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Preface 

The Mediterranean diet has its origins in the history of our country. It has come to us 

directly from the traditionally Greek eating habits. These habits has rooted and were 

maintained through the centuries. The traditional food in southern Italy produced, was 

originally based on starches (bread and pasta), vegetables, olive oil, small quantity of 

fish and meat, and include now other products that are established elements of this 

important nutritional style. Many of these products, unfortunately, do not come from 

the countries of the Mediterranean basin, but are often imported from other countries, 

with a negative economic impact, and in some cases, they affect consumer’s health. 

In this context, authentication of food products is of primary importance for 

consumers, farmers and producers. For consumers, geographical origin assures 

quality, organoleptic and nutritional characteristics whereas, from an economic point 

of view, product authentication is fundamental to prevent unfair competition that can 

eventually affect the regional and even national economy.  

In the last decade the European Union moved important steps towards the protection 

of EU products and their consumers through the introduction of the premium brands 

(Council Regulation (EEC) No 2081/92) and the concept of traceability (Regulation 

(EC) No. 178/2002 of 28 January 2002). The implementation of traceability systems 

in agri-food companies realized in accordance to the standard UNI EN ISO 

22005:2008 represents an indispensable tool not only to cope with law obligations, 

but also to add value to specific characteristics of a product, such as the 

origin/territoriality and the peculiarity of ingredients, and to satisfy customers' 

expectations. 

This standard, however, does not offer a tool that can identify the origin of food 

products on reliable scientific basis. So the development of analytical method for 
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geographical origin identification of food products represents an important goal in 

order to assure the real provenance of products and has been the object of many 

scientific publications. 

The research activity developed during the three years of Ph.D was devote to 

investigate markers capable of individuate the geographical origin of foodstuff using 

analytical techniques of mass spectrometry. In order to recognize the presence of 

patterns, the experimental data was subjected to chemometric data analysis. In these 

works unsupervised and supervised patterns recognition techniques such as principal 

component analysis (PCA), linear discriminant analysis (LDA), soft independent 

model class analogy (SIMCA), K-nearest neighbors (KNN), partial least squared 

discriminant analysis (PLS-DA) and artificial neural networks (ANN) were successful 

applied to cope discrimination issues. 

Furthermore in the three years of Ph.D. I contributed to the realization of a review: 

"Multistage mass spectrometry in quality, safety and origin of foods" published on the 

European Journal Of Mass Spectrometry, and two research works in other research 

filelds. The first, concerns the development of an analytical method for the 

determination of the prostate cancer marker sarcosine in urine ("Sarcosine as a marker in 

prostate cancer progression: a rapid and simple method for its quantification in human urine by 

solid-phase microextraction–gas chromatography–triple quadrupole mass spectrometry", 

published on Analytical and Bioanalytical Chemistry). The latter concern the 

determination of biomarkers for the characterization of the micrite rock 

(“Characterization of the micrites in the Late Miocene vermetid carbonate bioconstructions, 

Salento Peninsula, Italy: Record of a microbial/metazoan association”, published on 

Sedimentary geology).  

In the appendix of the thesis are reported the abstract of all the articles published. 
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1.1 Food traceability 

The first definition of traceability was given in 1987 by an international standard EN ISO 

8402.1 Traceability was identified as “the ability to retrace history, use or location of an 

entity by the means of recorded identification”. Within a firm, all the agents of the 

production and marketing chain must cooperate to make this traceability concept as 

efficient as possible. In 1999 the Codex Alimentarius Commission defined traceability as 

the ability to trace the history, application or location of an entity by means of recorded 

identifications.2 Traceability is closely linked to product identity, but it can also relate to 

the origin of materials and parts, product processing history, and the distribution and 

location of the product after delivery. 

In 2002 European Union (UE) approved the council regulation establishing the principles 

and requirements of food law in the European Union.3 Primary objectives of this 

regulation are to ensure a high level of protection of consumer health and an effective 

functioning of the UE internal market. This regulation introduces the concept of 

traceability and complements the regulation (EEC) No 2081/92 4 in which two separate 

classes of protected geographical name had been defined: protected designations of origin 

(POD) and protected geographical indications (PGI). PDO is a brand used for foodstuffs 

with a strong regional identity that are produced, processed and prepared in a specific 

geographical area using particularly techniques whereas PGI concerns agricultural 

products and foodstuffs closely linked to a geographical area in at least one of the stages 

of production, preparation or processing. In any case, the PGI product has to grow in the 

region whose name it bears, and it must have a reputation that can be attributed to its 

geographical origin. The principal aims of this legislation are to protect products against 



Food traceability:                                                                            Chapter 1 
Legislation and Analytical methods         

 

 

4 
 

fraud, imitation and to protect consumers by giving them information on the product for 

assuring quality, organoleptic and nutritional characteristics. The implementation of 

traceability systems in agri-food companies and supply chains in accordance to the 

standards UNI 10939:2001 and UNI 11020:2002 5 represents an indispensable tool not 

only to cope with law obligations, but also to add value to specific characteristics of a 

product, such as the origin/territoriality and the peculiarity of ingredients, and to satisfy 

customers' expectations. 

The standard UNI EN ISO 22005:2008 6 has replaced the national standards for supply 

chain traceability (UNI 10939:2001) and for company traceability (UNI 11020:2002) 

becoming the international reference document for the certification of agri-food 

traceability systems. The traceability system, alone, cannot guarantee the safety of 

foodstuff, but it can surely give an important contribution to the achievement of this goal. 

In fact, whenever a hygienic-sanitary non conformity arises, it allows from one side to go 

up and retrieve the point of the supply chain where the problem has originated, and from 

the other side to proceed, if needed, to the “punctual” product recall.  

These standards define the principles and specify the requirements for the implementation 

of a system of traceability in the agri-food companies, however, do not offer a tool that 

can identify on reliable scientific basis, the origin of food products. The development of 

analytical method for geographical origin identification of food products represents an 

important goal in order to assure organoleptic and nutritional characteristics to consumers 

and to prevent unfair competition that can eventually damage the whole agricultural 

sector. It has been received more attention with the increasing of mobility and product 

exchange due to the lowering of frontier and transport costs.  
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The unambiguous determination of origin has been the object of several scientific 

publications. A great number of different analytical techniques and parameters have been 

evaluated for the geographical origin authentication purpose. One of these is represented 

by the metabolomics approach, whereby the origin of the food is recognized from the 

distribution of the volatile compounds generated by metabolic pathway of major 

constituents of food or by the evaluation of markers of the secondary metabolism of 

plants. Another approach is represented by trace elements analysis carried out by 

inductively coupled plasma mass spectrometry (ICP-MS). Mono and multi-elemental 

techniques have been successfully employed in food authentication.7 Stable isotope ratio 

and multi-element analysis are widely used in food authentication. The number of 

publications in which these analytical methods were used has grown significantly in 

recent years. Indeed is well known that the content of selected elements in foods is related 

with the soil type and the environmental growing conditions.  

 

1.2 Analytical techniques and markers used in food traceability 

There is an increasing interest by consumers for high quality food products with a clear 

geographical origin. These products are encouraged and suitable analytical techniques are 

needed for the quality control.8 Various techniques have been studied based on organic 

constituents, mineral contents or composition, light- or heavy-element isotope ratios, or 

combinations thereof. These markers have been identified through the use of numerous 

analytical techniques, both spectroscopy and mass spectrometry. Mass spectrometry (MS) 

is a powerful and well know analytical technique widely used in several chemical 

applications. Its application in food traceability, concerns the analysis of markers that can 
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be both molecules or elements. With this purpose, it is usually coupled with separation 

techniques such as liquid and gas chromatography. Mass spectrometry has undoubtedly 

given a great contribution to increasing the applications in this field due to some of their 

features such as the ability to make a large number of samples, the low limit of detection 

that can be reached and the capability to identify univocally the analyzed markers. The 

principal analytical approaches used to traceability purpose can be subdivided into two 

macro groups: mass spectrometry techniques (GC-MS, HPLC-MS, ICP-MS) and 

spectroscopic techniques (AAS, ICP-AES, IR, NMR, ecc.) 

 

1.2.1 Markers identification by gas chromatography (GC) 

Gas chromatography is one of the most widely used techniques for qualitative and 

quantitative analysis. It is widely used in food analysis, mainly in volatile and semi-

volatile composition studies, aromas, and pesticides.9 

A mixture of compounds to be analyzed is initially injected into the GC where the 

mixture is vaporized and injected onto the head of a chromatographic column. Elution is 

brought about by the flow of an inert gaseous mobile phase. Commonly used gases 

include nitrogen, helium and hydrogen. Gas chromatography is based on partitioning of 

the analytes between a gaseous mobile phase and a liquid phase immobilized on the 

surface of an inert solid packing or on the walls of capillary tubing.10 

There are different GC detectors with various types of selectivity and sensitivity: the 

flame ionization detector (FID), thermal conductivity detector (TCD), electron capture 

detector (ECD), photo-ionization detector (PID), flame photometric detector (FPD), 
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thermionic detector (TID), atomic emission detector (AED) and ozone- or fluorine-

induced chemiluminescence detector (FCLD), mass spectrometry (MS).11 

Some significant advances for GC have been the development of coupling GC to IRMS,12 

two-dimensional GC to analyze very complex samples,13 and high speed GC.14 These 

latter developments allow real-time process monitoring and on-site analysis (portable 

GC). In comparison with HPLC, the mobile phase in GC has a very limited role in the 

separation process. Moreover the analysis of polar and ionic molecules with GC and 

collecting components after GC separation for further analysis are difficult to do and are 

rarely done.8 

GC-MS is an instrumental technique, comprising a gas chromatograph coupled to a mass 

spectrometer.15 GC separates the components of a mixture and MS characterizes each of 

the components individually. In this way, one can both qualitatively and quantitatively 

analyze complex mixtures containing numerous compounds. In order for a compound to 

be analyzed by GC-MS it must be sufficiently volatile and thermally stable. In GC-MS, 

the ions required for mass analysis are generally formed by electron impact ionization. 

Gas molecules exiting the GC are bombarded by a high-energy electron beam (70 eV). As 

the MS detector is only designed to analyze clean materials careful sample preparation 

must be considered prior to injection in the gas chromatograph. GC-MS is one of the most 

widely used techniques and represents the method of choice for the analysis of food 

volatiles because of its high reproducibility.16 

Application 

By analyzing the GC profiles of various compounds (e.g., alkanes, aldehydes, alcohols, 

acids) present in wine it is possible to classify wines according to their geographical 
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origin.17 Determination of the fatty acid composition and corresponding concentrations by 

GC allowed the geographical discrimination of milk samples18 and olive oils.19 

Furthermore, determination of the geographical origin of cocoa masses 20 and orange 

juices 21 were accomplished via GC analysis. GC-MS has also been applied for the 

determination of the geographical origin of food products. This concerns mainly dairy 

products. For example, Emmental cheese samples from different countries and regions 

were easily differentiated by using GC-MS measured compounds.16 Furthermore, GC-MS 

elucidated the relationship between the flavoring capabilities and geographical origin of 

natural whey cultures used for traditional water-buffalo Mozzarella cheese manufacture.22 

GC-MS has also contributed to the detection of specific markers for tracing the 

geographical origin of food products.23 In this way the influence of pasture from a certain 

region on the volatile compounds in Ewes' dairy products (milk and cheese) was shown.24 

Specific markers were also found by GC-MS in honey.25 These markers indicated if the 

honey was from Denmark, England, The Netherlands, Spain or Portugal. Recently other 

paper were published on honey. Alfieris et al. used the GC-MS fingerprinting of 

headspace volatile compounds to botanical discrimination and classification of honey 

samples according to their geographical origin.26 Staminova et al. tracing the geographical 

origin of honeys based on volatile compounds determined by a head-space solid phase 

microextraction (SPME) combined with comprehensive two-dimensional gas 

chromatography-time-of-flight mass spectrometry.27 GC continues to be used successful 

in traceability applications on other food products. Indeed, in works published during the 

last two years GC was employed in traceability markers detection of olive oil,28 

potatoes,29 orujo brandy30 and roasted hazelnuts.31 
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1.2.2 Markers identification by High Performance Liquid Chromatography (HPLC) 

Liquid chromatography (LC), the generic name used to describe any chromatographic 

procedure in which a liquid mobile phase is used for analysis of complex mixtures of low 

volatile samples. Modern high performance LC systems (HPLC), are firmly established at 

the forefront of chromatographic techniques. HPLC is used for a wide range of 

applications. Volatility or thermal stability of the analytes is no longer a limit, as in the 

Gas Chromatographic (GC) applications, thus making HPLC the method of choice for 

polymers, polar, ionic and thermally unstable materials. Moreover, sample detection and 

quantitation can be achieved by means of continuous flow detectors; thus improving 

accuracy and precision of analysis. In HPLC, a liquid sample, is carried through a 

chromatographic column by a liquid mobile phase. Analytes separation is determined by 

the differences in their partitioning behavior between the mobile liquid phase and the 

stationary phase (column material). Dependent of the type of stationary phase, 

compounds can be separated based on their charge (weak/strong cation or anion exchange 

chromatography), molecular mass (size exclusion chromatography), 

hydrophobicity/polarity (reversed-phase HPLC, hydrophobic interaction 

chromatography), and specific characteristics (affinity chromatography). Although over 

the years a large number of LC detectors have been developed and described, the most 

common detectors in HPLC are an ultraviolet–visible (UV–vis) light absorbance detector, 

fluorescence detector, electrochemical detector and diffractometer detector. More 

recently, the coupling of HPLC to mass spectrometry supply with quadrupoles, magnetic 

sectors or time-of-flight (TOF) analyzer, has also had a great expansion into the field of 

food analysis. The most commonly employed ionization methods are the atmospheric 
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pressure ionization techniques such as the Electrospray Ionization (ESI) and atmospheric 

pressure chemical ionization (APCI). Those techniques are called "soft" because they 

allow to obtain only the molecular ion for each analyte thus avoiding the fragmentation.32 

Additional fragmentation can be achieved by performing in-source collision induced 

dissociation (CID)33 in tandem or trap instruments. Tandem mass spectrometry in space 

and in time provide additional and unique information on the structure of analytes. ESI is 

useful for polar and ionic solutes ranging in molecular weight from 100 to 150x103 

dalton. APCI is applicable to non-polar and medium polarity molecules with a molecular 

weight from 100 to 2000 dalton. 

One of the most important trends is the miniaturization of the HPLC analytical systems. 

The emergence of micro- and nano- columns have led to the development of Ultra 

Performance Liquid Chromatography systems (UPLC). The technology takes full 

advantage of chromatographic principles to run separations using columns packed with 

smaller particles and/or higher flow rates for increased speed, with superior resolution and 

sensitivity. Furthermore, two-dimensional LC makes HPLC an even more valuable and 

powerful analytical tool.13 

Application 

European wines from different geographical origin have been correctly classified on basis 

of the chromatography profiles obtained with HPLC in combination with a UV– vis 

and/or fluorescence detector. These HPLC studies encompassed the analysis and 

quantification of either phenolic compounds,34 amino acids and biogenic amines,35 or 

contaminant ochratoxin A.36 Apart from wines, HPLC has also been used to 
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geographically discriminate honey,37 nuts,38 olive oil39 and cheese40 on basis of the HPLC 

profiles of flavonoids, metal-binding proteins, triglycerides and peptides, respectively.  

Recently HPLC continues to be used successful in traceability applications on other food 

products. Indeed, in works published during the current year HPLC was employed in 

traceability markers detection of extra-virgin olive oils,41 cinnamon bark and cinnamon 

twig,42 pigmented potatoes,43 and main varieties of Argentinean wines.44 Most studies 

described above were employed in conjunction with chemometric methods. 

 

1.2.3 Markers identification by Infrared Spectroscopy (IR)  

Infrared spectrophotometry is a powerful tool for identifying pure organic and inorganic 

compounds because, with the exception of a few homonuclear molecules, all molecular 

species absorb infrared radiation. IR spectroscopy is the measurement of the wavelength 

and intensity of the absorption of infrared light by a sample.45 In fact IR measures the 

vibrations of molecules. Each functional group, or structural characteristic, of a molecule 

has a unique vibrational frequency that can be used to determine what functional groups 

are present in a sample. When the effects of all the different functional groups are taken 

together, the result is a unique molecular “fingerprint” that can be used to confirm the 

identity of a sample.  

Infrared spectroscopy is a less satisfactory tool for quantitative analyses than its 

ultraviolet and visible counterparts because of lower sensitivity and frequent deviations 

from Beer's law.10 The infrared portion of the electromagnetic spectrum is divided into 

three regions; the near-, mid- and far-infrared, named for their relation to the visible 

spectrum. The far-infrared, (approx. 400–10 cm−1) lying adjacent to the microwave 
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region, has low energy and may be used for rotational spectroscopy. The mid-infrared 

(MIR) (approx. 4000–400 cm−1) may be used to study the fundamental vibrations and 

associated rotational–vibrational structure, while the higher energy near-infrared (NIR) 

(14,000–4000 cm−1) can excite overtone or harmonic vibrations. This means that NIR can 

provide more complex structural information than MIR.8 

IR spectroscopy is a non-invasive and non-destructive technique.46 The technique is rapid, 

relatively inexpensive and can be easily applied in fundamental research, in control 

laboratories, and on-line in the factory to analyze food products. The introduction of the 

Fourier transform technique in IR (FTIR) has increased the use of IR in food analysis.47 A 

FTIR spectrometer obtains infrared spectra by first collecting an interferogram of a 

sample signal with an interferometer, which measures all of infrared frequencies 

simultaneously. In this way the technique allows a very rapid screening and quantification 

of components and therefore a high throughput of samples. IR spectroscopy cannot 

eliminate the need for more detailed laboratory analyses, but it may help to screen 

samples that require further examination. Special care is necessary with regard to possible 

interference between components possessing similar IR spectral regions, which occurs 

very frequently when food products are analyzed. 

Application 

With respect to MIR, various wines,48 cheeses,46 olive oils,49 and honey50 have been 

differentiated on the basis of geographical origin. With NIR the geographical 

classification of grapes,51 wines,52 rice,53 soy sauce 54 and olive oils 55 have been 

accomplished. These results were obtained by combining the MIR and NIR data with 

chemometric methods. Recently application of IR fingerprint in the detection of food 
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adulteration and fraud has been review.56 Zhang, Zhang, and Li in 2008 57 established 

lamb origin tracing model by near-infrared spectroscopy combined with the cluster type 

of independent soft-mode method (SIMCA). The result confirmed that the near-infrared 

spectroscopy was a valid method for lamb origin tracing. Zhao et al.,58 and Wu et al.,59 

utilized near infrared and high spectroscopy to study the tenderness of the beef. The 

model was established to describe the near infrared of beef tenderness and, because 

reached 84.21% of the correct prediction rate means that it can be used for beef 

tenderness prediction. IR was also used to detect genetically modified food. Bing, Luo, 

and Huang in 2005 detected genetically modified corn and its parents with near-infrared 

spectroscopy and they obtained very accurate results which showed that the method could 

quickly and accurately identify genetically modified corn.60 

 

1.2.4 Markers identification by Nuclear Magnetic Resonance Spectroscopy (NMR) 

NMR is based upon the measurement of absorption of radiofrequency radiation by atomic 

nuclei with non-zero spins in a strong magnetic field.61 The absorption of the atomic 

nuclei is affected by the surrounding atoms, which cause small local modifications to the 

external magnetic field. In this way detailed information about the molecular structure of 

a food sample can be obtained. Among nuclei with non-zero spin, the isotopes of 

hydrogen-1 (spin = 1/2) and carbon-13 (spin = 1/2) are the most used in NMR, although 

other isotopes as nitrogen-15 (spin = 1/2), oxygen-17 (spin = 5/2), fluorine-19 (spin = 

1/2), or phosphorous-31 (spin = 1/2) are also frequently employed. 

