF-CG related to
Algorithm (3.2.2). In all these schemes we used the same parameters δ = 0.05
and γ = 0.7, which involve the use of τ = 7. The initial supposed uncertainty
was ρ(0) = 0.2 and the initial applied command was g(0) = −0.2.
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In this case the optimization problem to solve on-line is related with Al-
gorithm (4.1.1) and problem (4.48). For this example, it results to be given
by

g(t) = argming(g − r(t))TΨ(g − r(t))

s.t.


T
(
Hc(I − Φ)−1G

)
g ≤ q − 0.05[

√
T ′
iTi]

T
(
Hc(I − Φ)−1G

)
g(0) + THcΦ

k∆x(t) + TRc
k(g − g(0)) ≤ q

− γ(k + t|0)ρ(0)[
√
TT
i Ti], k = 0, ..., 5

(4.52)
where the matrices appearing in this formulation take the following values

Hc(I − Φ)−1G =

[
1.0008
7.6864

]

HcΦ
0(I − Φ)−1G =

[
1.0008
7.6864

]
, HcΦ

1(I − Φ)−1G =

[
1.8943
6.6864

]
,

HcΦ
2(I − Φ)−1G =

[
2.2467
5.1462

]
, HcΦ

3(I − Φ)−1G =

[
2.1907
3.4443

]
,

HcΦ
4(I − Φ)−1G =

[
1.8681
1.8554

]
, HcΦ

5(I − Φ)−1G =

[
1.4089
0.5490

]
,

T =


1 0
0 1

−1 0
0 −1

, q =


0.4
3
0.4
3

 ,

Rc
0 =

[
−0.8935
1.0000

]
, Rc

1 =

[
1.8943
6.6864

]
,

Rc
2 =

[
−1.2460
2.5402

]
, Rc

3 =

[
−1.1899
4.2421

]
,

Rc
4 =

[
−0.8674
5.8310

]
, Rc

5 =

[
−0.4081
7.1374

]
.

The simulations for the CG governed system are reported in Figure 4.2. In
this figure, the classical CG solution (CG in the figures), the FF-CG2 Algo-
rithm (4.1.1) and FF-CG Algorithm (3.2.2) are considered. The performance
of the CG and FF-CG2 algorithms are almost identical while the FF-CG holds
a certain degree of conservativeness. Moreover in Figure 4.4 the uncertainty
ρ(t) computed by FF-CG2 and FF-CG are depicted. As shown in that Fig-
ure, the uncertainty related to FF-CG2 never growths and quickly goes to zero
w.r.t. uncertainty related to FF-CG. In Figure 4.3, the constrained variables
are depicted: in this case they always satisfy the respective constraints.
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Fig. 4.2. (a)[upper] Response of the system with different CG action. (b)[down]
Computed references

It is worth noticing that the trajectories of the system acted by standard
CG and FFCG2 are very close each other and both are more active than those
resulting under the FFCG scheme. Finally, in the following table

CG FF-CG FF-CG2
CPU Time per step [ms] 30.0 27.2 28.1

the on-line computational burdens per step of all schemes are reported. The
three strategies have a similar computational behavior.

4.3.2 Example 2: Position servomechanism

In this example further comparisons are reported with the aim of showing also
the robusteness properties of the algorithms when exogenous disturbances are
present. The proposed FF-CG schemes are applied to the position servomech-
anism schematically described in Figure 4.5. This consists of a DC-motor, a
gear-box, an elastic shaft and an uncertain load. Technical specifications in-
volve bounds on the shaft torsional torque T as well as on the input voltage
V . System parameters are reported in Table 4.1.

Let θM and θL denote respectively the motor and the load angle and let

xp =
[
θL θ̇L θM θ̇M

]T
be a suitable state vector. Then, the plant can be described by the following
state-space model
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Fig. 4.3. Constrained output
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
ẋp=


0 1 0 0

− kθ
JL

−βL
JL

kθ
ρJL

0

0 0 0 1
kθ

ρJM
0 − kθ

ρ2JM
−βM+k2

T /R

JM

xp+

 0
0
0
kT

RJM

V

θL=
[
1 0 0 0

]
xp, T =

[
kθ 0 − kθ

ρ
0
]
xp
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Fig. 4.5. Servomechanism model

Table 4.1. Model parameters

Symbol Value (MKS) Meaning
Symbol Value (MKS) Meaning

LS 1.0 shaft length
dS 0.02 shaft diameter
JS negligible shaft inertia
JM 0.5 motor inertia
βM 0.1 motor viscous friction coefficient
R 20 resistance of armature
KT 10 motor constant
ρ 20 gear ratio
kθ 1280.2 torsional rigidity
JL 20JM load inertia
βL 25 load viscous friction coefficient
Ts 0.1 sampling time

Because the steel shaft has a finite shear strength, a maximum admissible
shaft τadm = 50N/mm2 imposes the constraint |T | ≤ 78.5398 Nm on the
torsional torque. Moreover, the input DC voltage V has to be constrained
within the range |V | ≤ 220 V . The model is discretized with a sampling step
of Ts = 0.1s and by using a zero-order holder on the input voltage terminal. It
is assumed that the motor is provided with a control unit acting on the motor
voltage and guaranteeing to guarantee assumptionsA1-A2. It is also assumed
that the closed-loop system state, input and output are not accessible to the
CG purposes and only the manipulation of the set-point signal is allowed.

Simulations reveal that the pre-compensated system, when not governed
by a CG unit, exhibits a very fast response but inadmissible input voltages
and torsional torques for the references of interest, as shown in Figure. 4.6.b
for a square-wave set-point with amplitude equal to r = 60 deg (solid line) and
increasing frequency. On the contrary, when a FF-CG unit is used, the torque
and voltage constraints happen to be fulfilled. Figure 4.7 shows the resulting
system output (4.7.a) and the computed FF-CG action (4.7.b) for the same
set-point of Figure 4.6. In these figures, the performance of the FF-CG and CG
strategies can be compared. The comparison involves the more conservative
FF-CG technique described in Algorithm 3.2.2, performed for a generalized
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Fig. 4.6. System without CG unit: a) Position b) Constrained variables: Torsional
Torque (left), voltage (Right)

settling time τ = 7 denoted as ”FF-CG” and the FF-CG technique related
to Algorithm 4.1.1 here referred to ”FF-CG2”. One can observe that the
level of conservativeness introduced by the FF-CG2 version is negligible after
few istants when contrasted with the standard state-feedback CG approach.
Moreover, FF-CG introduces a certain level of delay in the system response
which is not present on the contrary in FF-CG2. In Figure 4.8, the constrained
variables are depicted: in this case, the voltage inputs and torsional torques
are admissible. It is worth pointing out that the trajectories of the system
controlled by the standard CG and the proposed FF-CG2 strategies almost
coincide. On the contrary, the trajectories produced by FF-CG are delayed of
seven sample steps.

In order to show the effectiveness and performance robustness of FF-CG
schemes when disturbances are present, we consider the severe case whereby
d(t) is a square-wave with amplitude dmax = 0.007N (Figures 4.9-4.10). From
the above figures it can be observed that both the FF-CG algorithms keep
working adequately also if the state is brought far from the equilibrium by the
disturbances. In particular, the constraints are always satisfied and the track-
ing performance is achieved. It is fair also pointing out that, in the simulations,
the applied disturbance is unrealistically high, producing perturbation on the
nominal torque as high as 40Nm, when the maximum admissible torque is
78.5398Nm. With smaller and smoother disturbance signals, the system con-
trolled by both the FF-CG strategies presents a behavior similar to the one
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Fig. 4.7. System with CG unit. a) System Output: set-point (solid), CG (dash-
dotted), FF-CG (dash) b) Computed Reference: set-point (solid), CG (dash-dotted),
FF-CG (dash)

shown in Figures 4.7-4.8.

A further analysis on the performance robustness under disturbances for
all FF-CG and CG schemes has been performed and the results have been
depicted in Fig. 4.11-(upper), where performance-degradation vs disturbance-
size plots are reported. In this respect, performance comparisons are expressed
by the cost J = 1

T

∑T
k=0 |r(k)−θL(k)| computed by executing simulations with

square-wave disturbances characterized by different amplitudes dmax, with T
the number of steps of the simulation (in this case T=400). As a result, the
performance of the standard CG unit is only weakly affected by the distur-
bance size whereas the performance of the other two schemes monotonically
degrades with the increment of the amplitude of the disturbance. Note also
that for dmax > 0.01N the standard CG design problem is unfeasible whereas
the other algorithms are unfeasible for lower values: FF-CG is unfeasible for
dmax > 0.009N and FF-CG2 for dmax > 0.01N respectively. A different way
to see performance degradation due to disturbances is depicted in Fig. 4.11-
(lower), where the output of the system acted by the FF-CG2 is reported for
different values for dmax.
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Fig. 4.8. Constrained variables. a) [Upper] Torque. b) [Lower] Voltage.
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Fig. 4.9. System with CG unit. a) [Upper] System Output. b) [Lower] Computed
Reference in the disturbance acting case.

4.4 Conclusions

In this Chapter, an novel more effective FF-CG scheme than the one presented
in Chapter 3 is proposed which again does not make use of any measure of the
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Fig. 4.10. Constrained variables in the disturbance acting case. a) [Upper] Torque.
b) [Lower] Voltage.

state to govern the set-point manipulations. The main idea under its develop-
ment was to limit the set-point variations in order to always maintain the state
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trajectory ”not too far” from the region of the steady-state admissible equi-
libria. The properties of the proposed algorithm have been carefully analyzed
and the differences with standard CG approaches pointed out. Comparisons
with classical CG and previously proposed FF-CG solutions have also been
presented and discussed in the final examples.



Part II

Distributed FFCG and CG Schemes





5

Non-Iterative Feed-Forward Command
Governor Distributed Schemes

The problem of interest here and in the next Chapters is the design of dis-
tributed supervision strategies based on Command Governor (CG) ideas for
multi-agent systems where a centralized coordination unit cannot be used be-
cause of unrealistic or unavailable communication infrastructures. In partic-
ular, in this Chapter we discuss two distributed strategies to solve the above
described supervision task in large scale applications based on the FF-CG
ideas introduced in Chapter 3. It will be clear that the main advantages of the
derived distributed FF-CG schemes consist in their low communication rates
required for their implementation, remarkably lower than other distributed
approaches - e.g those based on MPC predictive ideas and consensus mecha-
nisms.

The first proposed scheme (Sequential-FFCG, S-FFCG) is a sequential
algorithm in the sense that only one agent at a time is allowed to modify its
own reference signal. This approach, although behaving increasingly slower
for a rising number of agents, is anyway of interest in all situations whereby
the coordination problem consists of few and slow set-point adjustments, e.g.
in all small/medium-scale situations where the set-points change infrequently
or slower than the system dynamics.

Such a method is also instrumental to build up a faster ”parallel” version of
the scheme (Parallel-FFCG, P-FFCG) where, whenever possible, all agents are
allowed to modify their own reference signals simultaneously. The key point of
this parallel scheme is the on-line determination of a suitable Cartesian inner
approximation of the global constraint set [57], allowing the agents to optimize
independently and simultaneously their reference signals and ensuring the
fulfilment of the global constraints at the price of a slight optimality loss.

It is important to remark that the distributed implementation of the FF-
CG scheme introduces additional technical challenges not present in the cen-
tralized solution which have to be carefully managed. In particular, as far
as the sequential distributed scheme is concerned, verifiable sufficient condi-
tions on the constraint set are proposed whose fulfilment ensures that the
liveliness of the scheme is preserved. In fact, it will be shown that under gen-
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eral constraint structures the proposed distributed supervising scheme may
get stuck and fail to update the solution because, unlike in the centralized
scheme, the agents are only allowed to update their commands one at the
time and some directions in the solution space are then precluded during the
minimization process. This restriction may lead to deadlock situations and
prevent the agents from being able to modify their local set-points altogether.
Such an analysis involves the verification of a particular geometrical property,
hereafter referred as Constraints Qualification (CQ), for all points belonging
to the boundary of the constrained region. To this end, a numerical procedure
is also proposed and it is shown that it is possible to determine arbitrar-
ily accurate inner approximations of the prescribed constrained region (via a
multi-box approach) which, although only in single-input problems gi ∈ IR,
result Constraints Qualified (CD) by construction thus avoiding deadlock sit-
uations from occurring.

The Chapter is organized as follows: in Section 5.1 the system under con-
sideration is described and the design problem formulated, in Section 5.2 the
S-FFCG sequential strategy is fully described and analyzed, in Section 5.3 the
geometrical characterization of the structure of the constraints set is exploited
in order to understand its Constraint Qualification and establish if deadlocks
may occur. In Section 5.4 the parallel distributed version of the FF-CG is
described. Section 5.5 concludes the Chapter.

5.1 System description and Problem Formulation

Consider a set of N subsystems A = {1, . . . , N}, each one being a LTI closed-
loop dynamical system regulated by a local controller which ensures stability
and good closed-loop properties when the constraints are not active (small-
signal regimes when the coordination is effective). Let the i-th closed-loop
subsystem be described by the following discrete-time model

xi(t+1) = Φiixi(t)+Gigi(t)+
∑

j∈A−{i}

Φijxj(t)

yi(t) = Hy
i xi(t)

ci(t) = Hc
i x(t) + Lig(t)

(5.1)

where: t ∈ ZZ+, xi ∈ IRni is the state vector (which includes the controller
states under dynamic regulation), gi ∈ IRmi the manipulable reference vector
which, if no constraints (and no CG) were present, would coincide with the
desired reference ri ∈ IRm and yi ∈ IRmi is the output vector which is required
to track ri. Finally, ci ∈ IRnc

i represents the local constrained vector which
has to fulfill the set-membership constraint

ci(t) ∈ Ci, ∀t ∈ ZZ+, (5.2)

Ci being a convex and compact polytopic set. It is worth pointing out that,
in order to possibly characterize global (coupling) constraints amongst states
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of different subsystems, the vector ci in (5.1) is allowed to depend on the
aggregate state and manipulable reference vectors x = [xT

1 , . . . , x
T
N ]T ∈ IRn,

with n =
∑N

i=1 ni, and g = [gT1 , . . . , g
T
N ]T ∈ IRm, with m =

∑N
i=1 mi. More-

over, we denote by r = [rT1 , . . . , r
T
N ]T ∈ IRm, y = [yT1 , . . . , y

T
N ]T ∈ IRm and

c = [cT1 , . . . , c
T
N ]T ∈ IRnc

, with nc =
∑N

i=1 n
c
i , the other relevant aggregate

vectors. The overall system arising by the composition of the above N sub-
systems can be described asx(t+ 1) = Φx(t) +Gg(t)

y(t) = Hyx(t)
c(t) = Hcx(t) + Lg(t)

(5.3)

where

Φ =

Φ11 . . . Φ1N

...
. . .

...
ΦN1 . . . ΦNN

 , G =

G1 . . . 0
...

. . .
...

0 . . . GN



Hy =

Hy
1 . . . 0
...

. . .
...

0 . . . Hy
N

 ,Hc =

Hc
1

. . .
Hc

N

 , L =

 L1

. . .
LN

.
Notice that the system (5.3) has the same form of system (2.1) without

any disturbance action considered. Actually, the strategies presented hereafter
could be applied also in cases of disturbance occurences but for the sake of
clarity this scenario is skipped. Observe however that Chapter 3 and Section
2.3.2 contain all the required arguments for any possible extension in this
direction. As in the previous chapters, it is assumed that the system (5.3)
enjoys the Assumptions A1 and A2 properties. Roughly speaking, the CG
design problem we want to solve is that of locally determine, at each time step
t and for each agent i ∈ A , a suitable reference signal gi(t) which is the best
approximation of ri(t) such that its application never produces constraints
violation, i.e. ci(t) ∈ Ci,∀t ∈ ZZ+, i ∈ A.

The ideas exploited here are based on the centralized solutions to the FF-
CG design problem (Chapter 3) that have been achieved by finding, at τ steps,
a CG action g(t) as a function of the current reference r(t) and past applied
command g(t− τ)

g(t) = g(r(t), g(t− τ)) (5.4)

such that g(t) is the best approximation of r(t) under the condition c(t) ∈ C,
where C ⊆ {C1 × ...× CN} is the global admissible region. The modified com-
mand g(t) is kept constant between two subsequent updatings if the explicit
knowledge of the state plant is not available.
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5.2 Sequential Feed-Forward Command Governor
Scheme (S-FFCG)

Here we introduce a distributed CG scheme based on the FF-CG approach
presented in Chapter 3, inspired by the serial method presented in [41]. For
the sake of comprehension, in what follows, a simplified variant of the FF-CG
method will be considered by setting ρ(t) = ρg(t),∀t > 0 in (3.11). In this
case, the step 3.1 of the FF-CG Algorithm is ruled out and the set ∆G(g, ρ)
in (3.20) depends only on the current command g

∆G(g):=
{
∆g :∥HcΦk(I−Φ)−1G∆g∥≤ρg+∆g−γρg,∀k≥0

}
. (5.5)

where ρg, in this case is determined by means of (3.9) with C in place of
C∞. The above choice, although conservative, leads to a simpler analysis and

Fig. 5.1. Graph Γ and Hamiltonian cycle H

has the merit that the agents (Master nodes in Fig. 1.6) do not need to
communicate their ρ(t) instances amongst them.

It is also worth pointing out that early FF-CG distributed schemes pro-
posed in [55] were based on the computation of the following more conservative
set ∆G′(g)

∆G′(g):=
{
∆g :∥HcΦk(I−Φ)−1G∆g∥≤δ−γδ,∀k≥0

}
(5.6)

that is considerably smaller than ∆G(g) and ∆G(g, ρ).
In order to achieve a distributed supervising strategy based on the FFCG

we assume that the agents are connected via a communication network. Such
a network may be modeled by a communication graph defined as

Definition 5.1. (Communication Graph) Let a set of N dynamically in-
terconnected subsystems be given. Then, a Communication Graph is an undi-
rected graph Γ = (A,B), where
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• A denotes the set of the N subsystems
• B ⊂ A×A the set of edges representing the existing communication links

amongst agents in the Communication Graph, i.e. the edge (i, j) belongs
to B if and only if the agents governing the i-th and the j-th subsystems
are able to directly share information within one sampling time.

• G is assumed to be connected, i.e. for each couple of agents i ∈ A, j ∈ A
there exists at least one sequence of edges connecting i and j, with the
minimum number of edges connecting the two agents denoted by di,j .

• The set of all agents with a direct connection with the i-th agent represents
the Neighborhood of the i-th agent Ni = {j ∈ A : di,j = 1}.

Let Γ be a Hamiltonian graph and assume, without loss of generality, that
the sequence H = {1, 2, ..., N − 1, N} is a Hamiltonian cycle. The idea behind
the approach is that only one agent at a time instant is allowed to manipulate
its local command signal gi(t) while all others are instructed to hold and keep
applying their previous values. After each decision step, the agent in charge
will update the global command received from the previous updating agent
and will forward this new value to the next updating agent in the cycle. Such a
polling policy implies that, eventually after a preliminary initialization cycle,
at each time instant the ”agent in charge” always knows the whole aggregate
vector g(t − τ). By exploiting this observation we can define the following
distributed FF-CG algorithm:

Algorithm 5.2.1 Sequential-FFCG Algorithm (S-FFCG) - Agent i
at each time t
1.1if(t== κτ, κ=0, 1, . . .)&&(κ mod N) == i

1.1.1 receive g(t−τ) from the previous agent in the cycle H
1.1.2 solve

gi(t) = argmingi ∥ gi − ri(t) ∥2Ψi

subject to :{
g(t)=[gT1 (t−τ),...,gTi ,...,g

T
N (t−τ)]T∈Wδ

(gi − gi(t− τ)) ∈ ∆G0
i (g(t− τ))

(5.7)

1.1.3 apply gi(t)
1.1.4 update g(t)=[gT1 (t−τ), ..., gTi (t), ..., g

T
N (t−τ)]T

1.2else
1.2.1 apply gi(t) = gi(t− 1)

1.3transmit g(t) to the next agent in H

where Ψi > 0 is a weighting matrix, κ mod N is the remainder of the integer
division κ/N and

∆G0
i (g) :=

{
∆gi : [0

T
m1

, 0Tm2
, . . . , ∆gTi , . . . , 0

T
mN

]T∈∆G(g)
}

(5.8)

is the set of all possible command variations for gi in the case that the com-
mands of all other agents are frozen.

Notice that agents do not share the references ri(t)and that, as a conse-
quence, they are not aware on the actual costs minimized by other agents.
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This design choice, although allowing one to split the original overall problem
in simple local optimization problems, prevents the agents from reaching the
optimal solution that the centralized FFCG would be able to compute under
the same conditions. For this reason, in the following discussion we have to
introduce a different notion of optimality along with further important no-
tions and assumptions in order to understand the actual performance and
properties of the above distributed algorithm.

Definition 5.2. (Admissible direction) - Let S ⊂ IRm be a convex set and
let us consider an arbitrary point g ∈ S. The vector v ∈ IRm represents an
admissible direction for g ∈ S if there exists a fixed strictly positive scalar
λ̄ > 0 such that (g + λv) ∈ S, λ ∈ [0, λ̄].

Definition 5.3. (Decision Set of agent i) - The Decision Set VS
i (g) of

the agent i at a point g ∈ S represents the set of all admissible directions
belonging to IRm

i that such an agent could move along in updating its action
when all other agents held their commands unvaried, viz. VS

i (g) := {d ∈ IRmi :
[0T1 ,. . ., 0

T
i−1, d

T , 0Ti+1,. . ., 0
T
N ]T is an admissible direction for g ∈ S}.

Definition 5.4. (Viability property) - A point g ∈ S is said to be ”viable”
if, for any admissible direction v = [vT1 , ..., v

T
N ]T ∈ IRm, vi ∈ IRmi with∑N

i=1 mi = m, at least one subvector vi ̸= 0 there exists such that vi ∈ VS
i (g).

Definition 5.5. (Pareto Optimal Solution) - Let vectors ri, i = 1, 2, ..., N
be given. Consider the following multi-objective problem:

ming[∥ g1 − r1 ∥2Ψ1
, . . . , ∥ gi − ri ∥2Ψi

, . . . , ∥ gN − rN ∥2ΨN
]

subject to g=[gT1 ,...,g
T
i ,...,g

T
N ]T∈Wδ

(5.9)

A solution g∗ ∈ Wδ is a Pareto Optimal solution of the optimization problem
(5.9) if there not exist g ∈ Wδ, such that: ∥ gi − ri ∥2Ψi

≤∥ g∗i − ri ∥2Ψi
∀i ∈

{1, . . . , N} and ∥ gj − rj ∥2Ψj
<∥ g∗i − ri ∥2Ψi

, j ∈ A .

Definition 5.6. (Nash Equilibrium) - Consider the multi-objective prob-
lem (5.9) for a certain reference r = [rT1 , ..., r

T
N ]T . Then, a solution gn ∈ Wδ

is a Nash equilibrium of the problem (5.9) if for each i ∈ A there not exist a
subvector gi such that gi−gni ∈ VWδ

i (gn) that satisfies the following inequality

∥ gi − ri ∥2Ψi
≤∥ g∗i − ri ∥2Ψi

.

The above definitions are instrumental to characterize deadlock situations
that, unlike the centralized solution, may exist in this distributed scheme when
the same constraint set Wδ of the centralized scheme is used. The rationale
is that by acting one agent at a time, certain viable paths existing in the
centralized scheme are precluded and the agents could get stuck on Nash
Equilibria indefinitely without getting a Pareto Optimum. In order to clarify



5.2 Sequential Feed-Forward Command Governor Scheme (S-FFCG) 83

Fig. 5.2. Two-agent cases. Each agent selects its command along a different axis.
a) No viable point situation: in this case the point g(t) is not viable. In fact both
agents cannot change their local command without violating boundaries; b)Viable
points: in this case, for each red vertex at least one out of the two agents can move
inside Wδ. In fact, each admissible direction v = [v1, v2]

T at each vertex is such that
either λ1[v1, 0]

T , λ1 > 0 or λ2[0, v2]
T , λ2 > 0 is admissible.

such matters, next Figg. 5.2-5.3 depict different viable and no-viable situations
for points on the border of Wδ.

In order to avoid this deadlock situations and allow agents to get always
a Pareto Optimum rather than a Nash Equilibrium, we have to introduce the
following assumption for the points belonging to the border of Wδ

A3. Each point belonging to ∂(Wδ) is viable, ∂(Wδ) denoting the border of
Wδ.

In the next section, a computable way to check if Wδ satisfies A3, accord-
ing to Definition (5.4) and a geometrical method allowing one to compute
suitable inner approximations of Wδ satisfying A3 are presented.

Finally, the following properties can be shown to hold under A3 for the
above stated S-FFCG scheme

Theorem 5.7. Let assumptions A1-A2-A3 be fulfilled for the system com-
posed by N subsystems in form (5.1). Let us consider the distributed S-
FFCG selection rule (5.7) and let an admissible aggregate command signal
g(0) = [gT1 (0), . . . , g

T
N (0)]T ∈ Wδ be applied at t = 0 such that (3.8) holds

true. Then

1) for each agent i ∈ A, at each time t=kτ, k ∈ ZZ+, the minimizer in (5.7)
uniquely exists and can be obtained by locally solving a convex constrained
optimization problem;

2) the overall system acted by the agents implementing the S-FFCG policy
never violates the constraints, i.e. c(t) ∈ C for all t ∈ ZZ+;
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Fig. 5.3. A three-agent non viable case with agents A = {1, 2, 3} aimed at minimiz-
ing respectively ∥g1 − r1∥, ∥g2 − r2∥ and ∥g3 − r3∥. At the point g′, although agents
1 and 2 are locked (green arrows represent not admissible directions). However, no
deadlock occurs because agent 3 could move along the red arrow in the Sdown re-
gion. In the present situation g′ represents a Nash equilibrium for problem (5.9)
because the viable direction (red arrow) of agent 3 corresponds to increase its cost.
In fact, its distance from the reference r3 in Sup increases. Nevertheless g′ is not a
Pareto-Optimal solution because all points g∗ lying over the segment connecting g′

and r are such that ∥g∗i − ri∥ < ∥g′i − ri∥, i = 1, 2, 3..

3) whenever r(t)≡ [ rT1 ,. . . ,r
T
N ]T ,∀t, with ri a constant set-point, the se-

quence of solutions g(t) = [gT1 (t), . . . , g
T
N (t)]T asymptotically converges to

a Pareto-Optimal stationary (constant) solution of (5.9), which is given
by r whenever r ∈ Wδ, or by any other Pareto-Optimal solution r̂ ∈ Wδ

otherwise.

Proof

1) The existence of an admissible solution for each agent at each time kτ can
be proved by simply remarking that gi(t) = gi(t − τ), is always an ad-
missible, although not necessarily the optimal, solution for the prescribed
problem at time t.

2) At each time t = kτ , with k ∈ ZZ+, from a centralized point of view,
a command g(kτ) complying with (3.19) is applied to the overall plant.
By construction, the latter implies that the set-valued virtual predictions
along the virtual time i defined in (2.8) satisfy

c(i, x(kτ), g(kτ)) ∈ C, ∀i ∈ ZZ+,
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Then, the statement is proved by simply noticing that the following inclu-
sion

c(t) = c(i, x(kτ), g(kτ)) ∈ C,
holds true for all time instants t = kτ + i, i ∈ {0, 1, ..., τ − 1} and by
repeating the same argument for all k ∈ ZZ+.

3) The stated convergence property follows simply because the sequences of
solutions gi(t) makes the sequences of local costs ||gi(t) − ri||2Ψi

non in-
creasing for any i = 1, ..., N under constant setpoints. In fact, it is not
convenient for the agents to modify their actual optimal solutions if the
costs cannot be decreased further on. To this end, let gi(t) be the S-FFCG
action of the i-th agent at time t, solution of the optimization problem
(5.7). As already discussed, gi(t) is still an admissible, though not neces-
sarily the optimal, solution at time t + τ . Hence, the sequences of costs
||gi(t)− ri||2Ψi

are all non increasing, i.e.

∥ gi(t+ τ)− ri ∥2Ψi
≤∥ gi(t)− ri ∥2Ψi

(5.10)

Then, we want to show that any stationary optimal solution, viz. g(t) =
g(t+1) ∀t, is Pareto Optimal by proving that a solution is not stationary
if is not Pareto-Optimal. To this end, let g′(t) = [g′T1 (t), ..., g′TN (t)]T be
the actual solution at time t = kτ, k ∈ ZZ+ which is assumed to be not
Pareto-Optimal. As a consequence, other different solutions exist which
improve the costs. Supposedly, vectors v = [vT1 , ..., v

T
N ]T ∈ IRm would exist

with g′(t) + v ∈ Wδ, such that

||g′i(t) + vi − ri||2Ψi
− ||g′i(t)− ri||2Ψi

≤ 0, (5.11)

happens to hold for all i ∈ A′ := {i ∈ A : vi ̸= 0} with some of the above
inequalities becoming strict for at least one index i ∈ A′. Because of the
strict convexity of the norm || · ||2Ψi

, the following inequality happens to be
true for all α ∈ (0, 1)

||(1− α)g′i + α(g′i(t) + vi)− ri||2Ψi

<(1− α)||g′i(t)−ri||2Ψi
+ α||g′i(t) + vi − ri||2Ψi

,∀i ∈ A′ (5.12)

Therefore, by means of straightforward algebraic manipulations, one ar-
rives to

||g′i(t) + αvi − ri||2Ψi
− ||g′i(t)− ri||2Ψi

<α(||g′i(t) + vi − ri||2Ψi
− ||g′i(t)− ri||2Ψi

),∀i ∈ A′ (5.13)

for all α ∈ (0, 1). Because (5.11), the right-hand term in (5.13) is always
negative. Then, one can state

||g′i(t) + αvi− ri||2Ψi
− ||g′i(t)− ri||2Ψi

< 0,∀α ∈ (0, 1),∀i ∈ A′ (5.14)

The latter may be interpreted as the fact that if the above admissible
direction v did exist at g′(t), for each agent i ∈ A′ it would be strictly
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convenient to move to g′i(t)+αvi, for a suitable value of α, from its previous
solution g′i(t).
Now we have to verify that at least one agent is allowed to move from g′i(t)
along vi because of constraints. To this end, because of A3, note that vi
belongs to VWδ

i (g′(t)) for all agents corresponding to any not empty subset
A′

v. Hence, according to the sequential S-FFCG updating policy, if at time
t = kτ , the index (k mod N) ∈ A′

v then, because of (5.14), the agent
i′ = k mod N will find convenient to move into g′i′(t) + αvi′ , α ∈ [0, ᾱ]. In

fact, because of viability of g′(t) (see the above definition) vi′ ∈ VWδ

i′ (g′(t))
implies that a scalar ᾱ ∈ (0, 1) exists ensuring g′ + [0T1 , ..., αv

T
i′ , ..., 0

T
N ]T ∈

Wδ for all α ∈ (0, ᾱ).
When no agents in A′

v are allowed to update their actions at t = kτ , all
of them constantly apply the most recently applied commands until one
of them becomes the allowed agent. In fact, the condition A′

v ⊆ A ensures
that a future time t′ = (k+ j′)τ , j′ ∈ [1, N ], surely will exist for the agent
((k+j′) mod N) ∈ A′

v. Please notice also that A′
v does not change because

g((k+j)τ) = g′(t), for all j ∈ [1, j′]. Thus, if we are not at a Pareto-optimal
solution at time t, at least one of the agents will move from it by Nτ time
steps.

Remark 5.8. The disturbance acting case may be taken into account by simply
determining, in the above design procedure, Wδ, ρg and in turn ∆G(g) w.r.t.
to C∞ (see (2.5)) instead of C.

5.2.1 Computational Details

The goal of this subsection is to give a complete formulation of the Problem
(5.7) when C consists of polyhedral constraints (see (2.18)-(2.21)). To this end
it is sufficient to specialize the FF-CG centralized problem (3.45) to the case
where the decision variable is a subvector gi of the entire command g, related
to the i-th agent. Then Problem (5.7) is rephrased as

gi(t) = argmingi(gi − ri(t))
TΨi(gi − ri(t))

s.t.


T
(
Hc(I − Φ)−1G+ L

)
[gT1 (t− τ), ..., gTi , ..., g

T
N (t− τ)]T≤ q−δ[

√
TT
j Tj ]

∥ Tj ∥∥ HcΦ
k(I − Φ)−1G(gi − gi(t− τ)) ∥
+ TT

j (Hc(I − Φ)−1G+ L)[gT1 (t− τ), ..., gTi , ..., g
T
N (t− τ)]T

≤ qj − γρ(t− τ)
√
TT
j Tj , j = 1, ..., z, k = 0, ..., k0

(5.15)

where [
√
TT
j Tj ] is defined in (2.24), k0 is computed by means of Algorithm

2.3.1 and τ , for the considered γ, is evaluated according to Algorithm 3.2.1.
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5.3 Constraints Qualification

In this section, some aspects of the viability property A3 related to Definition
(5.4) will be clarified and, in particular, a numerical procedure to check that
this property is satisfied for all points of the boundaries of a given polyhedric
set of constraints is presented.

First of all, it is worth pointing that, as far as the ability of agents to move
towards a Pareto-Optimal solution is concerned, Assumption A3 represents
only a sufficient condition only. In fact, it is possible to observe in Fig. 5.3
that if the reference r would coincide with g′, although the point g′ is not
viable according to Definition (5.4), the agents would be in a Pareto-Optimal
solution. Moreover, in Fig. 5.4 a trickier situation is depicted, here the agents
are at a point g′ which does not comply with Assumption A3. Despite this
fact, since such an assumption is only sufficient, the depicted agents are capa-
ble to reach a Pareto-Optimum without any difficulty. The observed behavior
can be explained by considering that that Definition (5.4) and consequently
Assumption A3 do not directly account for the reference r and, in turn, the
functional costs.

It is conjectured that the following more general definition of viability, that
takes into account both the reference r and the notion of Cost-Descendant di-
rections, could be more appropriated giving rise to necessary and sufficient
conditions. Roughly speaking, this more general definition of viability states
that a point is viable if, for all possible references, at least one agent can move
decreasing its cost. Formally,

Definition 5.9. (Cost-Descendent Direction) Let S ⊂ IRm be a convex
set and consider a point g ∈ S. The admissible direction v ∈ IRm at g repre-
sents a Cost-Descendant (CD) direction for a given reference r = [rT1 , ..., r

T
N ]T

with
∑N

i=1 mi = m, if ∥ gi − ri ∥2Ψi
≥∥ gi + viλ − ri ∥2Ψi

∀i ∈ {1, . . . , N}, 0 <

λ ≤ λ̄ and ∥ gj − rj ∥2Ψj
>∥ gj + λvj − rj ∥2Ψi

, j ∈ A, 0 < λ ≤ λ̄,

Definition 5.10. (Reference Dependent Viability) A point g ∈ S is said
to be ”viable” if, for all desired references r = [rT1 , ..., r

T
N ]T ∈ IRm, ri ∈ IRmi

with
∑N

i=1 mi = m and r ̸= g, at least one subvector vi ̸= 0, i ∈ A exists
such that vi ∈ VS

i (g) and the direction [0T1 , ..., vi, ..., 0
T
N ] is a Cost-Descendant

direction at g w.r.t r.

One of the merits of the viability notion provided by Definition (5.4) is
that simple numerical procedures can be devised to test Assumption A3. On
the contrary, the notion of viability given in Definition (5.10) is expected to be
more cumbersome to be verified and this aspect requires further investigations.

The numerical test, here presented, checks a finite number of points be-
longing to ∂(Wδ) in order to verify Assumption A3. Such a test is necessary
and sufficient to state if a point of ∂(Wδ) is viable according to Definition
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Fig. 5.4. AssumptionA3: Graphical sufficiency proof. a) 3D view of the investigated
polyhedron S. b) S projection on the g1−g2 plane. In this case, there are two agents
A = {1, 2} minimizing respectively ∥g1 − r1∥+ ∥g2 − r2∥ and ∥g3 − r3∥. The point
g′ is not viable according to Definition (5.4) because the sub-vectors v1 and v2 of
the admissible direction v do not belong to VS

1 (g
′) and, respectively, VS

2 (g
′). Then,

Assumption A3 is not satisfied. Nevertheless, the polyhedron S is viable in g′ and
no deadlocks occur. In fact, although agent 2 is locked, agent 1 can move along v′1
for improving its cost.

(5.4) if no deadlocks can take place also under the stated distributed S-FFCG
policy.
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Lemma 5.11. Let the polyhedron S ⊂ IRm be given and expressed as Ag ≤
b, A ∈ IR|J |×m, b ∈ IR|J |. Consider also a generic point g′ ∈ S and the set
J ′ := {j ∈ J : aTj g

′ = bj}. Then, g′ is viable iff the following test fails.

Test - Find, if there exists, a vector w = [wT
1 , ..., w

T
N ]T ∈ IRm such that

A(g′ + w) ≤ b
aTj [0

T
1 , ..., w

T
i , ..., 0

T
N ]T > 0, for all i ∈ A, for at least

one j ∈ J ′
(5.16)

where aTj and bj denote the rows of the matrix A and, respectively, vector b.

Proof

1) Sufficiency - Test failure ⇒ viability of g′ :
Assume that (5.16) has no solution. Then for all w ∈ IRm such that A(g′+
w) ≤ b there exists at least one index i ∈ A satisfying

aTj [0
T
1 , ..., w

T
i , ..., 0

T
N ]T≤0,∀j ∈ J ′ (5.17)

The latter condition directly implies that for all j ∈ J ′

aTj (g
′ + [0T1 , ..., w

T
i , ..., 0

T
N ]T )− bj≤0 (5.18)

Otherwise, for all j ∈ J such that aTj g
′ < bj , two exclusive situations have

to be considered
1) if aTj [0

T
1 , ..., w

T
i , ..., 0

T
N ] ≤ 0, it is trivial to see that (5.18) still holds

true;
2) if aTj [0

T
1 , ..., w

T
i , ..., 0

T
N ] > 0, one cannot state that (5.18) is true but,

because aTj g
′ < bj , there exists a scalar λ̄ =

bj−aT
j g′

aT
j
[0T1 ,...,wT

i
,...,0T

N
]
> 0 such

that aTj (g
′ + λ[0T1 , ..., w

T
i , ..., 0

T
N ]T )− bj≤0,∀λ ∈ [0, λ̄];

In both cases, for all admissible w ∈ IRm, at least one subvector λ̄wi ̸= 0,
with λ̄ > 0, is such that A(g′ + [0T1 , ..., λ̄w

T
i , ..., 0

T
N ]) ≤ b, the latter being

equivalent to state that wi ∈ VS
i (g

′). Please notice that if g′ is an internal
point of S, i.e. Ag′ < b, for all admissible w ∈ IRm, the set J ′ is empty,
hence the Test fails and this is sufficient to state that all inner points in
S are viable.

2) Necessity - Test failure ⇐ viability of g′:
We prove the Necessity of the Lemma by proving that if Test has success
then g′ is not viable. The success of Test implies that it exists a vector
w′ that satisfies

A(g′ + w′) ≤ b
aTj [0

T
1 , ..., (w

′
i)

T , ..., 0TN ]T > 0
for at least one j ∈ J ′,∀i ∈ A.

(5.19)

The existence of an index j ∈ J ′ such that aTj [0
T
1 , ..., (w

′
i)

T , ..., 0TN ]T >
0,∀i ∈ A, implies that
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aTj (g
′ + [0T1 , ..., (w

′
i)

T , ..., 0TN ]T )− bj > 0

Then, for all w′
i the vector (g

′+[0T1 , ..., (w
′
i)

T , ..., 0TN ]T ) does not satisfy at
least one of the above inequalities. Hence, at g′ there exists an admissible
direction w′ ∈ IRm for which all sub-vectors w′

i do not belong to VS
i (g

′),
meaning that g′ is not viable.

Because the direct application of the above conditions to check the viability
of all points of ∂(S) could give rise to a cumbersome numerical procedure,
several geometrical results are here presented to prove that the viability of all
points on the boundaries of S, hereafter denoted as ∂(S), can be established
by only checking a finite number of points on ∂(S). To this end, the usual
notion of face of a polyhedron is recalled.

Definition 5.12. (Face of a polyhedron) - Let a convex polyhedron S ⊂
IRm expressed as a set of p linear inequalities aTj g−bj ≤ 0, j ∈ J := {1, . . . , p}
be given. Any region P := {g ∈ S : aTj g − bj = 0, j ∈ J ′ ⊂ J

}
is said to be a

face of S. Moreover, the quantity m− |J ′| represents the order of P.

Based on the above definition, vertices are 0-order faces, facets are (m − 1)-
order faces, ridges are (m− 2)-order faces and so on.

Lemma 5.13. Let a convex polyhedron S and a (m − k)-order face P with
k ∈ {1, ...,m − 1} be given. Then, v ∈ IRm is an admissible direction for all
points of the interior of P, say it In(P), if it is an admissible direction for at
a least one point g of In(P).

Proof - Consider a generic point g ∈ In(P). Because it belongs to the interior
of P, only a subset of inequalities related to S are strictly satisfied, viz.(

aTj g − bj = 0,∀j ∈ J ′ ⊂ J
)
∧
(
aTj g − bj < 0,∀j ∈ J \J ′). (5.20)

Next, assume v ∈ IRm be an admissible direction at g ∈ In(P). It’s also useful
to remind that an admissible direction v = [vT1 , . . . , v

T
N ]T at g implies that

there exists a λ̄ > 0 which satisfies

aTj (g + λv)− bj≤ 0,∀λ∈[0, λ̄],∀j∈J . (5.21)

Then, because (5.20) and (5.21), one has that
aTj v ≤ 0,∀j ∈ J ′ ⊂ J . (5.22)

Now, consider a different internal point g′ ̸= g. Note that also for g′ condition
(5.20) holds true. As a consequence, v is still admissible because:

1) - for all j ∈ J ′, conditions (5.20) and (5.22) imply that aTj g
′+λv ≤ bj , λ >

0;
2) - for all j ∈ J \J ′, two exclusive cases can happen: if aTj v ≤ 0, it is

trivial to see that aTj g
′ + λv ≤ bj for all λ > 0; in the other case, when

aTj v > 0, because aTj g
′ < bj there exists a scalar λ̄ =

bj−aT
j g′

aT
j
v

> 0 such

that aTj (g
′ + λv)≤bj ,∀λ ∈ [0, λ̄].
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Based on the above Lemma, the following result which allows one to verify
in an easy way the CD of S can be stated.

Lemma 5.14. Let a convex polyhedron S be given and PS denote the set of
all faces of S. Then, each point of S is viable, that is the constraint set S is
CD, if for each element P ∈ PS there exists at least a viable point g ∈ In(P).

Proof - The viability of points belonging to In(S) has been proved in Lemma
5.11, and we need then to prove only the viability of points on the faces PS .
We will resort to the mathematical induction principle. To this end, we assume
the viability of points on 0-order faces (vertices) of PS . It is then sufficient to
show that all points on (m− j)-order faces are viable provided that all points
on (m− j− 1)-order faces are such. To this end, consider a (m− j)-order face
P and assume that all points of ∂(P) are viable, ∂(P) consisting of (m−j−1)-
order faces only. Because points on ∂(P) have been assumed viable, we need
only to investigate the viability of points belonging to In(P) which, based
on Lemma 5.13 results, are viable provided that a single viable inner point
g ∈ In(P) exists. Then, by taking into account the viability definition given
in the previous section, one can be ensured that:

1) If an admissible v = [vT1 , ..., v
T
N ]T exists at g, then vi ∈ VS

i (g) (i.e.
[01, ..., vi, ..., 0N ] admissible at g) implies vi ∈ VS

i (g
′) for all g′ ∈ In(P);

2) Since any point g′ ∈ In(P) shares the same admissible directions of g, the
previous item holds true for all admissible v = [vT1 , ..., v

T
N ]T at g′ .

The above results allow one to introduce the following numerical procedure
to check the viability all points belonging to the boundaries of a polyhedron S.

Constraints Qualification test for polyhedrons S

1.1compute PS
1.2set Pl := ∅
1.3for each P ∈ PS

1.3.1 select g ∈ In(P)
1.3.3 append g to Pl

1.4set check := viable
1.5for each g ∈ Pl

1.5.1perform Test
1.5.2if Test fails

1.5.2.1 set check = notviable
1.5.2.1break

1.6return check

Remark 5.15. A worst case application of the Test involves the checking of
|J |×N inequalities (5.16) for each point collected in Pl. The above algorithm
may need then a huge number of iterations to finish. However, because this
problem has to be solved off-line, the computational burden does not represent
a significant obstacle..
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5.3.1 Viable approximations

In this subsection we describe a method to find arbitrarily accurate viable
multi-box inner-approximations of a no CD polyhedron in the case that all
agents have mono-dimensional decision sets, viz. mi = 1,∀i ∈ A and N = m.
To this end, the notion of box is recalled.

Definition 5.16. (Box in IRm) A box is a convex polytope with all the hy-
perplanes characterizing its boundaries parallel to the axes. More formally a
box Ω(l, u) is defined as

Ω(l, u) := x ∈ IRm : l ≤ x ≤ u, (5.23)

where l and u are real vectors of IRm and the inequalities hold componentwise.
Let us consider, for a no viable polyhedron S, a multi-box inner approxi-

mation M(S) ⊂ S. That is, according to [54], a collection of full-dimensional
boxes such that

1) the intersection between any two boxes is not full-dimensional;
2) the union of all boxes in M(S) is contained in S;

The numerical method described in [54] can be used to find multi-box inner
approximations M(S) of S. We will show that for such a kind of approxi-
mation the convex hull of M(S), say it S ′ := co{M(S)}, is always CD. It is
clear from the above discussion, that each vertex of S ′ is a vertex of a box
contained in M(S). By exploiting this fact, the following preliminary results
can be stated

Lemma 5.17. Let g′ ∈ IRm be a point of ∂(S ′) such that g′ ∈ ∂(M(S)).
Then, m scalars vi ∈ {−1, 1}, i = 1, ...,m, there exist such that, for any
λ̄ > 0, g′ + [01, . . . , λvi, . . . , 0m]T ∈ S ′,∀λ ∈ [0, λ̄],∀i ∈ A.

Proof - Because g′ belongs to the border of a box Ω ⊂ M(S), for each i ∈ A
there exists vi ∈ {−1, 1} and a λ̄i > 0 such that a generic point g := g′ +
[01, . . . , λvi, . . . , 0m]T ∈ Ω, ∀λ ∈ [0, λ̄i]. Because Ω ⊂ S ′, then g ∈ S ′ and the
lemma’s statement is proved for λ̄ = min

i∈A
λ̄i.

Lemma 5.18. Let g′ ∈ IRm and g′′ ∈ IRm be two points of S ′ such that
g′ + [01, . . . , λv

′
i, . . . , 0m]T ∈ S ′ and g′′ + [01, . . . , λv

′′
i , . . . , 0m]T ∈ S ′, λ ∈

[0, λ̄′
i], vi ∈ {−1, 1},∀i ∈ A. Then, for each point belonging to the convex

combination g = γg′ + (1 − γ)g′′ there exists, for each i ∈ A, a pair (λ̂i, vi),

with λ̂i > 0 and vi ∈ {−1, 1}, such that g + [0, . . . , λvi, . . . , 0]
T ∈ S ′,∀λ ∈

[0, λ̂i],∀h ∈ [1, . . . ,m].

Proof - In order to prove the statement it is sufficient to consider the following
admissible convex combination for a certain index i ∈ A
γ(g′ + [01, . . . , λ̄iv

′
i, . . . , 0m]T ) + (1− γ)(g′′ + [01, . . . , λ̄iv

′′
i , . . . , 0m]T ) ∈ S ′

(5.24)
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which, when v′i = v′′i , becomes

g+[01, . . . , λ̄iv
′
i, . . . , 0m]T ∈ S ′ (5.25)

Then, a pair (λ̂i, vi) satisfying the lemma’s statement is given by λ̂i = λ̄i and
vi = v′i. Otherwise, when v′i = −v′′i , (5.24) becomes

g+(2γ − 1)[01, . . . , λ̄iv
′
i, . . . , 0m]T ∈ S ′ (5.26)

In this case, a suitable pair is given by (λ̂i, vi), where λ̂i = |(2γ − 1)λ̄i| and
vi = sign{(2γ − 1)v′i}.

Lemma 5.19. For each point g of the border of S ′ there exist m admissible di-
rections aligned to the axes, i.e. g+ [01, . . . , λvi, . . . , 0m]T ∈ S ′, λ ∈ [0, λ̄], vi ∈
{−1, 1},∀i ∈ A,∀g ∈ ∂(S ′).

Proof - It directly follows from Lemmas 5.18 and 5.19. In fact, because of
Lemma 5.18, this lemma statement is satisfied by all vertices of S ′. Moreover,
by considering that a point g ∈ ∂(S ′) can be expressed as a convex combi-
nation of a finite number of vertices of S ′, because Lemma 5.19, the proof is
completed.

Lemma 5.20. Let S ′ be expressed as the intersection of |J | inequalities Ag ≤
b. Then, for all g ∈ ∂(S ′) and for all w such that A(g + w) ≤ b the following
condition is satisfied

aTj g + aTj [0
T
1 , ..., w

T
i , ..., 0

T
N ]T ≤ bj , for all i ∈ A, for at least one j ∈ J ′

g

(5.27)
where J ′

g := {j ∈ J : aTj g = bj}.

Proof - The fact that g+w is admissible allows one to state that, for each
j ∈ J ′

g, necessarily there is an i ∈ A

aijwi < 0. (5.28)

Moreover, taking into account Lemma 5.19, one can assume that there
exist m scalars vi ∈ {1, 1} such that

g + [01, ..., λvi, ..., 0m]T ∈ S ′, λ ∈ [0, λ̄],∀g ∈ ∂(S ′) (5.29)

that implies

λaijvi ≤ 0, λ ∈ [0, λ̄],∀i ∈ A,∀j ∈ J ′
g,∀g ∈ ∂(S ′) (5.30)

As consequence, for each g ∈ ∂(S ′), if an i′ ∈ A satisfies (5.28) for any
j′ ∈ J ′

g, necessarily wi and vi have the same sign, then, because of (5.30) for
all j ∈ J ′

g\{j′}
ai

′

j wi′ < 0 (5.31)
that means

aTj (g + [01, ..., wi′ , ..., 0m]T ) < bj ,∀j ∈ J ′
g. (5.32)

Finally the viability property of each point g ∈ ∂(S ′) is ensured by the
next lemma.
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Lemma 5.21. For a given g ∈ ∂(S ′), let VS′

i (g) be the decision set for agent
i acting at g. Then, g is viable.

Proof - By exploiting Lemma 5.20 we have that ∀w such that A(g + w) ≤ b
there exists at least an index i ∈ A, with related scalar wi, such that

aTj (g + [01, ..., wi, ..., 0m]T ) < bj ,∀j ∈ J ′
g. (5.33)

As a consequence, wi ∈ VS′

i (g) and w cannot satisfy system equations (5.16).

In conclusion, a no CD polyhedron Wδ can be always approximated with
a CD polyhedron W ′

δ and the S-FFCG problem recast as follows

gi(t) = argmingi ∥ gi − ri(t) ∥2Ψi

subject to :{
g(t)=[gT1 (t−τ),...,gTi ,...,g

T
N (t−τ)]T∈W ′

δ

(gi − gi(t− τ)) ∈ ∆G0
i (g(t− τ))

(5.34)

where the set W ′
δ is used in the place of Wδ. Each set ∆G0

i is not subject
to modification because it represent a local constraint in the optimization
problem (5.34), then its fulfillment does not depend on the global command
vector g.

Remark 5.22. In order to improve the accuracy of the proposed method, the
inner approximation could be performed more effectively by approximating
only subsets of Wδ that contains no viable points. This will be an issue for
further researches.

Illustrative Example

In this section a short example is presented in order to show the effectiveness
of proposed method. The two-dimensional polytopic constraint set S of Figure
5.5 is considered. It is characterized by the following five inequalities

Ag ≤ b

where

A =


−0.2693 0.9630
0.3288 −0.9444

−0.9874 0.1584
0.9877 −0.1563
0.9837 0.1797

 , b =


6.1218

−0.0681
−1.7645
8.4683
10.7936


The CQ test presented in section V has been performed on it and the an-
swer was achieved in 0.04 seconds by means of the Multi-Parametric Toolbox
(MPT) (please see [56] for details) with MATLAB 7.12 R⃝ installed on a Intel
CoreTM2 R⃝ Quad machine. The polytope S resulted no CD because of the
presence of the vertex g′ = [1.908, 0.7355]T , which is not viable as illustrated
in Figure 5.5. Then, S has been inner-approximated by 91 boxes (Figure 5.6)
by using the algorithm presented in [54] which, on the same machine, took 37
seconds to terminate its execution. The resulting CD polytope S ′, that does
not contain g′ in its convex hull, is depicted in Figures 5.7-5.8.
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Analysis in multi-dimensional cases

We show here two interesting examples related to the use of the above pre-
sented multi-box inner approximation technique in the case of systems with
multi-dimensional decision sets. The first is the above mentioned counterex-
ample showing that the convex hull of the multi-box approximation set may
fail to be viable in general multi-dimensional problems, when the viability
notion of Definition (5.4) is adopted. The second is instead provided in order
to remark the fact that this method may however be used as a ”first attempt”
to obtain an approximated viable set of a constrained region, because in many
cases it is a successful approach. In this subsection we investigate if the above
presented approximation could be used for problems with multi-dimensional
decision set case without modification. Unfortunately, we noticed that when
m ≥ 4, problem instances may arise where the viability cannot be proved.