In food analysis two types of NMR are applied, low resolution NMR (LR-NMR) and high 

resolution NMR (HR-NMR).61 Nowadays, LR-NMR instruments (using frequencies of 



Food traceability:                                                                            Chapter 1 
Legislation and Analytical methods         

 

 

14 
 

10–40 MHz) are small, easy to use, and relatively inexpensive which make them suitable 

to perform rapid and reproducible measurements. However, LR-NMR requires reference 

methods to carry out quantitative analysis, and in many cases the precision of such 

reference method is a limiting factor. HR-NMR (using frequencies above 100 MHz) has 

been applied in many more food authenticity studies than LR-NMR.62 The advantage of 

HR-NMR over LR-NMR is that it is possible to obtain much more detailed information 

regarding the molecular structure of a food sample. The major disadvantage is that it is 

one of the most expensive analytical techniques to employ, both in terms of initial capital 

outlay and running costs. Furthermore, extraction procedures may be necessary to enrich 

the studied compound as the sensitivity of HR-NMR is rather poor.61 The combination of 

1H NMR or 13C NMR fingerprinting with advanced chemometric methods provides an 

original approach to study the profile of a food product in relation to its geographical 

origin. Although the use of 13C NMR for this purpose is quite rare. 

One of the major current applications of HR-NMR is site-specific natural isotope 

fractionation (SNIF)-NMR.61 This technique is often used in food analysis and allows the 

determination of the geographical origin of foods based on the isotopic ratio of a given 

nucleus found in a constituent of the analyzed food. This can be explained by the fact that 

the specific proportions of the particular isotopes of hydrogen and oxygen present in 

molecules are dependent mainly on climatic and geographical conditions.62 SNIF-NMR is 

often combined with IRMS and chemometric methods. The main drawback of SNIF-

NMR is that it requires laborious sample preparation involving many purification and 

concentration steps.61 
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Application 

13C NMR spectra of olive oils from different Italian regions were sufficiently different to 

permit their discrimination.63 1H NMR has been applied more often to classify 

mediterranean olive oils according to their geographical origin.64 For example, one 

approach concerned measuring 1H NMR spectra of phenolic extracts of olive oils for 

discrimination.65 Besides olive oils, Italian wines could be differentiated from Slovenian 

wines66 and the geographical origin of propolis samples could be determined by using 1H 

NMR.67 Propolis is a complex resinous substance used by bees to seal their hives and is 

marketed by health food stores for its claimed beneficial effect on human health. SNIF-

NMR has been used for the geographical authentication of various wines.68 By 

determining the natural abundance isotopic ratios of hydrogen, oxygen, and carbon, from 

water and ethanol extracted from the wine it is possible to distinguish between regions. 

Furthermore, SNIF-NMR has also been applied successfully to identify the geographical 

origin of natural mustard oils.69 Recently NMR continues to be used successful in food 

traceability applications: milk,70 Ligurian extra virgin olive oils.71 In 2010 Consonni et al. 

reviewed the application of NMR to assess geographical origin and quality of traditional 

food products.72 Researches published during the current year use NMR fingerprint in 

traceability of angelica gigas,73 ginseng,74 and durum wheat.75 

 

1.2.5 Multielement profile and isotopic ratio as traceability markers  

In the development of traceability methods often inorganic markers such as multielement 

content are used as well as organic molecules belonging to different classes. the normal 

range of organic compounds in foods varies with fertilization, climatic conditions in the 
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year of cultivation, history of fields and variety or species as well as geographical location 

and soil characteristics, so it is sometimes difficult to be definitive about the authenticity 

of a material from the determination of organic components. it is well known that the 

content of selected minerals and trace elements in foods clearly reflects the soil type and 

the environmental growing conditions. Because of that, evaluation of multielement profile 

has been proposed to assure the geographical origin of food samples.76 

Atomic spectroscopic methods are used for the qualitative and quantitative determination 

of more than 70 elements. Typically, these methods can detect parts-per-million to parts-

per-billion amounts, and, in some cases, even smaller concentrations. Atomic 

spectroscopic methods are, in addition, rapid, convenient, and usually of high selectivity. 

They can be divided into two groups: optical atomic spectrometry and atomic mass 

spectrometry.10 

Spectroscopic determination of atomic species can only be performed on a gaseous 

medium. Consequently, the first step in all atomic spectroscopic procedures is 

atomization, a process in which a sample is volatilized and decomposed in such a way as 

to produce gas-phase atoms and ions. The efficiency and reproducibility of the 

atomization step can have a large influence on the sensitivity, precision, and accuracy of 

the method. In short, atomization is a critical step in atomic spectroscopy. Several 

methods are used to atomize samples for atomic spectroscopic studies. Inductively 

coupled plasmas, flames, and electrothermal atomizers are the most widely used 

atomization methods. Flames and electrothermal atomizers are widely used in atomic 

absorption spectrometry, while the inductively coupled plasma is employed in optical 

emission and in atomic mass spectrometry . 
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The selection of the atomic spectroscopic technique to be used for a particular application 

should be based on the desired result, since each technique involves different 

measurement approaches. 

In atomic emission, thermal or electrical energy is used to bring the analyte species into 

an excited state, from which they return to their ground state through emission of 

radiation characteristic of all species that are present and that were sufficiently excited. 

Thus from the principle of atomic emission spectrometry it is a clearly multielement 

method. The number of elements that can be determined simultaneously is only limited 

by the availability of sufficiently sensitive interference-free spectral lines. 

In atomic absorption spectrometry we need a primary source delivering monochromatic 

radiation of which the wavelength agrees with that of a resonance line of the element to 

be determined. The spectral width must be narrow with respect to the absorption profile 

of the analyte line. From this point of view atomic absorption is a single-elemental 

method, of which the dynamic range is usually much lower than in atomic emission 

spectrometry. 

In atomic fluorescence, the excitation can be performed both with white as well as with 

monochromatic sources, which consequently affects the fluorescence intensities 

obtainable and the freedom from stray radiation limitations. The latter are particularly low 

with monochromatic primary sources and when using fluorescence lines with 

wavelengths differing from that of the exciting radiation. Generally, in atomic 

fluorescence the linear dynamic range is higher than in atomic absorption and spectral 

interference as well as background interferences are just as low.77 

Inductively coupled plasma mass spectrometry (ICP-MS) is a combination of two 

established techniques, namely the inductively coupled plasma (ICP) and mass 
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spectrometry (MS). The ICP is an extremely suitable ion source for inorganic MS because 

the high temperature of the ICP ensures almost complete decomposition of the sample 

into its constituent atoms and the conditions within the ICP result in highly efficient 

ionization of most elements in the periodic table and, importantly, these ions are almost 

exclusively singly charged. ICP-MS is a well-known mature technique because of its high 

sensitivity and rapid multielement analysis capability for each run.78 It typically provides 

limits of detection (LODs) in the range of ppb and ppt for many elements. For some 

elements (e.g., As, Cr, Mn, Ca, and Fe), not satisfactory LODs values are achieved by 

quadrupole based ICP-MS because of the polyatomic interferences which overlap the 

monitored isotopes. In order to eliminate these interferences, it is possible to use a 

instrument equipped with dynamic reaction cell (DRC) or a sector-field instrument that 

greatly improves the sensitivity and the selectivity. ICP-MS has continued to be a most 

powerful technique allowing multi-element detection over a wide linear dynamic range 

with very low detection limits, while also providing isotopic ratio measurement 

capability. These features explain because it is applied worldwide to the analysis of a 

wide variety of matrixes and its market continues to grow, unlike that of ICP optical 

emission spectrometry (ICP-OES), which has reached a steady state.78a Multi-element 

analysis involves obtaining of a large amount of data constitute by many variables 

monitored for each sample. Thus, information about geographical origin, need to be 

extracted by multivariate chemometric data analysis.  

Stable isotope ratio (SIR or IRMS) have been used to determine the authenticities of 

several food products.7 The development of this analytical method was possible by the 

advent of high-resolution mass spectrometry techniques in elementary analysis. Indeed, 

mass spectrometers commonly used in multi and trace elements analysis, do not provide 
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the sensitivity or the precision required to detect the slight differences in natural isotopic 

abundances because of the instable nature of the ion source. Multiple-collector (MC) 

systems are commonly used to minimized the effect of ion beam fluctuations on the 

measurement. In these instrument each isotope ion beam is measured simultaneously in 

an appropriately spaced array of collectors. In this way, the error due to the temporal 

fluctuations of ion beams is removed during the determination of the isotope ratio. The 

two ion source commonly used in MC systems are inductively coupled plasma (MC-ICP-

MS system) and thermal ionization (MC-TIMS system). ICP is a very common and well 

known ion source that needs no further description. TIMS is an analytical techniques first 

applied in the early of 1900. It operate under high vacuum and it is useful for elements 

with relatively low ionization energy. In TI only a small amount of analyte is absorbed 

onto a metal filament which is then heated causing the atom ionization due to Langmuir 

effect. For many decades, MC-TIMS was the isotope analytical techniques of choice, but 

due to instrumental developments (e.g. higher element sensitivities, faster isotope ratio 

measurements, comparable precision and accuracy) the use of MC-ICP-MS has gained 

more space in isotope ratio measurement.79 Stable isotope ratios, of the light elements 

2H/1H, 11B/10B, 13C/12C, 15N/14N, and 18O/16O,  and of the heavy elements 87Sr/86Sr and 

207Pb/206Pb, 208Pb/206Pb, 208Pb/207Pb, 206Pb/204Pb have been used to determine the 

authenticities of food products.80 The changes in the ratio of the ‘heavy’ to ‘light’ isotope, 

called fractionation, is related to many physico-chemical processes. For example, the 

measurement of the stable isotope ratios of hydrogen and oxygen are applicable to the 

characterization of geographical origin because they are strongly latitude dependent and 

the fractionation that affect their isotope ratio is due to evaporation, condensation and 

precipitation mechanisms.7a Strontium isotope ratio is affected by the age and Rb/Sr ratio 
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of the rock materials in which the elements are present. Strontium (Sr) has four naturally 

occurring stable isotopes: 88Sr, 87Sr, 86Sr and 84Sr. Isotopes 84Sr, 86Sr and 88Sr occur in 

constant relative proportions, while 87Sr is increased over geologic time by the radioactive 

β-decay of 87Rb (half-life of 48.8 billion years).81 Thereby, 87Sr/86Sr isotope abundance 

ratio provides a fingerprint for different rock types and can therefore be helpful in 

authenticity determinations. 

 

Application 

Methods based on multi-element and isotopic ratio coupled with proper chemometric 

tools have been applied to a range of foodstuffs in order to permit their geographical 

origin determination. Published literature was reviewed by Kelly et al. in 2005,7a Armenta 

et al. in 2009,7b and Vanhaecke et al. in 2010.80 The first two reviews closely concerning 

food forensic. They comment on published studies, organized by matrices and provide 

data on the analytical and chemometric approach. The work of Vanhaecke et al.80 

concerns "provenancing purposes" in archeometry, environmental, forensic, biological 

applications including agricultural products and is focused on the applications of isotope 

ratio of metals and metalloids. Van Ruth and Luykx in 2008 published an overview of 

analytical methods for determining the geographical origin of food products including the 

application of IRMS and ICP-MS fingerprint.8 For each technique are highlighted 

strengths and weaknesses such as sensitivity, simplicity, time analysis and costs. Since the 

publication of the last review other articles were published further expanding the range of 

applications. Our research group contributed demonstrating how multielement 

distribution can be successful used for forensic food purpose.82 The use of ICP-MS 
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equipped with a dynamic reaction cell (DRC) was used to determine 18 trace elements in 

36 olive oil samples from different cultivation zone in Italy and LDA allowed to obtain 

good discrimination between the five groups investigated (Rossano, Andria, Lamezia, 

Spoleto and Pescara).83 In the last year two papers concerning olive oil were published by 

Camin et al..84 Multielement stable isotope ratio and mineral composition were applied to 

539 authentic Italian PDO and PGI  extra-virgin olive oils to establish a national databank 

for olive oils and 267 European extra-virgin olive oils. The analysis of oxygen isotopic 

ratio 18O/16O in bulk oil samples would seem preferable than the isotopic ratio 13C/12C. 

With European samples by combining 3 isotopic ratios (13C/12C, 18O/16O and 2H/1H) and 

14 elements content (Mg, K, Ca, V, Mn, Zn, Rb, Sr, Cs, La, Ce, Sm, Eu, U), an improved 

separation between classes is obtained. The combination of Sr isotopic and multi-element 

(rare earth elements) fingerprints provides a suitable tool for the determination of 

geographical origin of Szegedi Füszerpaprika, an Hungarian paprika with PDO 

recognition.85 Numerous works have been focused on discrimination by the origin of food 

samples using element composition and chemometric analysis. Seafood is a field in which 

this analytical approach has been used in less extension for geographical identification 

due to significant matrix-induced spectral and nonspectral interferences.86 Bendicho et 

al.87 demonstrate how the differentiation of mussels from Galicia (Northwest of Spain), 

product with PDO brand can be achieved using ICP-MS and different pattern recognition 

techniques (i.e. LDA, SIMCA and ANN). High field strength elements (HFSEs) and rare 

earth elements (REEs), were used with this aim and an hexapole collision cell using gas 

8% H2 and He and flow cell gas 6 ml min−1 was used for polyatomic interference 

correction.  
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2.1 Introduction 

Data analysis has become a fundamental task in analytical chemistry due to the great 

quantity of analytical information provided by modern analytical instruments. This leads 

to the availability of multivariate data matrices that require the use of mathematical and 

statistical procedures, in order to efficiently extract the maximum useful information from 

data. Several kinds of pattern recognition methods have been applied in food science, that 

can be divided into several categories depending on how they are compared. Considering 

the way they achieve the classification, can be divided in two groups: discrimination and 

modeling techniques. The first such as linear discriminant analysis (LDA), k-nearest 

neighbors (kNN), partial least squares discriminant analysis (PLS-DA) and artificial 

neural networks (ANN), focused on discrimination among classes. On the other hand, soft 

independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ), 

are oriented towards modeling classes.  

Discriminating techniques are used to build models based on all the categories concerned 

in the discrimination, whereas disjoint class-modeling methods create a separate model 

for each category. One of the drawbacks of discriminating methods is that samples are 

always classified into one of the given categories, even if they do not belong to any of 

them. Class-modeling methods consider those objects that fit the model for a category as 

part of the model, and classify as non-members those that do not. 

Pattern recognition techniques can also be grouped as unsupervised and supervised. In 

unsupervised techniques the different samples are classify without the a priori knowledge 

of their origin. This category includes techniques such as: cluster analysis (CA) and 

principal component analysis (PCA). 
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Supervised pattern recognition techniques use the information about the class 

membership of the samples (class or category) in order to classify new unknown samples 

in one of the known classes on the basis of its pattern of measurements. Fall in this 

category techniques such as: linear discriminant analysis (LDA), k-nearest neighbors 

(kNN), partial least squares discriminant analysis (PLS-DA), artificial neural networks 

(ANN), Soft independent modeling of class analogy (SIMCA) and unequal dispersed 

classes (UNEQ). These techniques, generally, use a common strategy whichever the 

algorithm applied. Initially the dataset is split in 2 subsets: train, and test set consist of 

objects of known class membership for which variables are measured. The train set 

samples are used to build the model. It is derived between a certain number of variables 

measured on the samples that constitute the training set and their known categories. The 

last step is the validation of the model using an independent test set of samples, in order 

to evaluate the reliability of the classification achieved. In some techniques a further 

calibration set is used for the optimization of parameters characteristic of each 

multivariate technique. Often a variables selection step is needed in order to retain those 

variables that contain information for the aimed classification, whereas those variables 

encoding the noise and/or with no discriminating power are eliminated. 

 

2.2 Preliminary data analysis 

Generally analytical data are assumed to be obtained by validated analytical methods in 

terms of precision, accuracy, sensitivity, specificity, uncertainty and robustness. 

Moreover, the data used for training should be sufficiently large to cover the possible 

known variation in the problem domain, so the generalization of the models to the not-yet 

measured data is possible. Supervised pattern recognition requires a training set with 
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objects of known categories to derive a model for the identification of unknown samples. 

Therefore, it is mandatory to first establish whether chemical measurements are actually 

good enough to fit into the predetermined classes, because pattern recognition techniques 

cannot compensate for poorly designed experiments or inadequate experimental data.1 

This task can be arduous due to the fact that modern analytical techniques are able to 

generate so much data that the essential information may not be readily evident. 

Exploratory data analysis (EDA) (and unsupervised pattern recognition) is commonly 

used to simplify and gain better knowledge of data sets. The challenge is to remove the 

redundancy and noise while retaining the meaningful information.2 Data pre-treatment is 

essential to avoid wrong (or trivial) conclusions. The first step in EDA comprises a 

univariate data analysis using basic and descriptive statistics (e.g., calculation of mean, 

standard deviation, variance, skewness, kurtosis, correlation matrix, t-test, F-test, 

ANOVA, box and whisker plots and checking the normality). Then, the presence of 

outliers, i.e. observations that appear to break the pattern or grouping shown by the vast 

majority of the samples, should be evaluated since most conventional multivariate 

methods are sensitive to them.3 Thus, outliers have to be identified, and then a decision 

should be made related to the acceptance or rejection of the outliers in the modeling 

process. 

The values of the features measured can differ by orders of magnitude and/or can be 

measured in different units and/or by different analytical methods or instruments. So 

some variables could weigh more than others on the results. In order to modify the 

relative influences of the variables on a model, a data pre-treatment known as weighting 

and/or scaling can be performed. Weighting consists of giving each variable a new 

weight, i.e. multiplying the original values by a constant which differs between the 
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variables. Thus, the individual contributions are re-adjusted to the outcome on equal 

basis. The most common scaling methods are the following: mean-centring (the average 

is subtracted from each variable), standardization or autoscaling (each variable is first 

centred, and then divided by its standard deviation), normalization (variables are divided 

by the square root of the sum of the variable squares), constant row sum (each variable is 

divided by the sum of all variables for each sample), normalization variable (variables are 

normalized with respect to a single variable), range transformation (the minimum value 

for a variable is set to 0, the maximum value to 1, and all intermediate values lie along a 

linear range between 0 and 1).1,4 In general, data pre-treatment is needed prior to the 

application of multivariate data analysis techniques. Sometimes, it is part of the 

chemometric technique itself, e.g. data pre-treatment is often performed in principal 

component analysis (PCA). In discriminating techniques, scaling can only be done over 

the entire data set. However, class-modeling techniques have the additional possibility of 

scaling each category separately. So, an additional decision must be made before a 

classification rule can be deduced since classification results depend on the way scaling is 

done, as demonstrated for SIMCA.5 

 

2.2.1 Exploratory and unsupervised pattern recognition techniques 

The main EDA technique is PCA, which is often the first step of the data analysis in order 

to detect patterns in the measured data. PCA is a projection and dimension reduction 

method for transforming the original measurement variables into new, uncorrelated 

variables called principal components, which retain as much as possible of the 

information present in the original data.6 Each principal component is a linear 
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combination of the original measurement variables. A set of orthogonal axes, that 

represent the direction of greatest variance in the data is found.  

The linear coefficients of the inverse relation of linear combinations are called the 

component loadings, i.e. the correlation coefficients between the original variables and 

the principal components. The values that represent the samples in the space defined by 

the principal components are the component scores. The scores were then used as input to 

the multivariate analyses.7 A subset comprising a few of the transformed variables only 

may then also be used in subsequent calculations of relatively reduced complexity. It has 

been frequently demonstrated that variable reduction can be important for adequate 

generalization of the derived models.8 

Other unsupervised pattern recognition techniques can be used for preliminary evaluation 

of the information contents in the data matrices, such as cluster analysis (CA). Cluster 

analysis is a method for dividing a group of objects into classes so that similar objects are 

in the same class. As in PCA, the groups are not known prior to the mathematical analysis 

and no assumptions are made about the distribution of the variables. Cluster analysis 

searches for objects which are close together in the variable space. The distance, d, 

between two points in n-dimensional space with coordinates (x1, x2, . . . , xn) and (y1, y2, . . 