Example 1:
Consider a two-agent case each acting on 2-dimensional local space (m1 =
m2 = 2) with m = 4. We are looking for two hyper-planes{

aT1 g = b1
aT2 g = b2

for which the Test of Lemma 5.11 successes. Because we assume that such
hyper-planes arise from the multi-box approximating procedure, we con-
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sider that they represent faces of the convex hull of such an approximation
which enjoy the properties stated in Lemmas 5.19-5.20. In order to sim-
plify our search, without any loss of generality, we look for a direction w
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been substituted by a new viable vertex (black spot).

having same components in all axes, i.e. w = [v, v, v, v]T where v ∈ IR.
The success of the Test suggests us that w and the coefficient vectors a1
and a2 have to jointly satisfy the following conditions

(a11 + a21 + a31 + a41)v < 0
(a12 + a22 + a32 + a42)v < 0
(a11 + a21)v > 0
(a31 + a41)v < 0
(a12 + a22)v < 0
(a32 + a42)v > 0

(5.35)

In fact, according to Lemma 5.11, the latter indicates that any g lying
on the considered hyperplane is not viable. Moreover, we have to add
further constraints in order to impose that such hyperplane belongs to the
convex hull of a multi-box inner approximation and then satisfies Lemmas
5.19-5.20. In particular, we impose that the first component of w satisfies
Lemma 5.20. Then, we have to consider the following additional conditions{

a11v < 0
a12v < 0

(5.36)

Because the other components of w satisfy Lemma 5.19, the following
constraints have to be included in our search
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(a31v < 0 ∧ a32v < 0) ∨ (−a31v < 0 ∧ −a32v < 0)
(a41v < 0 ∧ a42v < 0) ∨ (−a41v < 0 ∧ −a42v < 0)

(5.37)

Observe that several solutions for system of inequalities (5.35)-(5.37) exist
and may be represented by the following compact form.

a11 < 0
a21 > −a11

a31 < −a11 − a21 ∧ 0 < a41 < −a11 − a21 − a31 ∧ a12 < 0∧
0 < a22 < −a32 ∧ a32 < 0 ∧ −a32 < a42 < −a12 − a22

− a32 ∧ v > 0 ∨ a31 > 0∧
a41 < −a11 − a21 − a31 ∧ a11 < 0 ∧ 0 < a22 < −a12∧
(0 < a32 ≤ −a12 − a22 ∧ −a32 < a42 < 0 ∧ v > 0)


(5.38)

where ∧ and ∨ represents logic AND and, respectively, OR conditions. As
a conclusion, from the success of the Test of Lemma 5.11 is not possible to
guarantee that the multi-box approximation is viable in this simple multi-
dimensional case.

Example 2:
As a second scenario, we consider the same problem of Example 1 with
one of the two agents acting on a scalar decision space, i.e. m1 = 1 and
m2 = 3. In this case we look for two hyper-planes and an admissible
direction w = [w1, w2], w1 ∈ IR, w2 ∈ IR3 that satisfy the Test of Lemma
5.11 or, equivalently, the following system of inequalities

aT
1 w < 0

aT
2 w < 0

a2
1w

1
2 + a3

1w
2
2 + a4

1w
3
2 < 0

a2
2w

1
2 + a3

2w
2
2 + a4

2w
3
2 > 0

a1
1w1 > 0

a1
2w1 < 0.

(5.39)

Furthermore, an additional constraint of type (5.36) has to be added for
the satisfaction of Lemma 5.20, that is{

a2
1w

1
2 < 0

a2
2w

1
2 < 0

(5.40)

and further constraints of type (5.37) are needed in order to take into
account Lemma 5.19{

(a1
1w1 < 0 ∧ a2

1w1 < 0) ∨ (−a1
2w1 < 0 ∧ −a1

2w1 < 0)
(a3

1w
2
2 < 0 ∧ a3

2w
2
2 < 0) ∨ (−a3

1w
2
2 < 0 ∧ −a3

2w
2
2 < 0)

(a4
1w

3
2 < 0 ∧ a4

2w
3
2 < 0) ∨ (−a4

1w
3
2 < 0 ∧ −a4

2w
3
2 < 0)

(5.41)

Please note that any attempt to solve the system of inequalities fails be-
cause the first inequalities of (5.41) and the latter two inequalities of (5.39)
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are incompatible. Then, in this case, two hyper-planes belonging to the
convex hull of a multi-box region are always viable and the multi-box in-
ner approximation succeeds in making the resulting approximated region
viable.

5.4 Parallel Feed-Foward Command Governor Scheme
(P-FFCG)

The main drawback of the S-FFCG algorithm is that, every τ time instants,
only one agent at a time is allowed to modify its local command. This yields to
a reduced capability to track the desired reference r(t). In order to overcome
such a limitation, any agent should be enabled to select its local command
every τ time instants. Here we introduce a distributed CG scheme based on
the FF-CG approach presented in Chapter 3 assuming, as in Section 5.2,
that the agents are connected via the communication network represented by
the graph Γ = (A,B), defined in (5.1) with the related Hamiltonian cycle
H = {1, ...N}. The two key points to be considered in building up such a kind
of strategy are:

a) the definition of the information set available to each agent
b) the determination of a set of decentralized ”selection rules” such that

the composition of all feasible local commands satisfies global constraints
(3.19).

With regards to the information available to each agent, we will assume that
each agent acts as a gateway in redistributing at each time instant data
amongst the other, no directly connected, agents. Then, at each time instant
t, the most recent information on computed commands available locally to
the i-th agent i represented by the following Local Information vector:

ξi(t) =

[
gT1

(
t−

⌈
di,1
τ

⌉
τ

)
, . . . , gTi (t− τ), . . . , gTN

(
t−

⌈
di,N
τ

⌉
τ

)]T
(5.42)

Where ⌈·⌉ represents the ceiling operator for a scalar. It results that the Com-
mon Information on the applied commands shared by all agents at each time
t is given by the vector

ξ(t) =

[
gT1

(
t−

⌈
d1
τ

⌉
τ

)
, ..., gTN

(
t−

⌈
dN
τ

⌉
τ

)]T
(5.43)

where di is the maximum amongst all distances di,j from the i-th agent to
any other in the graph, i.e. di = maxj∈Adi,j .

The main idea behind the proposed selection rule is that of generating,
every τ steps and on the basis of the information shared by all the agents in
the network, a set of decoupled alternative constraints (one for each agent)
such that their local fulfillment implies the fulfilment of global constraints
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(3.19). In other words, at each computation time step, we will substitute the
admissible region for ∆g given by conditions (3.19) with its Set Cartesian
Decomposition ([57]).

If such a decomposition is properly accomplished, the problem decouples
and each agent will have simply to fulfill the inclusion into a local set in the
form

∆gi(t) ∈ ∆Gi(t), i = 1, ..., N (5.44)

with ∆Gi(t) ⊆ IRmi , i = 1, ..., N convex and compact sets containing 0mi for
all t ≥ 0.

It remains to understand how to generate local decoupled constraints guar-
anteeing global constraints satisfaction. The first step is to observe that if
constraints (5.44) are satisfied at each time step, then we can define the set
of all possible feasible values for g(t) computed on the basis of the common
information vector ξ(t) as follows

Ξ(t) = {ξ(t)}⊕
( d1⊕

i=1

∆G1(t−iτ)× . . .×
dN⊕
i=1

∆GN (t−iτ)
)

(5.45)

where ⊕ denotes the Pontryagin set sum (Definition (2.2)).
On the basis of the above feasible values of g(t−τ), the set of all admissible

aggregate command variations can be computed as follows

∆V(Ξ) :=

{
∆g

∣∣∣∣ ∆g ∈ ∆G(g), ∀g ∈ Ξ
(g +∆g) ∈ Wδ, ∀g ∈ Ξ

}
(5.46)

Finally, the (approximated) set Cartesian decomposition giving rise the
agent-wise decoupled constraints (5.44) should satisfy the following set inclu-
sion condition

∆G1(t)× . . .×∆GN (t) ⊆ ∆V(Ξ(t)), (5.47)

0i ∈ In(∆G1(t)), . . . , 0N ∈ In(∆GN (t)) (5.48)

Note also that because Ξ(t) is a common information shared by all agents in
the network, a proper index need to be defined for all agents to independently
compute the same collection of sets∆Gi(t), i = 1, ..., N.We can finally describe
the Parallel FF-CG procedure to be performed. It involves also the usage of
S-FFCG described in section 5.1, then the P-FFCG procedure can be seen as
a mix between the above described parallel approach and the S-FFCG where
agents behave in a sequential or in parallel way according to precise events
that can occur. In order to model this procedure one can consider four possible
operative scenarios: a parallel scenario (PAR), a sequential scenario (SEQ)
and further two scenarios (P2S and S2P) that are related with the transition
between sequential and parallel scenarios. Each scenario can be summarized
as follows
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- PAR:In this scenario agents go parallel and switch to sequential scenario if
the distance between Ξ(t) and the border of Wδ is smaller than a prefixed
threshold ϵP . In particular
1.1 Each agent computes the minimum distance between Ξ(t) and the

border of Wδ as

µ(t) = min
g∈Ξ(t),g′∈∂(Wδ)

∥g − g′∥ (5.49)

2.1 If µ(t) is bigger than a predetermined threshold ϵP
2.1.1 Each agent determines the collection of sets ∆Gi(t), i = 1, ..., N

as the solution of its instance of the following optimization problem

max
∆Gi(t),i=1,...,N

V (∆G1(t)× ...×∆GN (t))

subject to (5.47), (5.48)
(5.50)

where V (·) denotes a possible measure of the volume of a set (to
achieve good dynamical properties we want (∆G1(t)× ...×∆GN (t))
to be as large as possible)

2.1.2 each agent chooses its own reference by solving the following
convex optimization problem

gi(t) = argmin
gi

∥gi − ri(t)∥2Ψi

subject to (gi − gi(t− τ)) ∈ ∆Gi(t)
(5.51)

2.2 Otherwise, go to P2S
- P2S:This is a transition scenario between PAR and SEQ. In this case only

one agent updates according to the Hamiltonian cycle H while all other
non-active agents set their local set ∆Gi = 0. More formally
1.1 The agent in charge computes the following set on the basis of its most

updated local information (5.42)

Ξi(t) = {ξi(t)}⊕
(di,1⊕

i=1

∆G1(t−iτ)× . . .×
di,N⊕
i=1

∆GN (t−iτ)
)

(5.52)

2.1 If Ξi is not a singleton it computes gi(t) as

gi(t) = argmingi ∥ gi − ri(t) ∥2Ψi

subject to (gi − gi(t− τ)) ∈ ∆V0
i (Ξi(t))

(5.53)

where

∆V0
i (Ξi) :=

{
∆gi ∈ IRmi |[0T1 , ..., ∆gTi , ..., 0

T
N ]T ∈ ∆V(Ξi)

}
. (5.54)

2.2 Otherwise go to scenario SEQ
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- SEQ:In this case agents perform the S-FFCG algorithm described in Section
5.1 and can recover to the PAR scenario when the distance between the
global command g(t − τ) and the border of Wδ is bigger than a prefixed
threshold ϵS . When the trigger event occurs, only the agent in charge is
capable of catching it because the actual applied global command g(t−τ),
is known and, before switching to S2P, the agent sends an acknowledgment
consisting in a number σi(t) = dmax where dmax = maxj dj . More in detail
the agent in charge
1.1 computes

µ(t) = min
g∈∂(Wδ)

∥g − g(t− τ)∥ (5.55)

2.1 If µ(t) is smaller than ϵS computes gi(t) by means of (5.7).
3.1 Otherwise it sets σi(t) = dmax, sends σi(t) to neighbors and goes to

S2P.

On the contrary the agent not in charge has to check if an acknowledgment
σj(t) arrives from one of its neighbors and, in this case, it sets σi(t) =
σj(t)− 1, communicates σi(t) to the neighbors and goes to S2P.

- S2P: This is a transition scenario between SEQ and PAR that repre-
sents an initialization phase for the parallel procedure. In this case agents
decrements σi(t), when σi(t) = 0 that means that all agents knows the
last applied command vector g(t) then they can switch to PAR and the
parallel procedure can restart with Ξ(t) = {g(t− τ)}.

Remark 5.23. It is worth to remark that in P2S scenario after dmax time steps
Ξi(t),∀i ∈ A reduces to a singleton, hence the transition to SEQ scenario is
ensured.

Remark 5.24. For scenarios PAR and SEQ we have considered two different
thresholds ϵP and ϵS that represent design knobs for the P-FFCG. In partic-
ular they have to be chosen so that ϵP < ϵS . This expedient avoids a possible
huge number of switches between PAR and SEQ that, although do not pre-
vent agents from reaching their objective, slows down the updating process of
the command g(t).

The algorithm that we want to present is implemented by means of the
state-finite automata depicted in Figure 5.4. From an implementation point of
view, the involvement of such a hybrid scenario results in the introduction of
the logical variable sti ∈ {”PAR”, ”SEQ”, ”S2P”, ”P2S”} that indicates in
which scenario the i-th agent is operating. More formally, it can be presented
by the following ”parallel” version of distributed FF-CG algorithm:

Algorithm 5.4.1 Parallel-FFCG Algorithm (P-FFCG) - Agent i
at each time t
1.1 receive ξj(t), σj(t) from all neighbors j ∈ Ni
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SEQ

S2P

P2S

PAR

µ(�)εP

µ(�)<εP

|Ξi(�)|>1

|Ξi(�)|=1

(σ>-1) | (κmodN=i & µ(�)>εS)

(µ(�)εS) | (κmodN  i & σ=-1)


σi=0

σi>0

Fig. 5.9. Finite-state automata that describes transition between scenarios in Al-
gorithm 5.4.1

1.2 go to sti(t)

PAR:
1.1if(t==κτ, κ=0, 1, . . .)

1.1.1solve (5.49)
1.1.2 if µ(t) ≥ ϵP

1.1.2.1solve (5.50)
1.1.2.2solve (5.51)

1.1.3else
1.1.3.1set sti(t) = ”P2S”
1.1.3.2go to sti(t)

1.2else
1.2.1 set gi(t) = gi(t− 1)

1.3upda te ξi(t)
1.4transmit ξi(t) to neighborhood Ni

1.5apply gi(t)
1.6set sti(t+ 1) = sti(t)

P2S:
1.1 compute Ξi(t) as in (5.52)
1.2 if |Ξi(t)| > 1
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1.2.1 if(t==κτ&(κ mod N) = i, κ=0, 1, . . .), solve (5.53)
1.2.2 else, set gi(t) = gi(t− 1)
1.2.3 update ξi(t)
1.2.4 transmit ξi(t) to neighborhood Ni

1.2.5 apply gi(t)
1.2.6 set ∆Gi(t) = 0mi

1.3 else
1.3.1 set sti(t) = ”SEQ”
1.3.2 go to sti(t+ 1) = sti(t)

SEQ:
1.1if σj(t− 1) > −1, j ∈ Ni

1.1.1 set σi(t) = σj(t)− 1
1.1.2 transmit σi(t) to neighborhood Ni

1.1.3 set sti(t) = ”S2P”
1.1.4 go to sti(t)

1.2else
1.2.1 if(t==κτ&(κ mod N) = i, κ=0, 1, . . .)

1.2.1.1 solve (5.55)
1.2.1.2 If µ(t) ≤ ϵS,solve(5.7)
1.2.1.3 else

1.2.1.3.1 set σi(t) = dmax

1.2.1.3.2 transmit σi(t) to neighborhood Ni

1.2.1.3.3 set sti(t) = ”S2P”
1.2.1.3.4 go to sti(t)

1.2.2 else, set gi(t) = gi(t− 1)
1.2.3 update ξi(t)
1.2.4 transmit ξi(t) and σi(t) = −1 to neighborhood Ni

1.2.5 apply gi(t)
1.2.6 set ∆Gi(t) = 0mi

1.2.7 set sti(t+ 1) = st(t)

S2P:
1.1if σi(t) = 0

1.1.1 set sti(t) = ”PAR”
1.1.2 go to sti(t)

1.2else
1.2.1 set σi(t+ 1) = σ(t)− 1
1.2.2 transmit σi(t) to neighborhood Ni

1.2.3 update ξi(t)
1.2.4 transmit ξi(t) to neighborhood Ni

1.2.5 apply gi(t) = gi(t− 1)
1.2.6 set ∆Gi(t) = 0mi

1.2.7 set sti(t+ 1) = sti(t)



5.4 Parallel Feed-Foward Command Governor Scheme (P-FFCG) 105

Finally, we can present some properties enjoyed by the P-FFCG scheme.

Theorem 5.25. Let assumptions A1-A2-A3 be fulfilled for the system aris-
ing from the composition of N subsystems in form (5.1). Let consider the
distributed P-FFCG Algorithm (5.4.1) and let an admissible aggregate com-
mand signal g(0) = [gT1 (0), . . . , g

T
N (0)]T ∈ Wδ be applied at t = 0 such that

(3.8) holds true. Then

1. for each agent i ∈ A, at each time t= kτ, k ∈ ZZ+, the minimizer related
to one of the problems (5.51), (5.53), (5.7), to be performed depending on
the value of sti, i ∈ A, uniquely exists and can be obtained by solving a
convex constrained optimization problem;

2. The overall system acted by agents implementing the P-FFCG supervisory
policy never violates the constraints, i.e. c(t) ∈ C for all t ∈ ZZ+.

3. Whenever ri(t) ≡ ri, ∀i ∈ A with ri constant set-points the sequence
of g(t) = [gT1 (t), . . . , g

T
N (t)]T ’s asymptotically converges either to r =

[rT1 (t),. . . ,r
T
N (t)]T if r ∈ Wδ or to a point r̂. that is Pareto-Optimal for

the problem (5.9).

Proof

1) The existence of an admissible solution for each agent at each time kτ
can be proved by simply remarking that gi(t) = gi(t − τ), i = 1, . . . , N ,
is always an admissible, although not necessarily optimal, solution for the
prescribed problems at time t, in any state sti. In fact, the sets ∆V(Ξ(t))
and ∆V(Ξi(t)),∀i ∈ A always contain the point 0m (note that Ξ(t) and
Ξi(t),∀i ∈ A are contained in Wδ).

2) At each time t = kτ , with k ∈ ZZ+, from a centralized point of view,
a command g(kτ) complying with (3.19) is applied to the overall plant.
By construction, the latter implies that the set-valued virtual predictions
along the virtual time i defined in (2.8) satisfy

c̄(i, x(kτ), g(kτ)) ∈ C, ∀i ∈ ZZ+,

Then, the statement is proved by simply noticing that the following inclu-
sion

c(t) = c(i, x(kτ), g(kτ)) ∈ C,

holds true for all time instants t = kτ + i, i ∈ {0, 1, ..., τ − 1} and by
repeating the same argument for all k ∈ ZZ+.

3) The convergence follows simply because the sequences of solutions gi(t)
are such that the local costs ||gi(t) − ri||2Ψi

are non increasing for any
i = 1, ..., N . In fact, there is not convenience for the agents to modify their
actual optimal solutions if the costs could not be minimized further on.
To this end, let gi(t) be the P-FFCG local action at time t, solution of
any optimization problem among (5.51), (5.53), (5.7). As already seen in
item 1) of this proof, at time t+ τ, gi(t) is still an admissible, though not
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necessarily the optimal, solution and hence the sequences ||gi(t) − ri||2Ψi

are non increasing, i.e. ∥ gi(t+ τ)− ri ∥2Ψi
≤∥ gi(t)− ri ∥2Ψi

.
Then, we want to show that any stationary optimal solution, viz. g(t) =
g(t + 1) ∀t, is Pareto Optimal by proving that a solution is not station-
ary if is not Pareto Optimal. To this end, let g′ = [g′T1 , ..., g′TN ]T be the
actual solution at time t = kτ, k ∈ ZZ+ which is assumed to be not Pareto
Optimal. As a consequence, other different solutions exist which improve
the costs. Supposedly, vectors v = [vT1 , ..., v

T
N ]T ∈ IRm would exist with

g′ + v ∈ Wδ, such that

||g′i + vi − ri||2Ψi
− ||g′i − ri||2Ψi

≤ 0, (5.56)

happens to hold for all i ∈ A′ := {i ∈ A : vi ̸= 0} with some of the above
inequalities becoming strict for at least one index i ∈ A′.
As already stated in item 3) of the proof of Theorem 5.7, the existence
of a vector v satisfying (5.56) makes it convenient for all agents to move
from g′. Hence we have to show that the policy underlying Algorithm 5.4.1
guarantees that at least one agent can modify its command g′i. To this end,
it is sufficient to prove that in scenario ”PAR” and ”SEQ” the cost will
decrease for at least on agent. In fact ”P2S” and ”S2P” represent transient
scenarios because the algorithm could dwell there at most dmax time steps.
If at time t sti(t) =”SEQ”,∀i ∈ A and µ(t) ≤ ϵS , where µ(t) is computed
as in (5.55), then, the agents will go on sequentially and, because the
discussion of point 3) of the proof of Theorem 5.7, at least one agent can
change its command. Conversely, if µ(t) > ϵS , agents will not move in
”SEQ” but they will switch on ”S2P” and subsequently, at a time t′, such
that t′ − t ≤ dmax, in ”PAR” with Ξ(t′) = {g′} reduced to a singleton.
In such a situation µ(t′) computed as in (5.49) will coincide with µ(t) in
(5.55) and then it will be for sure bigger than ϵP because

µ(t′) = µ(t) > ϵS ≥ ϵP . (5.57)

The latter and Proposition 3.5 imply that the set ∆V(Ξ(t′)), that will be
in this case

∆V(Ξ(t′)) =

{
∆g

∣∣∣∣ ∆g ∈ ∆G(g′)
(g′ +∆g) ∈ Wδ

}
(5.58)

will contain a ball of finite radius centered at 0m. As consequence the sets
∆Gi(t

′),∀i ∈ A, derived by means of (5.50), will also contain a ball of finite
radius centered at 0mi that allows each agent to move in any subdirection
vi ∈ IRmi .
Similar considerations are valid when, at time t, sti(t) =”PAR” and Ξ(t)
is not a singleton. In this case if µ(t), computed as in (5.49), is bigger than
ϵP , it can be proved that ∆V(Ξ(t)) even contains a ball of finite radius
(see Lemma 5.31 in the Appendix) and, by following the above discussion,
we can conclude that all agents are capable to modify their command w.r.t
g′. On the contrary if µ(t) < ϵP , agents will change their status sti first in
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”P2S” and then in ”SEQ” and as already seen, in the worst case, they will
be enabled to change their command after 2dmax steps, when their status
sti will again equal ”PAR”.
Thus, if we are not at a Pareto-optimal solution at time t, at least one of
the agents will move from it by a finite amount of time steps.

Remark 5.26. Note that, because of A1 and A2 whenever g converges to a
point r̂ then

lim
t→∞

x̂(t) = xr̂, lim
t→∞

ŷ(t) = yr̂ = r̂, lim
t→∞

ĉ(t) = cr̂. (5.59)

Remark 5.27. It is worth noticing that this distributed strategy requires low
data exchange rates to be implemented. Anyway, the communication loads do
not affect the on-line execution times and computational burdens because data
are exchanged only after the computation and application of local commands.

Remark 5.28. Note that, although the scalability of the P-FFCG is guaranteed
(the dimension of the problem to be solved by each agent grows at most poly-
nomially w.r.t. the numbers of constraints of the corresponding centralized
problem), any single agent needs to know the sets Wδ and ∆G(g),∀g ∈ Wδ

associated to the entire aggregate system. Even if such a feature reduces the
method flexibility, at the best of our acknowledge, it cannot be avoided in
the general case unless a restricted (usually in a very conservative way) set of
admissible steady-state set-points Wδ is used.

5.4.1 Computational Details

In what follows a wide description of computation details related to above
parallel strategy is presented. In particular, all technicalities required in order
to implement the optimizations problems (5.51), (5.49), (5.55) and (5.53) will
be considered.

The main difficulty in implementing Problem (5.51) relies in the compu-
tation of the set ∆V(Ξ) in (5.46) and its Cartesian decomposition arising in
(5.50). We show first how to compute ∆V(Ξ) and, its Cartesian decompo-
sition is then derived by means of the inner-boxing procedure described in
[54]. The proposed scheme also represents the first step for computing the
multi-box inner approximation presented in Section 5.3. Next, each agent, by
solving problem (5.50), gets a box B(∆g(t),∆g(t)) = ∆G1(t),×, ...,×∆GN (t)
containing 0m and can choose its local command in the following simple way

gi(t) = argmin
gi

∥gi − ri(t)∥2Ψi

subject to ∆g
i
≤ (gi − gi(t− τ)) ≤ ∆gi

(5.60)

that represents the rephrasing of problem (5.51).
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Moreover the box structure for ∆Gi(t) implies a box shape also for the set
Ξ in (5.45) that can be uniquely identified by only two vectors according to
Definition (5.16)

Ξ = B(ξ, ξ). (5.61)

The notation in (5.61) is useful to easily compute the set ∆V(Ξ). The draw-
back, in this case, could arise from the fact that, according to Definition (5.46),
it is needed to calculate sets ∆G(g) for an infinite number of points g ∈ Ξ. A
solution can be arranged in two steps by computing an inner-approximation
of the set ∆V(Ξ). The first step consists in exploiting the polyhedral structure
of the set C (2.18)-(2.21) and separately considering the half-spaces

Cj := {c ∈ IRn
c : TT

j c ≤ qj} (5.62)

whose intersection constitute the constraints polyhedron C =
∩z

j=1 Cj . Then

for each set Cj we compute

∆Vj(Ξ) = {∆g|∆g ∈ ∆Gj(g),∀g ∈ Ξ}∩{∆g|(g+∆g) ∈ Wj
δ ,∀g ∈ Ξ} (5.63)

where
Wj

δ := {g ∈ IRm : cg ∈ Cj
δ} (5.64)

and

∆Gj(g) := {∆g : ∥HcΦ
k(I − Φ)−1G∆g∥ ≤ ρjg+∆g − γρjg} (5.65)

with

ρjg+∆g =
qj − TT

j cg+∆g

∥Tj∥
, (5.66)

cg = Hc(In − Φ)−1G. (5.67)

Hence if we did compute ∆Vj(Ξ), j = 1, . . . , z we would have an inner-
approximation of ∆V(Ξ) because of the following lemma

Lemma 5.29. The intersection of sets ∆Vj(Ξ) is such that
z∩

j=1

∆Vj(Ξ) ⊆

∆V(Ξ).

Proof
see the Appendix.

The second step consists of computing each set ∆Vj(Ξ), j = 1, ..., z. They
can be determined in an easy way by finding for each hyperplane of Wδ the
point ḡj ∈ Ξ that minimizes the distance between the region Ξ and the j-th
hyperplane TT

j cg = qj of Wδ. Such a point is a solution of the following LP
problem
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ḡj = argmin
g∈Ξ

ρjg. (5.68)

It is worth to remark that the constraints g ∈ Ξ simply indicates that, by
resorting to definition (5.61), the point g is between two vectors, i.e. ξ ≤ g ≤ ξ.

In Figure 5.10 points ḡj are depicted in the case where Wδ is the intersection
of two hyperplanes.

t =1
Ξ

Ξ

Ξ

g2

g1

Fig. 5.10. Points ḡj in the case where Wδ is the intersection of two hyperplanes

Then the set

∆Vj({ḡj}) := ∆Gj(ḡj) ∩ {∆g : ḡj +∆g ∈ Wj
δ}. (5.69)

can be used in place of ∆Vj(Ξ) because this choice is justified by the following
lemma

Lemma 5.30. The set ∆Vj({ḡj}) is always contained or at the most coincides
with ∆Vj(Ξ), i.e. ∆Vj({ḡj}) ⊆ ∆Vj(Ξ).

Proof
see the Appendix.

An immediate consequence of Lemmas 5.29 and 5.30 results is that
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z∩
j=1

∆Vj({ḡj}) ⊆ ∆V(Ξ) (5.70)

Hence, each agent can use ∆Ṽ(Ξ) =
z∩

j=1

∆Vj({ḡj}) instead of ∆V(Ξ) as the

set of feasible command variations in solving problem (5.50).
In order to set up the problem (5.51) it remains to illustrate the box ap-

proximation underlying problem (5.50) for the determination of sets ∆Gi,∀i ∈
A from ∆Ṽ(Ξ). Hereinafter we provide a detailed procedure to solve it that
exploits an algorithm borrowed from [54] and determine a box inscribed in a
polyhedron as depicted in Figure 5.11. For this reason, we will focus on the
case where set C is defined as a box that give rise to a polyhedral form for
∆Ṽ(Ξ). Let C be defines as

B(∆g,∆g)=∆G1x∆G2

∆G2

∆G1

∆g2

∆g1

∆V(Ξ)
∆g

∆g

~

Fig. 5.11. Inner-box approximation of the set ∆Ṽ(Ξ) in the case where 2 agents
are operating in a bi-dimensional decision space

C := {c ∈ IRnc : q
s
≤ cs ≤ q̄s, s = 1, . . . , nc.} (5.71)

with q
s
∈ IR and q̄s ∈ IR representing respectively the maximum and the

minimum value that the i-th component of the constrained vector c may
assume. Then we can easily decompose the constraint set C into the Cartesian
product of nc sets of scalar intervals:

C = C(1) × ...× C(s) × ...× C(nc) (5.72)

where

C(s) :=
{
cs ∈ IR

∣∣∣q
s
≤ cs ≤ q̄s

}
. (5.73)

By defining q as q := [q̄1, . . . , q̄s . . . , q̄nc ,−q
1
, . . . ,−q

s
. . . ,−q

nc
]T the set C can

be seen as
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C =

{
c ∈ IRnc :

[
Inc

−Inc

]
c ≤ q

}
. (5.74)

The latter definition of C specializes (2.18) when T = [Inc ,−Inc ]
T . By means

of this particular structure one can rephrase the sets ∆Gj(g) in (5.65) in the
following very easy computable form

∆G(j)
g :=

{
∆g ∈ IRn : |HcΦ

k(I − Φ)−1G∆g| ≤ ρ
(j)
g+∆g − γρ(j)g , k = 0, ..., k0

}
(5.75)

where ρ
(j)
g+∆g = qj − cg+∆g and k0 is the constraint horizon computed in the

Algorithm (2.3.1). Hence, once computed ḡj in (5.68), the set ∆Vj(ḡj) in
(5.69) takes the following matrix form

∆Vj(ḡj) =

∆g

∣∣∣∣∣∣∣
Sc,j∆g ≤ qj − δ[

√
TT
j Tj ]− Sc,j ḡ

j

(Rk
c,j + Sc,j)∆g ≤ qj − Sc,j ḡ

j , k = 0, ..., k0
(−Rk

c,j + Sc,j)∆g ≤ qj − Sc,j ḡ
,j k = 0, ..., k0

 (5.76)

where Sc,j = TT
j Hc(In − Φ)−1G + L and Rk

c,j = TT
j HcΦ

k(In − Φ)−1G. Eq.

(5.76) allows one to express ∆Ṽ(Ξ) as a convex polyhedron defined as

Ã∆g ≤ b̃ (5.77)

with

Ã =



Sc,1

Rk
c,1 + Sc,1

−Rk
c,1 + Sc,1

...
Sc,z

Rk
c,z + Sc,z

−Rk
c,z + Sc,z


∈ IR(z(1+2k0))×m, b̃ =



q1 − δ[
√
TT
1 T1]− Sc,1ḡ

1

q1 − Sc,1ḡ
1

q1 − Sc,1ḡ
1

...

qz − δ[
√
TT
z Tz]− Sc,z ḡ

z

qz − Sc,z ḡ
z

qz − Sc,z ḡ
z


∈ IR(z(1+2k0)

(5.78)
where z = 2nc. By exploiting the matrix description of ∆Ṽ(Ξ) problem (5.50)
becomes

max
∆g∈∆Ṽ(Ξ),∆g∈∆Ṽ(Ξ)

V (B(∆g,∆g)) (5.79)

Several polynomial time algorithms are presented in [54] for computing the
box with maximum volume contained in a convex polytope described in matrix
form. One of these methods has been here extended into the more general case
where inequalities (5.77) describe a polyhedron. Hence, an algorithm that
solve problem (5.79) can be formulated as
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max
∆g,∆g+

∑m
i=1 ln∆g+i (5.80)

s.t. Ã∆g + Ã+∆g+ ≤ b (5.81)

∆g ≤ −ε (5.82)

∆g +∆g+ ≥ ε (5.83)

where ∆g+ := ∆g − ∆g and Ã+ is the positive part of Ã namely ã+i,j :=
max(0, ãi,j), please refer to [54] for details. Constraints (5.82) and (5.83)
are added for two reasons, the first one is that the resulting sets ∆Gi =
B(∆g

i
,∆gi), i ∈ A will contain a ball of finite radius ε that contains 0mi (this

guarantees that in the ”PAR” scenario each agent has a margin of freedom in
determining a variation for gi ), the second one is related with the fact that
the set {(∆g,∆g+) ∈ IR2m : Ã∆g + Ã+∆g+ ≤ b̃} could be not limited and
then not compact. The Lemma 5.32 in Appendix proves that the set generated
by (5.81)-(5.83) is limited.

Concerning Problems (5.49) and (5.55), from the above discussion we can
directly conclude that µ(t) in (5.49) can be computed during the ”PAR”
scenario as

µ(t) = min
j

ρjḡj(t), j = 1, ..., z (5.84)

where ḡj(t) is the optimal cost of the j-th problem (5.68) achieved at time t
while µ(t) in (5.55) is determined in the ”SEQ” scenario as

µ(t) = min
j

ρjg(t−τ), j = 1, ..., z. (5.85)

Finally Problem (5.53) can be implemented in two steps

1. Approximate ∆V(Ξi) with ∆Ṽ(Ξi) = {∆g ∈ IRm : Ã∆g ≤ b̃} by following
procedure outlined in (5.61)-(5.77) by considering Ξi in the place of Ξ.

2. Compute ∆V0(Ξi) in (5.54) as

∆V0(Ξi) = {∆gi ∈ IRmi : Ã[0T1 , ..., ∆gTi , ..., 0
T
n ]

T ≤ b̃} (5.86)

Then, problem (5.53) at time t becomes

gi(t) = argmingi ∥ gi − ri(t) ∥2Ψi

subject to Ã(i)(gi − gi(t− τ)) ≤ b
(5.87)

where Ã(i) collects all the mi columns of Ã that multiply ∆gi in (5.86).

5.5 Conclusions

In this Chapter, two distributed FFCG schemes have been described for the
supervision of dynamically coupled interconnected linear systems subject to
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local and global constraints and used for solving constrained coordination
problems in networked control system. Two distributed coordination algo-
rithms have been outlined and the results on constraints fulfillment and sta-
bility deeply highlighted.

5.6 Appendix

Lemma 5.31. Let µ be a finite scalar computed as in (5.49). Then, if µ ≥
ϵP > 0, there exists a scalar η∗ > 0 such that the set ∆V(Ξ) contains a ball
of radius η∗, i.e. ∃η̄ > 0 : ∆V(Ξ) ⊇ Bη̄, ∀g ∈ Wδ;

Proof - Notice that the set ∆V(Ξ) in (5.46) can be rephrased as

∆V(Ξ) = {∆g ∈ IRm : ∆g∈∆G(g),∀g ∈ Ξ}∩{∆g ∈ IRm : g+∆g ∈ Wδ,∀g∈Ξ}
(5.88)

The statement is then is trivially proved because it isufficies to observe that:

1. because Ξ and the border of Wδ are separated from a finite distance
µ, each point g ∈ Ξ could be the center of a ball with radius η1 ≥ µ
entirely contained in Wδ, i.e. g + Bη1 ∈ Wδ, η ≥ µ,∀g ∈ Ξ. Then the set
{∆g ∈ IRm : g + ∆g ∈ Wδ,∀g ∈ Ξ} in (5.88) always contains a ball of
finite radius µ.

2. Item 3) of Proposition (3.5) implies that {∆g ∈ IRm : ∆g ∈ ∆G(g),∀g ∈
Ξ} contains a ball of finite radius η∗;

As consequence ∆V(Ξ) ⊇ Bη̄ where η̄ = min{µ, η∗}.

Proof of Lemma 5.29

This lemma can be easily proved by observing first that Wδ =
∩z

j=1 W
j
δ

implies

z∩
j=1

{∆g|(g +∆g) ∈ Wj
δ ,∀g ∈ Ξ} ≡ {∆g|(g +∆g) ∈

z∩
j=1

Wj
δ ,∀g ∈ Ξ} ≡

{∆g|(g +∆g) ∈ Wδ,∀g ∈ Ξ}
(5.89)

Moreover ∆G(g) can be rewritten as

∆G(g) =
z∩

j=1

∆Gj(g) (5.90)

since ρg in (5.5) equals minj ρ
j
g where ρjg is defined in (5.66). Eq. (5.90) allows

us to state that
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z∩
j=1

{∆g|∆g ∈ ∆Gj(g),∀g ∈ Ξ} ≡ {∆g|∆g ∈
z∩

j=1

∆Gj(g),∀g ∈ Ξ} ≡

{∆g|∆g ∈ ∆G(g),∀g ∈ Ξ},
(5.91)

Then, from (5.89) and (5.91) we obtain

z∩
j=1

{∆g|∆g ∈ ∆Gj(g),∀g ∈ Ξ} ∩
z∩

j=1

{∆g|(g +∆g) ∈ Wj
δ ,∀g ∈ Ξ} ≡ ∆V(Ξ),

(5.92)
and by exploiting basic properties of the ∩ operator we can state that

∆V(Ξ) ≡
z∩

j=1

{∆g|∆g ∈ ∆G(g)j ,∀g ∈ Ξ}∩
z∩

j=1

{∆g|(g +∆g) ∈ Wj
δ ,∀g ∈ Ξ}≡

z∩
j=1

(
{∆g|∆g ∈ ∆G(g)j ,∀g ∈ Ξ} ∩ {∆g|(g +∆g) ∈ Wj

δ ,∀g ∈ Ξ}
)
≡

z∩
j=1

∆Vj(Ξ).

(5.93)

Proof of Lemma 5.30

In order to prove the claim, because of the definition of ∆Vj(Ξ) in (5.63) and
∆Vj(ḡj) in (5.69), it is sufficient to prove that

∆Gj(ḡj) ⊆ {∆g ∈ IRm |∆g ∈ ∆Gj(g),∀g ∈ Ξ} (5.94)

{∆g ∈ IRm |ḡj +∆g ∈ Wj
δ} ⊆ {∆g ∈ IRm |g +∆g ∈ Wj

δ ,∀g ∈ Ξ} (5.95)

Let g′ ̸= ḡj be a point in Ξ. Because (5.68) one has

ρjḡj ≤ ρjg′ (5.96)

where ρjg is computed as in (5.66).
Now, let us focus first on (5.94) and let assume by contradiction that

∆Gj(g′) ⊆ ∆Gj(ḡj). This would imply, by exploiting (5.97), that

∥HcΦ
k(I − Φ)−1G∆g∥ ≤ ρjg′+∆g − γρjg′ ≤ ρjḡj+∆g − γρjḡj . (5.97)

According to (5.97), one finds

ρjg′ + ρj∆g − γρjg′ ≤ ρḡj + ρj∆g − γρjḡj (5.98)

that becomes
(1− γ)ρjg′ ≤ (1− γ)ρjḡj . (5.99)

The latter leads to the following expression

ρjg′ ≤ ρjḡj (5.100)
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that is incompatible with (5.96). Then, because ∆Gj(ḡj) ⊆ ∆Gj(g′), for all
g′ ∈ Ξ, (5.94) is proved.

In order to prove (5.95), let consider g′ as before and let investigate the
structure of these two sets

{∆g ∈ IRm |ḡj +∆g ∈ Wj
δ} = {∆g ∈ IRm |T jHc(In − Φ)−1G∆g ≤ qj

− T jHc(In − Φ)−1Gḡj}
(5.101)

and

{∆g ∈ IRm |g′ +∆g ∈ Wj
δ} = {∆g ∈ IRm |T jHc(In − Φ)−1G∆g ≤ qj

− T jHc(In − Φ)−1Gg′}.
(5.102)

Inequality (5.96) suggests that the right sides in (5.101) and (5.102) are related
in the following way

qj − T jHc(In − Φ)−1Gḡj ≤ qj − T jHc(In − Φ)−1Gg′, (5.103)

that means that all ∆g belonging to {∆g ∈ IRm |ḡj + ∆g ∈ Wj
δ} are in

{∆g ∈ IRm |g′ +∆g ∈ Wj
δ} or equivalently

{∆g ∈ IRm |ḡj +∆g ∈ Wj
δ} ⊆ {∆g ∈ IRm |g′ +∆g ∈ Wj

δ} (5.104)

that implies (5.95).

Lemma 5.32. The set of constraints (5.81), (5.82) and (5.83) is limited,
i.e. ∀[dT , (d+)T ]T ̸= 0 ∃λ > 0 and j ∈ {1, . . . , z} such that ãTj (∆g + λd) +

(ã+j )
T (∆g+ + λd+) > bj.

Proof

Let focus on constraints (5.82)-(5.83). Because each direction
[
dT , (d+)T

]T
has to be chosen admissible, we have that the following conditions are true

∆g + λd > 0 (5.105)

∆g + λd+∆g+ + λd+ > 0. (5.106)

Such inequalities suggest that ∆g+ + λd+ is always positive, i.e.

λd+∆g+ + λd+ ≥ 0. (5.107)

The rest of the proof is focused on verifying if for each direction
[
dT , (d+)T

]T
there exists a λ > 0 that yields false one or more inequalities in (5.81). To
this end, we have to consider two cases

1. d is a non parallel direction, i.e. aTj d ̸= 0,∀j = 1, ...3z. Among equations
(5.71)-(6.71) it is possible to observe that the box structure of C produces
particular symmetries in the matrices Ã and b̃ in (5.77). In particular, the
first half of the lines of Ã are opposite to the second half, i.e.
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ãTj = −ãTj+3z/2, j = 1, ..., 3z/2 (5.108)

and the first half of components of b̃ equals the second half, i. e.

bTj = bTj+3z/2, j = 1, ..., 3z/2. (5.109)

Hence, we can consider the generic couple (j, j + 3z/2) of lines of Ã. The
related inequalities in (5.81) evaluated in the point

[
∆g + d,∆g+ + λd+

]
are given by

ãTj (∆g + λd) + (ã+j )
T (∆g+ + λd+) ≤ bj (5.110)

−ãTj (∆g + λd) + (ã+j+3z/2)
T (∆g+ + λd+) ≤ bj+3z/2 = bj , (5.111)

Because (5.107), the terms (ã+j )
T (∆g+ + d+) and ã+j+3z/2(∆g+ + d+) are

always positive so their substraction reinforces the above inequalities as
follows

ãTj (∆g + λd) ≤ bj (5.112)

−ãTj (∆g + λd) ≤ bj . (5.113)

Then, for all [dT , (d+)T ]T ∈ IR2m, one can easily choose a sufficiently large
λ such that at least one of the inequalities (5.112)-(5.113) fails.

2. d is a parallel direction, i.e aTj′d = 0 for some j′. Let consider the couple

(j′, j′ +3z/2) of lines in Ã. The related inequalities in (5.81) evaluated at

point
[
(∆g + λd)T , (∆g+ + λd+)T

]T
are

ãTj′(∆g + λd) + (ã+j′)
T (∆g+ + λd+) ≤ bj′ (5.114)

−ãTj′(∆g + λd) + (ã+j′+3z/2)
T (∆g+ + λd+) ≤ bj′ . (5.115)

Because (5.107), the terms (ã+j′)
T (∆g++λd+) and (ã+j′+3z/2)

T (∆g++λd+)

are always positive. Then (5.114) and (5.115) reduces to

ãTj′(∆g + λd) ≤ bj′ (5.116)

−ãTj′(∆g + λd) ≤ bj′ . (5.117)

that can be violated (at least one of them) by means of a sufficiently large
value of λ for all [dT , (d+)T ]T ∈ IR2m.
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Non-Iterative CG Distributed Schemes

The problem of interest in this Chapter is to extend the distributed supervision
and coordination FF-CG strategies determined in the previous Chapter to
the more general class of state-feedback Command Governor (CG) schemes
recalled in Chapter 2 in the presence of bounded persistent disturbances.

The FF-CG solutions described in Chapter 3 are mainly characterized by
the fact that their actions computation does not consist on the current mea-
sure or estimate of the state. The modified references are generated under the
constraint of constantly applying a single FF-CG command for several sam-
pling steps, so as to enforce the system evolutions to stay close to the set of fea-
sible steady-state equilibria. Although this peculiarity of the FF-CG schemes
make them an attractive solution for distributed frameworks their tracking
and coordination performance are sub-optimal when fast-varying reference
signals are of interest and especially when bounded persistent disturbances
are present.

For this reasons the distributed approaches discussed here differ from those
presented in Chapter 5 because here the state is assumed to be available (with
some time-delay due to network latency) at the distributed master agents (see
Figure 1.5) and is assumed to be available for computation.

Sequential (S-CG) and parallel (P-CG) distributed schemes inspired to S-
FFCG and P-FFCG are presented and their stability, feasibility and viability
(liveness) properties fully investigated. It is important to remark that the in-
troduction of the state in the play introduces many new technical challenges
for the development of distributed schemes which cannot overlooked and de-
serve carefully analysis. In this respect, this Chapter extends and makes clear
several theoretical aspects of these sequential and parallel distributed schemes,
not directly derivable from Chapter 5.

The Chapter is organized as follows: in Section 6.1 the system under con-
sideration is described and the design problem formulated. In Section 6.2 the
S-CG sequential strategy is fully described and analyzed. In Section 6.3 the
parallel distributed version of the FF-CG is described. Section 6.4 concludes
the Chapter.
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6.1 System Description and Problem Formulation

Let us consider a set of N subsystems A = {1, . . . , N}, each one being a
LTI closed-loop dynamical system regulated by a local controller which en-
sures stability and good closed-loop performance in linear regimes when the
constraints are not active (small-signal regimes when the coordination is ef-
fective). Let the i-th closed-loop subsystem be described by the following
discrete-time model

xi(t+1) = Φiixi(t)+Gigi(t) +Gd
idi(t)+

∑
j∈A−{i}

Φijxj(t)

yi(t) = Hy
i xi(t)

ci(t) = Hc
i x(t) + Lig(t) + Ld

i d(t)

(6.1)

where: t ∈ ZZ+, xi ∈ IRni is the state vector (which includes the controller
states under dynamic regulation), gi(t) ∈ IRmi the CG action, which, if no
constraints were present, would essentially coincide with the reference ri(t) ∈
IRmi . The vector di(t) ∈ IRndi is an exogenous bounded disturbance satisfying
di(t) ∈ Di, ∀t ∈ ZZ+ with Di a specified convex and compact set such that
0ndi

∈ Di; yi(t) ∈ IRm the output, viz. a performance related signal. Finally,

ci ∈ IRnc
i represents the local constrained vector which has to fulfill the set-

membership constraint
ci(t) ∈ Ci, ∀t ∈ ZZ+, (6.2)

Ci being a convex and compact polytopic set. It is worth pointing out that,
in order to possibly characterize global (coupling) constraints amongst states
of different subsystems, the vector ci in (5.1) is allowed to depend on the
aggregate state and manipulable reference vectors x = [xT

1 , . . . , x
T
N ]T ∈ IRn,

with n =
∑N

i=1 ni, and g = [gT1 , . . . , g
T
N ]T ∈ IRm, with m =

∑N
i=1 mi, d =

[dT1 , . . . , d
T
N ]T ∈ IRnd , with nd =

∑N
i=1 ndi . Moreover, we denote by r =

[rT1 , . . . , r
T
N ]T ∈ IRm, y = [yT1 , . . . , y

T
N ]T ∈ IRm and c = [cT1 , . . . , c

T
N ]T ∈ IRnc

,

with nc =
∑N

i=1 n
c
i , the other relevant aggregate vectors. The overall system

arising by the composition of the above N subsystems is the system (2.1)
already seen in Chapter 2

with

Φ =

 Φ11 . . . Φ1N

...
. . .

...
ΦN1 . . . ΦNN

 , G =

G1 . . . 0
...

. . .
...

0 . . . GN

 , Gd =

Gd
1 . . . 0
...

. . .
...

0 . . . Gd
N



Hy =

Hy
1 . . . 0
...

. . .
...

0 . . . Hy
N

 ,Hc =

 Hc
1

. . .
Hc

N

 , L =

 L1

. . .
LN

, Ld =

 Ld
1

. . .
Ld
N

 .

As in the previous chapter the CG design problem is that of locally de-
termining, at each time instant t and for each master agent i ∈ A associated
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to each subsystem, a suitable reference signal gi(t) which is the best feasible
approximation of ri(t) and such that its application never produces constraint
violations, i.e. ci(t) ∈ Ci,∀t ∈ ZZ+, i ∈ A.

6.2 Distributed Sequential CG (S-CG)

Here we introduce a distributed CG scheme that is based on the centralized
solution described in Chapter 2. According to this perspective the overall
CG action g(t) computed in a distributed way is admissible w.r.t. c(t) ∈ C,
where C ⊆ {C1 × ... × CN} is the global admissible region. In particular such
a command is required to belong to the following convex and closed set of
admissible virtual sequences

V(x, k̄) =
{
g ∈ Wδ : c̄(k, x, g) ∈ Ck+k̄, ∀k ∈ ZZ+

}
(6.3)

for a given k̄ ≥ 0 Ck+k̄ is defined in (2.5). Note when k̄ = 0, one recovers
to the standard definition (2.14). As it will be clarified hereinafter, the case
k̄ > 0 needs to be considered to handle situations where time-delays and/or
communication latency occur (see [58] for details).

We assume the agents (the Master nodes in Fig. 1.5) connected via a
communication network. Such a network is modeled by the graph Γ = (A,B),
defined in (5.1) with the related Hamiltonian cycle H = {1, ...N} Also in this
case we will assume that each agent acts as a gateway in redistributing data
amongst the other, no directly connected, agents. Then, at each time instant
t, each i-th agent are aware of the following vectors:

ξi(t) = [gT1 (t− di,1), . . . , g
T
i (t− 1), . . . , gTN (t− di,N )]T

ϑi(t) = [xT
1 (t− di,1), . . . , x

T
i (t), . . . , x

T
N (t− di,N )]T

(6.4)

As a consequence, the most recent common information regarding the mea-
surement of the overall state available to each agent is x(t − di) where
di = maxj∈Adi,j .

The idea behind the approach is the same as in the S-FFCG approach and
consists in allowing only one agent at time to manipulate its local command
signal gi(t) while all others are instructed to keep applying their commands.
After a new CG computation, the agent in charge transmits its local command
and state to the next updating agent that is necessarily a neighbor. Such a
polling policy implies that, eventually after a preliminary initialization cycle,
at each time instant t, the following information are available to the generic
i-th ”agent in charge”

• the history of the aggregate vectors applied in the last N steps g(t−N +
j), j = {1, . . . , N − 1}

• the measurement of the state at time t− di, i.e. x(t− di)
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By exploiting this information, it is possible for it to compute the estimation
x̂(t) of the current free-disturbance state at time t by means of the following
recursions

x̂(t− di) = x(t− di)
x̂(k + 1) = Φx̂(k) +Gg(k), k = t− di, ..., t

(6.5)

Then, by setting the parameter k̄ in (6.3) equal to the time-delay di, we can
formulate the following distributed S-CG algorithm:

Algorithm 6.2.1 Sequential-FFCG Algorithm (S-FFCG) - Agent i
at each time t

1.1receive ξj(t) and ϑj(t) from each agent j in Ni

1.2if(t mod N) == i
1.2.1 solve

gi(t) = argmin(gi) ∥ gi − ri(t) ∥2Ψi

subject to :
[gT1 (t− 1), ..., gTi , ..., g

T
N (t− 1)]T ∈ V(x̂(t), di)

(6.6)

1.2.2 apply gi(t)
1.2.3 update g(t) = [gT1 (t− 1), ..., gTi (t), ..., g

T
N (t− 1)]T

1.3else
1.3.1 apply gi(t) = gi(t− 1)

1.4transmit ξi(t) and ϑi(t) to neighborhood Ni

where Ψi > 0 are weighting matrices, t mod N is the remainder of the integer
division t/N .

The properties of the above algorithm that we are going to enunciate are
related to definitions, notations and assumptions given in the previous chapter
and here not repeated for brevity. Furthermore, the following preliminary
Lemma is needed to prove relevant properties of the scheme:

Lemma 6.1. Let A3 hold true. Then, for any perturbation x̃ satisfying ∥x̃∥ <
ϱ, ϱ > 0, a point g′ ∈ V(x′

g + x̃, k̄) is always viable, ∀k̄ > 0

Proof - First it is useful to rephrase the set V(x′
g + x̃, k̄) into the following

expression
V(xg′ + x̃, k̄) = Wδ ∩ G(xg′ + x̃, k̄) (6.7)

where

G(xg′ + x̃, k̄) := {g ∈ IRm : cg′ +HcΦ
k(xg′ + x̃− xg) ∈ Ck+k̄, k ≥ 0} (6.8)

and Ck is defined in (2.5). Because the set-membership of g to V(xg′ + x̃, k̄)
requires that g ∈ Wδ, one is ensured that cg ∈ C∞ ∼ Bδ. Then

HcΦ
k(xg′ + x̃− xg) ∈ Ck+k̄ ∼ (C ∼ Bδ) ⇒ g ∈ G(x′

g + x̃, k̄),∀k ≥ 0. (6.9)
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Moreover, because (2.5), one has

Ck+k̄ ⊇ C∞ ⊃ (C∞ ∼ Bδ) (6.10)

that ensures that the following stronger sufficient condition for the set-
membership of g to G(x′

g + x̃, k̄) holds true

HcΦ
k(xg′ + x̃− xg) ∈ Bδ ⇒ g ∈ G(xg′ + x̃, k̄),∀k ≥ 0 (6.11)

or equivalently

∥HcΦ
k(xg′ + x̃− xg)∥ ≤ δ ⇒ g ∈ G(xg′ + x̃, k̄),∀k ≥ 0. (6.12)

The latter condition can be further enforced in the following way

σ̄(Hc)M∥(xg′ + x̃− xg)∥ ≤ δ ⇒ g ∈ G(xg′ + x̃, k̄) (6.13)

where ∥Φkx∥ ≤ Mλk∥x∥ and σ̄(Hc) denotes the maximum singular value of
Hc. By recalling the well known property of the norms ∥x + y∥ ≤ ∥x∥ +
∥y∥, simple algebraic manipulations change (6.13) into the following stronger
condition

∥xg′ − xg∥ ≤ δ

σ̄(Hc)M
− ∥x̃∥ ⇒ g ∈ G(xg′ + x̃, k̄) (6.14)

which, because of xg = Hc(In − Φ)−1Gg, becomes

∥Hc(In − Φ)−1(g′ − g)∥ ≤ δ

σ̄(Hc)M
− ∥x̃∥ ⇒ g ∈ G(x′

g + x̃, k̄). (6.15)

Next, let ϱ = δ
σ̄(Hc)M

. Then (6.15) implies that for all x̃ such that ∥x̃∥ < ϱ

there exists a ball centered at g′ with radius η > ϱ−∥x̃∥
σ̄((In−Φ)−1G) entirely included

in G(xg′ + x̃, k̄). As a consequence, the set V(xg′ + x̃, k̄) contains Wδ ∩Bη
g′ , i.e.

V(xg′ + x̃, k̄) ⊇ Wδ ∩ Bη
g′ . (6.16)

Hence, each decision set for g′ related to the generic i-th agent is representable

as V
Wδ∩Bη

g′

i (g′). This reduces to V
Wδ∩Bη

g′

i (g′) = VWδ
i (g′) because inside Bη

g′(g′)
all directions d ∈ IRm related to g′ are admissible. Then, the enjoinment of the
viability for g′ depends only on its set-membership to Wδ and it is ensured
by A3.