. , yn) is usually taken as the Euclidean distance defined by 

𝑑 = �(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2+⋯+ (𝑥𝑛 − 𝑦𝑛)2 

As in PCA, a decision has to be made as to whether or not the data are standardized. 

Standardizing the data will mean that all the variables are measured on a common scale so 

that one variable does not dominate the others. There are a number of methods for 

searching for clusters. One method starts by considering each object as forming a ‘cluster’ 
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of size one, and compares the distances between these clusters. The two points which are 

closest together are joined to form a new cluster. The distances between the clusters are 

again compared and the two nearest clusters combined. This procedure is repeated and, if 

continued indefinitely, will group all the points together. There are a variety of ways of 

computing the distance between two clusters which contain more than one member. The 

simplest conceptually is to take the distance between two clusters as the distance between 

nearest neighbors. This is called the single linkage method. It is illustrated in Figure 2.1.9  

 

 

Figure 2.1 Stages in clustering: the dotted lines enclose clusters (left) and the resulting 
dendrogram illustrating the stages of clustering (right) 

 

The successive stages of grouping can be shown on a dendrogram. The vertical axis can 

show either the distance, dij, between two points i and j when they are joined, or 

alternatively the similarity, sij, defined by sij = 100(1 − dij/dmax). 
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2.2.2 Variable selection and reduction 

Variable selection is a preliminary step used in multivariate data analysis, particularly if 

the number of objects is relatively small, the number of variables is large and many of 

these variables contain redundant or noisy information. In these cases, a variable or 

feature selection procedure is required in order not to fall into the overfitting problem. 

Overfitting takes place if the model learns the idiosyncrasy of the data; then, the noise is 

modeled as well, and the model loses its generalization ability. Variable selection for 

discriminant analysis selects a subset of variables that are the most discriminating. The 

preferred variable selection method is stepwise selection, which is based on a greedy 

search that sequentially adds or deletes variables from the pool of candidate variables. 

The addition or deletion of a single variable is performed regarding the largest 

improvement in the classification, and the process goes on until the search gets trapped in 

the first local optimum. Several stepwise strategies exist, such as forward stepwise, 

backward stepwise, forward entry and backward removal.10 In the forward options, 

variables are moved into the model, whereas the backward options start with a model with 

all variables in the model, which are then removed successively. In the forward and 

backward stepwise strategies, the addition or removal of a variable is considered 

simultaneously based on probability or Fisher criteria (p or F-values). So, forward 

stepwise variable selection evaluates the addition of new variable and removal of 

previously entered one. Backward stepwise selection examines the removal of a new 

variable and the addition of a previously deleted one. The forward entry and backward 

removal options only enter or remove variables, respectively. 

In variable reduction, the number of variables is reduced by combining the original 

variables attaining a smaller number of principal component or latent variables (which are 
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variables derived rather than measured) such as respectively principal PCA or PLS 

components.4a This approach is useful for ill-posed data, i.e. data where the number of 

variables exceeds the number of objects. A certain number of principal components is 

extracted, deleting the higher order ones and thereby reducing the noise to some extent, 

and then, a supervised pattern recognition is applied. Elimination of principal components 

has to be done carefully so that important information for the discrimination should not be 

lost. The simplest approach to determine the number of significant components is by 

measuring the prediction error, and then evaluating the prediction residual error sum of 

squares (PRESS) or root mean square error (RMSE), which can also be expressed as a 

percentage of variance. This error can be used to decide how many components should be 

included in the model. The decision can be taken by using a standard cut-off percentage 

error; ignoring those components from which the error has declined to the noise level; 

considering the components up to which the error reaches a plateau; selecting PCs whose 

eigenvalues are equal to 1 or greater; or by looking for a break in a scree plot (eigenvalue 

versus component number).1 

 

2.3 Supervised pattern recognition techniques 

Supervised pattern recognition techniques have been applied to a wide variety of 

chemical data (chromatographic, spectrometric, spectrophotometric, spectroscopic, 

sensorial, etc.) with diverse purposes such as profiling, fingerprinting, authentication, 

detection of adulteration, food quality assessment, data interpretation, etc..4a, 11 
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2.3.1 Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) is certainly one of the most widely used classification 

techniques. The data in the training set is used to defines k-1 delimiters (where k is the 

number of categories) so as the multivariate space of the objects is divided in as many 

subspaces as the number of classes. Discriminant functions (canonical roots) are obtained 

as a linear combination of descriptor that maximize the ratio of variance between 

categories to variance within categories. Being k classes, k−1 canonical roots can be 

determined if the number of variables is larger than k.12 For each case the relative 

canonical scores were computed. Their scatterplot for pairs of canonical roots can be very 

useful for determining how each discriminant function contributes to the discrimination 

between categories. The starting point of linear discriminant analysis (LDA) is to find a 

linear discriminant function (LDF), Y, which is a linear combination of the original 

variables X1, X2, etc 

𝑌 = 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯𝑎𝑛𝑋𝑛 

The original n measurements for each object are combined into a single value of Y, so the 

data have been reduced from n dimensions to one dimension. The coefficients of the 

terms are chosen in such a way that Y reflects the difference between groups as much as 

possible: objects in the same group will have similar values of Y and objects in different 

groups will have very different values of Y. Thus the discriminant function provides a 

means of discriminating between the two groups. The simplest situation is that in which 

there are two classes and two variables, X1 and X2, as illustrated in Figure 2.2(a). This 

diagram also shows the distribution of the individual variables for each group in the form 

of dot-plots. For both the variables, there is a considerable overlap in the distributions for 

the two groups. 
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Figure 2.2 (a) Two groups and the distributions of each variable for each group. (b) The 
distribution of the linear discriminant function for each group. 

 

The discriminant function is shown by the line labelled Y in Figure 2.2(b), and the value 

which the function takes for a given point is given by the projection of the point on to this 

line. Figure 2.2(b) shows the dot-plots of the LDF, Y, for each group. It can be seen that 

there is no overlap between the distribution of Y for the two groups. This means that Y is 

better at discriminating between the groups than the original variables. 

An unknown object will be classified according to its Y value. An initial common sense 

approach would be to compare Y with and , the Y values for the means of the two groups. 

If Y is closer to than to then the object belongs to group 1, otherwise it belongs to group 

2.9 In LDA, classes are supposed to follow a multivariate normal distribution and be 

linearly separated. LDA can be considered, as PCA, as a feature reduction method in the 

sense that both, LDA and PCA, determine a smaller dimension hyperplane on which the 

points will be projected from the higher dimension. However, whereas PCA selects a 

direction that retains maximal structure among the data in a lower dimension, LDA 

selects a direction that achieves maximum separation among the given classes. LDA is 
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one variant of discriminant analysis, in which the discrimination boundaries are linear. 

LDA requires that the variance–covariance matrices of the classes established can be 

pooled. This is only possible when these matrices can be considered to be equal, which 

means that 95% confidence ellipsoids have an equal volume (variance) and orientation in 

the space (covariance).12a 

Several other functions can be used for discrimination, such as quadratic discriminant 

function (QDA) and Bayesian classification function, which are also sub-cases of 

regularized discriminant function (RDA). QDA, which establishes parabolic boundaries, 

is less subjected to constraints in the distribution of objects in space than LDA, but 

similarly requires that the number of samples is higher than that of variables. RDA 

presents the advantage compared to LDA and QDA that is less subjected to constraints 

without requiring more objects. The Bayesian approach is based on the principle that 

membership of each class has a prior probability and the measurements are primarily used 

to refine this.12a, 13 Canonical variate analysis (CVA) is other discriminant technique, also 

known as canonical correlation analysis (CCA).CVA differs from LDA, e.g. in the fact 

that LDA uses a vector containing the membership information, whereas CVA can use a 

matrix. 

 

2.3.2 Partial least square discriminant analysis (PLS-DA) 

Partial least squares modeling is a multivariate projection method for modeling a 

relationship between dependent variables (Y) and independent variables (X). The 

principle of PLS is to find the components in the input matrix (X) that describe as much 

as possible the relevant variations in the input variables and at the same time have 

maximal correlation with the target value in Y, given less weight to the variations that are 
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irrelevant or noisy. So, PLS models both X and Y simultaneously to find the latent 

variables in X that will predict the latent variables in Y. 

PLS-DA algorithm allows to establish a regression model between the data matrix X 

where each sample is described by a number of variables and a dummy matrix Y 

constructed with zeros and ones represented containing the class membership 

information. The matrix consisted of as many columns as there are classes and an 

observation had the value 1 for the class it belongs to and 0 for the rest. The X matrix 

consists of the original (preprocessed) data. Matrices X and Y are decomposed in a 

product of other two matrices of scores and loadings. Sample is assigned to one class 

when the value is above a specific prediction threshold. Indeed, as the predicted value is 

hardly always exactly 1 or 0, values ≥ 0.5 are interpreted as indicating membership of the 

class considered whereas results ≤ 0.5 indicating nonmembership nonmembership.14  

Conversely to principal component analysis, PLS-DA model is able to classified 

unknown samples. During PLS-DA the principal components are rotated to generate 

latent variables (LVs), which represent those directions that maximize the variance 

between different classes rather than the total variance as in principal component analysis. 

An important feature of PLS is that it takes into account errors in both matrices, X and Y, 

and assumes that they are equally distributed. Moreover, PLS is suitable for data sets with 

fewer objects than variables and a high degree of inter-correlation between the 

independent variables. Several algorithms exist for PLS, each one with certain advantages 

depending on the case studied. Among them, non-linear iterative partial least squares 

(NIPALS) algorithm allows the calculation of the principal components one by one.4a 

PLS compute a number of latent variables with decreasing explained variance. After a 

number of latent variables, the variation explained by the others LVs can be mostly 
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attributed to noise. Therefore, in order to avoid overfitting, is extremely important to 

choose the correct number of latent variables in the calibration step of model 

development. The optimum number of latent variables can be selected by evaluating error 

function such as the Root Mean Square Error of Prediction (RMSEP) as function of the 

number of LVs.15 Often an external test set is also used to evaluate the true prediction 

performance of the optimized regression model even though, in the case of PLS it does 

not seem strictly necessary. The regression coefficients of the PLS model was used to 

identify important variables. Their size give an indication of which experimental variables 

have an important impact on the response variables. Variables that have regression 

coefficients with high values play an important role in regression model.16 Another 

parameter that shows the importance of variables is the loading weight. Each variable has 

a loading weight along each model component. They show how much each variable 

contributes to explaining the response variation along each model component. 

When several dependent data are available for calibration, two approaches can be used in 

PLS regression: either properties are calibrated for one at a time (PLS1), or properties are 

calibrated at once (PLS2). In PLS1 model, the Y response consists of a single variable. 

When there is more than one Y response a separated model must be constructed for each Y 

response. In PLS2 model, responses are multivariate. PLS1 and PLS2 models provide 

different prediction set and PLS2 regression give better results than PLS1 regression only 

if Y variables are strongly correlated. In the other case, PLS1 models are generally more 

robust. For PLS1-DA, one regression for each class has been build. For PLS2-DA, all the 

classes are included in one regression.17 
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2.3.3 Soft independent modeling of class analogy (SIMCA)  

SIMCA is the most used of the class-modeling techniques.4a It is a class modelling 

technique that builds a class model based on the significant principal components (PCs) 

of the category. 

The range of the scores of the N principal components used to build the model for each 

categories are the edges of a hyper volume, the “normal” SIMCA model. Then, in this 

technique the models (one for each classes) can overlap and/or leave some regions of the 

multivariate space unassigned. An important consequence of this feature is that SIMCA is 

able to detect the number of false positive/negative for each class.18 

The number of principal components for each class in the training set is determined by 

cross-validation. This way, a sufficient number of principal components are retained to 

account for most of the variation within each class, while ensuring high signal-to-noise 

ratio by not including the so-called secondary or noise-laden principal components in the 

class model.13 SIMCA determines the class distance and the modeling and discriminatory 

powers.1 The class distance can be calculated as the geometric distance from the principal 

component models. Another approach considers that each class is bounded by a region of 

space, which represents a percentage of confidence level (usually 95%) that a particular 

object belongs to a class. The discriminatory power measures how well a variable 

discriminates between two classes. This differs from the modeling power in the sense that 

a variable being able to model one class well, it does not necessarily imply being able to 

discriminate two groups effectively. SIMCA results can be graphically visualized. Thus, a 

plot of the loadings and the scores of the PCA performed on the training set provide 

information about outliers, sub-groupings and within-class structure. Moreover, a useful 

tool for the interpretation of SIMCA results is the so-called Coomans plot, which shows 
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the discrimination of two classes (Figure 2.3). The distance from the model for class 1 is 

plotted against that from model 2. The critical distances (usually at 95% of confidence 

level) are indicated on both axes.  

 

 

Figure 2.3 Example of Coomans plot 

 

So, four zones are defined on the plot: class 1, class 2, overlap of classes 1 and 2, and 

outlier zone (far from both classes). By plotting objects in this plot it is easy to visualize 

how certain a classification is.12a  

 

2.3.4 K-Nearest neighbor (KNN) 

Nearest neighbor methods are based on the determination of the distances between an 

unknown object and each of the objects of the training set. Usually, the Euclidean 

distance is used, but for strongly correlated variables, correlation-based measures are 

preferred. Then, the lowest distance is selected for the assignment of the class 

membership. In kNN, the k-nearest objects to the unknown sample are selected and a 
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majority rule is applied: the unknown is classified in the group to which the majority of 

the k objects belong. The choice of k is optimized by calculating the prediction ability 

with different k values. Small k values (3 or 5) are to be preferred frequently. A pre-

processing of the data is required in order to avoid the effect of different scales of the 

variables. The technique can also be applied to the scores of the samples related to the 

principal components. 

The method present several advantages: (i) its mathematical simplicity, which does not 

prevent it from achieving classification results as good as (or even better than) other more 

complex pattern recognition techniques; (ii) it is free from statistical assumptions, such as 

the normal distribution of the variables; and (iii) its effectiveness does not depend on the 

space distribution of the classes. On the other hand, this technique has similar limitations 

to LDA. Indeed kNN cannot work well if large differences are present in the number of 

samples in each class. An alternative criterion should be used then, instead of a simple 

majority criterion. For instance, another choice of criterion in kNN consists of weighing 

the importance as a neighbor of a known object to an unknown sample (inverse distance 

or inverse square distance). So, the nearest neighbors influence more the classification 

than the farthest ones. kNN provides poor information about the structure of the classes 

and of the relative importance of each variable in the classification. Furthermore, it does 

not allow a graphical representation of the results, and in the case of large number of 

samples, the computation can become excessively slow.4a 
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2.3.5 Artificial neural networks 

Artificial neural networks (ANNs) are very sophisticated chemometric techniques capable 

of modeling extremely complex non-linear functions for classification and regression 

purposes. Although ANNs are suitable for dealing with issue related to food control and 

authentication, the diffusion of neural network for these aims is still at a relatively earlier 

stage of development.19 Compared to other multivariate techniques, ANNs operate using 

a large number of parallel connected simple arithmetic units called neurons. Each neuron 

is a non-linear parameterized bounded function and the pattern of interconnection among 

them constitute the network architecture.19 Construction of an artificial neural network 

occurs through the training process using a portion of the dataset and by means of 

opportunely designed training algorithms. The most frequently used ANNs are Kohonen-, 

counter propagation-, radial basis function- and probabilistic neural networks (PNN), but 

without doubt, the most popular, and widely used type of networks is the feed forward 

multilayer perceprons (MLP) trained with back-propagation (BP) algorithm in which the 

neurons operating on the same input variable are organized in layers. There are three 

kinds of layers in ANN: input layer, one or more hidden layers and output layer (Figure 

2.4). The neurons are interconnected in a feed-forward way i.e. the information moves in 

only one direction, forward, from the input nodes, through the hidden nodes (if any) and 

to the output nodes.  
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Figure 2.4  Example of a neural network structure. 

 

The number of neurons and hidden layers are some of the parameters that determine the 

predictive efficiency and reliability of network. The neurons are sorted in an input layer, 

containing one neuron for each independent variable (X); one or more hidden layers, 

where the data are processed; and an output layer, with one neuron for each dependent 

variable (Y). So, the data from the input layer are propagated through the network via 

synapses, which are associated with coefficients of connectivity called weights (w).20 The 

net input (ai) is computed as the inner product of the input variables (xi) impinging on the 

neuron and their weights (wi). Once the node calculates this product, the result (ai) is 

passed to a differentiable non-linear transfer (activation) function (f(ai)), which 

transforms the weighted sum of all variables impinging onto the neuron in order to get the 

output value (y). Several transfer functions have been used, e.g. variant logistic functions, 

hyperbolic tangent or sigmoid function.21 The learning process identifies the weights that 

produce the best fit of the predicted outputs over the entire training data set. The hidden 

layers are particularly important to cope with non-linear classification problems.20, 22 

Initialization of a network involves assigning random initial values to the weights (and 

thresholds) of all connections between neurons. The correction of the weights happens 
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iteratively.23 In the construction of a neural network, particular attention has to be paid to 

the selection of the architecture, the selection of the learning parameters and the network 

validation. During the training step, the values for all the parameters involved in the 

learning process, the error between the net predicted output and the correct output are 

calculated. The size and number of the hidden layers and the number of epochs (training 

cycles) are evaluated by testing different values (trial and error) and checking the 

accuracy of the resulting prediction. The optimal number of epochs for an ANN is 

achieved when the error on the test set reaches a minimum. The number of hidden nodes 

is critical for the design of the network, because if too many hidden nodes are used, the 

network will overfit or memorize the training set data (noise). Conversely, if few hidden 

nodes are used, the network will fail to generalize and become unstable. Generally, one 

hidden layer is sufficient to approximate continuous functions, whereas two hidden layers 

may be necessary for learning functions with discontinuities.22 An approach to determine 

the best number of hidden nodes is to start with the simplest architecture, i.e. one hidden 

layer, and to add nodes one at a time, until the network has learned the training set.23 But 

with increasing number of hidden nodes, training becomes excessively time-consuming, 

so several rules of thumb are available in the literature, which relate hidden layer size to 

the number of nodes in input and output layers.22 The quality of the ANN architecture and 

the best values of parameters involved in the learning process are evaluated using the root 

mean square error between the expected and the actual value of the output.22,23 

Scaling of the data is essential to prevent larger numbers to override smaller ones and to 

prevent premature saturation of hidden nodes, which impedes the learning process. 

Balancing of data for preventing the net from being biased to the over-represented classes 

is also important. There are different approaches to stop the training of the network such 
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as the training error, gradient of error or cross-validation. Training proceeds until the error 

function reduces to a desired minimum. In classification, where the output is discrete 

values containing class membership information, the convergence criterion should be 

based on the hit (or miss) rate representing the percentage of examples classified correctly 

(or incorrectly). 

A great advantage of ANNs is that causal knowledge of the relationship between the input 

and the output variables is not required. Instead, they learn these relationships through 

successive trainings. Moreover, ANNs present remarkable and attractive information 

processing characteristics: (i) non-linearity, allowing better fit to the data; (ii) noise 

insensitivity, providing accurate prediction in the presence of uncertain data and 

measurement errors; (iii) high parallelism, which implies fast processing and hardware 

failure tolerance; (iv) learning and adaptability, allowing the system to update (modify) its 

internal structure in response to changing environment; and (v) generalization, enabling 

application of the model to unlearned data.22,24 
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3.1 Secondary metabolites of Olea europaea leaves as markers for the 

discrimination of cultivars and cultivation zones by multivariate 

analysis 

Olive (Olea europaea) is one of the most ancient cultivated fruit tree species in the 

Mediterranean basin. Olive trees show multiple phenotypic expressions, generally 

designated as varieties or cultivars. Some cultivars are specific of a particular country 

whereas others are present in more than one cultivation area. 

The correct classification of the variety and cultivation zone of the olive oil, which also 

includes the tree and its different parts, is shown as a new problem in order to control the 

quality and the appellation of origin of the olive oils due to the fact that each combination 

of variety and cultivation zone has a different chemical composition.1 Indeed distribution 

of macro- and microcomponents in olive oils varies, among others, with the cultivars.2 

Traditionally, morphological and phonological traits are used to identify olive cultivars.3 

This method, however, presents some limitations because of environmental influence. 

Accordingly, this works aimed at discriminating different varieties of olive trees 

cultivated in the same geographical area using as markers a set of biophenol contents in 

olive leaves determined by an HPLC-MS/MS approach. Moreover, the possibility of 

differentiation between samples of Carolea cultivated in different geographical zones was 

take into account.  

Samples of olive leaves, utilized in this study, were collected from five different cultivars 

(Carolea, Cassanese, Coratina, Nocellara del Belice and Leccino), in the experimental 

field of the C.R.A. Istituto Sperimentale per l’Olivicoltura in Rende (Calabria, Italy). 

Other Carolea leaves were picked up from fields situated in Mirto (Calabria) and Spoleto 

(Umbria, Italy). Samples were treated according to procedure proposed by Sindona et al..4 
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Twelve phenolic compounds (Table 3.1) that originate from the secondary metabolism of 

the plant, through mevalonic acid, phenylpropanoid and catecol methoxylation pathways 

were selected as possible traceability markers. The data of each sample have been 

reported as concentrations (mg/kg) referred to salicin (internal standard) of the selected 

12 phenolic compounds for the subsequent chemometric treatment. 

 

Ion [M+NH4]+ Compound Retention Time 
(min) 

m/z 304 Salicin (Internal Standard) 8.51 

m/z 364a 2-methoxyhydroxytyrosol glucoside 5.57 

m/z 334a Hydroxytyrosol glucoside 5.76 

m/z 348a Methoxytyrosol glucoside 7.34 

m/z 408 Oleoside 12.22 

m/z 422 Oleoside 11-methyl ester 14.05 

m/z 642 Verbascoside 17.98 

m/z 720 Angustifolioside A 18.68 

m/z 720 Angustifolioside B 18.93 

m/z 562a Saturated oleuropein 19.00 

m/z 586a Dimethyl oleuropein 21.28 

m/z 558 Oleuropein 21.75 

m/z 542 Ligstroside 24.03 

Table 3.1 Selected 12 phenolic compounds ( a New phenolic compounds detected in the leaves 
of Olea Europaea :Di Donna, Mazzotti, Salerno, Tagarelli, Taverna, & Sindona, 2007) 

 

In the first instance the data of olive leaves samples harvested in March and April in 

Rende were subjected to principal component analysis (PCA). The scores of samples and 

loadings of the variables on the two first principal components are plotted in Figure 3.1: 

the information retained is 52.65% of the total variance.  
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Figure 3.1 Biplot of principal component scores and loadings for leaves of the 5 varieties of 
olive tree harvested in March and April (Variables are indicated as m/z values, see Table 1) 

 

The plot shows differentiation between harvesting period regardless of cultivar. In 

samples corresponding to the Leccino, Coratina and, to a smaller extent, Cassanese it was 

observed a shifting along PC1 going from March to April which indicates the decrease of 

concentration of compounds angustifolioside A, angustifolioside B, oleuropein, satured 

oleuropein and dimethyl oleuropein in leaves harvested in April. On the contrary, 

tendency shown by Carolea variety was totally different from all the others. Actually, for 

this cultivar a shift along PC2 only is clear that means a decrease of concentration of 

oleoside, oleoside 11-methyl ester and ligstroside and an increase of hydroxytyrosol 

glycoside and methoxytyrosol glycoside going from March to April. For Nocellara 

samples it is not observed meaningful variations, even though it can be noted a slight shift 

to more positive values of PC1. The supervised pattern recognition techniques (LDA, 
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SIMCA and KNN) were used in order to obtain classification rules for distinguishing 

between five varieties of olive trees (Carolea, Cassanese, Coratina, Nocellara del Belice 

and Leccino) cultivated in the same geographical area (Rende, Calabria, Italy) and 

between samples of Carolea cultivated in different geographical zones. These techniques 

were applied to concentration values (mg/kg) referred to salicin of the selected twelve 

phenolic compounds, as in PCA analysis. The reliability of the classification rules needs 

to be validated and therefore a 10-fold cross-validation procedure was performed. The 

goodness of the classification models was evaluated in terms of prediction ability, which 

is equal to the percentage of the test set members correctly classified by the rules 

developed in the training step. 

 

Cultivars discrimination  

In the first instance linear discriminant analysis has been applied to concentration values 

of the selected 12 phenolic compounds of samples harvested in March and April, using 

five groups corresponding to the five cultivar type, as input a priori. 

The differentiation between groups is significant since the low Wilks λ value (0.0011656) 

shows that the model is discriminating. Moreover, the information from data treatment is 

characterized by a high degree of reliability since the p level is extremely low (<0.00001). 

To check the usefulness of the method for prediction purposes cross validation was 

performed. The proposed model predict 82% of correct variety and this suggests that the 

presented method may be a potential choice for checking cultivar type (Table 3.2).  
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 Cassanese Coratina Carolea Leccino Nocellara 

Cassanese 9 0 0 0 1 

Coratina 0 7 0 0 3 

Carolea 1 0 9 0 0 

Leccino 1 0 0 9 0 

Nocellara 1 2 0 0 7 

Table 3.2 Prediction matrices for LDA model of olive trees varieties(rows represent the true 
class, columns report the assigned class) 

 

The Analyses of the Discriminating Functions show that four new phenolic compounds 

[2-methoxyhydroxytyrosol glucoside (364), dimethyl oleuropein (586), hydroxytyrosol 

glucoside (334) and methoxytyrosol glucoside (348)] are the most important variables in 

the differentiation of cultivars. This result underline the important role of the HPLC-ESI-

MS/MS method that allowed the identification of the minor phenolic compounds.  

SIMCA was also applied to the same data matrix subjected to LDA and models obtained 

were based on two components for each category (explaining about 70% of class variance 

for olive trees varieties and about 80% of variance for cultivar zone), normal range and 

5% as the significance level for critical distance. To study the predictive capability of 

SIMCA, the same cross-validation procedure was applied. The proposed models predict 

correctly 88% and 87% of the varieties and cultivation zones, respectively (Table 3.3). 

 

 Cassanese Coratina Carolea Leccino Nocellara SENS(%) SPEC(%) 

Cassanese 6 1 0 1 2 100 100 

Coratina 0 10 0 0 0 100 100 

Carolea 0 0 8 0 2 90 100 

Leccino 0 0 0 10 0 100 100 

Nocellara 0 0 0 0 10 100 95 

Table 3.3 Prediction matrices and SENS and SPEC values of SIMCA classification  for olive 
trees varieties (rows represent the true class, columns report the assigned class) 
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In particular, the SIMCA model shows higher predictive capability for Coratina, Leccino 

and Nocellara varieties respect to classification obtained with Linear Discriminant 

Analysis. On the other hand, SIMCA shows a worse performance for Cassanese and 

Carolea. Also in this case, the discriminant powers of variables show that three minor 

phenolic compounds [2-methoxyhydroxytyrosol glucoside (364), hydroxytyrosol 

glucoside (334) and methoxytyrosol glucoside (348)] are among compounds that mostly 

contribute to discrimination of cultivars. Sensitivity and specificity values obtained were 

very satisfactory. Indeed SIMCA model presented a mean sensitivity of 98% and a mean 

specificity of 99%.  

KNN was also applied to the same data sets subjected to LDA and SIMCA using the 

square inverse of the Euclidean distance and the decision criteria of two nearest neighbors 

and a majority vote. The number of neighbors was chosen after study of the success in 

classification with K values between 1 and 8. The best results were obtained with K = 1 

(Table 3.4). The model is capable of achieving poor percentage for prediction (54.0%), 

especially for Nocellara (20%) and only for Leccino KNN afforded acceptable results 

(90%). 

 

 Cassanese Coratina Carolea Leccino Nocellara 

Cassanese 5 0 2 1 2 

Coratina 1 6 2 1 0 

Carolea 1 0 5 2 2 

Leccino 0 0 1 9 0 

Nocellara 3 1 2 2 2 

Table 3.4 Prediction matrices for KNN model for olive trees varieties (rows represent the true 
class, columns report the assigned class) 
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In conclusion, among the pattern recognition techniques for cultivar discrimination, LDA 

and SIMCA have shown successful results whereas KNN allowed to obtain unsuccessful 

results.  

 

Cultivation zones discrimination  

Linear discriminant analysis requires the data matrices for each category to have an high 

ratio between the number of training samples and the number of variables used in order to 

obtain stable chemometric model. Then attempt to distinguish between samples of 

Carolea cultivated in different geographical zones (5 objects for each zone, Rende, Mirto, 

Spoleto) could not be performed by considering all the variables. Accordingly, PCA have 

been applied to the concentration values of all phenolic compounds and coordinates of 

scores of the first four principal components (87.33% of the total available information) 

were submitted to LD analysis, using three groups corresponding to the three 

geographical zones, as input a priori. In this case, the high value (21.39) of the F (8.18) 

parameter indicates a significant difference among the means of the groups, whereas the 

information from data treatment is characterized by a high degree of reliability since the p 

level is extremely low (<0.00001). Moreover, the differentiation between groups is 

significant since the low Wilks λ value (0.009057) shows that the model is discriminating. 

When LDA was applied to the data set described above, model produced good 

percentages of correct prediction (93%) in cross-validation procedure (Table 3.5). 
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 Rende Mirto Spoleto 

Rende 5 0 0 

Mirto 0 5 0 

Spoleto 1 0 4 

Table 3.5 Prediction matrices for LDA model of olive trees cultivation zones (rows represent 
the true class, columns report the assigned class) 

 

As for cultivar discrimination, SIMCA was also applied to the same data matrix subjected 

to LDA without variables reduction step. The differentiation between samples of Carolea 

cultivated in different geographical zones can be achieved with good results for Mirto and 

Spoleto whereas percentage of prediction is only 60% for Rende. SIMCA model 

developed presented a SENS mean value of 93% and SPEC mean value of 100% (Table 

3.6). 

 

 Rende Mirto Spoleto SENS(%) SPEC(%) 

Rende 3 2 0 100 100 

Mirto 0 5 0 100 100 

Spoleto 0 0 5 80 100 

Table 3.6 Prediction matrices and SENS and SPEC values of SIMCA classification for olive 
trees cultivation zones (rows represent the true class, columns report the assigned class) 

 

KNN was also applied to the same data sets subjected to LDA and SIMCA using the 

square inverse of the Euclidean distance and the decision criteria of two nearest neighbors 

and a majority vote. As for cultivar, the number of neighbors was chosen after study of 

the success in classification with K values between 1 and 8. The best results were 

obtained with K = 1 (Table 3.7). 
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 Rende Mirto Spoleto 

Rende 5 0 0 

Mirto 0 4 1 

Spoleto 0 2 3 

Table 3.7 Prediction matrices for KNN model for olive trees varieties (rows represent the true 
class, columns report the assigned class) 

 

The model allowed to obtain 80% of mean prediction ability. The model be considered 

good only for categories Rende and Mirto. Also in this case, as for cultivar 

discrimination, better results were obtained using LDA and SIMCA approaches than 

using KNN. However this latter chemometric technique showed better results than those 

obtained with cultivar discrimination. 
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3.2 Traceability of Tomatoes and Triple Concentrated Tomato Pastes 

Tomatoes (Lycopersicum esculentum) is a well known herbaceous plant belong to 

Solanaceae family and worldwide used in the diet. Their intake is referred to fresh fruits 

and also to semifinished products as sauces, purées and pastes (mono, double and triple 

concentrated). Tomato is certainly among the most important foods of the Mediterranean 

diet and has important healing effects associated with the presence of polyphenols, 

antioxidants such as carotenoids, and vitamins. 

One of the principal adulteration of tomato products consists in the dilution of tomato 

pastes with water instead of using fresh fruits alone. Another aspect is represented by the 

importation of triple concentrated pastes from countries other than those of the producers. 

The globalization of food markets and, consequently, the easiness in the circulation of 

foodstuffs has caused the loss of identity of the origin of foods which may expose 

consumers to risks derived by the manufacturing processes. The imported products come 

often from countries where quality and safety rules are less stringent than those adopted 

in those countries where EMEA and FDA directives are followed. 

In 2007, 160 million kilograms of tomato pastes, corresponding to about 25% of the 

Italian tomato production, have in fact been imported from abroad and the China is one of 

the principal exporter.5 The introduction of foodstuff coming from foreign country may 

represent an unfair competition for producers that can affect the regional economy and 

even national economy. In order to protect both the consumers and the national 

production, a decree was issued by Italy in 2006 that established the obligation from 1 

January 2008 to state clearly in the label the origin (Region or State) of fresh tomato used 

in the preparation of sauces.6 The number of critical points in the production chain of 

tomato derivatives calls for the introduction of efficient analytical methods to reliably 
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check the origin of the raw materials. In recent years, there has been a growing interest 

about geographical characterization and authenticity of tomato but few traceability study 

are known for tomato juice and tomato paste.7 An investigations based on a DNA 

extraction procedure has been published.8 Two studies deal with the determination of 

geographical origin of cherry tomatoes9 and triple concentrated tomato pastes10 by 1H 

NMR spectroscopy. 

 

3.2.1 Investigating the Origin of Tomatoes and Triple Concentrated 

Tomato Pastes through Multielement Determination by Inductively 

Coupled Plasma Mass Spectrometry and Statistical Analysis 

Multielement analysis has been applied to a range of foodstuff to develop methods that 

allow the identification of their geographical origins.11 Trace element concentration from 

tomatoes subjected to a proper chemometric approach was applied to distinguish between 

conventional and organic cultivation.12 

The aim of this study was to develop a simple and rapid method, such as ICP-MS 

analysis, followed by a convenient statistical processing of multielement profile to 

discriminate between tomato samples cultivated in different areas and between tomato 

paste samples coming from different countries. 

This research was the continuation and completion of my M.Sc. thesis work. In the first 

part of this work it has been shown that the multielement distributions can be a parameter 

for the characterization of the geographical origin of tomato and triple concentrated 

tomato pastes samples. In my PhD work this investigation was extended to samples 

belonging to the harvest season 2008 in order to confirm the goodness and robustness of 

the statistical model. In this way we also take into account possible climatic effects.  
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The tomatoes samples come from four Italian production regions, namely, Calabria 

(Crotone and Rocca di Neto), Basilicata (Matera) and Emilia Romagna (Collecchio) 

(Figure 3.2). The Italian tomato concentrate samples come from Collecchio and Rocca di 

Neto. Moreover, in comparison with the thesis work, samples coming from China, 

California and Greece were take into account in order to show the possibility to 

differentiate between tomato paste samples made in Italy with those produced in other 

countries. 

 

 

Figure 3.2 Italy map (Collecchio, ∆; Crotone, □; Matera, ○; Mesagne, ◊) 

Emilia Romagna 

Calabria 

Basilicata 

Puglia 



Chapter 3                              Results and discussion 
 

 

71 
 

In the first part of the work the effectiveness of the digestion procedure was assessed in 

terms of accuracy for the 35 elements certified in reference material NCS ZC85006 

tomato (Be, Na, Mg, Al, K, Ca, Sc, V, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Y, Cd, Cs, 

Ba, La, Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu, Pb, Th, U) 

About 0.5 g of the certified reference material was subjected to digestion treatment using 

a mixture of 4.5mL of HNO3/1mL of H2O2 and 0.5 mL of each of the following third 

components: HF, HCl, H3BO3 and HClO4. The extracts were diluted to 50 mL with 

ultrapure water and subjected to ICP-MS analysis. The HNO3/H2O2/HF mixture provided 

the best digestion results. Accuracy values were considered acceptable for 25 elements 

(values in the range 75-120%). Analytical parameters for these elements were shown in  

Table 3.8. 

 

 Isotope Calibration 
range (µg/l) R2 LOD 

(µg/kg)a 
LOQ 

(µg/kg)a 
Certified value 

(mg/kg)b 

Found 
value 

(mg/kg)c 

Accuracy 
(%) 

Al 27 0.1-2000 0.9998 159 346 0.295±0.043 0.279±0.008 94.5 

As 75 0.1-2000 0.9999 0.42 0.55 1.05±0.13 1.03±0.02 98.6 

Ba 138 0.1-2000 0.9999 0.68 0.98 55.2±5.2 52.9±0.8 95.9 

Be 9 0.1-2000 0.9999 0.031 0.071 (0.084) 0.067±0.009 80.2 

Ca 44 0.1-2000 0.9982 1441 1968 5.31 (%)±0.19 4.58±0.06 86.3 

Cd 114 0.1-2000 0.9999 0.13 0.31 0.82±0.09 0.685±0.004 83.6 

Ce 140 0.01-150 0.9999 0.063 0.084 3.08±0.22 2.94±0.26 95.5 

Cu 63 0.1-2000 0.9997 0.76 0.95 21.1±2.5 23.5±0.5 111.5 

Dy 164 0.01-150 0.9999 0.007 0.014 (0.23) 0.217±0.010 94.3 

Fed 56 0.1-2000 0.9999 142 179 0.138(%)±0.015 0.139±0.003 100.9 

K 39 0.1-2000 0.9991 92.2 127.2 0.579(%)±0.052 0.564±0.010 97.4 

La 139 0.01-150 0.9999 0.031 0.047 1.78±0.17 1.34±0.15 75.4 

Lu 175 0.01-150 0.9999 0.001 0.002 (0.019) 0.019±0.002 102.2 

Mg 24 0.1-2000 0.9998 50.7 105 0.736(%)±0.057 0.645±0.006 87.6 

Mn 55 0.1-2000 0.9997 2.81 4.22 87.1±5.6 104.1±1.1 119.6 

Na 23 0.1-2000 0.9997 304 722 (0.13) 0.126±0.003 96.8 

Nd 142 0.01-150 0.9999 0.015 0.038 (1.28) 1.36±0.13 106.0 
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Pb 208 0.1-2000 0.9999 0.24 0.33 4.97±0.54 5.49±0.03 110.5 

Rb 85 0.1-2000 0.9999 1.18 2.89 6.66±0.47 6.98±0.01 104.8 

Sm 152 0.01-150 0.9999 0.013 0.030 0.270±0.020 0.299±0.019 110.8 

Sr 88 0.1-2000 0.9999 2.02 3.15 569±40 610±8 107.2 

Th 232 0.01-150 0.9992 0.020 0.042 (0.486) 0.488±0.076 100.5 

U 238 0.1-2000 0.9999 0.053 0.086 (0.202) 0.185±0.005 91.4 

V 51 0.1-2000 0.9999 1.74 2.65 3.84±0.30 3.83±0.14 99.7 

Zn 64 0.1-2000 0.9999 81.8 188 36.2±3.1 33.8±0.56 93.3 

Table 3.8 Summary of calibration parameters, limits of detection (LODs), limits of 
quantitation (LOQs) and mean accuracies (%) referred to certified reference material NCS 
ZC85006 Tomato. (a LOD and LOQ values are referred to analysis of tomato samples; b 

Certified values without standard deviation are reported in parenthesis; c ±SD, n=3; d Analyzed 
in DRC mode). 