Finally, the following properties can be shown to hold under A3 for the
above stated S-CG scheme

Theorem 6.2. Let assumptions A1-A2-A3 be fulfilled for systems arising
from the composition of N subsystems in form (6.1). Let consider the dis-
tributed S-CG selection rule (6.6) and let V(x(t), dmax) be non empty at time
t = 0, where dmax = maxj dj. Then
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1) for each agent i ∈ A, at each time t, the minimizer in (6.6) uniquely exists
and can be obtained by locally solving a convex constrained optimization
problem;

2) the overall system acted by the agents implementing the S-CG policy never
violates the constraints, i.e. c(t) ∈ C for all t ∈ ZZ+;

3) whenever r(t) ≡ [ rT1 , . . . , r
T
N ]T ,∀t, with ri a constant set-point, the se-

quence of solutions g(t) = [gT1 (t), . . . , g
T
N (t)]T asymptotically converges to

a Pareto-Optimal stationary (constant) solution of (5.9), which is given
by r whenever r ∈ Wδ, or by any other Pareto-Optimal solution r̂ ∈ Wδ

otherwise.

Proof

1) The existence of an admissible solution for each agent at each time t can be
proved by simply remarking that gi(t) = gi(t− 1) is always an admissible,
although not necessarily the optimal, solution for the prescribed problem
at time t.

2) At each time t, from a centralized point of view, a command g(t) belonging
to V(x̂(t), di), i ∈ A is applied to the overall plant. By construction, the
latter set is equivalently characterizable as

K(x̂(t), di):=
{
g∈ Wδ : c̄(k, x̂(t), g)⊕

di⊕
j=1

HcΦ
j−1GdD⊕LdD ⊂ Ck, ∀k ∈ ZZ+

}
=
{
g ∈ Wδ : c̄(k, x, g) ∈ Ck,∀k ∈ ZZ+,∀x ∈ x̂(t)⊕

di⊕
j=1

Φj−1GdD ⊕ LdD
}
.

(6.17)
where ⊕ denotes the Pontryagin set sum according to Definition (2.2).
Moreover, at each time t the state x̄(t), estimated by each acting i-th
agent, satisfies

x̄(t) = x(t)−
di∑
j=1

Φj−1Gdd(i) + Ldd(t) (6.18)

that ensures

x(t) ∈ x̂(t)⊕
di⊕
j=1

Φj−1GdD + LdD. (6.19)

The latter implies that at each time instant a command g(t) ∈ V(x̄(t), di) ⊆
V(x(t), 0) is selected, and hence, by construction, this is sufficient to guar-
antee that c(t) ∈ C,∀t ∈ ZZ+.

3) The stated convergence property follows simply because the sequences of
solutions gi(t) makes the sequences of local costs ||gi(t) − ri||2Ψi

non in-
creasing for any i = 1, ..., N under constant set-points. In fact, it is not
convenient for the agents to modify their actual optimal solutions if the
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costs cannot be decreased further on. To this end, let gi(t) be the S-CG
action of the i-th agent at time t, solution of the optimization problem
(5.7). As already discussed, gi(t) is still an admissible, though not neces-
sarily the optimal, solution at time t + 1. Hence, the sequences of costs
||gi(t)− ri||2Ψi

are all non-increasing, i.e.

∥ gi(t+ 1)− ri ∥2Ψi
≤∥ gi(t)− ri ∥2Ψi

(6.20)

Then, we want to show that any stationary optimal solution, viz. g(t) =
g(t+1) ∀t, is Pareto Optimal by proving that a solution is not stationary
if not Pareto-Optimal. To this end, let g′(t) = [g′T1 (t), ..., g′TN (t)]T be the
actual solution at time t ∈ ZZ+ which is assumed to be not Pareto-Optimal.
As a consequence, other different solutions exist which improve the costs.
Supposedly, vectors v = [vT1 , ..., v

T
N ]T ∈ IRm would exist with g′(t) + v ∈

Wδ, such that

||g′i(t) + vi − ri||2Ψi
− ||g′i(t)− ri||2Ψi

≤ 0, (6.21)

happens to hold for all i ∈ A′ := {i ∈ A : vi ̸= 0} with some of the above
inequalities becoming strict for at least one index i ∈ A′. Because of the
strict convexity of the norm || · ||2Ψi

, the following inequality happens to be
true for all α ∈ (0, 1)

||(1− α)g′i + α(g′i(t) + vi)− ri||2Ψi

<(1− α)||g′i(t)−ri||2Ψi
+ α||g′i(t) + vi − ri||2Ψi

(6.22)

Therefore, by means of straightforward algebraic manipulations, one ar-
rives to

||g′i(t) + αvi − ri||2Ψi
− ||g′i(t)− ri||2Ψi

<α(||g′i(t) + vi − ri||2Ψi
− ||g′i(t)− ri||2Ψi

)
(6.23)

for all α ∈ (0, 1). Because (6.21), the right-hand term in (6.23) is always
negative. Then, one can state

||g′i(t) + αvi− ri||2Ψi
− ||g′i(t)− ri||2Ψi

< 0,∀α ∈ (0, 1) (6.24)

The latter may be interpreted as the fact that if the above admissible
direction v did exist at g′(t), for each agent i ∈ A′ it would be strictly
convenient to move to g′i(t)+αvi, for a suitable value of α, from its previous
solution g′i(t).
Now we have to verify that at least one agent is allowed to move from
g′i(t) along vi because of constraints. To this end, we have to note that if
g(t) ≡ g ∀t, since A1 for each ϱ > 0 it exists a finite ts such that

x̃ = ∥x̂(t)− xg∥ ≤ ϱ,∀t ≥ ts,∀g ∈ Wδ, (6.25)

as consequence we can be sure that after a finite ts,
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V(x̂(t), k̄) ⊇ V(xg′(t) + x̃, k̄),∀t ≥ ts,∀x̃ ≤ ϱ (6.26)

with ϱ = δ
HcM

. Then, because of Lemma 6.1, g′(t),∀t ≥ ts will be viable

or equivalently vi will belong to VWδ
i (g′(t))∀t ≥ ts for all agents corre-

sponding to any not empty subset A′
v. Hence, according to the sequential

S-CG updating policy, if at time t, the index (t mod N) ∈ A′
v then, be-

cause of (6.24), the agent i′ = t mod N will find convenient to move into
g′i′(t) + αvi′ , α ∈ [0, ᾱ]. In fact, because of the viability of g′(t) (see Defi-

nition 5.4) vi′ ∈ VWδ

i′ (g′(t)) implies that a scalar ᾱ ∈ (0, 1) exists ensuring
g′ + [0T1 , ..., αv

T
i′ , ..., 0

T
N ]T ∈ Wδ for all α ∈ (0, ᾱ).

When no agents in A′
v are allowed to update their actions at t, all of

them constantly apply the most recently applied commands until one of
them becomes the allowed agent. In fact, the condition A′

v ⊆ A ensures
that a future time t′ = (t + j′), j′ ∈ [1, N ], surely will exist for the agent
((t+j′) mod N) ∈ A′

v. Please notice also that A′
v does not change because

g((t+ j)) = g′(t), for all j ∈ [1, j′]. Thus, if we are not at a Pareto-optimal
solution at time t, at least one of the agents will move from it by N time
steps.

6.2.1 Computational Details

Here we give a fully implementable formulation of the Problem (6.6) when C
consists of polyhedral constraints (see (2.18)-(2.21)). To this end, it suffices
to resort to the CG centralized problem (2.52) when the decision variable is
not any longer the entire command vector g ∈ IRm but a subvector gi ∈ IRmi

of it related to agent i. Then, Problem (6.6) is rephrased, by means of the
procedure (2.34)-(2.51) given in Section 2.3.2, as

gi(t) = mingi(gi − ri(t))
′Ψi(gi − ri(t))

subject to (6.27)

THcΦ
kx̂(t)+TRc

k[g
T
1 (t− 1), ..., gTi , ..., g

T
N (t− 1)]T≤q(k+di), (6.28)

k=0, ...,k0

T
(
Hc(I − Φ)−1G+L

)
[gT1(t− 1), ..., gTi , ..., g

T
N(t− 1)]T≤qkε (6.29)

− (ε+δ)[
√
TT
j Tj]

where [
√
TT
j Tj ] is defined in (2.24), k0 is determined according to Algorithm

(2.3.2) and the constraints (6.28)-(6.29) characterize V(x(t), di).

6.2.2 Constraints Qualification and Viable Approximations

The S-CG strategy is subject to the same drawbacks of the S-FFCG strategy
depicted in Figg. 5.2− 5.3. Fortunately, the same approximation described in
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Section 5.3.1 can be used here in the case that a no viable polyhedron Wδ

arises. The resulting inner-approximating polyhedron W ′
δ is then used in the

place of Wδ and the S-CG problem (6.6) can be recast as follows

gi(t) = argmingi ∥ gi − ri(t) ∥2Ψi

subject to :{
g(t)=[gT1 (t−1),...,gTi ,...,g

T
N (t−1)]T∈V ′(x̄(t), di)

(6.30)

where
V ′(x, k̄) :=

{
g ∈ W ′

δ : c̄(k, x(t), g) ∈ Ck+k̄, ∀k ∈ ZZ+.
}

(6.31)

Note that, because of Lemma 6.1 and item 3) of the proof of Theorem 6.2,
the approximation procedure given in Section 5.3.1 involves the set Wδ only.

6.3 Parallel Command Governor Scheme (P-CG)

We present here a more effective ”parallel” distributed strategy where any
agent is enabled to select its local command simultaneously at each time
instant. To this end, we make use of ideas introduced in the P-FFCG ap-
proach presented in Section 5.4 by assuming, as done in Section 6.2, that
the agents are connected via a communication network represented by a
graph Γ = (A,B) defined in (5.1) with the corresponding Hamiltonian cy-
cle H = {1, ...N}. Such a communication structure allow the agents to act
as gateways in redistributing at each time instant data amongst other, no
directly connected, agents.

Then, at each time instant t, the most recent information on measured
states and computed commands which the generic i-th agent has available
locally about all other agents is represented by the already introduced Local
Information vectors (6.4). Then, it results that the Common Information
on the actual states and applied commands shared amongst all agents at each
time t is given by the vector

ξ(t) =
[
gT1 (t− d1) , ...gi(t− 1), ..., gTN (t− dN )

]T
ϑ(t) =

[
xT
1 (t− d1) , ...xi(t− 1), ..., xT

N (t− dN )
]T (6.32)

where di is the maximum amongst all distances di,j from the i-th agent to
any other agent in the graph, i.e. di = maxj∈Adi,j . It results that the more
recent measure of the overall state known by all agents at time t is given by

x(t− dmax) =
[
xT
1 (t− dmax) , ..., x

T
N (t− dmax)

]T
(6.33)

where dmax = maxj dj .
As in the P-FFCG scheme, the idea is that of generating, at each step

and on the basis of the information shared by all agents of the network, a set
of decoupled constraints (one for each agent) via the so-called Set Cartesian
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Decomposition ([57]). These new constraints are generated in such a way that
their local agent-wise fulfilment implies the fulfilment of the original global
constraints (6.3). Unlike the P-FFCG approach, such constraints are deter-
mined on the basis of an estimation of the current state as well as the past
CG actions computed by the agents.

As a result, the optimization problem decouples and each agent results
simply to fulfil inclusions into local sets of the form

gi(t)− gi(t− 1) ∈ ∆Vi(t), i = 1, ..., N (6.34)

with ∆Vi(t) ⊆ IRmi , i ∈ A, convex and compact sets containing 0mi for all
t ≥ 0 to be specified.

For the moment, we postpone the formal definition for such sets after the
introduction of extra notations and we assume that each agent at time t is
provided with a collection {∆Vi(t−k)}dmax

k=1 i ∈ A of sets computed previously,
where dmax = maxj dj . Such an information, together with the common in-
formation vector ξ(t), can be exploited to define the set of all possible feasible
values which g(t) could have been assumed in the last dmax instants, computed
as follows

ĝi(t− k|t)=gi(t− k) if k≥di
ĝi(t− k|t)=gi(t− di)⊕∆Vi(t− d1 + 1)⊕ ...⊕∆Vi(t− k) if k<di.

(6.35)

Then, the set of all possible values for g(t− k) is given by

Ξ(t− k|t) = ĝ1(t− k|t)×, ...,×ĝN (t− k|t). (6.36)

Moreover, the set of all the possible state predictions x̂(t) at time t, computed
on the basis of the measured state x(t − dmax) available to all agents of the
network is given by

Ω(t) :=Φdmaxx(t− dmax)+

dmax−1⊕
j=0

Φdmax−1−jGΞ(t− dmax + j|t) (6.37)

Based on the above sets we may compute the set of admissible aggregate
command variations as follows

∆V(Ξ,Ω, k̄) :=
{
∆g : (g +∆g) ∈ V(x, k̄),∀g ∈ Ξ, ∀x ∈ Ω

}
(6.38)

Finally, the (approximated) Cartesian decomposition giving rise the agent-
wise decoupled constraints (6.34) should satisfy the following set inclusion
condition that can be determined independently and locally by all agents

∆V1(t)× . . .×∆VN (t) ⊆ ∆V(Ξ(t− 1|t), Ω(t), dmax), (6.39)

0i ∈ In(∆V1(t)), . . . , 0N ∈ In(∆VN (t)) (6.40)

Here we need also to consider four possible operative scenarios because, under
certain conditions, the agents need to operate sequentially by adopting the
S-CG strategy. The various scenarios can be characterized as follows:
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- PAR: In this scenario agents go parallel and switch to the sequential
scenario if the distance between Ξ(t−1|t) and the border of Wδ is smaller
than a prefixed threshold ϵP . In particular:
1.1 Each agent computes the minimum distance between Ξ(t − 1|t) and

the border of Wδ as

µ(t) = min
g∈Ξ(t−1|t),g′∈∂(Wδ)

∥g − g′∥ (6.41)

2.1 If µ(t) is bigger than a predetermined threshold ϵP
2.1.1 Each agent determines the collection of sets ∆Vi(t), i = 1, ..., N

as the solution of its instance of the following optimization problem

max
∆Vi(t),i=1,...,N

V (∆V1(t)× ...×∆VN (t))

subject to (6.39), (6.40)
(6.42)

where V (·) denotes a possible measure of the volume of a set (to
achieve good dynamical properties we want (∆V1(t)× ...×∆VN (t))
to be as large as possible)

2.1.2 each agent chooses its own reference by solving the following
convex optimization problem

gi(t) = argmin
gi

∥gi − ri(t)∥2Ψi

subject to (gi − gi(t− 1)) ∈ ∆Vi(t)
(6.43)

2.2 Otherwise, go to P2S
- P2S: This is a transition scenario between PAR and SEQ. In this case,

only one agent at a time updates its action, according to its position in
the Hamiltonian cycle H, while all other non-active agents set their local
set ∆Vi = 0. More formally:
1.1 The agent in charge computes the following set on the basis of its most

updated local information (6.4) and (6.36)

Ξi(t) = {ξi(t)}⊕
(di,1⊕
k=1

∆V1(t−k)× . . .×
di,N⊕
k=1

∆VN (t−k)
)

(6.44)

2.1 If Ξi is not a singleton, the agent computes first, on the basis of the
current state x(t− di), the set of all possible state predictions x̂(t) at
time t

Ωi(t) :=Φdix(t− di)+

di−1⊕
j=0

Φdi−1−jGΞ(t− di + j|t) (6.45)

Then, the value gi(t) is selected as
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gi(t) = argmingi ∥ gi − ri(t) ∥2Ψi

subject to (gi − gi(t− 1)) ∈ ∆V0
i (Ξ(t− 1|t), Ωi(t), di)

(6.46)

where

∆V0
i (Ξ,Ωi) :=

{
∆gi ∈ IRmi |[0T1 , ..., ∆gTi , ..., 0

T
N ]T ∈ ∆V(Ξ,Ωi, di)

}
.

(6.47)
2.2 Otherwise, go to scenario SEQ

- SEQ: In this case the agents go sequentially by using the S-CG strategy
described in Section 6.2. They are instructed to come back to the PAR
scenario when the distance between the global command g(t− 1) and the
border of Wδ is bigger than a prefixed threshold ϵS . When this event
occurs, only the agent in charge is capable of catching it because it knows
the actual applied global command g(t−1). Then, before switching to S2P,
it sends an acknowledgement to all other agents consisting of a number
σi(t) = dmax where dmax = maxj dj . More in details, the agent in charge:
1.1 computes

µ(t) = min
g∈∂(Wδ)

∥g − g(t− 1)∥ (6.48)

2.1 If µ(t) is smaller than ϵS computes gi(t) by means of (5.7).
3.1 Otherwise it sets σi(t) = dmax, sends σi(t) to neighbors and goes to

S2P.

On the contrary, each agent not in charge has to check if an acknowledge-
ment σj(t) has been received from one of their neighbors and, in that case,
they set σi(t) = σj(t)− 1, communicate σi(t) to their neighbors and goes
to S2P.

- S2P: This is a transition scenario between SEQ and PAR that represents
an initialization phase for the parallel procedure. In this case, all agents
decrement σi(t). When σi(t) = 0, all agents know what is the last applied
command vector g(t). Then, they can switch to PAR and the parallel
procedure can restart with Ξ(t−k|t) = {g(t−k)}, k > 0. As consequence,
in particular, the set Ω(t) also reduce to a singleton, i.e. Ω(t) = {x̂(t)}.

Remark 6.3. It is worth remarking that in the P2S scenario after dmax time
steps the set Ξi(t),∀i ∈ A reduces to a singleton. Hence, the transition towards
the SEQ scenario is ensured.

The algorithm that we are going to present, depicted in Figure 5.4, has
the same structure of the Algorithm 5.4.1. More formally, it consists of the
following ”parallel” version of distributed CG algorithm:

Algorithm 6.3.1 Parallel-CG Algorithm (P-CG) - Agent i-th
at each time t
1.1 receive ξj(t), ϑj(t), σj(t) from all neighbours j ∈ Ni
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1.2 go to sti(t)

PAR:
1.1 solve (6.41)
1.2 if µ(t) ≥ ϵP

1.2.1 solve (6.42)
1.2.2 solve (6.43)

1.3 else
1.3.1 set sti(t) = ”P2S”
1.3.2 go to sti(t)

1.4update ξi(t), ϑi(t)
1.5transmit ξi(t), ϑi(t) to neighborhood Ni

1.6apply gi(t)
1.7set sti(t+ 1) = sti(t)

P2S:
1.1 compute Ξi(t) as in (6.44)
1.2 if |Ξi(t)| > 1

1.2.1 if((t mod N) = i), solve (6.46)
1.2.2 else, set gi(t) = gi(t− 1)
1.2.3 update ξi(t), ϑi(t)
1.2.4 transmit ξi(t), ϑi(t) to neighborhood Ni

1.2.5 apply gi(t)
1.2.6 set ∆Vi(t) = 0mi

1.3 else
1.3.1 set sti(t) = ”SEQ”
1.3.2 go to sti(t+ 1) = sti(t)

SEQ:
1.1if σj(t− 1) > −1, j ∈ Ni

1.1.1 set σi(t) = σj(t)− 1
1.1.2 transmit σi(t) to neighborhood Ni

1.1.3 set sti(t) = ”S2P”
1.1.4 go to sti(t)

1.2else
1.2.1 if((t mod N) = i)

1.2.1.1 solve (6.48)
1.2.1.2 If µ(t) ≤ ϵS,solve(6.6)
1.2.1.3 else

1.2.1.3.1 set σi(t) = dmax

1.2.1.3.2 transmit σi(t) to neighborhood Ni

1.2.1.3.3 set sti(t) = ”S2P”
1.2.1.3.4 go to sti(t)

1.2.2 else, set gi(t) = gi(t− 1)
1.2.3 update ξi(t), ϑi(t)
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1.2.4 transmit ξi(t), ϑi(t) and σi(t) = −1 to neighborhood Ni

1.2.5 apply gi(t)
1.2.6 set ∆Vi(t) = 0mi

1.2.7 set sti(t+ 1) = sti(t)

S2P:
1.1if σi(t) = 0

1.1.1 set sti(t) = ”PAR”
1.1.2 go to sti(t)

1.2else
1.2.1 set σi(t+ 1) = σ(t)− 1
1.2.2 transmit σi(t) to neighborhood Ni

1.2.3 update ξi(t), ϑi(t)
1.2.4 transmit ξi(t), ϑi(t) to neighborhood Ni

1.2.5 apply gi(t) = gi(t− 1)
1.2.6 set ∆Vi(t) = 0mi

1.2.7 set sti(t+ 1) = sti(t)

Finally, some properties enjoyed by the above P-CG scheme can be stated.

Theorem 6.4. Let assumptions A1-A2-A3 be fulfilled for the system arising
from the composition of N subsystems (6.1). Consider the distributed P-CG
Algorithm (6.3.1) and let V(x(t), dmax) be non empty at time t = 0, where
dmax = maxj dj. Then

1. for each agent i ∈ A, at each time t, the minimizer related to one of the
optimization problems (6.43), (6.46) and (6.6), to be solved depending on
the value of sti, i ∈ A, uniquely exists and can be obtained by solving a
convex constrained optimization problem;

2. The overall system acted by the agents implementing the P-CG supervisory
policy never violates the constraints, i.e. c(t) ∈ C for all t ∈ ZZ+.

3. Whenever ri(t) ≡ ri, ∀i ∈ A, with ri a constant set-point the se-
quence of g(t) = [gT1 (t), . . . , g

T
N (t)]T asymptotically converges either to

r=[rT1 (t),. . . ,r
T
N (t)]T if r ∈ Wδ or to a point r̂ that is Pareto-Optimal for

the problem (5.9).

Proof

1) The existence of an admissible solution for each agent at each time t
can be proved by simply remarking that gi(t) = gi(t − 1), i = 1, . . . , N ,
is always an admissible, although not necessarily optimal, solution for
the prescribed problems at time t, in any state sti. In fact, the sets
∆V(Ξ(t− 1|t), Ω(t), dmax) and ∆V(Ξ(t− 1|t), Ωi(t), di),∀i ∈ A always
contain the point 0m (note that Ξ(t) is contained in Wδ).

2) At each time t, from a centralized point of view, a command g(t) belonging
to V(x̂(t), dmax), i ∈ A is applied to the overall plant. The rest of the proof
follows the same discussion made in item 2) of proof of Theorem 6.2.
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3) The convergence follows simply because the sequences of solutions gi(t)
are such that the local costs ||gi(t) − ri||2Ψi

are non increasing for any
i = 1, ..., N . In fact, there is not convenience for the agents to modify
their actual optimal solutions if the costs could not be minimized further
on. To this end, let gi(t) be the P-CG local action at time t, solution of
any optimization problem among (6.43), (6.46), (6.6). As already seen in
item 1) of this proof, at time t+ 1, gi(t) is still an admissible, though not
necessarily the optimal, solution and hence the sequences ||gi(t) − ri||2Ψi

are non increasing, i.e. ∥ gi(t+ 1)− ri ∥2Ψi
≤∥ gi(t)− ri ∥2Ψi

.
Then, we want to show that any stationary optimal solution, viz. g(t) =
g(t+1) ∀t, is Pareto Optimal by proving that a solution is not stationary
if is not Pareto Optimal. To this end, let g′ = [g′T1 , ..., g′TN ]T be the actual
solution at time t ∈ ZZ+ which is assumed to be not Pareto Optimal.
As a consequence, other different solutions exist which improve the costs.
Supposedly, vectors v = [vT1 , ..., v

T
N ]T ∈ IRm would exist with g′ + v ∈ Wδ,

such that
||g′i + vi − ri||2Ψi

− ||g′i − ri||2Ψi
≤ 0, (6.49)

happens to hold for all i ∈ A′ := {i ∈ A : vi ̸= 0} with some of the above
inequalities becoming strict for at least one index i ∈ A′.
As already stated in item 3) of the proof of Theorem 5.7, the existence
of a vector v satisfying (6.49) makes it convenient for all agents to move
from g′. Hence we have to show that the policy underlying Algorithm 5.4.1
guarantees that at least one agent can modify its command g′i. To this end,
it is sufficient to prove that in scenario ”PAR” and ”SEQ” the cost will
decrease for at least on agent. In fact ”P2S” and ”S2P” represent transient
scenarios because the algorithm could dwell there at most dmax time steps.
If at time t sti(t) =”SEQ”,∀i ∈ A and µ(t) ≤ ϵS , where µ(t) is computed
as in (6.48), then, the agents will go on sequentially and, since discussion
of point 3) of the proof of Theorem 6.2 at least one agent can change
its command. Conversely, if µ(t) > ϵS , agents will not move in ”SEQ”
but they will switch on ”S2P” and subsequently, at a time t′, such that
t′ − t ≤ dmax, in ”PAR” with Ξ(t′ − k|t′) = {g′}, k > 0 and Ω(t′) reduced
to a singleton. In such a situation µ(t′) computed as in (6.41) will coincide
with µ(t) in (6.48) and then it will be for sure bigger than ϵP because

µ(t′) = µ(t) > ϵS ≥ ϵP . (6.50)

Moreover at t′ the set of common admissible variations in (6.38) becomes

∆V(Ξ(t′ − 1|t′), Ω(t′), dmax) =
∆V(g′, x̂(t′), dmax) = {∆g : (g′ +∆g) ∈ V(x, dmax)}.

(6.51)

If such a set does not contains a ball of finite radius centered at 0m
agents cannot perform decomposition (6.39) and the global command
g(t′) will equals g′. Nevertheless, if g(t) = g′ is kept constant, as dis-
cussed in item 3) of proof of Theorem 6.2 after a finite time ts the
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set V(x, dmax) will satisfies condition (6.26) w.r.t. to g′ and, because of
Lemma 6.1 it will contain a ball of finite radius centered at g′ or equiva-
lently ∆V(Ξ(t′ + ts − 1|t′ + ts), Ω(t′+ts), dmax) = ∆V(g(t′+ ts − 1), x̂(t′+
ts), dmax) will contain a ball of finite radius centered at 0m. As consequence
the sets ∆Vi(t

′ + ts),∀i ∈ A, derived by means of (6.42), will also contain
a ball of finite radius centered at 0mi that allows each agent to move in
any sub-direction vi ∈ IRmi .
Similar considerations are valid when, at time t, sti(t) =”PAR” and Ξ(t)
is not a singleton. In this case if µ(t), computed as in (6.41), is bigger
than ϵP , if ∆V(Ξ(t), Ω(t), dmax) does not contains a ball of finite radius,
by following the above discussion, after a finite time it will and then we
can conclude that all agents are capable to modify their command w.r.t
g′. On the contrary if µ(t) < ϵP , agents will change their status sti first in
”P2S” and then in ”SEQ” and as already seen, in the worst case, they will
be enabled to change their command after 2dmax steps, when their status
sti will again equal ”PAR”.
Thus, if we are not at a Pareto-optimal solution at time t, at least one of
the agents will move from it by a finite amount of time steps.

Remark 6.5. Note that, because of A1 and A2 whenever g converges to a
point r̂ then

lim
t→∞

x̂(t) = xr̂, lim
t→∞

ŷ(t) = yr̂ = r̂, lim
t→∞

ĉ(t) = cr̂. (6.52)

6.3.1 Computational Details

In this subsection a complete description of the computation details required
to implement the above parallel strategy is presented. In particular, we de-
scribe all the needed technicalities required to implement the optimizations
problems (6.43) and (6.46). Problems (6.41) and (6.48) can be computed by
the same procedures described in Section 5.4.1 for Problems (5.49) and (5.55).