 

In order to develop the analytical method 46 elements were initially investigated: 7Li, 9Be, 

23Na, 24Mg, 27Al, 39K, 44Ca, 45Sc, 51V, 52Cr, 53Cr, 55Mn, 57Fe, 58Ni, 60Ni, 59Co, 63Cu, 64Zn, 

66Zn, 69Ga, 75As, 82Se, 85Rb, 88Sr, 89Y, 107Ag, 114Cd, 115In, 133Cs, 138Ba, 139La, 140Ce, 141Pr, 

142Nd, 152Sm, 153Eu, 158Gd, 159Tb, 164Dy, 165Ho, 166Er, 169Tm, 174Yb, 175Lu, 205Tl, 208Pb, 

209Bi, 232Th and 238U. The determination of some elements by ICP-MS is known to suffer 

from polyatomic isobaric interferences. For example, regarding the elements of our 

interest, the scandium signal at m/z 45 is affected by 13C16O2
+ and 29Si16O+, the chromium 

signal at m/z 53 is affected by 40Ar13C+ and 37Cl16O+, the iron signal at m/z 56 is affected 

by 40Ca16O+, the nickel signal at m/z 58 is affected by 42Ca16O+, the zinc signal at m/z 64 

is affected by 48Ti16O+ and 32S2
+, the selenium signal at m/z 80 is affected by 40Ar40Ar+ 

and, finally, the europium signal at m/z 153 is affected by 137Ba16O+. The dynamic 

reaction cell (DRC) is proved to be an effective method for relieving such isobaric 

interferences. Then Sc, Cr, Fe, Ni, Zn, Se and Eu have been monitored in both modes 

(Standard and DRC modes). Methane (99.996% purity) was used as reaction gas. The 

optimization of the CH4 flow rate and the RPq value were carried out using matrix blank 

solution prepared with HCl (2%), HNO3 (1%), CH3OH (1%), Ca at 20 mg/L, Si and Ba at 
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50 μg/L and a matrix blank solution spiked with Sc, Cr, Fe, Ni, Zn and Se at 1 μg/L and 

Eu at 0.1 μg/L. The best background equivalent concentrations (BEC) were obtained at 

flow rate value (mL/min) of 0.7 for Cr, Fe, Se and Zn and at value of 1.15 for Sc, Ni and 

Eu. The best S/N ratio was obtained with a RPq value of 0.6 for all elements except for 

Eu (0.5), Cr (0.7) and Fe (0.7). ICP-MS analyses were performed following the operating 

program and parameters reported in Chapter 4 (Table 4.2). Copper and potassium values 

were not submitted to statistical analysis although accuracy values obtained using the 

certified matrix were satisfactory because of their use in agricultural practice as fertilizers. 

The chemometric treatments have been applied to the data set containing the 

concentration of those 23 elements that have shown the best accuracy values, and to the 

concentration of 9 elements (Ag, Cr, Ga, Ho, Li, Pr, Tb, Tl and Tm), for which results 

were above the limit of detection (LOD). 

In the assay of 54Fe and 52Cr polyatomic isobaric interferences had a considerable impact 

on their signal. Thus, among the 32 elements monitored 54Fe and 52Cr were detected in 

DRC mode.  

 

Statistical analysis on tomato samples 

Pattern recognition analysis was carried out using three supervised chemometric 

techniques (linear discriminant analysis, soft independent modeling of class analogy, and 

K-nearest neighbors) to obtain classification rules for distinguishing between four Italian 

cultivation areas of tomatoes (Calabria, Basilicata, Puglia, Emilia Romagna) and between 

triple concentrated tomato paste samples coming from Italy and from foreign countries 

(California, China, Greece). The data matrix constituted of the concentration values 

(μg/kg) of the selected 32 elements were submitted to the three chemometric approach. 
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The reliability of the classification rules was validated through a cross-validation 

procedure.  

For tomato, since the number of samples (110 objects) is more than three times the 

number of elements (32 variables) then standard linear discriminant analysis (LDA) was 

performed by considering all the elements without applying any method for reduction of 

the variables and using four groups corresponding to the four cultivation zones, as input a 

priori. In order to test the reliability of the obtained model in term of prediction ability, a 

5-fold cross validation was performed. In this way, for each cross validation cycle, the 

80% of the components of sample set was used for calculating models, and the remaining 

20% of the components of the sample set was considered as an unknown, and classified. 

The proposed model has correctly predicted all samples for each zone and this suggests 

that the presented method may be a potential choice for checking origin of tomatoes. This 

discrimination is visually represented by the bi-dimensional plot of the first two roots 

which shows the great separation among the four clusters that represent areas of origin 

(Figure 3.3). 
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Figure 3.3 LDA plot for tomato samples 

 

This difference is statistically significant due to the very low Wilks λ value (<0.0000011) 

that shows how the model is highly discriminatory. Moreover the high value (325.1) of 

the F(96.22) ratio is indicative of a significant difference between the averages of groups. 

The low p-level (<0.00001) underline the very high probability of a correct classification. 

The analyses of the LDA discriminating model shows that Cd, alkaline metals and 

alkaline earth metals are the most important variables to determining the tomato 

geographical origin. The important role of alkaline metals and alkaline earth metals in 

differentiation of cultivation zones is in agreement with previous studies about the 

identification of the origin of virgin olive oil13 carried out by the research group in which 

I have been worked toward Ph.D. This results are also in agreement with other two 

studies that I carried out during Ph.D on traceability of Tropea red Onion14 and 
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Clementine di Calabria.15 The results obtained suggests that the presented method may be 

a potential choice for checking origin of tomatoes. 

Soft independent modeling of class analogy (SIMCA) was applied to the same data 

matrix used in standard LDA, and models obtained were based on normal range, 5% as 

the significance level for critical distance and a number of components for each category 

so that explains about 90% of class variance. Validation of the model was carried out by a 

5-fold cross-validation procedure. The SIMCA model has provided very good results in 

terms of mean prediction ability classifying correctly all the samples submitted (Table 

3.9). Moreover, the SIMCA model is satisfactory in terms of mean sensitivity (84.5%) 

and mean specificity (100%). 

 

 Matera Mesagne Crotone Collecchio SENS(%) SPEC(%) 

Matera 20 0 0 0 80 100 

Mesagne 0 20 0 0 80 100 

Crotone 0 0 40 0 85 100 

Collecchio 0 0 0 30 90 100 

Table 3.9 Prediction matrix and SENS and SPEC values of SIMCA classification (rows 
represent the true class, columns report the assigned class) 

 

As for LDA model, the SIMCA discriminant powers of variables show that alkaline 

metals and alkaline earth metals are among the compounds that mostly contribute to 

discrimination of cultivation zones. 

K-nearest neighbors (KNN) was applied to the same data set subjected to LDA and 

SIMCA using the square inverse of the Euclidean distance and the decision criterion of 

majority vote. The number of neighbors was chosen after evaluation of the success in 

classification with K values between 1 and 12. The best results (Table 3.10) were 

obtained with K = 3. The differentiation between geographical zones can be considered 
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acceptable for all classes. The mean prediction ability obtained is 88.2%. These results 

are worse than those obtained by LDA and SIMCA techniques. 

 

 Matera Mesagne Crotone Collecchio 

Matera 17 0 3 0 

Mesagne 0 20 0 0 

Crotone 1 0 35 4 

Collecchio 0 0 5 25 

Table 3.10 Prediction matrix for KNN model (rows represent the true class, columns report the 
assigned class) 

 

Statistical analysis on triple concentrated tomato paste samples 

Linear discriminant analysis, soft independent modeling of class analogy, and K-nearest 

neighbors have been applied to the concentration of the same 32 elements considered in 

the tomato samples. Also in this case, since the total number of objects (100 samples) is 

more than three times the number of variables standard LDA has been carried out using 

two categories associated to samples coming from Italy (Italy group) and samples from 

foreign countries (non-Italy group), as input a priori. As for tomato samples the statistical 

results obtained were very satisfactory: Wilks λ = 0.00975, F(32.67) = 212.6, p-level < 

0.00001 and prediction ability of 98%for each class (Table 3.11). Lithium and rubidium 

(alkaline metals) are the most important variables in the distinction of geographical 

origin. Contrary to tomato samples the contribution of alkaline earth metals seems not 

important for differentiation of triple concentrated paste tomato samples. 
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LDA  

 Italy non-Italy  

Italy 49 1  

non-Italy 1 49  

                  SIMCA 

 Italy non-Italy SENS(%) SPEC(%) 

Italy 48 2 90 100 

non-Italy 0 50 80 100 

KNN   

 Italy non-Italy   

Italy 50 0   

non-Italy 0 50   

Table 3.11 Prediction matrices for supervised pattern recognition techniques (rows represent the 
true class, columns report the assigned class) 

 

SIMCA was applied to the same data matrix used in standard LDA, and models obtained 

were based on five PCs for category “Italy” and four components for category “non-Italy 

that explain about 90% of variance for both classes. This chemometric model has 

provided very good results in terms of mean prediction ability (96%for Italy, 100%for 

non-Italy) (Table 3.11). Moreover, the SIMCA model is satisfactory in terms of mean 

sensitivity (85%) and mean specificity (100%). 

KNN was applied using the same criteria chosen for tomato samples. The number of 

neighbors was evaluated, and the best results were obtained with K = 5 (Table 3.11). In 

this case, KNN has provided better results than those obtained by the LDA and SIMCA 

methods. Indeed the KNN method is capable to classify correctly all samples for both 

categories. 
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3.2.2 The volatile fraction profiling of fresh tomatoes and triple 

concentrate tomato pastes as parameter for the determination of 

geographical origin 

Beside the multielement profile, another possible approach to establish the geographical 

origin of fresh tomatoes and triple concentrate tomato pastes could be the use of the 

profiling for the volatile products of secondary metabolisms pathway which are in part 

responsible for the aroma of tomato and triple concentrate tomato pastes. 

Among the many factors affecting the profiling of the volatile components, a peculiar role 

is, in fact, played by the cultivar, the atmospheric, pedologic, and fostering conditions, the 

ripening degree and the storing procedure. The characterization of volatile fraction of 

tomato is a topic that has attracted the interest of many scientists. Many studies have 

concerned development and optimization of analytical methods for the characterization of 

volatile components using various analytical techniques.16 Other studies show the change 

in the distribution of volatile compounds are related with the physical-chemical changes 

suffered by tomatoes after some industrial processes of production and/or the common 

preservation conditions used in retail outlets and households.17 Further studies were 

performed in order to use the aroma as marker to differentiate between hybrid cultivars 

and traditional ones. Furthermore it was used as a marker in tomatoes breeding programs 

for selecting varieties with better quality characteristics.18 

The main precursors of volatile compounds in tomato are free amino acids, fatty acids and 

carotenoids. Over 400 volatile components have been identified in fresh tomatoes and 

their formation is the result of different biosynthetic pathways.16d For instance saturated 

and unsaturated C6 and C9 alcohols and aldehydes, that are impact compounds of fresh 

tomato, are originated through lipoxygenase activity19 while carotenoid and terpene 
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derivatives are generated by glycosidase activities.17a The different expression of the 

enzyme pool could affect the biosynthetic pathways involved in the formation of volatile 

compounds. The availability of these enzymes could be dependent on the pedoclimatic 

conditions and, therefore, the components of volatile fraction could be used as markers 

for the identification of geographical origin. 

Accordingly, we evaluated the capability of volatile fraction profiling detected by SPME-

GC-MS to act as marker for the discrimination between tomatoes harvested in different 

Italian region. The same aim was pursued for triple concentrate tomato pastes produced in 

two different Italian zones. Two supervised pattern recognition procedures such as Linear 

Discriminant Analysis (LDA) and Soft Independent Modeling of Class Analogy 

(SIMCA) were applied to tomato samples and triple concentrate tomato paste samples 

and the discrimination and classification ability of these multivariate techniques was 

evaluated. 

The analytical method used was chosen referring to the many sources available in 

literature concerning the analysis of volatile components of fresh tomato and its 

derivatives using SPME-GC-MS. Ten frozen tomatoes were randomly chosen for each 

region and homogenized at 25 °C using an electric mixer. Then 2 g of homogenized 

tomatoes was put in a 10 mL vial and 2 mL of saturated CaCl2 solution was added 16a 

before thawing in order to avoid loss of volatile components16d easily degradable and 

promoting the salting out effect. Beltran et al. add at the ground tomato a 5% (w/w) of the 

CaCl2 solution whereas Buttery et al. used a volume (mL) equal to the sample weight (g). 

The methods reported were tested and the best performance in term of S/N ratio was 

obtained using the procedure developed by Buttery et al.16a. Then 80 μL of ethyl 

isobutanoate solution at 5 mg/L in methanol19a was added as internal standard to obtain a 
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concentration of 200 μg/kg in each sample. The same procedure was followed for the 

concentrate paste samples, but 3 g was weighted and 120 μL of internal standard solution 

was added. The choose of the SPME fiber that gives best analytical performance was in 

accordance to the study conducted by Beltran et al.16d that compared the extraction 

efficiency of volatile compounds in head space of samples of fresh tomato. This study 

shows that Carboxen/PDMS fiber is the more efficient then PDMS/DVB and CW/DVB 

fibers. In order to test the possibility of using the autosampler, several tests were 

performed to evaluate peak areas of analytes of interest after 8, 10, 12 hours after the 

initial analysis. Since there was not a significant loss of analytes in this range of time, we 

decided to perform the analysis using the autosampler. The sample was preheating to 35 

°C for 30 min and the extraction of volatile compounds took place for 60 min at the same 

temperature. The analytes were desorbed for 10 min from the fiber into the GC injector 

set at 300 °C in splitless mode. Integration was conducted on chromatographic peaks 

presenting a signal to noise ratio equal to or greater than 100 in at least one sample in 

order to consider only the most abundant detected compounds. Accordingly, 38 

compounds in fresh tomato and 32 compounds in triple concentrate samples were 

considered (Table 3.12, Table 3.13). Quantification was carried out through comparison 

to ethyl isobutanoate area and expressed as μg/kg. These volatile molecules were 

identified by matching their recorded mass spectra with those present in the NIST02 

library and by comparison of their retention indices (RI) relative to (C6-C20) n-alkanes 

with those of the literature. The non-isothermal Kovats retention indices, using definition 

of Van den Dool and Kratz (Van den dool & Kratz, 1963), were determined by using n-

alkanes at the same chromatographic conditions and calculated as follows: 

𝑅𝐼𝑥=100 n + 100(tx − tn) (tn+1 − tn)⁄  
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where tx is the retention time of each unknown compound (x), tn+1 and tn are retention 

times of n-alkanes eluting directly after and before the compound (x). 

 

Compound Retention 
Time 

Emilia 
Romagna 

Basilicata Calabria Puglia RIa Methods of 
identificationb 

2,3dihydrofuran 2.14 41.3 26.5 6.87 31.2 601 MS 

2-methylpropanal 2.36 120 55.1 33.4 63.5 619 MS 

2-methylfuran 2.53 247 128 103 102 632 MS 

3-methylbutanal 3.13 27.3 4.54 5.81 12.0 680 MS, RI 

2-methylbutanal 3.65 84.9 24.9 31.8 60.2 706 MS, RI 

methyl butanoate 4.61 26.5 4.08 5.57 7.22 725 MS, RI 

1-pentanol 5.17 29.7 9.92 3.99 20.8 737 MS, RI 

methyl 3-methylbutanoate 6.81 46.9 21.6 15.6 40.0 770 MS, RI 

Hexanal 8.20 258 217 192 130 798 MS, RI 

trans-2-hexenal 12.11 10.8 5.27 1.10 1.32 851 MS, RI 

Hexanol 13.58 1.90 5.05 1.79 1.80 870 MS, RI 

Heptanal 16.19 2.28 5.87 5.89 1.16 905 MS, RI 

1-nitropentane 16.31 20.8 11.4 10.8 32.6 907 MS, RI 

Benzaldehyde 20.53 11.2 9.36 8.39 9.74 966 MS, RI 

β-pinene 21.34 9.86 18.2 45.6 8.07 977 MS, RI 

5-decene 21.91 12.1 15.1 12.0 13.0 985 MS, RI 

6-methyl-5-hepten-2-one 22.58 1078 763 1132 665 992 MS, RI 

6-methyl-5-hepten-2-ol 22.91 97.2 105 129 88.2 999 MS, RI 

Octanal 23.52 1.04 22.8 48.8 2.03 1010 MS, RI 

p-cymene 24.64 1.95 22.1 89.5 3.30 1028 MS, RI 

D-limonene 24.93 41.1 597 1677 96.4 1033 MS, RI 

2-isobutylthiazole 25.25 55.4 140 65.0 68.3 1039 MS, RI 

γ-terpinene 26.29 1.23 0.798 6.76 0.509 1056 MS, RI 

Terpinolene 26.89 14.8 8.65 14.3 7.07 1067 MS, RI 

Linalool 29.33 17.0 42.9 403 12.6 1109 MS, RI 

6-methyl-3,5-heptadien-2-one 29.48 52.4 21.5 34.4 26.7 1112 MS, RI 

Unknown 29.54 71.3 28.2 30.0 27.2 1113 - 

5-methyl-5-nonanol 30.37 16.6 124 279 127 1129 MS 

3,7-dimethyl-3-octanol 31.40 6.74 15.2 52.3 15.3 1148 MS, RI 
2,6,6-trimethyl-1-cyclohexene-

1-carboxaldehyde 
35.39 12.8 6.73 10.1 5.87 1227 MS, RI 

linalyl acetate 36.89 3.54 2.15 58.3 1.46 1258 MS, RI 

Genanial 37.79 16.4 18.4 25.9 6.39 1277 MS, RI 
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Unknown 40.00 10.7 47.4 69.0 27.4 1326 - 

Unknown 41.09 2.82 14.9 22.7 9.05 1351 - 

geranyl acetate 41.88 n.d.c n.d.c 2.18 n.d.c 1369 MS, RI 
2-buten-1-one, 1-(2,6,6-

trimethyl-1,3-cyclohexadien-
1-yl) 

42.73 16.5 0.197 4.49 4.28 1388 MS, RI 

geranyl acetone 45.66 4.06 27.5 29.6 6.34 1458 MS, RI 

ß-ionone 46.95 2.31 2.58 3.29 1.36 1489 MS, RI 

Table 3.12 Mean concentration values (µg/kg, referred to ethyl isobutanoate) of volatile 
compounds detected in tomato samples, retention indices and methods of identification (a 

Retention index on ZB-5ms column; b MS: mass spectrum; RI: retention index when the 
calculated RI corresponds to the RI in the literature; c n.d.= not detected) 

 

 

Compound Retention 
Time 

Emilia 
Romagna Calabria RIa Methods of 

identificationb 

ethanol 1.67 105 1.22 - MS 

dimethyl sulfide 1.87 1452 564 - MS 

unknown 2.36 1096 359 - - 

2-methylfuran 2.53 853 131 632 MS 

3-methylbutanal 3.19 44.8 131 680 MS, RI 

2-pentanone 3.67 47.6 10.1 706 MS, RI 

2-ethylfuran 3.90 67.3 35.5 711 MS, RI 

methyl butanoate 4.59 10.5 7.36 725 MS, RI 

unknown 5.14 10.2 4.59 736 - 

dimethyl disulfide 5.27 7.83 13.6 739 MS, RI 

Tetrahydro-2-(3-pentynyloxy)-
2H-pyran 

7.31 10.4 7.41 780 MS 

hexanal 8.15 11.1 5.99 798 MS, RI 

3-furaldehyde 10.4 1.49 53.7 824 MS, RI 

5-methyl-5-hexen-2-ol 13.05 22.1 30.5 861 MS, RI 

heptanal 16.23 0.705 0.467 905 MS, RI 

1-(2-furanyl) ethanone 16.67 5.65 13.9 912 MS, RI 

methyl 4,4-dimethyl-2-
pentenoate 

17.06 4.60 2.00 917 MS 

α-pinene 18.12 4.76 1.72 932 MS, RI 

2,7-dimethyloxepine 18.48 7.52 1.55 937 MS 
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benzaldehyde 20.51 6.61 12.0 966 MS, RI 

β-pinene 21.31 9.14 1.72 977 MS, RI 

6-methyl-5-heptene-2-one 22.38 453 204 992 MS, RI 

p-cymene 24.62 18.6 3.69 1028 MS, RI 

D-limonene 24.99 439 39.7 1033 MS, RI 

cis-linalyl oxide 27.44 6.72 5.92 1076 MS, RI 

trans-linalyl oxide 28.45 7.60 2.04 1093 MS, RI 

linalool 29.27 22.1 10.4 1109 MS, RI 

nonanal 29.40 20.1 9.28 1110 MS, RI 

unknown 35.81 14.0 9.75 1236 - 

unknown 36.73 7.34 5.07 1255 - 

geranial 37.83 12.9 0.562 1278 MS, RI 

2-buten-1-one, 1-(2,6,6-
trimethyl-1,3-cyclohexadien-1-

yl) 
42.75 13.4 3.16 1388 MS, RI 

Table 3.13 Mean concentration values (µg/kg, referred to ethyl isobutanoate) of volatile 
compounds detected in triple concentrate tomato paste samples, retention indices and methods 

of identification. 

 

The compounds detected were in agreement with literature data on volatile compounds 

detected in tomato and tomato paste using SPME and purge-and-trap methods.16d, 16f, 17a, 

17d The most abundant volatile compound belong to terpenes. Hexanal, trans-2-hexenal 

and hexanol derive from lipoxygenase (LOX) pathway. the C6 compounds were 

generated by the biochemical pathway through conversion of linoleic and α-linolenic 

acids.20 

 

Statistical analysis on tomato samples 

Initially, the obtained data were subjected to Principal Component Analysis (PCA) in 

order to have an overview of data, underline the most important variables and their 
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possible correlations. Figure 3.4 shows the biplot PC1 vs PC2 of scores and loadings for 

tomato samples which retain 49.32% of the total variance.  

 

 

Figure 3.4 Biplot of principal component scores and loadings for tomato samples. 

 

The plot shows a separation of the production areas only on the basis of the first principal 

component. The compounds methyl 3-methylbutanoate, 2,3-dihydrofuran, 2-

methylpropanal, 3-methylbutanal, 1-pentanol, 2-methylbutanal and 2-methylfuran 

(compounds with the highest positive loading values on the PC1) have higher 

concentrations in the samples coming from Emilia Romagna whereas those on the left of 

plot (geranyl acetone, D-limonene, 5-methyl-5-nonanol, β-pinene, octanal and heptanal) 

are present at higher concentration in Calabrian tomato samples. Variables with loading 

values near to zero have similar concentrations in all tomato samples regardless the 
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production zone. Samples coming from Puglia appeared to have an heterogeneous 

position in the bidimensional plot whereas Basilicata have shown values between 

Calabria and Emilia Romagna. 

Pattern recognition analysis was carried out using linear discriminant analysis (LDA) and 

Soft Independent Modeling of Class Analogy (SIMCA) in order to obtain classification 

rules for distinguishing four Italian cultivation areas of tomatoes (Calabria, Basilicata, 

Puglia, Emilia Romagna) and between triple concentrated tomato paste samples coming 

from the producing areas of Collecchio (Emilia Romagna) and Crotone (Calabria). 

In order to obtain models that have good stability, the number of samples must be at least 

3 times the number of variables so, since the samples available were 50 and the volatile 

compounds detected were 38, the application of a variables reduction techniques is 

needed. Stepwise linear discriminant analysis (S-LDA) permits the variables with a major 

discriminant capacity to be selected discarding redundant information. 

The forward stepwise analysis (F to enter=2.00 and F to remove=1.00) has retained 16 

variables showed in Table 3.14 

 

 Wilks’ λ Parziale 
Wilks’ λ F-remove p-level Tollerance 

2,3-dihydrofuran 0,001843 0,344904 19,62667 0,000000 0,079846 

p-cymene 0,001336 0,475681 11,38990 0,000034 0,375713 

3-methylbutanal 0,001248 0,509330 9,95477 0,000094 0,441855 

1-nitropentane 0,001206 0,527194 9,26731 0,000158 0,086426 

2-methylfuran 0,001131 0,561879 8,05734 0,000411 0,060373 

2-isobutylthiazole 0,001093 0,581265 7,44397 0,000682 0,321804 

2-methylbutanal 0,001045 0,608415 6,65070 0,001345 0,124285 

heptanal 0,000952 0,667882 5,13845 0,005319 0,113189 

2-buten-1-one, 1-(2,6,6-trimethyl-1,3-
cyclohexadien-1-yl) 

0,000933 0,681399 4,83156 0,007131 0,053847 
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methyl 3-methylbutanoate 0,000832 0,764061 3,19090 0,037199 0,456252 

octanal 0,000824 0,771292 3,06410 0,042518 0,163921 

linalyl acetate 0,000823 0,772181 3,04867 0,043217 0,569403 

1-pentanol 0,000804 0,790192 2,74366 0,059817 0,235784 

2,6,6-trimethyl-1-cyclohexene-1-
carboxaldehyde 

0,000797 0,797138 2,62972 0,067618 0,469023 

5-methyl-5-nonanol 0,000795 0,799760 2,58721 0,070793 0,115752 

hexanal 0,000718 0,884790 1,34552 0,277630 0,188022 

Table 3.14 Summing up of the forward stepwise LDA for tomato samples. 

 

The compounds showing a great discriminant power arise from different biosynthetic 

pathways. Between these, 3-methylbutanal, 2-isobutylthiazole, and hexanal are among the 

most important compounds in characterizing the tomato flavor.21 Those results are in 

accordance with results recently published by Walczak et al. in which p-cymene, 

heptanal, octanal and hexanal mostly contribute to the LDA discriminant model to trace 

the geographical origin of honey.22 The presence of hexanal among themost important 

variables in the differentiation of cultivation zones is also in accordance with our work 

concerning geographical origin determination of olive oil.19a The differentiation between 

groups is very significant since the very low Wilks λ value (0.00064) shows that the 

model is highly discriminating, whereas the very low p-level value (<0.00001) indicates 

that the classification occurs with an high degree of reliability. The scatterplot of 

canonical scores on the first three discriminant functions (Figure 3.5) shows a good 

separation between the four clusters corresponding to the four cultivation zones 
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Figure 3.5 LDA scatterplot of canonical scores on the first three discriminant functions for 
tomato samples. 

 

A 10-fold cross-validation was performed in order to verify the goodness of the method in 

terms of prediction ability (Table 3.15). The proposed model has correctly predicted 96% 

of cultivation zones and this suggests that the presented method may be successfully used 

for checking origin of tomatoes 

 

 Emilia 
Romagna Basilicata Calabria Puglia 

Emilia 
Romagna 

10 0 0 0 

Basilicata 0 10 0 0 

Calabria 0 2 18 0 

Puglia 0 0 0 10 
 

Table 3.15 Prediction matrices for LDA model of fresh tomato samples (rows represent the true 
class, columns report the assigned class) 
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SIMCA was applied to the same data matrix subjected to LDA without applying any 

method for reduction of the variables and validation was carried out by 10-fold cross-

validation. The models obtained were based on normal range, 5% as the significance level 

for critical distance and a number of components for each category so that explains about 

90% of class variance. The SIMCA model developed showed good results in terms of 

prediction ability. It correctly predicted 94% of geographical origin. SENS and SPEC 

values obtained were very satisfactory: mean sensitivity of 82% and a mean specificity of 

100% (Table 3.16) 

 

 Emilia  
Romagna Basilicata Calabria Puglia SENS(%) SPEC(%) 

Emilia Romagna 10 0 0 0 70 100 

Basilicata 0 8 2 0 90 100 

Calabria 0 0 20 0 85 100 

Puglia 1 0 0 9 80 100 

Table 3.16 Prediction matrices for SIMCA model of fresh tomato samples (rows represent the 
true class, columns report the assigned class) 

 

The same chemometric approaches applied on tomato samples were applied to triple 

concentrate tomato paste samples. Since the sample:variable ratio is less than three as for 

tomato samples, stepwise linear discriminant analysis was applied to the concentration 

values of the 32 volatile compounds detected in concentrated tomato samples in order to 

build a classifier capable to distinguish between samples coming from Emilia Romagna 

and Calabria.The choice of F to enter=3 and F to remove=2 has led to the selection of 3 

variables (Table 3.17) that allows the construction of a model with very satisfactory 

statistical parameters. (Wilks λ=0.02880, F(3.26)=292.27 and p-level <0.00001).  
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Wilks’ λ Parziale 

Wilks’ λ 
F-remove p-level Tollerance 

3-methylbutanal 0.083367 0.345445 49.26516 0.000000 0.432682 

ethanol 0.072101 0.399423 39.09398 0.000001 0.729928 

tetrahydro-2-(3-pentynyloxy)-2H-
pyran 

0.034273 0.840269 4.94248 0.035107 0.469605 

Table 3.17 Summing up of the forward stepwise LDA for concentrate samples 

 

The cross-validation procedure, performed as for tomato samples, has shown a prediction 

ability of 100% for each class (Table 3.18). 

 

 Emilia 
Romagna Calabria 

Emilia 
Romagna 

10 0 

Calabria 0 20 

 

Table 3.18 Prediction matrices for LDA model of triple concentrate tomato paste samples (rows 
represent the true class, columns report the assigned class) 

 

SIMCA was also applied to the triple concentrate tomato paste data matrix. Models 

obtained were based on a number of components for each class so that explains about 

85% of the variance of category. The model developed was capable to correctly classify 

97% of the samples submitted during cross-validation procedure and shows satisfactory 

values of mean sensitivity (90%) and mean specificity (100%) (Table 3.19). 

 

 Emilia 
Romagna Calabria SENS(%) SPEC(%) 

Emilia 
Romagna 

10 0 90 100 

Calabria 1 19 90 100 

Table 3.19 Prediction matrices for SIMCA model of triple concentrate tomato paste samples 
(rows represent the true class, columns report the assigned class) 
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In conclusion, in this study the volatile fraction determined by a rapid and easy SPME-

GC-MS analytical method was used as discriminating parameter for identifying the origin 

area of fresh tomatoes and triple concentrate tomato pastes. For tomatoes samples the two 

considered chemometric techniques (SLDA and SIMCA) showed comparable results and 

produced models capable to achieve very good percentage of prediction: 96% for 

stepwise LDA and 94% for SIMCA. Moreover, a sensitivity (SENS) mean value of 82% 

and specificity (SPEC) mean value of 100%were achieved by SIMCA model. The same 

chemometric approaches applied to triple concentrated tomato paste samples coming 

from two different Italian regions, showed excellent results. Stepwise LDA has correctly 

classified all samples for both category (Emilia Romagna and Calabria) whereas SIMCA 

showed very good results in terms of predictive ability (97%), sensitivity (90%) and 

specificity (100%). 
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3.3 Multielement Fingerprinting as a Tool in Origin Authentication of 

PGI Food Products: Tropea Red Onion. 

Onion (Allium cepa L.) is one of the oldest cultivated plants, and it is now used both as a 

food and for medical purposes. In fact, onion is a rich source of a number of 

phytonutrients, as flavonoids, fructo-oligosaccharides, thiosulfinates and other sulphur 

compounds which make it an important food of the Mediterranean diet. 

The red onion variety Tropea is a typical Italian variety, cultivated in specific areas of 

Calabria. This cultivar, characterized by both white and purple flowers, is known for its 

distinctive red and sweet bulb (lengthened or oval).23 Due to its characteristics, it was 

awarded with PGI certification by the European Union as “Cipolla Rossa di Tropea 

Calabria”.15 Analysis of the methanolic extract from the bulbs of Tropea onions revealed 

the presence of high concentrations of flavonoids which continue to attract attention as 

potentially useful agents with implications for inflammation, cardiovascular diseases, and 

cancer.23-24 Respect to other onion cultivars, the variety Tropea seems to have peculiar 

nutritional properties such as a relatively high content of delphinidin derivatives (about 

30% of the total anthocyanin content), the presence of petunidin derivatives and the 

highest amount of free quercetin (557.8 mg/kg in fresh bulbs).25 Due to its special 

characteristics, the Tropea red onion is a product known throughout the world, important 

for local and national economy. On the other hand, the Tropea red onion is subject to food 

fraud. In 2008 it was estimated that, against a production of Tropea red onion in Calabria 

of about twenty thousand tons, the red onions labeled with the PGI brand were over one 

hundred thousand tons. This discrepancy can be evidently explained by an importation of 

onion fraudulently labeled with the PGI brand from abroad.16f, 17a Identification of 

geographical origin and authenticity of food products represents an important goal in 
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order to assure organoleptic and nutritional characteristics to consumers and to prevent 

unfair competition that can eventually damage the whole agricultural sector. 

Onions have been the subject of numerous works some of which concerned the 

discrimination of their production area. Ariyama et al. published some important papers 

in food forensic field concerning onions and welsh onions. The elemental concentration 

profile evaluated by flame atomic absorption spectroscopy (FAAS), inductively coupled 

plasma emission spectroscopy (ICP-AES) and inductively coupled plasma mass 

spectrometry (ICP-MS) was applied to welsh onions samples coming from Japan and 

China for the determination of their geographical origin.26 Subsequently, a similar method 

was successfully applied by the same research group to discriminate the Japanese onions 

from those coming from abroad.27 These studies demonstrated also that the differences in 

elements content by fertilization were smaller than those between production zones when 

judged from an overview of numerous elements.28 In this work, as carried out for tomato 

and triple concentrate tomato paste samples, the capability of multielement profiling to 

act as marker for the classification of Tropea red onion was evaluated. Samples were 

provided by the Consortium for the Protection of Tropea Red Onion and were harvested 

during the crop season 2009 from different fields belonging to the municipalities of Capo 

Vaticano, Amantea, Nocera Terinese, and Briatico (Figure 3.6) and immediately stored at 

-20 °C. Non-Tropea onion samples came from three Italian regions (Campania, Sicilia, 

and Piemonte) and The Netherlands. A total of 120 samples grown according to the 

production regulations of the Consorzio di tutela della Cipolla Rossa di Tropea 

(Consortium for the protection of Tropea Red Onion) and 80 onion samples from fields 

not belonging to the cultivation areas specified in the production regulations were used 

for the development of the research work. 
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Figure 3.6 Calabria map. In black is spotlighted the cultivation areas of Tropea red Onion. 

 

The first part of the research activity provided for the development of the mineralization 

and ICP-MS analytical method. The proper amount of onion sample and acid 

mineralization mixture were investigated in order to obtain good limit of quantification 

without stress the mineralization vessel. In order to assess the accuracy of the method, 

certified reference material NCS ZC85006 Tomato (Be, Na, Mg, Al, K, Ca, Sc, V, Mn, 

Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Y, Cd, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb, 

Lu, Pb, Th, U; China National Analysis Center for Iron & Steel 2000) already used for the 

traceability study on tomato, was submitted to the whole analytical process and the 

accuracy of the elements evaluated. Initially 46 elements were investigated 7Li, 9Be, 23Na, 

24Mg, 27Al, 39K, 44Ca, 45Sc, 51V, 52Cr, 53Cr, 55Mn, 54Fe, 56Fe,58Ni, 60Ni, 59Co, 63Cu, 64Zn, 

66Zn, 69Ga, 75As, 82Se, 85Rb, 88Sr, 89Y, 107Ag, 114Cd, 115In, 133Cs, 138Ba, 139La, 140Ce, 141Pr, 
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142Nd, 152Sm, 153Eu, 158Gd, 159Tb, 164Dy, 165Ho, 166Er, 169Tm, 174Yb, 175Lu, 205Tl, 208Pb, 

209Bi, 232Th and 238U. According to the polyatomic isobaric interferences for these 

elements, the optimization of the CH4 flow rate and the RPq value were carried out. 

Finally 25 elements were monitored: 22 elements detected in standard mode (27Al, 138Ba, 

44Ca, 114Cd, 140Ce, 164Dy, 153Eu, 69Ga, 158Gd, 165Ho, 139La, 24Mg, 55Mn, 23Na, 142Nd, 141Pr, 

85Rb, 152Sm, 88Sr, 205Tl, 89Y, 66Zn) and 3 elements in DRC mode (54Fe, 52Cr, 58Ni). ICP-

MS analyses were performed following the operating program and parameters reported in 

Chapter 4 (Table 4.5). One hundred twenty Tropea onion samples and eighty non Tropea 

onion samples were processed. Pattern recognition analysis was carried out using four 

supervised chemometric techniques (LDA, Stepwise-LDA, SIMCA and BP-ANN) in 

order to obtain classification rules for distinguishing between Tropea samples grown 

according the production regulations and non-Tropea samples. The reliability of the 

classification rules was validated through a cross validation procedure. All these 

techniques allowed us to obtain satisfactory results because all of the models obtained 

showed prediction ability >90%. Standard LDA shows a mean prediction ability of 94%. 

The elimination of redundant information in stepwise-LDA by means of the selection of 

only those variables that actually contributed to the discrimination between classes 

allowed us to obtain only a slight increase of the prediction ability (94.5%). The analyses 

of both LDA discriminating models show that lanthanides, alkaline metals and alkaline 

earth metals are the most important variables in the distinction of geographical origin. 

The importance of lanthanides and in particular of dysprosium shows that rare earth 

metals, not considered in the previously study concerning onions authentication,27 should 

be take into account. The important role of alkaline metals and alkaline earth metals in 

differentiation of cultivation zones is in agreement with previous studies about the 
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identification of the origin of virgin olive oil, and the research work previously discussed 

on tomato and tomato paste.13, 29 SIMCA model has provided very good results in terms 

of mean prediction ability (95.5%) with 99.2% of correct prediction for the class Tropea. 

Moreover, the SIMCA model is satisfactory in terms of mean sensitivity (88.5%) and 

mean specificity (85.5%). Before the training of the neural network, principal component 

analysis (PCA) was performed in order to reduce the dimensionality of a data set 

retaining the most part of the information present in the original data. The scores of 

different number of principal component were considered as input in the ANN training. 

The best results were achieved with a multilayer percepron MLP 10-7-1 with the first 10 

PCs as input variables (explaining 92.8% of total variance) and 100 epoch of back-

propagating algorithms. The optimum learning rate and momentum value were η= 0.15 

and α=0.3, respectively. The mean validation performance was 91.5% and the root mean 

square error was 0.312 for the training set, 0.484 for the test set and 0.363 for the 

validation set. 
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3.4 Authenticity of PGI Clementine of Calabria by multielement 

fingerprint. 

Clementine (Citrus clementina Hort. ex Tan.) is one of the most important cultivated 

variety of citrus mandarins in the Mediterranean basin. In Italy, cultivations are located in 

the southern part of the country where the best weather conditions for their growth exist. 

Calabria is a region where the cultivation of clementines is widespread. The peculiar 

pedoclimatic conditions of Calabrian cultivation areas of clementines have contributed to 

develop a product which, due to its special qualities, was awarded with PGI certification 

by the European Union as “Clementine di Calabria”.30 

Several papers concern the beneficial health effects of citrus fruits and citrus-derived 

products. Some of these properties have been found to include anticancer, antiviral, and 

anti-inflammatory activities which are related to the presence of antioxidants including 

vitamin C, carotenoids and phenolic compounds.31 Clementine of Calabria is a fruit 

known throughout the world with a great impact on regional and national Gross Internal 

Product. Due to its special characteristics it has been the subject of food fraud in which 

clementines cultivated abroad (e.g. Spain, Tunisia, Algeria,) were passed off as 

Clementine of Calabria and labeled with PGI brand.5 

In this experimental work, similar to what was reported with tomato, triple concentrate 

tomato paste and Tropea red onion, the capability of multielement profiling to act as 

marker for the classification of the PGI Clementine of Calabria was evaluated. 

Three pattern recognition chemometric models were applied to discriminate between 

clementine with PGI brand and non-PGI samples developing in this way a reliable 

analytical tool for traceability purpose. Multielement fingerprints of both peel and juice 

samples were considered as discriminative markers.  
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Clementine samples with PGI brand came from four different Calabrian cultivation zones 

located in the municipalities of Corigliano Calabro, Lamezia Terme, Pizzo Calabro and 

Rosarno whereas non-PGI clementine samples came from Spain, Tunisia and Algeria. 