In order to build up Problem (6.43), we address the details for the com-
putation of ∆V(Ξ,Ω, k̄) defined in (6.38) and its Cartesian decomposition
arising in (6.42). Once problem (6.42) has been solved, the Cartesian decom-
position produces a box B(∆g(t),∆g(t)) = ∆V1(t),×, ...,×∆VN (t) containing
0m and each agent can choose its local command by solving

gi(t) = argmin
gi

∥gi − ri(t)∥2Ψi

subject to ∆g
i
≤ (gi − gi(t− 1)) ≤ ∆gi

(6.53)

that represents an alternative way to represent problem (6.43).
The set Ξ in (6.36) and (6.44) keeps a box shape structure that can be

uni-vocally identified by only two vectors according to Definition (5.16)

Ξ = B(ξ, ξ). (6.54)
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As consequence, the set Ω in (6.37) has a polytopic structure

Ω = {x ∈ IRn |AΩx ≤ bΩ}. (6.55)

The notation introduced in (6.54) and (6.55) is instrumental to easily compute
the set∆V(Ξ,Ω, k̄). The drawback, in this case, could arise from the fact that,
according to Definition (6.38), it is needed to compute the set V(x, k̄) for an
infinite number of points (x, g) ∈ Ω × Ξ. A solution can be arranged in two
steps by computing an inner-approximation of the set ∆V(Ξ,Ω, k̄). The first
step consists in exploiting the polyhedral structure of set C in (2.18)-(2.21)
and (2.34)-(2.51) and separately considering their half-spaces

Cj := {c ∈ IRn
c : TT

j c ≤ qj}
Cj
∞ := {c ∈ IRn

c : TT
j c ≤ qkϵ

j }
Cδ,j
∞ := {c ∈ IRn

c : TT
j c ≤ qkϵ

j − δ
√
TT
j Tj}

(6.56)

whose intersection constitutes the constrained polyhedrons C =
∩z

j=1 Cj ,

C∞ =
∩z

j=1 Cj
∞ and Cδ

∞ =
∩z

j=1 Cδ,j
∞ . Then, we compute for each set Cj

∆Vj(Ξ,Ω, k̄) = {∆g|(g +∆g) ∈ Gj(x, k̄),∀g ∈ Ξ, x ∈ Ω}∩
{∆g|(g +∆g) ∈ Wj

δ ,∀g ∈ Ξ} (6.57)

where
Wj

δ := {g ∈ IRm : cg ∈ Cδ,j
∞ } (6.58)

and

Gj(x, k̄) :=

k0∩
k=0

Gj
k(x, k̄) (6.59)

being

Gj
k(x, k̄) := {g : TT

j HcΦ
kx+ TT

j Rc
kg ≤ qk+k̄

j } (6.60)

withRc
k borrowed from the notation used in (2.26)-(2.28). Hence, if∆Vj(Ξ,Ω, k̄),

j = 1, . . . , z were computed we would have an inner-approximation of
∆V(Ξ,Ω, k̄) because of the following lemma.

Lemma 6.6. The intersection between sets ∆Vi(Ξ,Ω, k̄)
∩

i ̸=j ∆Vj(Ξ,Ω, k̄)

is always contained or at the most coincides with ∆V(Ξ,Ω, k̄), i.e.

z∩
j=1

∆Vj(Ξ,Ω, k̄) ⊆ ∆V(Ξ,Ω, k̄). (6.61)

Proof reported in the Appendix.

The second step is to compute all sets Vj(Ξ,Ω), j = 1, ..., z. They can be
determined in an easy way by separately computing the sets {∆g|(g +∆g) ∈
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Wj
δ ,∀g ∈ Ξ} and {∆g|(g + ∆g) ∈ Gj(x, dmax),∀g ∈ Ξ, x ∈ Ω}. The first

set is determined by finding for each hyperplane Wj
δ of Wδ the point ḡj ∈ Ξ

that minimizes the distance between Ξ and the j-th hyperplane TT
j cg = qj

of Wδ. Such a point can be determined as the solution of the following LP
optimization problem

ḡj = argmin
g∈Ξ

ρjg. (6.62)

with

ρjg =
qj − TT

j cg

∥Tj∥
, (6.63)

cg = Hc(In − Φ)−1G. (6.64)

It is worth remarking that the constraints g ∈ Ξ simply indicate that, by
resorting to definition (6.54), the point g is between two vectors, i.e. ξ ≤ g ≤
ξ. For the computation of the second set it is needed to compute each set
Gj
k(x, dmax), k = 0, ..., k0 composing Gj(x, dmax). Actually, for each k ∈ [0, k0]

we can determine pairs (x̄j
k, ḡ

j
k) ∈ Ω × Ξ as solution of the following LP

optimization problem

(x̄j
k, ḡ

j
k) = arg min

x∈Ω,g∈Ξ

(
qk+k̄
j − TT

j HcΦ
kx+ TT

j Rc
kg
)
. (6.65)

Then, the set

∆Vj(ḡj ∪ {ḡjk}
k0

k=0, {x̄
j
k}

k0

k=0, k̄) =∩k0

k=0{∆g|(ḡjk +∆g) ∈ Gj
k(x̄

j
k, k̄)} ∩ {∆g : (ḡj +∆g) ∈ Wj

δ}.
(6.66)

can be used in the place of ∆Vj(Ξ,Ω, k̄), being this choice justified by the
following lemma

Lemma 6.7. The set ∆Vj(ḡj ∪ {ḡjk}
k0

k=0, {x̄
j
k}

k0

k=0, k̄) is always contained or
at the most coincides with ∆Vj(Ξ,Ω, k̄), i.e.

∆Vj(ḡj ∪ {ḡjk}
k0

k=0, {x̄
j
k}

k0

k=0, k̄) ⊆ ∆Vj(Ξ,Ω, k̄). (6.67)

Proof reported in the Appendix.

An immediate consequence of Lemmas 6.6 and 6.7 is that

z∩
j=1

∆Vj(ḡj ∪ {ḡjk}
k0

k=0, {x̄
j
k}

k0

k=0, k̄) ⊆ ∆V(Ξ,Ω, k̄), (6.68)

Hence, each agent can use ∆Ṽ(Ξ,Ω, k̄) =
z∩

j=1

∆Vj(ḡj ∪ {ḡjk}
k0

k=0, {x̄
j
k}

k0

k=0, k̄)

instead of ∆V(Ξ,Ω, k̄) for constraining its command variations in solving
problem (6.42).
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Next step, in order to build problem (6.43) is to illustrate how to undertake
the box approximation underlying problem (6.42) for the determination of
sets ∆Vi,∀i ∈ A from ∆Ṽ(Ξ,Ω, k̄). For this purpose, it is convenient to put
∆Ṽ(Ξ,Ω, k̄) in a matrix form and apply the Algorithm (5.80) presented in
Section 5.4.1. Once computed ḡj , {ḡjk}

k0

k=0 and {x̄j
k}

k0

k=0 in (6.62) and (6.65),

the set∆Vj(ḡj∪{ḡjk}
k0

k=0, {x̄
j
k}

k0

k=0, k̄) in (6.66) takes the following matrix form

∆Vj(ḡj ∪{ḡjk}
k0

k=0, {x̄
j
k}

k0

k=0, k̄) =

∆g

∣∣∣∣∣∣∣
Sc,j∆g ≤ qkϵ

j − δ[
√
TT
j Tj ]− Sc,j ḡ

j

Rc,j
k ∆g ≤ qk+k̄

j − TT
j HcΦ

kx̄j
k

−Rc,j
k ḡjk, k = 0, ..., k0


(6.69)

where Sc,j = TT
j Hc(In − Φ)−1G + L, Rc,j

k = TT
j Rc

k and k0 is computed

according to Algorithm (2.3.2). Eq. (6.69) allows one to express ∆Ṽ(Ξ,Ω) as
a convex polyhedron of the form

Ã∆g ≤ b̃ (6.70)

with

Ã=


Sc,1

Rc,1
k
...

Sc,z

Rc,z
k

∈IR(z(1+k0))×m, b̃=


qkϵ
1 − δ[

√
TT
1 T1]− Sc,1ḡ

1

qk+dmax
1 − TT

j HcΦ
kx̄1

k −Rc,1
k ḡ1k,

...

qkϵ
z − δ[

√
TT
z Tz]− Sc,z ḡ

z

qz − TT
j HcΦ

kx̄z
k −Rc,z

k ḡzk

∈IRz(1+k0)

(6.71)
By exploiting the matrix description of ∆Ṽ(Ξ,Ω), problem (6.42) becomes

max
Ã∆g≤b̃,Ã∆g≤b̃

V (B(∆g,∆g)) (6.72)

As regards Problem (6.46), we give a procedure for its implementation in two
steps

1. Approximate ∆V(Ξi, Ωi, k̄) with ∆Ṽ(Ξi, Ωi, k̄) = {∆g ∈ IRm : Ã∆g ≤ b̃}
by following the procedure (6.54)-(6.70) outlined above by considering Ξi

in the place of Ξ, Ωi in the place of Ω and di in the place of dmax .
2. Compute ∆V0(Ξi, Ωi, k̄) in (6.47) as

∆V0(Ξi, Ωi, k̄) = {∆gi ∈ IRmi : Ã[0T1 , ..., ∆gTi , ..., 0
T
n ]

T ≤ b̃} (6.73)

Then, at time t problem (6.46) becomes

gi(t) = argmingi ∥ gi − ri(t) ∥2Ψi

subject to Ã(i)(gi − gi(t− 1)) ≤ b
(6.74)

where Ã(i) collects all the mi columns of Ã that multiply ∆gi in (6.73).
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6.4 Conclusions

In this Chapter, the distributed FF-CG schemes presented in Chapter 5 have
been extended to the case where agents can deliver and share their local states
over a communication network. The obtained distributed coordination algo-
rithms have been fully investigated and the results on constraints fulfilment
and stability rigorously presented.

6.5 Appendix

Proof of Lemma 6.6

This lemma can be easily proved by observing first that ∆V(Ξ,Ω, k̄) can be
written as

∆V(Ξ,Ω, k̄) = {∆g|(g +∆g) ∈ G(x, k̄),∀g ∈ Ξ, x ∈ Ω}∩
{∆g|(g +∆g) ∈ Wδ,∀g ∈ Ξ} (6.75)

where

G(x, k̄) :=
z∩

j=1

Gj(x, k̄). (6.76)

Because Wδ =
∩z

j=1 W
j
δ and (6.76), one has

∆V(Ξ,Ω, k̄) ≡
z∩

j=1

{∆g|(g +∆g) ∈ Gj(x, k̄),∀g ∈ Ξ, ∀x ∈ Ω}∩
z∩

j=1

{∆g|(g +∆g) ∈ Wj
δ ,∀g ∈ Ξ},

(6.77)

and, by exploiting basic properties of the ∩ operator, we can state that

∆V(Ξ,Ω, k̄) ≡
z∩

j=1

(
{∆g|(g +∆g) ∈ Gj(x, k̄),∀g ∈ Ξ, ∀x ∈ Ω}∩

{∆g|(g +∆g) ∈ Wj
δ ,∀g ∈ Ξ}

)
≡

z∩
j=1

∆Vj(Ξ,Ω, k̄).
(6.78)

Proof of Lemma 6.7

In order to prove eq. (6.67), it is sufficient to prove that

{∆g ∈ IRm |ḡj +∆g ∈ Wj
δ} ⊆ {∆g ∈ IRm |g +∆g ∈ Wj

δ ,∀g ∈ Ξ} (6.79)

and

k0∩
k=0

{∆g|(ḡjk +∆g) ∈ Gj
k(x̄

j
k, k̄)} ⊆ {∆g|(g +∆g) ∈ Gj(x, k̄),∀g ∈ Ξ, ∀x ∈ Ω}

(6.80)
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In fact (6.79)-(6.80) imply that

{∆g ∈ IRm |ḡj +∆g ∈ Wj
δ} ∩

k0∩
k=0

{∆g|(ḡjk +∆g) ∈ Gj
k(x̄

j
k, k̄)} ⊆

{∆g ∈ IRm |g +∆g ∈ Wj
δ ,∀g∈Ξ} ∩ {∆g|(g +∆g) ∈ Gj(x, k̄),∀g ∈ Ξ, ∀x ∈ Ω}

(6.81)
or equivalently (6.67) because of the definition for∆Vj(Ξ,Ω, k̄) given in (6.57)
and Vj(ḡj ∪ {ḡjk}

k0

k=0, {x̄
j
k}

k0

k=0, k̄) in (6.66).

Condition (6.79) has been already proved in the proof of Lemma 5.30.
Then we focus our attention on eq. (6.80) only. In order to prove it, (6.59)
and (6.60), suggest to establish for each k = 0, ..., k0 that

{∆g|(ḡjk +∆g) ∈ Gj
k(x̄

j
k, k̄)} ⊆ {∆g|(g +∆g) ∈ Gj

k(x, k̄), ∀g ∈ Ξ, ∀x ∈ Ω} (6.82)

Let us make explicit the structure of the sets appearing in (6.82)

{∆g|(ḡjk +∆g) ∈ Gj
k(x̄

j
k, k̄)} = {∆g : TT

j Rc
k∆g ≤ qk+k̄

j − TT
j HcΦ

kx̄j
k − TT

j Rc
kḡ

j
k}

(6.83)

{∆g|(g′ +∆g) ∈ Gj
k(x

′, k̄)} = {∆g : TT
j Rc

k∆g ≤ qk+k̄
j − TT

j HcΦ
kx̄j

k − TT
j Rc

kg
′}

(6.84)

Moreover let us compute the set appearing in (6.84) in the generic points
g′ ̸= ḡjk and x′ ̸= x̄j

k belonging to Ξ and Ω respectively for any k ∈ [0, k0].
Because of (6.65), the following inequality holds true

qk+k̄
j −TT

j HcΦ
kx̄j

k−TT
j Rc

kḡ
j
k ≤ qk+k̄

j −TT
j HcΦ

kx′−TT
j Rc

kg
′, k ∈ [0, k0] (6.85)

Inequality (6.85) and structures (6.83)-(6.84) suggest that all ∆g belonging
to {∆g|(ḡjk + ∆g) ∈ Gj

k(x̄
j
k, k̄)} are in {∆g|(g′ + ∆g) ∈ Gj

k(x
′, k̄)} which can

be formalized as

{∆g ∈ IRm |ḡj +∆g ∈ Gj
k(x̄

j
k, k̄)} ⊆ {∆g ∈ IRm |g′ +∆g ∈ Gj

k(x
′, k̄)} (6.86)

Because genericity of g′ ∈ Ξ and x′ ∈ Ω, (6.86) is satisfied for all g ∈ Ξ and
x ∈ Ω. This means that (6.82) is true and, in turn, (6.80) is proved.
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Iterative Distributed Command Governor
Schemes

In this Chapter we present a class of iterative methods suitable to build up
distributed CG and FF-CG strategies. The goal here is to recast the CG and
FF-CG distributed control design problems stated in Sections 6.1 and 5.1 into
multi-objective optimization schemes and solve them in a distributed way. In
the literature several methods for solving such a kind of problems have been
reported (see [59]). Amongst many, we resort here to the iterative distributed
optimization procedure presented in [60, 61]1 which is based on the use of
penalty functions.

The Chapter is organized as follows: in Section 7.1 the distributed op-
timization method proposed in [60, 61] is recalled and some notations and
results taken from [61] are reported. Then, in Sections 7.2 and 7.3, customiza-
tions of such a method to address the specific features of the CG and, respec-
tively, FF-CG approaches are presented.

7.1 A distributed optimization algorithm

In this Section, we introduce the penalty functions method proposed in [59]
to solve in a distributed way a multi-objective optimization problem. This
penalty functions method provides a connection between constrained and un-
constrained optimization and it is a useful design structure for proving global
properties of the solution, such as convergence, based on local solutions and ac-
tions of the single agents. Later, an iterative algorithm that uses this penalty-
functions method is presented in order to solve the distributed optimization
problems of interest.

1 In that work the Author refers to a decentralized procedure. Here, according to
definitions given in the Introduction we prefer to consider such an approach as a
distributed method.
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7.1.1 Problem Formulation

By means of the notions of decomposition variables and over-lapping con-
straints [63], a multi-objective optimization problem composed by N local
functions fi : IR

mi → IR+ can be described, from a standard centralized point
of view, as follows:

Definition 7.1. (Centralized Optimization problem)

ming∈IRm [f1(g1), ..., fi(gi), ..., fN (gN )]
s.t. h(g) ≤ 0

(7.1)

Here, the overall vector g = [gT1 , g
T
2 , ..., g

T
N ]T ∈ IRm collects all the optimiza-

tion variables of each agent gi ∈ IRmi ,∀i ∈ A = {1, ..., N}, and h : IRm → IRe

represents the constraints to be fulfilled. The following optimality notion will
be used for the above optimization problem:

Definition 7.2. Pareto Optimal solution: The vector g∗p ∈ S = {g ∈
IRm : h(g) ≤ 0} is a Pareto optimal solution to the centralized optimization
problem (7.1) if there exist no other solutions g ∈ S, j ∈ A, such that: fi(gi) ≤
fi(g

∗p

i ), ∀i ∈ A and fj(gj) < fj(g
∗p

j ).

A centralized implementation and solution of the optimization problem 7.1
require a central computational facility with access to all system information.
On the contrary, here we are interested in implementations on N computa-
tional nodes each with restricted information about the whole system. To
encode the limited information horizons of all agents, we require the notion
of neighborhood of a given agent i:

Definition 7.3. (Neighborhood of the i-th agent:) The neighborhood of
the i-th agent is defined as the set of all other agents j whose decision variables
gj are jointly involved with gi in some constraints and have a direct commu-
nication link with node i, that is Ni = {j : the i-th agent has a constraint
involving the j-th agent and directly communicates with it }
Remark 7.4. Notice that in this Chapter the notation of neighborhood is quite
more stronger than the same definition used in the previous Chapters.

As an immediate consequence of Definition 7.3, we introduce the set

[g]i = {All subvectors gj of g such that j ∈ Ni} ∈ IR|Ni| (7.2)

as the set of all neighborhood j associated to the i-th agent. Under this set,
the problem of interest can be defined

Definition 7.5. (Decentralized Optimization Problem) The decentral-
ized optimization problem for each agent i, is defined as:

mingi∈IRn:i fi(gi)
s.t. hi(gi|[g]i) ≤ 0

(7.3)

where the notation hi(·|[g]i) is used to represent functions of gi given that the
neighborhood decision variables [g]i are fixed.
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Moreover we define
Si = {gi : hi(gi|[g]i) ≤ 0} (7.4)

as the feasible region for the i -th agent given a particular neighborhood value,
[g]i. We define the optimality for the decentralized optimization problem by
using the concept of Nash equilibria

Definition 7.6. (Nash Equilibrium for Decentralized Coordination)
g∗de = [g∗deT

1 , ..., g∗deT
i , ..., g∗deT

m ]T ∈ S is a Nash equilibrium for the decen-
tralized optimization problem if for any gi ∈ Si,

fi(g
∗de
i ) ≤ fi(gi)∀i ∈ A (7.5)

Pareto Optimal solutions differ from Nash equilibrium solutions g∗n ∈ S to the
centralized problem, which have the property that fi(g

∗n
i ) ≤ fi(gi),∀i ∈ A,

where [g∗nT
1 , g∗nT

2 , ..., g∗nT
i , ..., g∗nT

m ]T ∈ S. The following result allows us to
map optimal results in the decentralized optimization problem directly back
to the original centralized problem with complete information model.

Proposition 7.7. (Equivalence of Centralized and Decentralized Nash
Equilibria): g∗ is a Nash equilibrium of the centralized optimization problem
(7.1) if and only if it is a Nash equilibrium of the decentralized optimization
problem (7.3).

Proof See [60, 61].

7.1.2 Penalty Methods and Block Iterations for Decentralized
Problems

Penalty methods (e.g. [62]) provide a convenient way for solving decentralized
optimization problems. In fact, as it will shown, this class of methods will
allow us to address the possible presence of infeasible constraints imposed
by the different subsystems is an effective way. However, unlike centralized
or distributed methods, the fundamental property of the intermediate solu-
tions of being bounded above by the optimal solution value does’t hold any
longer in a decentralized context. Thus, the direct implementation of such
penalty function methods can result in numerically ill-conditioned problems
as the local penalty parameters are driven to infinity. For the decentralized
optimization problem described in (7.3), we consider a modified form for the
penalty augmented cost function of the i-th agent,

Fi(gi, βi|[g]i) = βifi(gi) + Pi(gi|[g]i)
= βi[fi(gi) +

1
βi
Pi(gi|[g]i)], βi ̸= 0

(7.6)

where βi ≥ 0 is our new local penalty parameter. Here the local penalty func-
tion, Pi, penalizes violations of the constraints given in (7.3) (i.e. Pi(gi|[g]i) =
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0 ⇐⇒ gi ∈ Si). By using this modified method, local optimization for each
agent can then be defined as follows:

Definition 7.8. (Local Optimization) Local optimization for the i-th agent
in the decentralized optimization problem for fixed value of [g]i (neighborhood
variables) and βi is defined as

min
gi∈IRni

Fi(gi, βi|[g]i) (7.7)

with the optimal solution denoted as

[g∗i |βi, [g]i] = arg min
gi∈IRni

Fi(gi, βi|[g]i) (7.8)

A good choice for Pi(gi|[g]i) could be Pi(gi|[g]i) =
∑ei

k=1 max(0, hi,k(gi|[g]i))γ ,
γ ≥ 2. For simplicity of notation, we denote the solution of the local optimiza-
tion problem for a particular βl

i and [g]i as g
l
i, and the solution to the problem

with βl+1
i and [g]i as g

l+1
i . It is simple to show that, for a local optimization,

Fi e Pi decrease as βi decreases

Lemma 7.9. For a fixed value of [g]i, if β
l
i > βl+1

i ≥ 0 and fi(g
l
i) > 0 then

Fi(g
l+1
i , βl+1

i |[g]i) < Fi(g
l
i, β

l
i|[g]i) (7.9)

Pi(g
l+1
i |[g]i) ≤ Pi(g

l
i|[g]i) (7.10)

Proof See [60, 61].

This property allows each agent to use the local βi selection as a tool to
achieve possibly less constraints violation (and indirectly, more cooperation)
while not resulting in an increase in Fi(gi, βi|[g]i).

At the end of this Section we will present an algorithm, which combines
sequential subsystem optimizations with a bargaining scheme between subsys-
tems. Before doing this, we present two key assumptions and a metric which
will be used to analyze the convergence properties of the algorithm.

A4. Fi(g
l+1
i , βl+1

i |[g]i) embeds all the constraints hi(gi, [g]i) ≤ 0 that gi is
associated with.

In addition,we state the second assumption:

A5. Common global constraints (i.e. interconnection of agent constraints)
and their penalty functions enter each associated agent optimization
problem identically: hi,j(gi|gk, ...) = hk,l(gk|gi, ...) e Phi,j (gi|gk, ...) =
Phk,l

(gk|gi, ...) where hi,j represents a constraint denoted as the j-th con-
straint of the i-th agent.
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Finally, we introduce a metric under which we will be able to prove contraction
through sequential local optimizations. By using this metric and thanks to
Assumptions A4 and A5, the global cost function can be defined as follows:

Definition 7.10. (Global cost function) The global cost function described
as

F (g, β) =

m∑
i=1

[βifi(gi) + Pi(gi, [g]i)] (7.11)

is the cost associated to the distributed optimization problem; F : IRn × IRN →
IR and β = [β1, ..., βm]T ∈ Γ ⊂ IRm

+ , where Γ is compact.

Assumption A5 dictates that for each global constraint, the penalty function
related to that constraint is ”viewed identically” by each of the decision makers
involved in this constraint fulfilment. Thus, a single penalty function dealing
with such a global constraint enters into the summation.

From the i-th agent perspective, the global cost function can be broken
into two parts, representing respectively the local optimization function for
the i-th agent Fi(gi, βi|[g]i) and the remainder defined as its complement,
F̄i(g \ gi, β \ βi):

F (g, β) = F (gi, βi|g \ gi, β \ βi)
= βifi(gi) + Pi(gi|[g]i) + F̄i(g \ gi, β \ βi)
= Fi(gi, βi|[g]i) + costant

Here the w \ v notation refers to all entries of w excluding the entries of v.
Notice that F is a function of gi and βi for given g \ gi (and β \ βi). Thus,
Fi(gi, βi|[g]i) and F (gi, βi|g \ gi, β \ βi) are minimized by the same gi. This
implies that optimizing Fi(gi, βi|[g]i) actually corresponds to optimize F (g, β)
while g \ gi and β \ βi are kept fixed. If these optimizations are recursively
carried by all agents, the overall effect emulates a nonlinear block optimization
iteration on F (g, β).

In the following, we want to design a scheme which uses sequential opti-
mizations locally, where each agent i solves a sequence of local optimization
problems involving its neighborhood Ni only. In particular, at each iterate it
optimizes the cost (7.11) by a local selection of βi which is then made aware
to all other agents j ∈ Ni. As this process is being done simultaneously by
each agent, exponential growth in the number of solutions is avoided by intro-
ducing local elimination criteria. In fact solutions branch in time when they
are transmitted from one agent to its neighborhood, then some of the solu-
tions get ”eliminated” from the many solutions received during a particular
time interval Tm when a subsystem selects one by a local selection criteria
(such as minimum constraint violation or minimum local cost). Before the
local selection taking place, each of the received solutions is optimized via
(7.11) in totally independent parallel running processes which are spawned.
In order to understand this property, we define a thread to be a solution that
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exists within the coordination algorithm after k steps. Multiple threads (in-
dexed below using w superscript) can exist at anytime within the coordination
algorithm.

In order to aid each individual agent in its local selection, one can provide
information about the global performance of the thread within the decen-
tralized structure. In our case, we introduce the metrics ∆Ftotal and ∆Ptotal

which keep track of the total cost and total constraints violation decrements
in time. These parameters are updated in a decentralized fashion via the local
cost decrements ∆Fi(k) and ∆Pi(k) at any k-th step.

In order to keep track of the convergence of a thread, we introduce a set
of flag vectors C = {Ci} and TC = {TCi} which signal respectively (a) if the
agent has converged to a solution for that particular thread and (b) if all of
the agents in its neighborhood have converged. The collection of solutions, the
metrics and the flags are passed in the information vector I = Ii, i ∈ A. The
update is done locally through the subconcat operator, which replaces only
the portion corresponding to the i -th subsystem Ii. After initialization, as
the solutions propagate through the network of agents, the complete operator
allows each subsystem to reconstruct the missing portions of I : any missing
variable of [g]i is inserted by the subsystem, by using the original values that
this subsystem had used to generate the solution in the received I.

During the evolution of the sequential optimization process, the subsys-
tems are effectively bargaining: they propose a solution (g+i |[g]i) and receive
a counter offer ([g++

j ]i|g+i ) when the other agents in the neighborhood change

their individual moves2.
Below, a pseudo-code implementing the algorithm for the generic agent i

with neighborhood Ni is reported.