The first part of the research activity was devoted to the development of the 

mineralization and ICP-MS analytical methods for the accurate determination of the 

markers. The proper amount of peel and juice sample, together with acid mineralization 

mixture were investigated in order to obtain good limit of quantification without stress the 

mineralization vessel. Accordingly to the optimization results of the polyatomic isobaric 

interferences and the limit of quantification obtained, concentrations of 23Na, 24Mg, 27Al, 

44Ca, 52Cr, 55Mn, 54Fe, 58Ni, 63Cu, 64Zn, 69Ga, 85Rb, 88Sr, 89Y, 138Ba, 139La, 140Ce, 141Pr, 

142Nd, 152Sm, 153Eu, 158Gd, 166Er, 208Pb in peel samples and the concentrations of 7Li, 23Na, 

24Mg, 27Al, 44Ca, 52Cr, 55Mn, 54Fe, 58Ni, 59Co, 63Cu, 64Zn, 69Ga, 82Se, 85Rb, 88Sr, 89Y, 138Ba, 

139La, 140Ce, 141Pr, 142Nd, 152Sm, 153Eu, 158Gd, 166Er, in juice samples were submitted to 

statistical analysis. Among the elements monitored in standard and DRC modes, 

significant differences have been observed in the assay of 56Fe and 52Cr. Therefore, the 

statistical analysis has been carried out by means of the data acquired in standard mode 

except for the determination of chromium in juice samples and iron in both peel and juice 

samples, in which DRC values were used 

In first instance principal component analysis (PCA) was carried out on the data matrices 

containing the concentration values (µg/kg) of the selected elements for peel and juice 

samples in order to perform an exploratory analysis for obtaining an overview of data and 

finding patterns in complex experimental data. The scores and loadings values of the first 

two PCs for juice and peel samples are plotted in Figure 3.7A and Figure 3.7B, 

respectively. 
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Figure 3.7 Biplot PC1 vs PC2 scores and loadings for clementine juice samples (A) and for 
clementine peel samples (B) 

 

Juice samples of the two production areas have similar score values on the first principal 

component whereas a separation of objects on the second PC is clear. The elements at top 

of the plot (i.e. Eu, Gd, Ce, Pr, Nd, Sm, La, Ni) are present at higher concentration in PGI 

samples whereas clementine samples coming from abroad have higher concentrations in 

elements with the highest negative loading values on the PC2 (i.e. Mg, Ca, Zn, Li, Fe, Cr, 

Na). Strontium and copper, which have loading values near to zero for both considered 

PCs, have similar concentrations in all clementine samples regardless the production 

zone. The four samples coming from the Algerian province of Blida are characterized by 

higher score values on the PC1 and slightly negative on the PC2. 

For peel samples, the biplot of the first two principal components, which explain 

respectively 40.20% and 17.81% of the total variance, shows the presence of two 

different clusters corresponding to clementine samples with PGI brand and clementine 

samples coming from abroad (Figure 3.7 B). Also in this case, separation of the groups 

corresponding to the two production areas occurs principally of the second principal 

component and the position of variables in the plot of loadings is similar to those 



Results and discussion                                 Chapter 3 
 

 

100 
 

observed for juice samples. Moreover, the cluster corresponding to the samples coming 

from the Algerian province of Blida is again characterized by higher negative score 

values on the PC1 and slightly positive on the PC2.  

Pattern recognition analysis was carried out applying linear discriminant analysis (LDA), 

soft independent model of class analogy (SIMCA) and partial least square discriminant 

analysis (PLS-DA). In LDA, since to obtain models that have good stability, the number 

of samples must be at least 3 times the number of variables, the application of a variables 

reduction technique is needed. Forward stepwise LDA was used to classify clementines 

according to the categories PGI (samples grown in accordance with the production 

regulations) and non-PGI (samples cultivated in zones different from those cited in the 

production regulations) used as input a priori. The forward stepwise analysis performed 

on juice samples (F to enter=2.00 and F to remove=1.00) has retained 11 elements (Table 

3.19). 

 
Juice samples Peel samples 

 Wilks’ λ 
Parziale 

Wilks’ λ 

F-

remove 
p-level  Wilks’ λ 

Parziale 

Wilks’ λ 

F-

remove 
p-level 

Cr 0.190443 0.757903 24.2766 0.000005 Fe 0.060440 0.722102 25.7846 0.000003 

Ni 0.188653 0.765096 23.3339 0.000007 Ga 0.054743 0.797263 17.0375 0.000104 

Y 0.183784 0.785367 20.7700 0.000019 Cr 0.052886 0.825243 14.1882 0.000351 

Mg 0.180554 0.799415 19.0694 0.000039 Ba 0.052332 0.833981 13.3375 0.000511 

Gd 0.176614 0.817249 16.9949 0.000095 Ca 0.050504 0.864177 10.5304 0.001834 

Sr 0.172065 0.838855 14.5996 0.000270 Sm 0.046042 0.947913 3.68158 0.059278 

Cu 0.167593 0.861239 12.2449 0.000784 Ce 0.046018 0.948424 3.64352 0.060572 

Na 0.166547 0.866648 11.6942 0.001011 Zn 0.045950 0.949817 3.53991 0.064254 

Co 0.153686 0.939174 4.92218 0.029499 Mn 0.045762 0.953727 3.25069 0.075890 

Al 0.151891 0.950269 3.97734 0.049703 Cu 0.045580 0.957539 2.97102 0.089380 

Zn 0.148973 0.968887 2.44056 0.122389 La 0.045011 0.969642 2.09770 0.152185 

Table 3.20 Summing up of the forward stepwise LDA: selected elements for juice samples and 
the 11 most important elements for peel samples 
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Among the most discriminating elements, the presence of alkali metals and alkaline earth 

metals (Mg, Na and Sr) is in agreement with other works carried out by our research 

group on the geographical traceability of oil,13 tomatoes29 and Tropea red onions.14 On the 

other hand, these results are not in agreement with those obtained in the differentiation 

between frozen orange juice coming from Brazil and Florida32 or Spain and Morocco.33 

To verify the goodness of method in terms of prediction ability, cross validation with 

cancellation group 10 was performed. The proposed model showed a total prediction 

ability of 96.6% and misclassification involved one sample belonging to PGI category 

and two samples belonging to non-PGI category. 

For peel samples, such as for juice samples, forward S-LDA has been performed (F to 

enter=0.4 and F to remove=0.00) and four variables have been eliminated (Al, Eu, Ni and 

Pb, Table 3.20). The cross-validation procedure showed a prediction ability of 100% for 

each category. 

SIMCA was applied to the same data matrices used for LDA and validation was carried 

out by 10-fold cross-validation procedure for both juice and peel samples. As regards 

juice samples, the model obtained was based on 9 PCs for first class (PGI samples) and 6 

PCs for second class (Non-PGI samples) that explains 89.2% and 91.2% of total variance, 

respectively. SIMCA model has provided very good prediction ability classifying 

correctly all samples submitted (Table 3.21). Moreover, the SIMCA model is satisfactory 

in terms of mean sensitivity (81.8%) and mean specificity (96.6%). Better results are 

achieved by the SIMCA model built using peel samples data matrix. For these data, the 

two SIMCA classes are modeled considering 8 PCs for the first class (explained variance 

89.7%) and 7 PCs for the second class (explained variance 90.2%). As for juice samples, 

SIMCA model is capable to correctly classify all samples submitted during cross-
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validation procedure and, in this case, shows better values of mean sensitivity (88.6%) 

and mean specificity (100%) (Table 3.21). 

 

Juice Samples Peel Samples 

 PGI non-PGI SENS(%) SPEC(%)  PGI non-PGI SENS(%) SPEC(%) 

PGI 54 0 83.3 91.2 PGI 54 0 85.2 100 

non-PGI 0 34 79.4 100 non-PGI 0 34 94.1 100 

Table 3.21 Prediction matrices for SIMCA of the cross validation procedure for juice and peel 
clementine samples (rows represent the true class, columns report the assigned class) 

 

Finally partial least square discriminant analysis (PLS-DA) was applied to the same data 

matrix submitted to SIMCA approach. The optimum number of latent variables was 

selected by evaluating the parameter Root Mean Square Error of Prediction (RMSEP) as 

function of the number of LVs. Accuracy of the PLS model developed was evaluated as 

prediction ability on the basis of the correct classification of test set samples which were 

submitted as unknowns to the regression model. All variables were column centered and 

standardized by 1/standard deviation. The weighted regression coefficients of the PLS 

model were used to identify the most important variables. Their value gives an indication 

on experimental variables which have an significant impact on the response variables. 

The use of weighted coefficient is preferred because it allow to identify the real 

importance of variables as their sizes do not depend on the range of variation.34 Variables 

that have weighted regression coefficients with high values play an important role in 

regression model and, in particular, positive values indicate a great deal in the relationship 

with the response for PGI category whereas negative mean a great deal to Non-PGI 

category.35 
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For juice samples 2 latent variables were chosen by which the RMSEP function has 

reached the first minimum. The 2D plot of the scores of the first three LVs is shown in 

Figure 3.8A. The model explained 73.8% of total variance and RMSEP and RMSEC 

values were 0.28 and 0.25, respectively. The closeness between these values can be 

interpreted as a lack of overfitting and good ability of the model to describe other data 

well.36 

 

 

Figure 3.8 PLS-DA Plot LV1 vs LV2 for clementine juice samples (A) and for clementine peel 
samples (B). 

 

All samples of the test set were submitted to the model and only two of them (one PGI 

sample and one non-PGI sample) were wrongly classified in the class they belong to. The 

analysis of the PLS regression coefficients (Figure 3.9A) shows that copper, nickel and 

lanthanides are the most representative elements for the PGI category whereas 

magnesium and calcium are representative for Non-PGI category. 



Results and discussion                                 Chapter 3 
 

 

104 
 

 

 

Figure 3.9 Weighted regression coefficients for the variables in the PLS-DA models: 
clementine juice samples (A) and for clementine peel samples (B). 

 

For peel samples 2 latent variables were chosen by which the RMSEP function has 

reached the first minimum. The 2D plot of the scores of the first two LVs is shown in 

Figure 3.8B. The model explained 92% of total variance and RMSEP and RMSEC values 

were 0.16 and 0.14, respectively. Also in this case, the PLS model shows good prediction 

ability since only one sample belonging to Non-PGI category was erroneously predicted. 

By looking at the regression coefficients (Figure 3.9B) it is possible to observe that most 

of the elements (8 out of 11) characterizing PGI peel samples belong to lanthanides. This 

result confirms the important role that these elements can play in applications of food 

authentication.37 On the other hand, iron and manganese are the most representative 

elements for the non-PGI category. Moreover, such as observed for juice data, also for 

peel samples magnesium, calcium and sodium have an important role in the distinction of 

geographical origin.  
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4.1 Secondary metabolites of Olea europaea leaves as markers for the 

discrimination of cultivars and cultivation zones by multivariate 

analysis 

4.1.1 Chemicals and Instrumentation 

HPLC grade solvents were purchased from Carlo Erba (Rodano, Italy). Salicin was 

obtained from Sigma–Aldrich (Saint Louis, MO). 

The collected fractions containing each compound were obtained using a fractionlynx 

semi-preparative HPLC system (Waters Corporation, Milford, MA, USA) composed 

of a autosampler/collector Waters 2767 sample manager, a 600E pump working in 

analytical mode, a 486 UV detector and a ZMD mass spectrometer equipped with an ESI 

source. The separation was performed using a 250×4.6mm 5mm reversed-phase C18 

Luna-Phenomenex column at a flow rate of 1 mL/min. The run time was 70 min and the 

gradient was built using 5mM NH4
+CH3COO- in H2O (solvent A) and acetonitrile (ACN) 

(solvent B) as eluting phase. The solvent run was composed by the following steps: 

isocratic 90%A for 1min; linear gradient from 90% A to 50% A in 14min; isocratic 50% 

A for 8min; linear gradient from 50% A to 0%A in 10 min; isocratic 0% A for 5min; 

linear gradient 0% A to 90% A in 5 min; equilibration of the column for 10 min. The MS 

conditions were as follows: Capillary voltage 3.15 kV, cone voltage 7V, extractor 2V, RF 

lens 0.34 V, source block and desolvation temperature 120, 2508C, respectively, ion 

energy 0.5V, LM resolution 14.5, HM resolution 15.0 and multiplier 650 V. The 

nebulizer gas was set to 650 L/h. The samples were collected at the exhaust of the UV 

detector at the same time as the appearance of the mass signal.  

The high-resolution ESI experiments were carried out in a hybrid Q-Star Pulsar-i (MDS 

Sciex Applied Biosystems, Toronto, Canada) mass spectrometer equipped with an ion 
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spray ionization source. Samples were introduced by direct infusion (5mL/min) of the 

solution coming from the HPLC separation at the optimum ion spray voltage of 4800 V. 

The nitrogen gas flow was set at 30 psi and the declustering and the focusing potentials 

were kept at 70 and 140V relative to ground, respectively. MS2 experiments were 

performed in the collision cell q on the isotopically pure (12C) peak of the selected 

precursor ions by keeping the first quadrupole analyzer at unit resolution, and scanning 

the time-of-flight (TOF) analyzer. The collision energy was set to 15 eV, for each 

compound, while the gas pressure of the collision chamber was regulated at the 

instrumental parameters CAD 5, which corresponds to a pressure of the chamber of 

6.86×10-3 Torr and a gas thickness of 9.55×10-15 molecules/cm2. All the acquisitions were 

averaged over 60 scans at a TOF resolving power of 8000. The molecular formula was 

evaluated by means of AnalystTM QS software (MDS-Sciex). 

 

4.1.2 Sampling 

Samples of olive leaves, utilized in this study, were collected from five different cultivars 

(Carolea, Cassanese, Coratina, Nocellara del Belice and Leccino), in the same 

experimental field of the C.R.A. Istituto Sperimentale per l’Olivicoltura in Rende 

(Calabria, Italy) in March and April 2006. Five samples of Carolea leaves were also 

collected in July 2006 and January 2007. Finally, five samples of Carolea leaves were 

picked from different cultivation areas, Rende and Mirto (Calabria) and Spoleto (Umbria, 

Italy), in July 2006. All the collected samples are summed in Table 4.1. 
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Number of samples Origin Region Cultivar Harvest period 

5 Rende Calabria Coratina March 2006 

5 Rende Calabria Coratina April 2006 

5 Rende Calabria Leccino March 2006 

5 Rende Calabria Leccino April 2006 

5 Rende Calabria Cassanese March 2006 

5 Rende Calabria Cassanese April 2006 

5 Rende Calabria Nocellara March 2006 

5 Rende Calabria Nocellara April 2006 

5 Rende Calabria Carolea March 2006 

5 Rende Calabria Carolea April 2006 

5 Rende Calabria Carolea July 2006 

5 Mirto Calabria Carolea July 2006 

5 Spoleto Umbria Carolea July 2006 

Table 4.1 Olive leaf samples 

 

4.1.3 Sample preparation 

A mixture of methanol and water (20 mL; 1:1 v/v) was added to 2 g of olive leaf powder. 

Five cultivars (Carolea, Cassanese, Coratina, Nocellara del Belice and Leccino) were 

used for the assays. The mixture was homogenized by vortex for 3 min and subsequently 

sonicated for 20 min. The residual solution was filtered into a Buchner funnel, and diluted 

to 25 mL; 2mL of the solution were filtered on a 0.45 micron filter and submitted to 

HPLC analysis. 

 

4.1.4 Statistical analysis 

Principal component analysis (PCA) was performed by Statistica 8.0 (StatSoft 2007 

Edition) and linear discriminant analysis (LDA), soft independent modelling of class 

analogy (SIMCA) and K-nearest neighbours (KNN) were executed by V-Parvus 84 

2004.1  
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4.2 Investigating the Origin of Tomatoes and Triple Concentrated 

Tomato Pastes through Multielement Determination by Inductively 

Coupled Plasma Mass Spectrometry and Statistical Analysis 

4.2.1 Chemicals and Instrumentation 

The reagents used for mineralization (HNO3 (65%), H2O2 (30%), HCl (30%), HF (40%), 

HClO4 (70%), H3BO3) were Suprapur (Merck, Darmstadt, Germany).All other reagents 

used for analysis were of analytical reagent grade (Merck, Darmstadt, Germany). Two 

multielement solutions of Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, 

Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, V,U and Zn (100 mg/L, Merck) and Ce, Dy, Er, 

Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Sc, Tb, Th, Tm, Y and Yb (10 mg/L, PerkinElmer) were 

used to prepare the calibration standards. Aqueous solutions were prepared using 

ultrapure water, with a resistivity of 18.2 MΩcm, obtained from a Milli-Q plus system 

(Millipore, Bedford, MA). All glassware was decontaminated with nitric acid (2%, v/v) 

overnight, rinsed with ultrapure water and dried. The accuracy of the method was 

evaluated by analyzing the certified reference material NCS ZC85006 Tomato (China 

National Analysis Center for Iron & Steel 2000). 

The sample preparation was carried out using the following system for microwave 

digestion: Anton Paar Multiwave 3000 with programmable power control (maximum 

power 1400 W) and rotor XF100 (operating pressure up to 120 bar maximum; operating 

temperature 260°C maximum; construction material PTFE-TFM for the vessel). The 

determination of the elements of interest was carried out utilizing an Elan DRC-e ICP-MS 

instrument (Perkin-Elmer SCIEX, Canada). Samples were introduced by means of a cross 

flow quartz nebulizer with a Scott-type spray chamber. The ICP torch was a standard 

torch (Fassel type torch) with platinum injector. A solution containing Rh, Mg, Pb, Ba 
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and Ce (10 μg/L) was used to optimize the instrument in terms of sensitivity, resolution 

and mass calibration. The 140Ce16O+ /140Ce+ ratio was used to check the level of oxide ions 

in the plasma that could interfere in the determination of some elements; also, 

instrumental parameters such as RF power and carrier gas flow were optimized and the 

level of doubly charged ion monitored by means of the signal 137Ba2+/137B+. The 

140Ce16O+ /140Ce+ and 137Ba2+/137B+ ratios obtained after optimization were 2.8 and 3.2%, 

respectively. ICP-MS analyses were performed following the operating program and 

parameters shown in Table 4.2. 

 

rf power (W) 1130 

Nebulizer (carrier gas) flow rate (L min-1) 0.95 

Lens voltage (V) 6.25 

Analog stage voltage (V) -1900 

Pulse stage voltage (V) 1050 

Discriminator threshold (V) 70 

Quadrupole rod offset (V) 0 

Resolution (amu) 0.70 

Detector Dual 

Speed of peristaltic pump (rpm) 24 

Sweeps/reading 20 

Replicates 3 

Dwell time 50 ms 

Scan mode Peak hopping 

DRC Parameters 

CH4 reaction gas flow (ml/min) 
0.70 for Cr, Fe Se and Zn 

1.15 for Sc, Ni and Eu 
Rejection parameter a (RPa) 0 

Rejection parameter q (RPq) 
0.5 for Eu 

0.6 for Sc, Ni, Se and Zn 
0.7 for Cr and Fe 

Table 4.2 Instrumental Parameters and Operating Conditions for the ICP-MS Instrument 
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4.2.2 Sampling 

Italian and foreign samples of certain origin were provided by Istituto Nazionale delle 

Conserve Alimentari (INCA). A total of about 130 tomato fruits of cv. Perfectpeel were 

hand harvested in August 2007 and 2008 from four different Italian regions (Calabria, 

Basilicata, Puglia and Emilia Romagna) and immediately stored at -20°C. One hundred 

samples (500 g for each samples) of triple concentrated tomato paste, 50 Italian, 10 

Chinese, 20 Californian and 20 Greek, were screened. Italian tomato paste samples were 

obtained from the same producers of the tomato samples (Table 4.3). 

 

Zone Region 
Tomato Paste 

2007a 2008a 2007b 2008b 

Mesagne Puglia (Italy) 10 10 - - 

Collecchio Emilia Romagna (Italy) 10 20 10 10 

Matera Basilicata (Italy) 10 10 - - 

Crotone Calabria (Italy) 20 20 20 10 

Unknown (China) - - - 10 

Unknown (California) - - - 20 

Unknown (Greece) - - - 20 

Table 4.3 Number of tomato and triple concentrated tomato paste samples (a harvest year; 
bproduction year) 

 

4.2.3 Sample preparation 

An aliquot of tomato sample (10 g) or triple concentrated tomato paste sample (1 g) was 

directly weighted into the vessel of the microwave system. The digestion was performed 

by adding 4.5 mL of HNO3, 1 mL of H2O2 and 0.5 mL of HF to each sample. The 

operating conditions used for the microwave digestion system is shown were 1000Wover 

ten minutes and hold at this power for eight minutes. After digestion the extracts were 

quantitatively transferred to a graduated polypropylene test-tube and made up to volume 
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(50 mL) with ultrapure water. The analytical batch consisted of a set of calibration 

standards, that were analyzed at the beginning of the run, samples, a minimum of three 

procedural blanks, one procedural blank spiked with a solution containing the elements of 

interest and the certified reference material. A mid-range calibration standard was 

measured at the end of each analytical run, in order to assess instrumental drift throughout 

the run. A eight point calibration curves covering the range 0.1-2000 µg/L were used for 

quantitative analysis. Standard solutions were prepared by diluting the multielement 

solutions cited in section 4.2.1 Chemicals and Instrumentation. 

 

4.2.4 Statistical analysis 

LDA was performed by Statistica 8.0 (StatSoft 2007 Edition); KNN and SIMCA were 

executed by V-Parvus 2004.1 
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4.3 The volatile fraction profiling of fresh tomatoes and triple 

concentrate tomato pastes as parameter for the determination of 

geographical origin. 

4.3.1 Chemicals and Instrumentation 

Calcium chloride 96% was purchased from Carlo Erba (Rodano, Italy). Methanol, ethyl 

isobutanoate, n-hexane and C7-C30 saturated alkanes were obtained from Sigma-Aldrich 

(Saint Louis, MO). The 85 µm  carboxen/polydimethylsiloxane fiber for SPME analysis 

was supplied by Supelco (Bellefonte, PA). Sample analyses were performed using a 

Varian (Walnut Creek, CA) Saturn 2000 GC-MS ion trap (ITD) system in EI modes, 

coupled to a Varian 3800 gas chromatograph equipped with a Varian 8200 autoinjector. 

The ion trap temperature was set at 210 °C with an ionization time of 2 ms, a reaction 

time at 50 ms, and a scan rate at 1000 ms. The transfer line temperature was set at 230 °C. 

The column was a 30 m Zebron ZB-5ms low bleed (0.25 mm i.d., 0.25 μm film 

thickness). The gas chromatography oven temperature was initially held at 35 °C for 8 

min, then increased at 1.5 °C/min to 45 °C, increased at 3 °C/min to 150 °C, increased 

again at 2.5 °C/min to 250 °C and held for 6 min. The carrier gas was helium at 1 

mL/min. For SPME analyses, a narrow bore Supelco 0.8 mm i.d. GC inlet liner was used.  

 

4.3.2 Sampling 

Tomato and concentrate paste samples were provided by Istituto Nazionale delle 

Conserve Alimentari (I.N.C.A). Tomatoes of cultivar Perfectpeel were hand harvested in 

August 2007 from four different Italian regions (Calabria, Basilicata, Puglia and Emilia 

Romagna) and immediately stored at -20°C.  
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Harvest occurred when tomatoes providing a Color Stage 6 according with the United 

States Department of Agriculture (USDA) tomato ripeness color chart. Samples are 

presented in Table 4.4.  

 

Zone Region 
Tomato Paste 

2007a 2008b 

Mesagne Puglia 10 - 

Collecchio Emilia Romagna 10 10 

Matera Basilicata 10 - 

Crotone Calabria 20 20 

Table 4.4 Number of tomato and triple concentrated tomato paste samples (a harvest year; 
bproduction year) 

 

4.3.3 Sample preparation 

Ten tomatoes were randomly chosen for each region and homogenized at 25°C using an 

electric mixer. Then two grams of homogenized tomatoes were put in a 10 mL vial and 2 

mL of saturated CaCl2 solution were added.2 Then 80 µL of ethyl isobutanoate solution at 

5 mg/L in methanol 3 were added as internal standard to obtain a concentration of 200 

µg/kg in each sample. The mixture was homogenized and the vials was sealed. The same 

procedure was followed for the concentrate paste samples, but three grams were weighted 

and 120 µL of internal standard solution were added. All these steps were conducted 

before complete defrosting to avoid loss of volatile compounds.4 Solid phase 

microextraction (SPME) technique in headspace mode was used for the extraction of 

volatile compounds. The sampling was performed in automated mode using the 

autoinjector equipped with the 85 µm carboxen/polydimethylsiloxane fiber.4 The sample 

was preheating to 35°C for 30 min and the extraction of volatile compounds took place 
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for 60 minutes at the same temperature. The analytes were desorbed for 10 min from the 

fiber into the GC injector set at 300°C in splitless mode. 

 

4.3.4 Statistical analysis 

Classification was carried out by two multivariate chemometric techniques: Linear 

Discriminant Analysis (LDA) and Soft Independent Modeling of Class Analogy 

(SIMCA). LDA was performed by Statistica 7.1; SIMCA was executed by V-Parvus 84 

2004.1 Principal component analysis (PCA) was performed by Statistica 7.1 statistical 

package. 
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4.4 Multielement Fingerprinting as a Tool in Origin Authentication of 

PGI Food Products: Tropea Red Onion. 

4.4.1 Chemicals and Instrumentation 

The reagents used for mineralization, HNO3 (65%) and H2O2 (30%), were Suprapur 

(Merck, Darmstadt, Germany). All other reagents used for analysis were of analytical 

reagent grade (Merck, Darmstadt, Germany). Two multielement solutions of Ag, Al, As, 

Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, 

V, U and Zn (100 mg/l, Merck) and Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Sc, Tb, 

Th, Tm, Y and Yb (10 mg/l, PerkinElmer) were used to prepare the calibration standards. 

Aqueous solutions were prepared using ultrapure water, with a resistivity of 18.2 MΩ cm, 

obtained from a Milli-Q plus system (Millipore, Bedford, MA, USA). All glassware, 

polyethylene flasks and tubes involved in sample preparation and measurement process 

were cleaned with nitric acid (2%, v/v) overnight, rinsed with ultrapure water and dried. 

An Anton Paar Multiwave 3000 with programmable power control (maximum power 

1400 W) and rotor XF100 (operating pressure up to 120 bar maximum; operating 

temperature 260°C maximum; construction material PTFE-TFM for the liner) was used 

for the microwave digestion of the samples. 

The determination of the elements of interest was carried out utilizing an Elan DRC-e 

ICP-MS instrument (Perkin-Elmer SCIEX, Canada) equipped with dynamic reaction cell 

for suppressing or reducing polyatomic interferences operating with CH4 (99.996% 

purity) as reaction gas.  

The sample delivery system consisted of a PerkinElmer auto sampler model AS-93 Plus 

with peristaltic pump and a cross-flow nebulizer with a Scott type spray chamber. 

Samples were introduced by means of a quartz nebulizer. The ICP torch was a standard 
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torch (Fassel type torch) with platinum injector. A solution containing Rh, Mg, Pb, Ba 

and Ce (10 µg/L) was used to optimize the instrument in terms of sensitivity, resolution 

and mass calibration. The 140Ce16O+/140Ce+ and 137Ba2+/137Ba+ ratios were used to check 

respectively the level of oxide ions in the plasma and the level of doubly charged ion that 

could interfere in the determination of some elements. Moreover, instrumental parameters 

such as RF power and carrier gas flow were optimized. In order to assess the accuracy of 

the method, certified reference material NCS ZC85006 Tomato (China National Analysis 

Center for Iron & Steel 2000) was submitted to the whole analytical process. ICP-MS 

analyses were performed following the operating program and parameters shown in Table 

4.5. 

 

rf power (W) 1100 

Nebulizer (carrier gas) flow rate (L min-1) 0.90 

Lens voltage (V) 8.5 

Analog stage voltage (V) -1800 

Pulse stage voltage (V) 1120 

Discriminator threshold (V) 70 

Quadrupole rod offset (V) 0 

Resolution (amu) 0.70 

Detector Dual 

Speed of peristaltic pump (rpm) 24 

Sweeps/reading 20 

Replicates 3 

Dwell time 50 ms 

Scan mode Peak hopping 

DRC Parameters 

CH4 reaction gas flow (ml/min) 
0.70 for Cr, Fe Se and Zn 

1.15 for Sc, Ni and Eu 
Rejection parameter a (RPa) 0 

Rejection parameter q (RPq) 
0.5 for Eu 

0.6 for Sc, Ni, Se and Zn 
0.7 for Cr and Fe 

Table 4.5 Instrumental Parameters and Operating Conditions for the ICP-MS Instrument 
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4.4.2 Sampling 

Samples were provided by the Consortium for the Protection of Tropea Red Onion and 

were harvested during the crop season 2009 from different fields belonging to the 

municipalities of Capo Vaticano, Amantea, Nocera Terinese, Briatico and immediately 

stored at -20°C. Non-Tropea onion samples came from three Italian region (Campania, 

Sicilia, Piemonte) and Netherlands (Table 4.6). 

 

Cultivation zone Region/State Harvest time Number of samples 

Capo Vaticano Calabria May 2009 20 

Amantea Calabria May 2009 20 

Nocera Terinese Calabria June 2009 40 

Briatico Calabria July 2009 40 

Agrigento Sicily July 2009 20 

Salerno Campania June 2009 20 

- Piedmont June 2009 20 

- Holland June 2009 20 

Table 4.6 Number of Tropea and non-Tropea onion samples 

 

4.4.3 Sample preparation 

Ten onion were randomly chosen for each harvest lot. For each onion, outer tunic, leaves, 

and basal plate with roots were discarded. Only the bulb was homogenized at 25°C using 

an electric mixer. An aliquot of onion sample (2 g) was directly weighted into the liner of 

the microwave system. The digestion was performed by adding 3 ml of HNO3 and 1 ml of 

H2O2 to each sample. The operating conditions used for the microwave digestion system 

are shown in Table 4.7. After digestion the extracts were quantitatively transferred to a 

graduated polypropylene test-tube and diluted with ultrapure water up to 50 ml. Ten 
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grams of homogenized sample were dried at 80°C to constant weight in order to obtained 

the moisture content for each harvested onion batch. 

 

Step Power (W) Hold (min) 

1 100 5 

2 600 5 

3 1000 10 

4 0 15 

Table 4.7 Operating conditions used for the microwave digestion system 

 

The analytical batch consisted of a set of calibration standards, that were analyzed at the 

beginning of the run, samples, a minimum of three procedural blanks and one procedural 

blank spiked with a solution containing the elements of interest. A mid-range calibration 

standard was measured at the end of each analytical run, in order to assess instrumental 

drift throughout the run. An eight point calibration curves covering the range 0.1-2000 

µg/l were used for quantitative analysis. Standard solutions were prepared by diluting the 

multielement solutions cited in 4.4.1 Chemicals and instrumentation section. 

 

4.4.4 Statistical analysis 

Classification was carried out by three multivariate chemometric techniques: Artificial 

Neural Network (ANN), Linear Discriminant Analysis (LDA) and Soft Independent 

Modeling of Class Analogy (SIMCA). ANN and LDA were performed by Statistica 7.1 

(StatSoft 2005 Edition); SIMCA was executed by V-Parvus 84 2004.1 Before ANN 

construction, principal component analysis (PCA) was performed by Statistica 7.1 

statistical package. 
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4.5 Authenticity of PGI Clementine of Calabria by multielement 

fingerprint. 

4.5.1 Chemicals and Instrumentation 

The mineralization was carried out using acids with Suprapur grade  (HNO3 (65%), H2O2 

(30%), HCl (30%), HF (40%), HClO4 (70%), H3BO3) (Merck, Darmstadt, Germany). All 

other reagents used for analysis were of analytical reagent grade (Merck, Darmstadt, 

Germany). Two multielement solutions of Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, 

Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, V, U and Zn (100 mg/L, Merck) 

and Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Sc, Tb, Th, Tm, Y and Yb (10 mg/L, 

PerkinElmer) were used for the preparation of aqueous calibration standard solutions after 

appropriate dilution. All glassware, polyethylene flasks, squeezer and tubes involved in 

sample preparation and measurement process was cleaned with nitric acid (2%, v/v) by 

soaking overnight and rinsed with ultrapure water prior to use. Aqueous solutions were 

prepared using ultrapure water, with a resistivity of 18.2MΩ cm, obt ained from a Milli-Q 

plus system (Millipore, Bedford, MA, USA).  

The sample preparation was carried out using the following system for the microwave 

digestion: Anton Paar Multiwave 3000 with programmable power control (maximum 

power 1400 W) and rotor XF100 (operating pressure up to 120 bar maximum; operating 

temperature 260°C maximum; construction material PTFE-TFM for the liner and the 

seal). The elements determination was carried out utilizing an Elan DRC-e ICP-MS 

instrument (Perkin-Elmer SCIEX, Canada). The sample delivery system consisted of a 

PerkinElmer auto sampler model AS-93 Plus with peristaltic pump and a cross-flow 

nebulizer with a Scott type spray chamber. The ICP torch was a standard torch (Fassel 

type torch) with platinum injector. 
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A solution containing Rh, Mg, Pb, Ba and Ce (10 µg/L, Merck, Darmstadt, Germany) was 

used to optimize the instrument in terms of sensitivity, resolution and mass calibration.  

A full optimization procedure was carried out before the analysis of calibration solutions 

and samples. The 140Ce16O+/140Ce+ ratio was used to check the level of oxide ions in the 

plasma that could interfere in the determination of some elements; also, instrumental 

parameters such as RF power and carrier gas flow were optimized and the level of doubly 

charged ion monitored by means of the signal 137Ba2+/137Ba+. In order to obtain a better 

accuracy and extension of linear dynamic range a dual detector cross calibration was 

performed using a reference solution 200 µg/L prepared by diluting stock solutions XXI 

(Merck, Darmstadt, Germany) containing 10 mg/L of some elements considered in the 

analytical method  with ultrapure water. The operating conditions and parameters of ICP-

MS analyses are shown in Table 4.7. 
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rf power (W) 1100 

Nebulizer (carrier gas) flow rate (L min-1) 0.90 

Lens voltage (V) 8.5 

Analog stage voltage (V) -1800 

Pulse stage voltage (V) 1120 

Discriminator threshold (V) 70 

Quadrupole rod offset (V) 0 

Resolution (amu) 0.70 

Detector Dual 

Speed of peristaltic pump (rpm) 24 

Sweeps/reading 20 

Replicates 3 

Dwell time 50 ms 

Scan mode Peak hopping 

DRC Parameters 

CH4 reaction gas flow (ml/min) 
0.70 for Cr, Fe Se and Zn 

1.15 for Sc, Ni and Eu 
Rejection parameter a (RPa) 0 

Rejection parameter q (RPq) 
0.5 for Eu 

0.6 for Sc, Ni, Se and Zn 
0.7 for Cr and Fe 

Table 4.8 Instrumental parameters and operating conditions for the ICP/MS instrument 

 

4.5.2 Sampling 

Clementine samples with PGI brand came from four different Calabrian cultivation zones 

located in the municipalities of Corigliano Calabro, Lamezia Terme, Pizzo Calabro and 

Rosarno. These samples were provided by six farms and hand harvested in October, 

November and December 2007. For each harvesting month three significant samples were 

randomly chosen for each farm so a total of 54 samples were collected. Non-PGI 

clementine samples came from Spain, Tunisia and Algeria (Table 4.9). All samples were 

immediately stored at -20°C. 
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Cultivation zone Region/State Juice samples Peel samples 

Corigliano Calabro Calabria 18 18 

Lamezia Terme Calabria 9 9 

Pizzo Calabro Calabria 9 9 

Rosarno Calabria 18 18 

Algiers Algeria 10 10 

Blida Algeria 4 4 

Valencia Spain 8 8 

- Tunisia 12 12 

Table 4.9 Number of PGI and non-PGI clementine samples 

 

4.5.3 Sample preparation 

The analytical batch consisted of a set of calibration standards, samples, a procedural 

blank for each mineralization batch and one procedural blank spiked with a solution 

containing the elements of interest. A mid-range calibration standard was measured at the 

end of each analytical run in order to assess instrumental drift throughout the run. The 

quantitative determination of elements was carried out with external standards. Ten point 

calibration curves covering the range 0.1–2000 µg/L were used. Standard solutions were 

prepared by diluting the multielement solutions cited in Section 2.1. The concentration 

range for the elements Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, U, Y, 

Yb was 0.1–150 µg/L whereas the concentration range for the elements Ag, Al, As, Ba, 

Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, V, 

Zn was 0.1–2000 µg/L. 

 

Juice samples 

Clementines were thoroughly washed with tap water and rinsed with ultrapure water. 

Clementine juice was obtained by hand squeezing using a plastic squeezer to prevent 
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metal contamination. Each clementine has constituted a sample and was squeezed 

separately paying attentions to obtain the juice from only the edible part of the fruit 

without including the albedo. For each cultivation zone and harvesting month three 

replicates were used in the quantitative analysis. An aliquot of clementine juice (5 g) at 

their natural Brix values was weighted directly into the PTFE-TFM digestion tube of the 

microwave system. Digestion was performed by adding 2.5 mL of HNO3 to each sample. 

The operating conditions used for the microwave digestion system are shown in Table 

4.9. 

 

 
Juice 

samples 
Peel 

samples 

Step 
Power 

(W) 
Time 
(min) 

1 800 10:00 15:00 

2 0 10:00 10:00 

3 900 10:00 15:00 

4 0 30:00 35:00 

Table 4.10 Mineralization power programs used for the microwave digestion of clementine 
juices and peels samples. 

 

After mineralization process, extracts were quantitatively transferred to a graduated 

polypropylene test-tube and diluted with ultrapure water up to 50 mL. Blank samples 

were prepared by subjecting 5 mL of ultrapure water to the same digestion procedure 

used for juice samples. 

 

Peel samples 

Peel samples were prepared from the same clementine used for the preparations of the 

juice samples. Each clementine peel (albedo and flavedo) was grated on a plastic kitchen 
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grater to shred the peel without metal contamination. For each zone and harvesting 

month, three clementines were used in quantitative analysis as for juice samples. An 

aliquot of shredded Clementine peel (300 mg) was weighted directly into the PTFE-TFM 

digestion tube of the microwave system. Digestion was performed by adding 2 mL of 

HNO3 and 4 mL of ultrapure water to each sample. The digestion was carried out using 

the microwave power program shown in Table 4.9. Digested samples were quantitatively 

transferred to a graduated polypropylene test-tube and the volume adjusted to 50 mL with 

ultrapure water. Blank samples were prepared in a similar way as juice samples using the 

peel microwave conditions of peel digestion. 

 

4.5.4 Statistical analysis 

Principal component analysis (PCA) was performed by Statistica 7.1 statistical package. 

Classification was carried out by three multivariate chemometric techniques: Linear 

Discriminant Analysis (LDA), Soft Independent Modeling of Class Analogy (SIMCA) 

and Partial Least Squares-Discriminant Analysis (PLS-DA). LDA were performed by 

Statistica 7.1 (StatSoft 2005 Edition), SIMCA was executed by V-Parvus 20091 whereas 

the PLS-DA algorithms was supported by the software packages "The Unscrambler 9.1" 

(Camo Process As., Oslo, Norway).  
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