Algorithm 7.1.1 (Algorithm for Distributed Optimization)

initialization
[1.1] transmit gi = gi(0), Ii = Ii(0)
[1.2] receive [g(0)]i = {gj(0)}j∈Ni , I = {Ii(0), Ij(0)}∀j ∈ Ni

[1.3] set k = 0 received data=1
[1.4] write gi(0), [g(0)]i, I(0) in Batch
[1.5] set ti = 0, w = 0

main:
[1.1]while ti < Tm do:

[1.1.1]if data received=0
[1.1.1.2]wait,

[1.1.2]else
[1.1.2.1]set w = w + 1

2 The selection of βi gives each subsystem a tool to ”bargain”: for large values of βi

the resulting solution provides minimal constraints satisfaction; as βi decreases,
the constraints satisfaction (and indirectly the cooperation) increases, as shown
in Lemma 7.9
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[1.1.2.2]receive (Iw(k))
[1.1.2.3]complete ({gwj (k)}i)
[1.1.2.4]select βw

i (k + 1)
[1.1.2.5]spawn (optimize({gwj (k)}i, βw

i (k + 1),∆Fw
total(k),

∆Pw
total(k)))

[1.1.2.6]set data received=0
end
[1.1.3]execute (localselect(Batch))
[1.1.4]set ti = 0, w = 0
[1.1.5]go to main

optimize(gj , Ij):
[1.1]gwi (k + 1) = argminFi(gi, β

w
i (k + 1)|{gwj (k)}i)

[1.2]∆Pw
i (k + 1) = Pw

i (gwi (k)|{gwj }i(k))− Pw
i (gwi (k + 1)|{gwj }i(k))

[1.3]∆Fw
i (k + 1) = Fw

i (gwi (k), β
w
i (k)|{gwj }i(k))

−Fw
i (gwi (k + 1), βw

i (k + 1)|{gwj }i(k))
[1.4]∆Fw

total(k + 1) = ∆Fw
total(k) +∆Fw

i (k + 1)
[1.5]∆Pw

total(k + 1) = ∆Pw
total(k) +∆Pw

i (k + 1)
[1.6]if ∆Fw

total(k) < ϵ|k ≥ Nit

[1.6.1] set Ci = 1
[1.6.2] if Cj = 1∀j ∈ Ni set TCi = 1

[1.7]Iw(k + 1) = subconcat(gwi (k + 1), C, TC, Iw(k))

[1.8]write gk+1
i , βw

i (k + 1), Iw(k + 1), fi(g
w
i (k + 1)) to Batch

localselect (Batch):
[1.1]gi(k + 1), I(k + 1)= select(local criteria,Batch)
[1.2]transmit I(k + 1) a j ∈ Ni

[1.3]write I(k + 1) to Memory
[1.4]set k = k + 1

For the remainder of our discussion, we denote gd(k) = [gd1(k)
T , ..., gdi (k)

T ,
..., gdm(k)T ]T as the optimization variables of a thread still valid within the
coordination scheme after k steps. In addition, for compactness of represen-
tation, we denote βd(k) = [βd

1 (k), ..., β
d
i (k), ..., β

d
m(k)] as the collection of the

penalty parameters used for generating gd(k).

Proposition 7.11. (Global Convergence of Algorithm 7.1.1) Let {gd(k)}
correspond to a thread generated by the sequential optimization process (7.1.1)
by using a non-increasing sequence of penalty parameters {βd(k)} → β∗.
Given Assumptions A4 and A5, the global cost function (Definition 7.11)
{F (gd(k)), βd(k)} converges to a constant limit F ∗, for any g(0) ∈ X. In ad-
dition, the algorithm terminates in a finite number of iterations for any ter-
mination criterion such as F (gd(k), βd(k))−F (gd(k+1), βd(k+1)) ≥ ϵ,∀i =
1, ..., N , with ϵ > 0. This means that none of the N agents can improve local
costs associated to (gdi |[g]di ) by more than ϵ.
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Proof See [60, 61].

7.1.3 Optimality Analysis

Although Proposition 7.11 proves the convergence of the sequential distributed
optimization of Algorithm 7.1.1, it neither provides any indications of the
convergence to a particular solution nor insight to the solution types (i.e.
feasibility and the centralized optimality of the result). In this section, we
analyze these two key points. To this end, further assumptions need to be
introduced.

A6. Each optimization vector gi takes values over a compact subset Ωi ⊂ IRmi

with 0 ≤ βi ≤ K < ∞. Functions Fi(gi, β|[g]i) : IRmi × IR× IRNi → IR are
assumed to be with in the class of C2(IRmi+1+Ni , IR).

By this assumption F (g, β) ∈ C2(IRN+m, IR) through the construction of
F (g, β) given in Definition 7.11.

Proposition 7.12. (Solution is a Nash Equilibrium) Let {gd(k)} cor-
respond to a sequence generated by sequential optimization process of Al-
gorithm (7.1.1) by using a non-increasing sequence of penalty parameters
{βd(k)} → β∗. If Assumption A6 is satisfied, then there exists at least one
cluster point g∗de (not necessarily feasible) for which F (g∗de, β∗de) = F ∗ where
β∗de = β∗ corresponds to the associated penalty parameters. In addition, all
such g∗de are Nash equilibria for Fi(gi, βi|[g]i),∀i = 1, ..., N .

Proof See [60, 61].

Moreover, in [60] the well-known constraint qualification condition is exploited
in order to prove the feasibility of the computed solution

Definition 7.13. (Linear independence Constraint Qualification (LICQ))

Let I(g) = {s|hs(ḡ) ≥ 0, s = {1, ..., e}} represent the active constraint set
at g = ḡ. Then the linear independence constraint qualification condition is
satisfied at ḡ, if

∂hj

∂g |g=ḡ ∈ I(ḡ) are linearly independent.

The LICQ condition provides the sufficient assumption to eliminate cases
where two or more agents converge to an infeasible solution and cannot move
based on the fact that there are linearly dependent counter-opposing gradient
(descent) directions.

Proposition 7.14. (Global Convergence to Feasible Solutions):
Let Fi(gi, βi|{gj}i) : IRmi × IR× IRNi → IR satisfy Assumption A6. Then, the
decentralized optimization algorithm will converge globally (for any g(0) ∈ Ω)
to a feasible solution, g∗de, as the non-increasing {βi} → 0∀i = 1, ..., N , if
g∗de satisfies the linear independence constraint qualification condition (LICQ
7.13).
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Proof See [60, 61].

By using proposition (7.14), a stronger result, which makes a connection be-
tween the decentralized optimal solution and Pareto-optimality for the cen-
tralized problem (7.1) can be presented.

Proposition 7.15. (ϵ - Optimality) Let {β} → β∗de > 0 be a non-
increasing sequence where β∗de can be brought arbitrarily close to zero. By
assuming that the decentralized optimal solution g∗de satisfies the LICQ con-
dition, then for any given ϵ > 0, g∗de can be brought ϵ-close to satisfying each
of the constraints hj(g) ≤ 0,∀j = 1, ..., e. In addition, g∗de will be a Pareto
Optimal solution for a relaxed version of the centralized problem (7.1) which
is no more than ϵ-far from a feasible solution.

Proof See [60, 61].

7.2 FFCG based distributed iterative Schemes
(DI-FFCG)

In this section we discuss how to customize the above presented procedure to
the case of FF-CG problem described in Chapter 3 applied to a distributed
system. To this end, let us consider a set of N subsystems A = {1, . . . , N}
as defined in (6.1) of Section 6.1 and their composition (2.1). The problem
that we want to consider has been already faced in Chapters 5 and 6 and
consists in locally determining, at each time instant t and for each agent
i ∈ A, a suitable reference signal gi(t) which is the best feasible approximation
of ri(t) and such that its application never produces constraint violations, i.e.
ci(t) ∈ Ci,∀t ∈ ZZ+, i ∈ A, with Ci being convex and compact polytopic sets
defined as boxes (see 3.53).

The main goal is to show that this problem can be recast as an instance of
Problem (7.1). With this aim, we first notice that, according to the previously
stated FF-CG methodology, an aggregate vector g(t), solution of the above
stated problem, could be computed every τ steps by solving the following
multi-objective optimization problem

min
g=[gT

1 ,...,gT
N
]T
[∥ g1 − r1 ∥2Ψ1

, . . . , ∥ gi − ri ∥2Ψi
, . . . , ∥ gN − rN ∥2ΨN

]

subject to

{
g ∈ Wδ

(g − g(t− τ)) ∈ ∆G(g(t− τ))

(7.12)

where ∆G(g) has been already defined in (5.5). By following the same pro-
cedure used to derive Problem (3.63) we can recast Problem (7.12) into the
following explicit formulation
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ming[∥ g1 − r1 ∥2Ψ1
, . . . , ∥ gi − ri ∥2Ψi

, . . . , ∥ gN − rN ∥2ΨN
]

s.t.



(Sc,j) g ≤ q̄kε
j − (ε+ δ)

(−Sc,j) g ≤ −qkε

j
− (ε+ δ)

(Rk
c,j + Sc,j)g −Rk

c,jg(t− τ) ≤ q̄kε
j − (ε+ δ)− γρ

(j)
g(t−τ)

(−Rk
c,j + Sc,j)g +Rk

c,jg(t− τ) ≤ q̄kε
j − (ε+ δ)− γρ

(j)
g(t−τ)

(Rk
c,j − Sc,j)g −Rk

c,jg(t− τ) ≤ −qkε

j
− (ε+ δ)− γρ

(j)
g(t−τ)

(−Rk
c,j − Sc,j)g +Rk

c,jg(t− τ) ≤ −qkε

j
− (ε+ δ)− γρ

(j)
g(t−τ),

j = 1, ..., nc, k = 0, ..., k0
(7.13)

or equivalently into a compact form

ming[∥ g1 − r1 ∥2Ψ1
, . . . , ∥ gi − ri ∥2Ψi

, . . . , ∥ gN − rN ∥2ΨN
]

s.t.Ag − b(g(t− τ)) ≤ 0
(7.14)

where

A =



A1

...
Aj

...
Anc

 ∈ IR(2+4k0)nc×m, b(g(t− τ)) =



b1(g(t− τ))
...

bj(g(t− τ))
...

bnc(g(t− τ))

 ∈ IR(2+4k0)nc

(7.15)
with
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Aj =



Sc,j

−Sc,j

R1
c,j + Sc,j

−R1
c,j + Sc,j

R1
c,j − Sc,j

−R1
c,j − Sc,j

...

Rk0
c,j + Sc,j

−Rk0
c,j + Sc,j

Rk0
c,j − Sc,j

−Rk0
c,j − Sc,j



∈ IR(2+4k0)×m,

bj(g(t− τ)) =



q̄kε
j − (ε+ δ)

−qkε

j
− (ε+ δ)

q̄kε
j − (ε+ δ)− γρ

(j)
g(t−τ) +R1

c,jg(t− τ)

q̄kε
j − (ε+ δ)− γρ

(j)
g(t−τ) −R1

c,jg(t− τ)

−qkε

j
− (ε+ δ)− γρ

(j)
g(t−τ) +R1

c,jg(t− τ)

−qkε

j
− (ε+ δ)− γρ

(j)
g(t−τ) −R1

c,jg(t− τ)

...

q̄k0ε
j − (ε+ δ)− γρ

(j)
g(t−τ) +Rk0

c,jg(t− τ)

q̄k0ε
j − (ε+ δ)− γρ

(j)
g(t−τ) −Rk0

c,jg(t− τ)

−qk0ε

j
− (ε+ δ)− γρ

(j)
g(t−τ) +Rk0

c,jg(t− τ)

−qk0ε

j
− (ε+ δ)− γρ

(j)
g(t−τ) −Rk0

c,jg(t− τ)



∈ IR(2+4k0)

(7.16)
where, according to (3.62),

ρ
(j)
g(t−τ) = min

{
Sc,jg − qkε

i
, q̄kε

i − Sc,jg
}

(7.17)

Notice that (7.14) represents a specialized version of Problem (7.1) with
fi(gi) = ∥gi − ri∥Ψi ,∀i ∈ A and h(g) = Ag − b(g(t − τ)). In particular, in
this case, the Neighborhood of an agent could be redefined as

Definition 7.16. (Neighborhood of i-th agent) For the i-th agent the
neighborhood is defined as Ni = {j : it exists a line a = [a1, ..., aN ] in A
such that ai ̸= 0mi and aj ̸= 0mj

}
.

It remains to discuss, starting from (7.14), how to derive for each agent a
local problem in the form of (7.3). To this end, it is sufficient to associate to
each agent the functional involving its local command gi from the vector of
objective functions in (7.14) and decompose the matrices A and b in (7.14)
so as to collect, in the local formulation, only the constraints involving the
agent i and its neighbours. Then, the following local problem for the i-th agent
results
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mingi ∥ gi − ri ∥2Ψi

s.t.
Ai[gi1, ..., gi..., g

i
|Ni|]− bi([gi1(t− τ), ..., gi(t− τ)..., gi|Ni|(t− τ)]) ≤ 0

(7.18)

where Ai is a matrix that collects all lines ah ∈ IRm of A whose elements
related to gi are no zero. Each gij in the vector [gi1, ..., gi..., g

i
|Ni|] is set to a fixed

value and represents the decision variable of agent j-th belonging to Ni. The
vector bi(g(t−τ)) collects all components bh([g

i
1(t−τ), ..., gi(t−τ)..., gi|Ni|(t−

τ)]) of b(g(t−τ)) related to each line ah in Ai. Notice that, although b(g(t−τ))
requires the entire aggregate vector g(t − τ) to be computed, its structure
allows one to compute bi([gi1(t− τ), ..., gi(t− τ)..., gi|Ni|(t− τ)]) by means of,

at most, gj(t− τ)i and gi(t− τ) only. In fact the h-th line of A related with
{gj(t − τ)}i and gi(t − τ) is such that the i-th and j-th components of Sc,h

or Rk
c,h, k > 0 are not zero. Then, in this case, for the computation of the

groups of lines of b(g(t − τ)), related to gj(t− τ)i and gi(t − τ) the entire
vector g(t− τ) is not required.

Notice that (7.18) represents a specialized version of Problem (7.3) with
fi(gi) = ∥gi − ri∥Ψi , hi(g) = Ai[gi1, ..., gi..., g

i
|Ni|] − bi([gi1(t − τ), ..., gi(t −

τ)..., gi|Ni|(t − τ)]) and [g]i = {gi1, ..., gi|Ni|}. Finally, the following DI-FFCG
algorithm to be executed at each time instant by each agent can be presented

Algorithm 7.2.1 Distributed Iterative FFCG Algorithm (DI-FFCG)
- Agent i
at each time t
1.1if(t== κτ, κ=0, 1, . . .)

1.1.1 receive gj(t−τ) for each j ∈ Ni

1.1.2 compute gi(t) by means of Algorithm 7.1.1 customized for
problems (7.18)

1.1.3 apply gi(t)
1.2else

1.2.1 apply gi(t) = gi(t− 1)
1.3transmit gi(t) to Ni

It is possible to prove that, under the assumption that a feasible solutions
g(0) complying with (7.14) exists at time t = 0 (which also implies constraints
specification and disturbance set D which make Wδ and G(g(0)) non-empty),
the above DI-FFCG scheme enjoys the following properties:

Theorem 7.17. Let assumptions A1,A2,A4,A5,A6 be fulfilled for the sys-
tem arising from the composition of N subsystems in form (6.1). Let consider
the distributed DI-FFCG Algorithm 7.2.1 and let an admissible aggregate
command signal g(0) = [gT1 (0), . . . , g

T
N (0)]T ∈ Wδ be applied at t = 0 such

that (3.8) holds true. Then

1) for each agent i ∈ A, at each time t=κτ, κ ∈ ZZ+, the minimizer in (7.18)
uniquely exists and can be obtained by locally solving the Algorithm 7.1.1.
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2) the overall system acted by the agents implementing the DI-FFCG policy
never violates the constraints, i.e. c(t) ∈ C for all t ∈ ZZ+;

3) whenever r(t)≡ [ rT1 ,. . . ,r
T
N ]T ,∀t, with ri a constant set-point, the se-

quence of solutions g(t) = [gT1 (t), . . . , g
T
N (t)]T converges in finite time to

a Pareto-Optimal stationary (constant) solution of (5.9) , which is given
by r whenever r ∈ Wδ, or by any other Pareto-Optimal solution r̂ ∈ Wδ

otherwise.

Proof

1) The existence of an admissible solution for each agent at each time κτ can
be proved by simply remarking that gi(t) = gi(t − τ), is always an ad-
missible, although not necessarily the optimal, solution for the prescribed
problem at time t.

2) At each time t = κτ , with κ ∈ ZZ+, from a centralized point of view,
the command g(κτ) computed by means of Algorithm 7.1.1 satisfies the
constraints of problem (7.2) because of Proposition (7.14). As consequence,
a command g(κτ) fulfilling (3.19) is applied to the overall plant. Then, the
statement can be proved by following the arguments addressed in item 2)
of the proof of Theorem 5.7.

3) The stated convergence property follows simply because the sequences
of solutions gi(t) makes the sequences of local costs ||gi(t) − ri||2Ψi

non
increasing as already explained for others described distributed techniques.
Also in this case, we show that any stationary optimal solution, viz. g(t) =
g(t+ 1) ∀t, is Pareto Optimal for problem 5.9 by proving that a solution
to Problem 5.9 is stationary only if it is Pareto-Optimal.
To this end, let g(t′) = [gT1 (t

′), ..., g′TN (t′)]T be the actual solution at time
t′ = κ′τ, κ′ ∈ ZZ+ which is assumed to be not Pareto-Optimal in Wδ. As a
second step, it useful to consider the set of all admissible solutions at time
t′+ τ for problem 7.2 as those contained in the intersection Wδ ∩{g : (g−
g(t′)) ∈ ∆G(g(t′))}. Then, two possible situations have to be considered
at time t′ + τ
1. if g(t′) is not Pareto-Optimal in Wδ ∩{g : (g− g(t′)) ∈ ∆G(g(t′))}, the

agents, by performing Algorithm 7.1.1, will converge to a new solutions
that will be Pareto Optimal for problem 7.2 and g(t′ + τ) ̸= g(t′).

2. if g(t′) is Pareto-Optimal in Wδ ∩ {g : (g− g(t′)) ∈ ∆G(g(t′))} there is
not reasons for the agents to change their commands, then g(t′ + τ) =
g(t′). But we show that the Pareto optimality of g(t′) ∈ Wδ ∩ {g :
(g − g(t′)) ∈ ∆G(g(t′))} is in contradiction with the fact that g(t′)
is not Pareto Optimal in Wδ. In fact, if g(t′) is not Pareto Optimal
in Wδ at least one vector v = [vT1 , ..., v

T
N ]T ∈ IRm would exist with

g(t′) + v ∈ Wδ, such that

||gi(t′) + vi − ri||2Ψi
− ||gi(t′)− ri||2Ψi

≤ 0, (7.19)

happens to hold for all i ∈ A′ := {i ∈ A : vi ̸= 0} with some of
the above inequalities becoming strict for at least one index i ∈ A′.
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As already discussed in item 3) of the proof of Theorem 5.7 and in
others similar previous proofs, by means of straightforward algebraic
manipulations, (7.19) leads to

||gi(t′) + αvi− ri||2Ψi
− ||gi(t′)− ri||2Ψi

< 0,∀α ∈ (0, 1),∀i ∈ A′ (7.20)

that may be interpreted as the fact that if the above admissible di-
rection v did exist at g(t′), for each agent i ∈ A′ it would be
strictly convenient to move to gi(t

′) + αvi, for a suitable value of
α, from its previous solution gi(t

′). Since g(t′) is Pareto Optimal in
Wδ ∩{g : (g− g(t′)) ∈ ∆G(g(t′))} all the solutions g(t′)+αv satisfying
(7.20) would not belong to Wδ ∩ {g : (g − g(t′)) ∈ ∆G(g(t′))}, i.e.

g(t′) + αv /∈ Wδ ∩ {g : (g − g(t′)) ∈ ∆G(g(t′))},∀α ∈ (0, 1) (7.21)

The latter represents a contradiction because, since Proposition 3.5,
∆G(g(t′)) contains a ball of finite radius centered at 0m. Then

Wδ ∩ {g : (g − g(t′)) ∈ ∆G(g(t′))} ⊇ Wδ ∩ Bη
g(t′) (7.22)

holds where Bη
g(t′) is a ball of finite radius centered at g(t′). As a conse-

quence, for each v ∈ IRm such that g(t′) + v ∈ Wδ it necessarily exists
an α′ ∈ (0, 1) such that

g(t′) + α′v ∈ Wδ ∩ Bη
g(t′),∀α ∈ (0, 1) (7.23)

that is not compatible with the Pareto Optimality of g(t′) in Wδ ∩{g :
(g − g(t′)) ∈ ∆G(g(t′))}. Then, the no Pareto Optimality of g(t′) in
Wδ implies the no Pareto Optimality of g(t′) in Wδ ∩ {g : (g− g(t′)) ∈
∆G(g(t′))}. Hence g(t′) cannot be a stationary point.

The previous analysis then suggests us that

g(t) → r̂ (7.24)

with r̂ a generic Pareto Optimum in Wδ. In order to prove that r̂ is reached
in a finite time, it is useful to remind that for a finite positive scalar η,
because of Proposition (3.5), ∆G(g) ⊇ Bη,∀g ∈ Wδ. Moreover, (7.24)
ensures that, for a positive η, it exists a finite time tη such that

g(t+ tη)− r̂ ∈ Bη,∀t ≥ tη (7.25)

Then, at time t+ tη + τ

r̂ ∈ Wδ ∩∆G(g(t+ tη)) (7.26)

and the procedure 7.1.1 can produce a solution arbitrarily close to r̂ (see
Proposition 7.14).
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7.3 CG based distributed iterative Schemes (DI-CG)

In this section we discuss how to customize the procedure presented in Sec-
tion 7.1 to address distributed CG design problems described in Chapter 2.
The problem that we want to consider has already been introduced at the
beginning of previous section and consisting in locally determining, at each
time instant t and for each master agent i ∈ A associated to each subsystem,
a suitable reference signal gi(t) for system (6.1) which is the best feasible ap-
proximation of ri(t) and such that its application never produces constraints
violation, i.e. ci(t) ∈ Ci,∀t ∈ ZZ+, i ∈ A, with Ci being convex and compact
polytopic sets.

By repeating arguments used for the FF-CG approach the aggregate vector
g(t) can be computed at each time t by solving the following multi-objective
optimization problem

min
g=[gT

1 ,...,gT
N
]T
[∥ g1 − r1 ∥2Ψ1

, . . . , ∥ gi − ri ∥2Ψi
, . . . , ∥ gN − rN ∥2ΨN

]

subject to g ∈ V(x(t))
(7.27)

where V(x) := V(x, 0), with V(x, 0) already defined in (6.3) and C =
C1×, ...,×Cnc consisting of polyhedral constraints. Again, the main goal here
is to show how this problem could be recast in an instance of Problem (7.1).

To this end, it is sufficient to specialize the CG centralized problem (7.27)
to the case where the decision variable is no longer the entire command vector
g ∈ IRm but a subvector gi ∈ IRmi of it, related to agent i. Then, Problem
(7.27) can be rephrased, by means of the procedure (2.34)-(2.51) given in
Section 2.3.2, as

min
g=[gT

1 ,...,gT
N
]T
[∥ g1 − r1 ∥2Ψ1

, . . . , ∥ gi − ri ∥2Ψi
, . . . , ∥ gN − rN ∥2ΨN

]

subject to

{
THcΦ

kx(t) + TRc
kg ≤ qk, k = 0, ..., k0

T
(
Hc(I − Φ)−1G+ L

)
g ≤ qkε − (ε+ δ)[

√
TT
j Tj ]

(7.28)

where [
√
TT
j Tj ] is defined in (2.24), k0 is determined according to Algorithm

(2.3.2), or equivalently into a compact form

ming[∥ g1 − r1 ∥2Ψ1
, . . . , ∥ gi − ri ∥2Ψi

, . . . , ∥ gN − rN ∥2ΨN
]

s.t. Ag + Ãx(t)− b ≤ 0
(7.29)

where

A =

[
TRc

k

T
(
Hc(I − Φ)−1G+ L

) ] ∈ IR(1+k0)z×m, Ã =

[
THcΦ

k

0z×n

]
∈ IR(1+k0)z×n

b =

[
qk

qkε

]
∈ IR(1+k0)z .

(7.30)
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Problem (7.29) represents a specialized version of Problem (7.1). In par-
ticular, in this case, the Neighborhood of an agent could be redefined as

Definition 7.18. (Neighborhood of i-th agent) For the i-th agent the
neighborhood is defined as Ni = {j : it exists a line a = [a1, ..., ai..., aN ],
in A or a line ã = [ã1, ..., ãi..., ãN ], in Ã such that

(
ai ̸= 0mi and aj ̸= 0mj

or ãj ̸= 0mj

)}
.

Unlike the DI-FFCG approach of the previous Section, in this case, the neigh-
boring agents are required to share the local state xi(t). Such an additional
duty does not involve any further modification to Algorithm (7.1.1) because,
as we show hereafter, the state xi(t) represents a simple constant parameter
for the local optimization. In order to achieve, for each agent, local problems
of the form (7.3) starting from (7.29), it is sufficient to associate to each agent
the function involving its local command gi from the vector objective func-
tions in (7.29) and decompose the matrices A Ã and b in (7.29) so as to collect
in the local formulations only the constraints involving agent i and its neigh-
bours, with the related local commands and states. Then, the local problem
for the generic i-th agent is given by

mingi ∥ gi − ri ∥2Ψi

s.t. Ai[gi1, ..., gi..., g
i
|Ni|] + Ãi[xi

1(t), ..., xi(t)..., x
i
|Ni|(t)]− bi ≤ 0

(7.31)

where Ai Ãi and bi are built by means of the simple following rule: the h-th
lines ah of A, ãh of Ã and bh of b appear in Ai, Ãi and bi respectively if the
i-th component of ah is not zero. gij is the decision variable of the agent j-th
belonging to Ni, which, in the local problem of the i-th agent, is a constant
term. Notice that also Problem 7.31 is in the class of Problems (7.3). The
above described formulation allows us to present the DI-CG algorithm to be
performed at each time instant by each agent.

Algorithm 7.3.1 Distributed Iterative CG Algorithm (DI-CG) - Agent
i
at each time t
1.1receive gj(t− 1), xj(t− 1) from each j ∈ Ni

1.2compute gi(t) by means of Algorithm 7.1.1 customized for prob-
lems (7.31)

1.3apply gi(t)
1.4transmit gi(t) and xi(t) to Ni

Finally, the following properties can be shown to hold for the above stated
DI-CG scheme

Theorem 7.19. Let assumptions A1,A2,A4,A5,A6 be fulfilled for the sys-
tem arising from the composition of N subsystems in form (6.1). Let consider
the distributed DI-CG Algorithm 7.3.1 and let V(x(0), dmax) be non empty
at time t = 0. Then
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1) for each agent i ∈ A, at each time t, t ∈ ZZ+, the minimizer in (7.31)
uniquely exists and can be obtained by locally solving the Algorithm 7.1.1.

2) the overall system acted by the agents implementing the DI-CG policy
never violates the constraints, i.e. c(t) ∈ C for all t ∈ ZZ+;

3) whenever r(t)≡ [ rT1 ,. . . ,r
T
N ]T ,∀t, with ri a constant set-point, the se-

quence of solutions g(t) = [gT1 (t), . . . , g
T
N (t)]T in a finite time converges to

a Pareto-Optimal stationary (constant) solution of (5.9), which is given
by r whenever r ∈ Wδ, or by any other Pareto-Optimal solution r̂ ∈ Wδ

otherwise.

Proof

1) The existence of an admissible solution for each agent at each time t can be
proved by simply remarking that gi(t) = gi(t−1), is always an admissible,
although not necessarily the optimal, solution for the prescribed problem
at time t.

2) At each time t, with t ∈ ZZ+, from a centralized point of view, the com-
mand g(t) computed by means of Algorithm 7.1.1 satisfies the constraints
of problem (7.3) because of Proposition (7.14). As a consequence, a com-
mand g(t) belonging to V(x(t)) is applied to the overall plant. Then, the
statement can be proved by following the arguments used in the proof of
item 2) of Theorem 6.2.

3) The stated convergence property follows simply because the sequence of so-
lutions gi(t) makes the sequence of local costs ||gi(t)−ri||2Ψi

non increasing
as already explained for other described distributed techniques. Also in this
case, we show that any stationary optimal solution, viz. g(t) = g(t+1) ∀t,
is Pareto Optimal for problem 5.9 by proving that a solution to Problem
5.9 is not stationary if it is not Pareto-Optimal.
To this end, let g(t′) = [gT1 (t

′), ..., g′TN (t′)]T be the actual solution at time
t′ ∈ ZZ+ which is assumed to be not Pareto-Optimal in Wδ. Then, two
possible situations have to be considered at time t′ + 1
1. if g(t′) is not Pareto-Optimal in V(x(t′)), the agents, by performing

Algorithm 7.1.1, will converge on a new solution that is Pareto Optimal
for the problem 7.3 and g(t′ + 1) ̸= g(t′).

2. if g(t′) is Pareto-Optimal in V(x(t′)) there is not reasons for the agents
to change their commands. Then g(t′+1) = g(t′),∀t ≥ t′. But we show
that if g(t′) is not Pareto Optimal in Wδ such a situation can reoccur
a finite number of times. In fact, the proof of Lemma 6.1 and item 3)
of the proof of Theorem 6.2 ensure that after a finite ts

V(x(t′ + ts)) ⊇ Wδ ∩ Bϱ
g(t′+ts)

,∀t ≥ t′ + ts, ϱ > 0 (7.32)

where Bϱ
g(t′+ts)

is a ball centered at g(t′+ ts) with a finite radius ϱ > 0.

Then, if at time t′+ts, g(t
′+ts) = g(t′) is not Pareto Optimal in Wδ, at

least one vector v = [vT1 , ..., v
T
N ]T ∈ IRm would exist with g(t′)+v ∈ Wδ,

such that
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||gi(t′) + vi − ri||2Ψi
− ||gi(t′)− ri||2Ψi

≤ 0, (7.33)

happens to hold for all i ∈ A′ := {i ∈ A : vi ̸= 0} with some of the
above inequalities becoming strict for at least one index i ∈ A′. As
already discussed in item 3) of the proof of Theorem 7.19, by means of
straightforward algebraic manipulations, the (7.19) leads to

||gi(t′) + αvi− ri||2Ψi
− ||gi(t′)− ri||2Ψi

< 0,∀α ∈ (0, 1),∀i ∈ A′ (7.34)

that may be interpreted as the fact that if the above admissible di-
rection v did exist at g(t′), for each agent i ∈ A′ it would be strictly
convenient to move to gi(t

′)+αvi, for a suitable value of α, from its pre-
vious solution gi(t

′). Since g(t′) is Pareto Optimal in V(x(t′+ts)) all the
solutions g(t′)+αv satisfying (7.34) would not belong to V(x(t′+ ts)),
i.e.

g(t′) + αv /∈ V(x(t′ + ts)),∀α ∈ (0, 1) (7.35)

The latter represents a contradiction because, since (7.32), for each
v ∈ IRm such that g(t′) + v ∈ Wδ it necessarily exists an α′ ∈ (0, 1)
such that

g(t′) + α′v ∈ Wδ ∩ Bϱ
g(t′),∀α ∈ (0, 1) (7.36)

that is not compatible with the Pareto Optimality of g(t′) in V(x(t′ +
ts)). Then the no Pareto Optimality of g(t′) in Wδ implies the no
Pareto Optimality of g(t′) in V(x(t′ + ts)). Hence g(t′) cannot be a
stationary point.

The previous analysis then suggests us that

g(t) → r̂ (7.37)

with r̂ a generic Pareto Optimum in Wδ. In order to prove that r̂ is reached
in a finite time, it is useful to remind that because of properties (4.32) and
(4.33) for system (2.1), (7.37) ensures that, it exists a finite time tδ such
that

c(t+ tδ)− cr̂ ∈ Bδ,∀t ≥ tδ. (7.38)

The latter indicates that predictions for c̄ along virtual time k, starting
from x(tδ), will satisfy

c̄(k, x(tδ), r̂)− cr̂ ∈ Bδ,∀k ≥ 0. (7.39)

Since cr̂ ∈ C∞ ∼ Bδ, if we add cr̂ to the right side of the latter we obtain

c̄(k, x(tδ), r̂) ∈ C∞ ∼ Bδ ⊕ Bδ,∀k ≥ 0 (7.40)

that becomes
c̄(k, x(tδ), r̂) ∈ C∞ ∼ Bδ,∀k ≥ 0. (7.41)

Then, (7.41) implies r̂ ∈ V(x(tδ)) or equivalently that at time tδ it will be
an admissible solution for Problem (7.27). Then, the procedure 7.1.1 can
produce a solution arbitrarily close to r̂.
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Remark 7.20. It is worth pointing out that, unlike the non-iterative methods
of Chapters 5 and 6, the DI-CG and DI-FFCG strategies guarantee at each
iteration possibly unfeasible solutions which are Pareto Optimal besides the
convergence to a feasible Pareto Optimum in finite time. However, according
to Proposition 7.14, if the iterative procedure 7.1.1 is stopped before the
convergence is reached, there is not any guarantee that a feasible solution is
provided. Such a limitation represents the main drawback of the described
iterative methods.

7.4 Conclusions

In this Chapter a distributed iterative optimization method borrowed from
[60] has been discussed and customized to develop iterative CG and FF-CG
distributed methods. All technicalities required to adapt the discussed opti-
mization method to the CG and FF-CG design problems have been provided.
Furthermore, we have proved that the resulting DI-CG and DI-FFCG strate-
gies hold similar properties w.r.t centralized CG and FF-CG approaches.





8

Case Study: An eight-tank water distribution
system application

Water distribution systems consist essentially of pumping units, water tanks
and distribution pipes connecting them. Many operational and coordination
constraints may also be present and such large-scale dynamically coupled in-
terconnected systems are a benchmark to check the applicability of distributed
supervision strategies aiming at actively coordinating the action of the pump-
ing units in achieving global goals in response to changed conditions.

In literature, several results have been published on the control of water
distribution systems with solutions based both on centralized ([64, 65, 66, 67])
and distributed ([68, 69]) MPC approaches. These distributed schemes are
based on optimization procedures which require several iteration steps which,
under mild assumptions (e.g. linearity of the subsystem models and convexity
of the optimization problems to be solved), allow the achievement of control
performance similar to those achievable by centralized solutions. The main
drawback of such iterative schemes lies in the huge amount of iterations re-
quired, leading to decision times remarkably larger than the typically sampling
periods used in such control applications. In order to overcome this problem,
in ([70]) a non-iterative distributed MPC scheme is proposed for irrigation
canals control.

In this Chapter, the distributed supervising strategies described in the pre-
vious Chapters are applied to the management of the water level set-points of
the downstream tanks of a water network which is assumed to be subject to
several pointwise-in-time coordination and operational constraints. Because of
the high dimensionality and spatial distribution of the dynamical model, cen-
tralized water level management strategies can be infeasible due to the large
communication/computational requirements. On the contrary, a distributed
management is to be preferred because its action is computed via many dis-
tributed and communicating computing devices. The problem is complicated
because the coordination constraints can be global and involve variables at
far locations in the network. Then, the actions of local devices, typically one
for each subsystem, have to be coordinated in order to rigorously fulfil all
constraints and attain, in such a distributed implementation, behaviors and
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properties which are similar to those usually pertaining to centralized super-
visors.

The system here presented seems to be suitable for comparing all the
distributed strategies presented in the second part of this thesis. Then, after
a brief description of such a system several simulation results are reported
which are contrasted with the results of the centralized supervising strategies
described in Chapters 2 and 3.

8.1 Model Description

Consider the water tank network depicted in Figure 8.1. The system con-
sists of the interconnection of four cascaded two-tank models. Each cascaded
subsystem is described by the following non-linear equations{

ρS1
i ḣ

1
i = −ρA1

i

√
2gh1

i + ui

ρS2
i ḣ

2
i = −ρA2

i

√
2gh2

i + ρA1
i

√
2gh1

i+
∑

j∈SiρA1
j

√
2gh1

i

(8.1)

where ui is the water flow supplied by the pump whose command is the

Fig. 8.1. A four cascaded two-tank water system

voltage Vi, i ∈ A := {1, .., 4}. Moreover, for each q = 1, 2, Sq
i are the tank

sections, hq
i , the water level in the tanks, Ai

q the section of pipes connecting
the tanks, and g and ρ the gravity constant and the water density respectively.
Their values are specified in Tables 1-2.

With Si we denote the set of subsystems which provide water to the down-
stream tank of the i-th subsystem; in our case S1 := {2}, S2 = {3}, S3 = {4}
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and S4 = ∅. Each cascaded two-tank subsystem has a related decision maker
or agent in charge of regulating the levels h2

i (t), i ∈ A by modifying properly
their set-points and by exchanging relevant data with the other agents by
means of the communication graph depicted in Figure 8.2. A simple static
equation is used to model the relationship between the input voltage Vi(t)
and the incoming mass of water

AGENT

1

AGENT

3

AGENT

4

AGENT

2

Fig. 8.2. Communication graph

Subsystem 1

Tank 1 Value Tank 2 Value

S1
1 2500 cm2 S2

1 2500 cm2

A1
1 4 cm2 A2

1 8 cm2

h
1
i 80 cm h

2
i 70 cm

h1
i 1 cm h2

i 1 cm

Subsystem i = {2, 3, 4}
Tank 1 Value Tank 2 Value

S1
i 2500 cm2 S2

i 2500 cm2

A1
i 8 cm2 S2

i 8 cm2

h
1
i 80 cm h

2
i 70 cm

h1
i 1 cm h2

i 1 cm

Table 8.1. Tanks and constraints values

ui(t) =

{
Vi(t) if Vi(t) ≥ 0
0 if V (t) < 0

(8.2)

The following local and global constraints are to be enforced at each time
instant
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Parameters Value

g 980 cm/(sec2)

ρ 10(−3) Kg/(cm3)
Vmax 4
Tc 0.8sec

Table 8.2. Parameter values

h1
i ≤ h1

i ≤ h
1

i , ∀ i ∈ A,

h2
i ≤ h2

i ≤ h
2

i , ∀ i ∈ A,
0 ≤ Vi ≤ Vmax, ∀ i ∈ A,

|h1
1 − h1

2| <=5 cm, |h1
2 − h1

3| <=5 cm, |h1
3 − h2

4| <=5 cm

(8.3)

The system is linearized around the equilibrium V̄i = ūeq
i = 2, i ∈ A h̄j

i =
32cm and discretized with sampling time Tc = 0.8 sec. Local decentralized
tracking LQ output feedback controllers ([71]) are implemented, which act
properly on the incoming water flows ui(t), in such a way that the offset
propertyA2 is satisfied. The resulting equation of the overall pre-compensated
system has the same structure as in (2.1) where, in this case, the commands
g(t) ∈ IR4 represents the applied references for the downstream tanks.

Φ =



0.7237 −0.1053 −0.0016 0.0044 0.0001 −0.0004 0 0
0.0086 0.9894 0.0043 −0.0001 0 0 0 0
−0.0016 −0.0504 0.7253 −0.0573 −0.0009 0.0026 0 −0.0003

0 −0.0001 0.0043 0.9897 0.0043 −0.0001 0 0
0.0001 0.0020 −0.0009 −0.0567 0.7252 −0.0568 −0.0009 0.0028

0 0 0 −0.0001 0.0043 0.9897 0.0043 −0.0001
0 −0.0002 0 0.0025 −0.0009 −0.0565 0.7252 −0.0593
0 0 0 0 −0.0001 0.0043 0.9899



G =



0.3816 −0.2776 0.2734 −0.2730
0.0020 0.0001 0 0
0.0520 0.6051 −0.5487 0.5462
0.0001 0.0017 0.0001 0
−0.0021 0.0585 0.6045 −0.5488

0 0.0001 0.0017 0.0001
0.0002 −0.0026 0.0583 0.6072

0 0 0.0001 0.0015



Hy=

 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


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Hc=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−83.6479 −33.0636 −0.5010 1.3954 0.0209 −0.1186 −0.0017 0.0141
−0.5010 −15.8341 −83.1365 −17.9865 −0.2722 0.8234 0.0121 −0.0805
0.0209 0.6384 −0.2722 −17.8015 −83.1660 −17.8298 −0.2688 0.8756

−0.0017 −0.0522 0.0121 0.7951 −0.2688 −17.7492 −83.1782 −18.6248
1 0 −1 0 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 0 1 0 −1 0



L =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

119.8475 −87.1772 85.8588 −85.7509
16.3351 190.0304 −172.3228 171.5557
−0.6592 18.3668 189.8685 −172.3768
0.0539 −0.8211 18.3128 190.6896

0 0 0 0
0 0 0 0
0 0 0 0



8.2 Simulation Scenario

The reported simulations investigate the behavior of the overall system when
the desired set-points ri to the water levels of the downstream tanks have the
profiles depicted in Figures 8.10-8.13 (red dashed line). At the beginning, the
desired references ri = 32cm, i ∈ A correspond to an equilibrium. At time
t = 30 sec, the reference r1 related to the downstream tank of subsystem
1 is changed from 32 cm to 42 cm. At the same time, also the reference
r2 is modified from 32 cm to 34 cm. These values are kept constant until
time instant t = 400 sec when they are changed back to their initial values.
Simultaneously, the desired references r3 and r4 change their values at time
t = 300 sec from 32 cm to 27.85 cm and, respectively, 28.5 cm. After that,
these new values are kept constant up to time t = 800 sec, when they are
brought back to the previous values.

8.3 Agents design and simulation parameters

The supervision of the system in Figure 8.1 is achieved by considering several
strategies described in previous Chapters. In particular, we have analyzed the
behavior of the system under the action of

• the centralized Standard CG described in Chapter 2,
• the centralized FF-CG of Chapter 3,
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• the distributed non-iterative schemes S-FFCG (Chapter 5) and S-CG
(Chapter 6),

• the distributed non-iterative schemes P-FFCG (Chapter 5) and P-CG
(Chapter 6),

• the distributed iterative schemes DI-FFCG and DI-CG of Chapter 7.

Hereafter, the design parameters used for each considered strategy are
reported.

Centralized CG design parameters

The problem to be solved in this case is (2.29) of Chapter 2 where

• Ψ = Im, which implies that the cost to be minimized is Jc = ∥g1 − r1∥+
∥g2 − r2∥+ ∥g3 − r3∥+ ∥g4 − r4∥.

• T = [In,−In]
T , and

q = [0.3, 0.3, 0.3, 0.3, 2, 2, 2, 2, 0.05, 0.05, 0.05, 0.3, 0.3, 0.3, 0.3, 2, 2, 2, 2, 0.05, 0.05, 0.05]
T
,

• k0 = 3, computed according to algorithm (2.3.1),
• δ = 10−8 and the corresponding set Wδ given by

Wδ :



g ∈ IR4 :



1 −1 1 −1
0 2 −2 2
0 0 2 −2
0 0 0 2

3.1360 −3.1360 3.1360 −3.1360
0 6.2720 −6.2720 6.2720
0 0 6.2720 −6.2720
0 0 0 6.2720
1 −3 3 −3
0 2 −4 4
0 0 2 −4
−1 1 −1 1
0 −2 2 −2
0 0 −2 2
0 0 0 −2

−3.1360 3.1360 −3.1360 3.1360
0 −6.2720 6.2720 −6.2720
0 0 −6.2720 6.2720
0 0 0 −6.2720
−1 3 −3 3
0 −2 4 −4
0 0 −2 4



g ≤ q − δ
√

[TT
i Ti]


(8.4)

Centralized FFCG design parameters

Algorithm (3.2.2) presented in Chapter 3 is implemented in this case with

• Ψ , k0, δ and Wδ the same as in the previous CG design,
• γ = 0.3, which implies τ = 5 computed according to Algorithm (3.2.1).
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Distributed S-FFCG design parameters

Algorithm (5.2.1) presented in Chapter 5 is implemented here with

• the neighbourhoods for each agent, according to Figure 8.2, are: A1 =
{2, 3}, A2 = {1, 4}, A3 = {1, 4}, A4 = {2, 3}, dmax = 2,

• T , q,k0 δ, γ,τ are the same as in the FFCG design,
• Wδ is modified by means of procedure described in section 5.3.1 into W ′

δ

that represents the convex hull of a multi-box inner approximation carried
out on Wδ (Details are omitted for brevity).

Distributed S-CG design parameters

Algorithm (6.2.1) presented in Chapter 6 is implemented here with the same
terms A1, A2, A3, A4, dmax, T , q,k0 δ, and W ′

δ used in the S-FFCG design.

Distributed P-FFCG design parameters

Algorithm (5.4.1) presented in Chapter 5 is implemented here with

• A1, A2, A3, A4, dmax, T , q,k0 δ, and W ′
δ used in the S-FFCG design.

• ϵP = 0.0038 ϵS = 0.0042,

Distributed P-CG design parameters

Algorithm (6.3.1) presented in Chapter 6 is implemented here with the same
A1, A2, A3, A4, dmax, T , q,k0 δ, ϵP , ϵS and W ′

δ used in the P-FFCG design.

Distributed DI-FFCG design parameters

At each time instant, problem (7.12) is solved by means of Algorithm (7.1.1)
with

• A1 = A2 = A3 = A4 = A. In fact, in this case, because of the constraints
structure (see (8.4)) all agents belong to the same neighborhood,

• T , q,k0 δ, γ, τ , Wδ are the same used in the FFCG design,
• the number of iterations considered for the optimization is Nit = 10.

Distributed DI-CG design parameters

At each time instant, problem (7.27) is solved by means of Algorithm (7.1.1)
with the same A1 = A2 = A3 = A4 = A, T , q,k0 δ, Wδ and Nit used in the
DI-FFCG design.
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8.4 Simulation Results

Observe first the constrained vector responses reported in Figures 8.3-8.5 and
8.6-8.9 for all strategies. It is important to note how such a vector violates the
constraints at several time instants when no CG unit is operating. It is worth
noticing that all centralized solutions (CG and FFCG) and all distributed it-
erative strategies (DI-FFCG and DI-CG) are more active and the constrained
signals are often near to the constraints’ boundaries. On the contrary, the
distributed non iterative methods present a more conservative behavior.

In order to evaluate and compare the performance related to each con-
sidered strategy, we provide the evolutions of the downstream water levels
in Figures 8.10-8.13, while in Figures 8.14-8.17 the various actions are re-
ported. Moreover, a further way to compare the relative performance for
all methods has been provided in Figure 8.18, where the value of the cost
J = 1

T

∑T
k=0 |r(k)− θL(k)| is reported for each method.

From the observation of the above indicated figures the following conclu-
sions arise:

1. Centralized schemes perform better than distributed schemes:
Among the distributed methods, only DI-CG compares similarly to the
centralized methods (see Figure 8.18). On the contrary, all other dis-
tributed schemes exhibits, as expected, slower responses to step changing
set-points. The standard CG and the FFCG centralized schemes are faster
to reach a new optimal equilibrium after a step set-point change than the
distributed methods because the latter don’t cooperate in reaching the op-
timal solution. Such a situation can be noticed in Figures 8.14-8.17 after
time t = 200 when all methods converged. At time t = 300, the refer-
ences r3(t) and r4(t) change while r1(t) and r2(t) remain constant. This
means that ∥g3(t)− r3(t)∥ and ∥g4(t)− r4(t)∥ would increase if g3 and g4
were kept constant while ∥g1(t)− r1(t)∥ and ∥g2(t)− r2(t)∥ would remain
unchanged. Since the distributed methods are not cooperative, agents 1
and 2 do not modify their local costs because they would worsen it, while
agents 3 and 4 start to find new optimal solutions. On the contrary, in
the centralized case, at time t = 300 the entire vector g(t) is modified be-
cause g(300) is no more an optimum solution for Jc. Then, a new optimal
equilibrium is reached faster than the distributed competitors.

2. Iterative methods are better than non-iterative ones: In fact, the
iterative procedure (7.1.1) guarantees that a Pareto Optimal solution is
reached at each iteration step while there is not such a guarantee for the
non-iterative methods.

3. CG-based methods are better than FFCG methods: As expected,
in both centralized and distributed schemes, state-based CG methods can
compute their action by means of a more accurate system future state
predictions because computed on the basis of a direct measure of the actual
state. On the contrary, FFCG based methods, besides making use of less
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Fig. 8.3. Coordination constraint |h1
1(t)− h1

2(t)|

accurate future state predictions, update their commands at multiples of
the sampling period.

4. Sequential approaches are worse than parallel approaches: The
increased efficiency of parallel approaches w.r.t. sequential ones, in both
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3(t)|

CG and FFCG based methods, is remarkably noticeable. Such a gap be-
come larger if the number of agents increases.

Nevertheless, although the performance of a centralized solutions, especially
those based on the direct measure of the state, outperform any distributed
solution, the difference is modest as it can be observed in Figure 8.18.
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As far as the numerical complexity and the data exchange of the methods
is concerned, an investigation of the required CPU execution time and the rate
of data exchanged (see Figures 8.19 and 8.20) was undertaken for contrasting
a single supervisory agent of each distributed schemes with the overall com-
putational burden and data exchanged for the centralized solutions. It has
been resulted that a single agent in all non-iterative schemes has a computa-
tional burden which is an order of magnitude lower than any centralized CG
solution. Furthermore, in this case, it is worth remarking that the iterative
methods require a computational time that is larger than the ones pertain-
ing to the centralized methods. Although this result could be surprising, its
explanation is quite trivial. In fact, in the iterative methods the optimiza-
tion problem is iterated until the agents converge to a solution or, as in our
case, by a finite number of times (Nit = 10). Then, the DI-FFCG and DI-CG
computational burdens are the summation of the CPU times needed for the
resolution of 10 problems and the time required for the corresponding data
exchanges amongst the agents at each iteration. Then, the results depicted
in Figure 8.19 for the iterative methods are strongly related to the amount
of data exchanged depicted in Figure 8.20. Such a figure points out the main
drawback of the iterative methods that consists in the huge amount of ex-
changed data required for the convergence to a solution that is remarkably
higher if compared with the centralized and non-iterative methods. Actually,
distributed iterative methods could become more competitive in very large-
scale applications with weak interconnections between the subsystems (in this
case the subnetworks are much smaller than the overall system).

For the sake of completeness concerning the P-FFCG and P-CG strategies,
we have included in Figures 8.21 and 8.22 the switching signals amongst the
operative scenarios. It can be observed that in both cases, for almost half of
the simulation the strategies operate in the sequential mode due to the fact
that the command g(t) is kept close to the boundaries of the admissible region
W ′

δ.
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Conclusions and Future works

The purpose of this dissertation was to discuss multi-agent Command Gov-
ernor supervision schemes for distributed interconnected dynamical systems.
The main contributions are here summarized and future research direction
established.

A. Conclusions

The main contributions of this thesis with respect to the existing literature
on supervision approaches are as follows:

• Sensorless Command Governor schemes. In Chapters 3 and 4 novel
FeedForward CG schemes have been proposed which, thanks to the asymp-
totic stability of the precompensated interconnected systems, don’t require
for their action computation an explicit measure or estimate of the actual
state. Their actions are derived under a constraint on the maximal allow-
able reference incremental variations which is instrumental to maintain the
state trajectory ”not too far” from the space of the admissible steady-state
equilibria. In Chapter 3, such a behavior was shown to be achievable by
forcing the FFCG action to stay constant for a precomputed number of
sampling steps.
In Chapter 4, an enhanced FFCG method is presented where the super-
vising action is updated at each sampling step. All the properties (stabil-
ity, feasibility and computability) of the proposed algorithms have been
carefully analyzed and the differences and similarities with standard CG
approaches pointed out. Comparisons with the classical CG solutions have
been presented and commented by means of several examples.

• Distributed Command Governor schemes. The second main contri-
bution of this thesis relies in the presentation of a class of distributed
supervision schemes based on centralized FFCG and CG ideas for a net-
work of dynamically interconnected subsystems. It has been assumed that
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such systems are connected with a communication data network and are
supervised according to the coordination-by-constraint paradigm by a set
of coordination and supervising agents. In Chapters 5 and 6 we have dis-
cussed non-iterative schemes and have proposed a sequential approach
which, besides its own relevance, was shown to be useful also for the de-
velopment of a more efficient parallel approach. Furthermore, we provided
some conditions to guarantee feasibility of the schemes and the Pareto op-
timality of the solutions. In particular, distributed FFCG and CG schemes
have been fully analyzed in Chapter 5 and, respectively, in Chapter 6.
Finally, distributed FFCG and CG iterative schemes based on a distributed
optimization procedure borrowed from the literature have been proposed
in Chapter 7. All technical details required for the implementation of the
proposed distributed schemes have also been provided and used in the
final example of Chapter 8 where the supervision of a water network is
considered. Comparisons amongst the methods have also been reported.

B. Future research

Although the work underlying this thesis has achieved the main goal of propos-
ing and investigating distributed algorithms based on Command Governor
strategies, several issues remain unsolved and need further investigation.

With respect to the FFCG approach addressed in this thesis, some chal-
lenging issues that require further investigations concerns

• the consideration of uncertain systems.
• time-delay case: teleoperation. In this case, there exists a non neg-

ligible physical distance from the master side, where the CG action is
computed, and the slaves’ sides where it is applied with a certain delay.

• faulty situations set-point reconfiguration strategies when a subset of
actuators or sensors could fail.

Furthermore, concerning the distributed schemes, more general fundamen-
tal directions would include:

• Asynchronous scenarios. In this case agents have not to wait for other
agents to solve their problems and decide on which action to take. However,
agents have to include newly received information from neighborhood at
any time while solving their own optimization problems.

• Enhanced FFCG-based schemes. Future work will involve the achieve-
ment of distributed iterative and not-iterative strategies based on the more
effective FFCG method discussed in Chapter 4.

• Scalability. It remains to be addressed how the required CPU time and
the amount of data exchanged change when applied to supervision struc-
tures with a large number of agents. If the approaches do not scale well,
then ways to make them scalable should be investigated.
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• Robustness. Future research should address how the schemes could be
made robust to time-delays and packet loss. In addition, fault-tolerance
against failing control agents is still an unsolved issue.

More in detail, with respect to non iterative techniques discussed in Chap-
ters 5 and 6, several issues need to be further investigated:

• Although the asymptotically convergence to a Pareto Optimal solution
has been proved only when the desired reference is constant, all performed
numerical experiments show that the agents converge to a Pareto Op-
timum in finite time. Actually, no formal proofs are available and the
investigation is ongoing.

• The Constraints Qualification property of the multi-box approximations
discussed in Section 5.3.1 has been proved only for mono-dimensional de-
cision set cases. Then, it would be desirable to arrive to a more power
inner approximation method capable of generating Constrained Quali-
fied polyhedrons in the general multi-dimensional case.

• In order to compute its local action each agent has to be provided with the
model of the overall system. In general, for very large systems, a complete
model could be not available or storable due to the inherent complexity.
Then, an improvement could be the achievement of similar techniques
where agents make use of a partial local simplified model.

In addition, future general application-oriented researches should investi-
gate the use of the discussed approaches in other fields besides water net-
works. In this respect, several studies are ongoing concerning the set-point
reconfiguration strategies for the supervision and coordination of smart-grid
subsystems in addressing voltage and power generation control problems in
the presence of faults or uncertainties due to distributed generation.

Further domains in which the supervision approaches here presented could
be applied include road traffic networks, railway networks, gas distribution
networks, but also the pro- cess industry, supply chains and autonomous
guided or flying vehicles.
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